SlideShare a Scribd company logo
1 of 47
Review of Seiberg Witten
duality
MuhammadHassaan Saleem
Supervisor: Dr. Bushra haider
Objective and structure
We want to work out the form of low energy 𝑁 = 2 SYM
ℒ𝑁=2 =
1
16πœ‹
πΌπ‘š ∫ 𝑑2
πœƒ β„±β€²
β€² πœ™ π‘Šπ›Ό
π‘Š
𝛼 + ∫ 𝑑2
πœƒ 𝑑2
πœƒ πœ™ β„±β€²
πœ™
where β„± πœ™ is known as the prepotential. We essentially need to find the prepotential.
The work is divided as follows:
1) Review of 𝒩 = 2 SYM theory and the topics needed to understand it.
2) Review of Olive Montonen duality (1977)
3) Review of Seiberg Witten duality (1994)
𝒩 = 2 SYM
SUSY algebra
The SUSY algebra is
Where 𝑍𝐼𝐽
are called central charges and they are antisymmetric in their indices. Moreover, πœŽπœ‡πœˆ
𝛼
𝛽
= πœŽπ›Όπ›Ύ
πœ‡
𝜎𝜈 𝛾𝛽
βˆ’ (πœ‡ ↔ 𝜈) where πœŽπœ‡
=
(1, 𝝈) and πœŽπœ‡
= (1, βˆ’πˆ).
Massless multiplets
Take 𝑃
πœ‡ = (𝐸, 0,0, 𝐸) and we get 𝑄1
𝐼
, 𝑄1
𝐽
= 0 , 𝑄2
𝐼
, 𝑄2
𝐽
= 4𝐸. So 𝑄1
𝐼
= 𝑄1
𝐼
= 0 (Positivity of Hilbert space).
Define
π‘ŽπΌ
=
1
4𝐸
𝑄2
𝐼
, (π‘Žβ€ 
)𝐼
=
1
4𝐸
𝑄2
𝐼
β‡’ π‘ŽπΌ
, π‘Žπ½
= 1
The states π‘Žβ€  1
π‘Žβ€  2
… π‘Žβ€  𝑗
|π‘—βŸ© are built and they are 2𝑁
in number if 𝐼 = 1,2, … 𝑁.
N=1 multiplets
𝑗 = 0 β†’ 0,
1
2
βŠ• βˆ’
1
2
, 0 (chiral multiplet)
𝑗 =
1
2
β†’
1
2
, 1 βŠ• βˆ’1, βˆ’
1
2
gauge multiplet
N=2 multiplets
𝑗 = 0 β†’ 0,
1
2
,
1
2
, 1 βŠ• βˆ’1, βˆ’
1
2
, βˆ’
1
2
, 0 (gauge multiplet)
𝑗 = βˆ’
1
2
β†’ βˆ’
1
2
, 0,0,
1
2
βŠ• βˆ’
1
2
, 0,0,
1
2
(hypermultiplet)
Massive multiplets (𝒩 = 2)
Let 𝑃
πœ‡ = (π‘š, 𝟎) and then , we have
𝑄𝛼
𝐼
, 𝑄𝛽
𝐽
†
= 2π‘šπ›Ώπ›Όπ›½π›ΏπΌπ½
, 𝑄𝛼
𝐼
, 𝑄𝛽
𝐽
= πœ–π›Όπ›½π‘πΌπ½
, 𝑄𝛼
𝐼 †
, 𝑄𝛽
𝐽
†
= πœ–π›Όπ›½ π‘βˆ— 𝐼𝐽
Since 𝑍𝐼𝐽
is anti symmetric, we can write it as
𝑍𝐼𝐽
=
0 𝑍
βˆ’π‘ 0
, 𝑍 > 0
Define
𝐴𝛼 =
1
2
𝑄𝛼
1
+ πœ–π›Όπ›½ 𝑄𝛽
2 †
, 𝐡𝛼 =
1
2
𝑄𝛼
1
βˆ’ πœ–π›Όπ›½ 𝑄𝛽
2 †
β‡’ 𝐴𝛼, 𝐴𝛽
†
= 2π‘š βˆ’ 𝑍 𝛿𝛼𝛽, 𝐡𝛼, 𝐡𝛽
†
= 2π‘š + 𝑍 𝛿𝛼𝛽
For positivity of Hilbert space, 2π‘š βˆ’ 𝑍 β‰₯ 0. If 2π‘š = 𝑍 then it is called a BPS multiplet (or short multiplet).
Chiral and vector superfield
In superspace (π‘₯πœ‡
, πœƒ, πœƒ), a general field is
𝐹 π‘₯πœ‡
, πœƒ, πœƒ = 𝑓 π‘₯ + πœƒπœ“ π‘₯ + πœƒπœ’ π‘₯ + πœƒπœƒπ‘› π‘₯ + πœƒπœƒπ‘š π‘₯ + πœƒπœŽπœ‡
πœƒπ‘£πœ‡ π‘₯ + πœƒπœƒπœƒπœ† π‘₯ + πœƒπœƒπœƒπœŒ π‘₯ + πœƒπœƒπœƒπœƒπ‘‘(π‘₯)
While the SUSY transformation is;
𝐹 β†’ π‘’βˆ’π‘– πœ–π‘„+πœ–π‘„
𝐹𝑒𝑖 πœ–π‘„+πœ–π‘„
, 𝛿𝐹 = 𝑖 πœ–π‘„ + πœ–π‘„ 𝐹, 𝑄𝛼 = βˆ’π‘–
πœ•
πœ•πœƒπ›Ό
βˆ’ πœŽπ›Όπ›½
πœ‡
πœƒπ›½
πœ•πœ‡, 𝑄𝛼 = 𝑖
πœ•
πœ•πœƒπ›Ό
+ πœƒπ›½
πœŽπ›½π›Ό
πœ‡
πœ•πœ‡
Define
𝐷𝛼 =
πœ•
πœ•πœƒπ›Ό
+ π‘–πœŽπ›Όπ›½
πœ‡
πœƒπ›½
πœ•πœ‡, 𝐷𝛼 =
πœ•
πœ•πœƒπ›Ό
+ π‘–πœƒπ›½
πœŽπ›½π›Ό
πœ‡
πœ•πœ‡, 𝐷𝛼, 𝑄𝛽 = 0
Chiral superfield
π·π›Όπœ™ = 0 chiral , π·π›Όπœ™ = 0 (anti βˆ’ chiral)
𝐷𝛼 πœƒ = 0, π·π›Όπ‘¦πœ‡
= 𝐷𝛼 π‘₯ πœ‡
+ π‘–πœƒπ›½
πœŽπ›½π›Ό
πœ‡
πœƒπ›Ό
= 0 β‡’ πœ™ πœƒ, π‘¦πœ‡
= 𝑧 𝑦 + 2πœƒπœ“ 𝑦 βˆ’ πœƒπœƒπ‘“(𝑦)
Vector superfield
Let’s impose 𝐹 = 𝐹 and to accommodate π‘£πœ‡ β†’ π‘£πœ‡ + πœ•πœ‡π›Ό gauge, let’s have 𝐹 β†’ 𝐹 + πœ™ + πœ™ gauge (Wess Zumino gauge). Then we have
𝑉 = πœƒπœŽπœ‡
πœƒπ‘£πœ‡ + π‘–πœƒπœƒπœ†πœƒ βˆ’ π‘–πœƒπœƒπœƒπœ† +
1
2
πœƒπœƒπœƒπœƒπ‘‘
Non abelian gauge is 𝑒𝑉
β†’ 𝑒𝑖Ω†
𝑒𝑉
π‘’βˆ’π‘–Ξ©β€ 
but the form of vector superfield is the same.
𝒩 = 1 SYM
The following actions are supersymmetric
∫ 𝑑4
π‘₯∫ 𝑑2
πœƒπ‘‘2
πœƒ 𝐹, ∫ 𝑑4
π‘₯∫ 𝑑2
πœƒ π‘Š , π·π›Όπ‘Š = 0, 𝑑2
πœƒ =
1
2
π‘‘πœƒπ‘‘πœƒ
Now,
π‘Š
𝛼 = βˆ’
1
4
𝐷2
(π‘’βˆ’π‘‰
𝐷𝛼𝑒𝑉
)
Is chiral as 𝐷3
= 0. Moreover, π‘Š
𝛼 β†’ 𝑒𝑖Λ
π‘Š
π›Όπ‘’βˆ’π‘–Ξ›
as usual for non abelian theories. The gauge invariant term is π‘‘π‘Ÿ(π‘Šπ›Ό
π‘Š
𝛼).
ℒ𝑁=1 = πΌπ‘š
𝜏
32πœ‹
∫ 𝑑2
πœƒ π‘‘π‘Ÿ π‘Šπ›Ό
π‘Š
𝛼 = π‘‘π‘Ÿ βˆ’
1
4
πΉπœ‡πœˆ
𝐹
πœ‡πœˆ βˆ’ π‘–πœ†πœŽπœ‡
π·πœ‡πœ† +
1
2
𝑑2
+
Ξ˜π‘”2
32πœ‹2
πΉπœ‡πœˆ
βˆ— 𝐹
πœ‡πœˆ
Where
𝜏 =
Θ
2πœ‹
+ 𝑖
4πœ‹
𝑔2
, π·πœ‡πœ†π›½ = πœ•πœ‡πœ†π›½ βˆ’
𝑖
2
π‘£πœ‡, πœ†π›½ , 𝐹
πœ‡πœˆ = πœ•πœ‡π‘£πœˆ βˆ’ πœ•πœˆ π‘£πœ‡ βˆ’
𝑖
2
π‘£πœ‡, π‘£πœˆ , βˆ— 𝐹
πœ‡πœˆ =
1
2
πœ–πœ‡πœˆπ›Όπ›½πΉπ›Όπ›½
𝒩 = 1 SYM with matter
The chiral field is πœ™π‘–
invariant under the gauge transformation
πœ™π‘–
β†’ 𝑒𝑖Λ
𝑗
𝑖
πœ™π‘—
, Ξ› = Ξ›π‘Ž
𝑇𝐺
π‘Ž
, D𝛼Λ = 0
which implies that πœ™β€ 
𝑒2𝑔𝑉
πœ™ is gauge invariant and thus, the matter lagrangian is
β„’π‘šπ‘Žπ‘‘π‘‘π‘’π‘Ÿ = ∫ 𝑑2
πœƒ 𝑑2
πœƒ πœ™π‘’2𝑔𝑉
πœ™ = π·πœ‡π‘§
†
π·πœ‡
𝑧 βˆ’ π‘–πœ“πœŽπœ‡
π·πœ‡πœ“ + 𝑓𝑓 + 𝑖𝑔 2 π‘§πœ†πœ“ βˆ’ 𝑖𝑔 2 πœ“πœ†π‘§ + 𝑔𝑧𝑑𝑧
where
π·πœ‡π‘§ = πœ•πœ‡π‘§ βˆ’
𝑖
2
π‘”π‘£πœ‡
𝑗
𝑇𝐺
𝑗
𝑧
So, the total 𝒩 = 1 lagrangian is
ℒ𝒩=1 = β„’π‘”π‘Žπ‘’π‘”π‘’ + β„’π‘šπ‘Žπ‘‘π‘‘π‘’π‘Ÿ = πΌπ‘š
𝜏
32πœ‹
∫ 𝑑2
πœƒ π‘‘π‘Ÿ π‘Šπ›Ό
π‘Š
𝛼 + ∫ 𝑑2
πœƒ 𝑑2
πœƒ πœ™π‘’2𝑔𝑉
πœ™
= π‘‘π‘Ÿ βˆ’
1
4
πΉπœ‡πœˆ
𝐹
πœ‡πœˆ βˆ’ π‘–πœ†πœŽπœ‡
π·πœ‡πœ† +
1
2
𝑑2
+
Ξ˜π‘”2
32πœ‹2
πΉπœ‡πœˆ
βˆ— 𝐹
πœ‡πœˆ + π·πœ‡π‘§
†
π·πœ‡
𝑧 βˆ’ π‘–πœ“πœŽπœ‡
π·πœ‡πœ“ + 𝑓𝑓 + 𝑖𝑔 2 π‘§πœ†πœ“ βˆ’ 𝑖𝑔 2 πœ“πœ†π‘§ + 𝑔𝑧𝑑𝑧
𝒩 = 2 SYM
In 𝒩 = 2 theory, the gauge representation is adjoint with the representation matrices π‘‡π‘Ž
. Using this, we can write the terms in 𝒩 = 1
lagrangian as;
π·πœ‡π‘§
π‘Ž
†
π·πœ‡
𝑧 π‘Ž
= π‘‘π‘Ÿ π·πœ‡π‘§
†
π·πœ‡
𝑧 , π‘–πœ“π‘Ž πœŽπœ‡π·πœ‡
πœ“
π‘Ž
= π‘‘π‘Ÿ πœ“πœŽπœ‡π·πœ‡
πœ“ , π‘“π‘Žπ‘“π‘Ž
= π‘‘π‘Ÿ [𝑓𝑓]
π‘§π‘Žπœ†π‘ 𝑇𝑏
𝑐
π‘Ž
πœ“π‘
= π‘‘π‘Ÿ 𝑧 πœ†, πœ“ , πœ“πœ†π‘§ = π‘‘π‘Ÿ πœ“, πœ† 𝑧 , π‘§π‘Žπ‘‘π‘ 𝑇𝑏
𝑐
π‘Ž
𝑧𝑐
= π‘‘π‘Ÿ 𝑑 𝑧, 𝑧
Making these arrangements, the 𝒩 = 1 lagrangian becomes;
β„’ = π‘‘π‘Ÿ βˆ’
1
4
πΉπœ‡πœˆ
𝐹
πœ‡πœˆ βˆ’ π‘–πœ†πœŽπœ‡
π·πœ‡πœ† +
1
2
𝑑2
+
Ξ˜π‘”2
32πœ‹2
πΉπœ‡πœˆ
βˆ— 𝐹
πœ‡πœˆ + π·πœ‡π‘§
†
π·πœ‡
𝑧 βˆ’ π‘–πœ“πœŽπœ‡
π·πœ‡πœ“ + 𝑓𝑓 + 𝑖𝑔 2𝑧 πœ†, πœ“ βˆ’ 𝑖𝑔 2 πœ“, πœ† 𝑧 + 𝑔𝑑 𝑧, 𝑧
It is symmetric under the exchange πœ“ ↔ πœ† (and also under the 𝑅 symmetry) so it is 𝒩 = 2 supersymmetric.
So, the 𝒩 = 2 lagrangian is;
ℒ𝒩=2 = πΌπ‘š
𝜏
32πœ‹
∫ 𝑑2
πœƒ π‘‘π‘Ÿ π‘Šπ›Ό
π‘Š
𝛼 + ∫ 𝑑2
πœƒπ‘‘2
πœƒ π‘‘π‘Ÿ πœ™β€ 
𝑒2𝑔𝑉
πœ™
Low energy 𝒩 = 2 SYM
SUSY breaking
The field equations for π‘“π‘Ž
and π‘‘π‘Ž
give;
π‘“π‘Ž
= 0, π‘‘π‘Ž
= βˆ’π‘” 𝑧, 𝑧 π‘Ž
This gives the scalar potential
𝑉 = 𝑓𝑓 +
1
2
𝑔𝑑2
=
1
2
𝑔 𝑧, 𝑧 2
For SUSY to break, the potential should vanish as
𝑄𝛼
𝐼
Ξ© 2
+ 𝑄𝛼
𝐼
Ξ©
2
= 4 Ξ© 𝑃0 Ξ© β‰₯ 0 β‡’ 𝑄𝛼
𝐼
Ξ© = 0 βˆ€ 𝐼 if Ξ© 𝑃0 Ξ© = 0 β‡’ 𝑉 = 0
Low energy effective lagrangian
In 𝒩 = 2 lagrangian, πœπ›Ώπ‘Žπ‘ can be replaced by an arbitrary function π‘“π‘Žπ‘(𝑧) and πœ™π‘Ž can be replaced by an arbitrary function πΎπ‘Ž(𝑧) (details in
the sigma model). π‘“π‘Žπ‘ 𝑧 and πΎπ‘Ž(𝑧) can be expressed in terms of prepotential as
π‘“π‘Žπ‘ 𝑧 =
𝑔2
4πœ‹π‘–
β„±π‘Žπ‘ 𝑧 , 𝐾 𝑧, 𝑧 =
𝑔2
8πœ‹π‘–
π‘§π‘Ž
πœ•β„± 𝑧
πœ•π‘§π‘Ž
βˆ’ π‘§π‘Ž
πœ•β„± 𝑧
πœ•π‘§π‘Ž
This gives the following effective lagrangian
ℒ𝒩=2 eff =
1
16πœ‹
Im ∫ 𝑑2
πœƒ β„±π‘Žπ‘ πœ™ π‘Šπ›Όπ‘Ž
π‘Š
𝛼
𝑏
+ ∫ 𝑑2
πœƒ 𝑑2
πœƒ πœ™π‘’2𝑔𝑉 π‘Ž
β„±π‘Ž(πœ™)
Olive Montonen duality
What is duality?
Duality is the presence of two different perspectives of a single problem or of a single physical system. The main examples of the presence of duality
would include the wave particle duality. A physical system can be viewed in the position space wave function (i.e. βŸ¨πœ“|π‘₯⟩) and it can also be seen in the
momentum space wave function (i.e. βŸ¨πœ“|π‘βŸ©).
Another example for the concept of duality would be seen in the harmonic oscillator with the lagrangian.
𝐿 =
𝑝2
2π‘š
βˆ’
1
2
π‘šπœ”2
π‘₯2
It is easy to see that in the replacement
π‘₯ β†’
𝑝
mπœ”
, 𝑝 β†’ βˆ’π‘šπœ”π‘₯
the harmonic oscillator is self dual as can be seen below
𝐿 β†’
βˆ’π‘šπœ”π‘₯ 2
2π‘š
βˆ’
1
2
π‘šπœ”2
𝑝
π‘šπœ”
2
= βˆ’
𝑝2
2π‘š
βˆ’
1
2
π‘šπœ”2
π‘₯2
= βˆ’πΏ
So, the lagrangian changes by an overall factor but that doesn’t change the equations of motion.
Electromagnetic duality
Sourcless Maxwell equations (MEs) are invariant in the transformations 𝐷: 𝐸𝑖 β†’ 𝐡𝑖 , 𝐡𝑖 β†’ βˆ’πΈπ‘– . It can be generalized to
𝐸𝑖 = 𝐸𝑖 cos πœƒ + 𝐡𝑖 sin πœƒ , 𝐡𝑖 = βˆ’πΈπ‘– sin πœƒ + 𝐡𝑖 cos πœƒ
and MEs will still be invariant as can be seen below for the Faraday and Maxwell laws (written in term of indices and πœ•π‘‘ is time derivative);
πœ–π‘–π‘—π‘˜πœ•π‘—π΅π‘˜ = πœ•π‘‘πΈπ‘–
πœ–π‘–π‘—π‘˜πœ•π‘—πΈπ‘˜ = βˆ’πœ•π‘‘π΅π‘–
β‡’
πœ–π‘–π‘—π‘˜ πœ•π‘— cos πœƒ πΈπ‘˜ + sin πœƒ π΅π‘˜ = βˆ’πœ•π‘‘ cos πœƒ 𝐡𝑖 βˆ’ sin πœƒ 𝐸𝑖 β‡’ πœ–π‘–π‘—π‘˜πœ•π‘—πΈπ‘˜
β€²
= βˆ’πœ•π‘‘π΅π‘–
β€²
πœ–π‘–π‘—π‘˜ πœ•π‘— cos πœƒ π΅π‘˜ βˆ’ sin πœƒ πΈπ‘˜ = πœ•π‘‘ cos πœƒ 𝐸𝑖 + sin πœƒ 𝐡𝑖 β‡’ πœ–π‘–π‘—π‘˜πœ•π‘—π΅π‘˜
β€²
= πœ•π‘‘πΈπ‘–
β€²
Introduce 𝐹
πœ‡πœˆ with 𝐹0𝑖 = 𝐸𝑖, 𝐡𝑖 =
1
2
πœ–π‘–π‘—π‘˜πΉ
π‘—π‘˜. So we can visualize 𝐷 transformation as
𝐸𝑖 β†’ 𝐡𝑖 β‡’ 𝐹0𝑖 β†’
1
2
πœ–π‘–π‘—π‘˜πΉ
π‘—π‘˜ =βˆ— 𝐹0𝑖, 𝐡𝑖 β†’ βˆ’πΈπ‘– β‡’
1
2
πœ–π‘–π‘—π‘˜πΉ
π‘—π‘˜ β†’ βˆ’πΉ0𝑖 =
1
2
πœ–π‘–π‘—π‘˜ βˆ— 𝐹
π‘—π‘˜, βˆ— 𝐹
πœ‡πœˆ =
1
2
πœ–πœ‡πœˆπ›Όπ›½πΉπ›Όπ›½
So, we can see that the 𝐷 transformation as 𝐹
πœ‡πœˆ =βˆ— 𝐹
πœ‡πœˆ.
If there are no monopoles, we can take
𝐡𝑖 =
1
2
πœ–π‘–π‘—π‘˜ 𝐹
π‘—π‘˜ = βˆ‡ Γ— 𝐴 𝑖 =
1
2
πœ–π‘–π‘—π‘˜ πœ•π‘—π΄π‘˜ βˆ’ πœ•π‘˜π΄π‘— , 𝐸𝑖 = 𝐹0𝑖 = βˆ’βˆ‡πœ™ βˆ’
πœ•π‘¨
πœ•π‘‘ 𝑖
= πœ•0𝐴𝑖 βˆ’ πœ•π‘–π΄0 β‡’ 𝐹
πœ‡πœˆ = πœ•πœ‡π΄πœˆ βˆ’ πœ•πœˆπ΄πœ‡
Electromagnetism in Quantum Mechanics
In Quantum Mechanics, the electromagnetic coupling can be realised by minimum coupling scheme
𝑝𝑖 β†’ βˆ’π‘– βˆ‡ βˆ’ ieA 𝑖
Moreover it is well known that the Schrodinger wave equation (SWE) is invariant in the gauge transformation
πœ“ β†’ π‘’βˆ’π‘–π‘’πœ’
πœ“, 𝐴𝑖 β†’ 𝐴𝑖 βˆ’
𝑖
𝑒
π‘’π‘–π‘’πœ’
βˆ‡π‘’βˆ’π‘–π‘’πœ’
, π‘’π‘–π‘’πœ’
∈ π‘ˆ(1)
Consider a magnetic monopole at π‘Ÿ = 0 and since we have a magnetic monopole now, it cant the case that 𝐡𝑖 = βˆ‡ Γ— 𝐴 𝑖 everywhere. We can still
define 𝐴𝑖 in patches and in the region where the patches overlap, they should differ by a gauge transformation. For π‘Ÿ > π‘Ÿ0 > 0, the magnetic field should
look like;
𝑩 =
π‘”π‘Ÿ
4πœ‹π‘Ÿ2
Now, we want some 𝑨 to give the above magnetic field by taking it’s curl. We use the polar coordinate system and in this system, 𝑩 (for an arbitrary 𝑨 is)
π΅π‘Ÿ =
1
π‘Ÿ π‘ π‘–π‘›πœƒ
πœ• sin πœƒ π΄πœ™
πœ•πœƒ
βˆ’
πœ•π΄πœƒ
πœ•πœ™
, π΅πœƒ = βˆ’
1
π‘Ÿ π‘ π‘–π‘›πœƒ
πœ•π΄π‘Ÿ
πœ•πœ™
βˆ’ sin πœƒ
πœ•(π‘Ÿπ΄πœ™)
πœ•π‘Ÿ
, π΅πœ™ =
1
π‘Ÿ
πœ•(π‘Ÿπ΄πœƒ)
πœ•π‘Ÿ
βˆ’
πœ•π΄π‘Ÿ
πœ•πœƒ
Since we want the πœ™ component of 𝑩 to vanish, we set π΄πœƒ = π΄π‘Ÿ = 0. Moreover, 𝑩 falls as 1/π‘Ÿ2
and thus, 𝑨 falls as 1/π‘Ÿ. Therefore, π‘Ÿπ΄πœ™ should be
independent of π‘Ÿ. So, π΅πœƒ is zero as well.
π΅π‘Ÿ =
1
π‘Ÿ π‘ π‘–π‘›πœƒ
πœ• sin πœƒ π΄πœ™
πœ•πœƒ
=
𝑔
4πœ‹π‘Ÿ2
β‡’ π΄πœ™ =
𝑔
4πœ‹π‘Ÿ
πœ‰ βˆ’ cos πœƒ
sin πœƒ
Where πœ‰ is arbitrary.
[1] P.A.M Dirac (1931)
Now, we choose 𝑨 in two patches and then them 𝑨𝑁 and 𝑨𝑆 (i.e. for Northern patch and the Southern patch). We choose πœ‰ = 1 for 𝑨𝑁 and
πœ‰ = βˆ’1 for 𝑨𝑆 and we have;
𝑨𝑁 =
𝑔
4πœ‹π‘Ÿ
1 βˆ’ cos πœƒ
sin πœƒ
πœ™, 𝑨𝑆 = βˆ’
𝑔
4πœ‹π‘Ÿ
1 + cos πœƒ
sin πœƒ
πœ™
The overlap region happens to be 2πœƒ = πœ‹ circle and on that circle, the difference of the two potentials is
𝑨𝑁 πœƒ =
πœ‹
2
βˆ’ 𝑨𝑆 πœƒ =
πœ‹
2
=
𝑔
2πœ‹π‘Ÿ
πœ™ = βˆ’βˆ‡ βˆ’
𝑔
2πœ‹
πœ™ = βˆ’βˆ‡πœ’
So, the difference is a gauge transformation. The π‘ˆ(1) element π‘’π‘–π‘’πœ’
should be continuous and thus, we have the following condition;
𝑒𝑖𝑒 πœ’ 2πœ‹ βˆ’πœ’ 0
= 1 β‡’ 𝑒 πœ’ 2πœ‹ βˆ’ πœ’ 0 = 2πœ‹π‘›, 𝑛 ∈ β„€
Using the expression for πœ’, we get
𝑒𝑔 = 2πœ‹π‘›, 𝑛 ∈ β„€
Comments
οƒ˜ A single monopole will ensure the quantization of electrical charge.
οƒ˜ π‘’πœ’ = 0 and π‘’πœ’ = 2πœ‹ represent the same π‘ˆ(1) element and thus, the π‘ˆ(1) group is compact. So, we have the following two equivalent
statements (they are the contrapositive of each other)
π‘€π‘œπ‘›π‘œπ‘π‘œπ‘™π‘’π‘  β‡’ πΆπ‘œπ‘šπ‘π‘Žπ‘π‘‘ π‘ˆ 1 π‘”π‘Ÿπ‘œπ‘’π‘
π‘π‘œ πΆπ‘œπ‘šπ‘π‘Žπ‘π‘‘ π‘ˆ 1 π‘”π‘Ÿπ‘œπ‘’π‘ β‡’ π‘π‘œ π‘šπ‘œπ‘›π‘œπ‘π‘œπ‘™π‘’ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘ 
Compact π‘ˆ(1) group will be realised when a theory with compact gauge group is spontaneously broken to a group containing π‘ˆ(1) as a
product group.
The t’Hooft, Polyakov monopole
In the Dirac’s treatment of the monopole, the interior of the monopole is not studied. In order to study the interior of a monopole, we
study a monopole configuration called t’Hooft, Polyakov monopole. It is nothing but a non abelian Yang Mills Higgs theory in 3 + 1
dimensions. The lagrangian is as follows;
β„’ = βˆ’
1
4
𝐹
πœ‡πœˆ
π‘Ž
𝐹
π‘Ž
πœ‡πœˆ
+
1
2
π·πœ‡πœ™π‘Ž
π·πœ‡
πœ™π‘Ž
βˆ’ 𝑉 πœ™ , πœ™ = 𝑣 β‰  0
The EOM for 𝐹
πœ‡πœˆ
π‘Ž
is (also called Gauss constraint) is
π·πœ‡πΉ
π‘Ž
πœ‡πœˆ
= π‘’πœ–π‘Žπ‘π‘πœ™π‘π·πœˆ
πœ™π‘
We define πΉπœ‡πœˆ
as
𝐹
πœ‡πœˆ = πœ™π‘Ž
𝐹
πœ‡πœˆ
π‘Ž
βˆ’
1
𝑒
πœ–π‘Žπ‘π‘
πœ™π‘Ž
π·πœ‡πœ™π‘
π·πœˆπœ™π‘
where πœ™π‘Ž
is a unit vector in the direction of πœ™π‘Ž
and for πœ™π‘Ž
to exist, πœ™π‘Ž
β‰  0 everywhere. Note that 𝐹
πœ‡πœˆ is gauge invariant.
It can be shown that
𝐹
πœ‡πœˆ = πœ•πœ‡(πœ™π‘Ž
𝐴𝜈
π‘Ž
) βˆ’ πœ•πœˆ (πœ™π‘Ž
π΄πœ‡
π‘Ž
) βˆ’
1
𝑒
πœ–π‘Žπ‘π‘
πœ™π‘Ž
πœ•πœ‡πœ™π‘
πœ•πœˆ πœ™π‘
The proof is as follows. The definition of 𝐹
πœ‡πœˆ can be expanded and written as follows;
𝐹
πœ‡πœˆ = πœ™π‘Ž
πœ•πœ‡π΄πœˆ
π‘Ž
βˆ’ πœ•πœˆπ΄πœ‡
π‘Ž
+ π‘’πœ–π‘Žπ‘π‘
π΄πœ‡
𝑏
𝐴𝜈
𝑐
βˆ’
1
𝑒
πœ–π‘Žπ‘π‘
πœ™π‘Ž
πœ•πœ‡πœ™π‘
+ π‘’πœ–π‘π‘‘π‘’
π΄πœ‡
𝑑
πœ™π‘’
πœ•πœˆπœ™π‘
+ π‘’πœ–π‘π‘“π‘”
𝐴𝜈
𝑓
πœ™π‘”
= πœ•πœ‡ πœ™π‘Ž
𝐴𝜈
π‘Ž
βˆ’ πœ•πœˆ πœ™π‘Ž
π΄πœ‡
π‘Ž
βˆ’
1
𝑒
πœ–π‘Žπ‘π‘
πœ™π‘
πœ•πœ‡πœ™π‘
πœ•πœˆπœ™π‘
+π΄πœ‡
𝑑
πœ•πœˆπœ™π‘Ž
π›Ώπ‘Žπ‘‘
βˆ’ πœ•πœˆπœ™π‘
πœ–π‘Žπ‘π‘
πœ–π‘π‘‘π‘’
πœ™π‘Ž
πœ™π‘’
βˆ’ 𝐴𝜈
𝑓
π›Ώπ‘Žπ‘“
πœ•πœ‡πœ™π‘Ž
+ πœ•πœ‡πœ™π‘
πœ–π‘Žπ‘π‘
πœ–π‘π‘“π‘”
πœ™π‘Ž
πœ™π‘”
+ π‘’πœ–π‘Žπ‘π‘
πœ™π‘Ž
π΄πœ‡
𝑏
𝐴𝜈
𝑐
βˆ’ π‘’πœ–π‘Žπ‘π‘
πœ™π‘Ž
πœ–π‘π‘‘π‘’
πœ–π‘π‘“π‘”
π΄πœ‡
𝑑
𝐴𝜈
𝑓
πœ™π‘’
πœ™π‘”
The terms that we actually want are the red terms. The extra terms can be shown to be zero. For example, the first bracketed expression is;
πœ•πœˆπœ™π‘Ž
π›Ώπ‘Žπ‘‘
βˆ’ πœ•πœˆπœ™π‘
πœ–π‘Žπ‘π‘
πœ–π‘π‘‘π‘’
πœ™π‘Ž
πœ™π‘’
= πœ•πœˆπœ™π‘‘
+ πœ•πœˆπœ™π‘
π›Ώπ‘Žπ‘‘
𝛿𝑐𝑒
βˆ’ π›Ώπ‘Žπ‘’
𝛿𝑐𝑑
πœ™π‘Ž
πœ™π‘’
= πœ•πœˆπœ™π‘‘
+ πœ™π‘‘
πœ™π‘’
πœ•πœˆπœ™π‘’
βˆ’ πœ•πœˆπœ™π‘‘
= 0
Where I used the fact that
πœ™π‘Ž
πœ•πœˆπœ™π‘Ž
=
1
2
πœ•πœˆ πœ™π‘Ž
πœ™π‘Ž
=
1
2
πœ•πœˆ 1 = 0
The second bracketed term vanishes by a similar proof. Now we need to prove that
πœ–π‘Žπ‘π‘
πœ™π‘Ž
π΄πœ‡
𝑏
𝐴𝜈
𝑐
βˆ’ πœ–π‘Žπ‘π‘
πœ™π‘Ž
πœ–π‘π‘‘π‘’
πœ–π‘π‘“π‘”
π΄πœ‡
𝑑
𝐴𝜈
𝑓
πœ™π‘’
πœ™π‘”
vanishes.
For this task, we can manipulate the last term as;
πœ–π‘Žπ‘π‘
πœ™π‘Ž
πœ–π‘π‘‘π‘’
πœ–π‘π‘“π‘”
π΄πœ‡
𝑑
𝐴𝜈
𝑓
πœ™π‘’
πœ™π‘”
= π›Ώπ‘Žπ‘“
𝛿𝑏𝑔
βˆ’ π›Ώπ‘Žπ‘”
𝛿𝑏𝑓
πœ™π‘Ž
πœ–π‘π‘‘π‘’
π΄πœ‡
𝑑
𝐴𝜈
𝑓
πœ™π‘’
πœ™π‘”
= πœ–π‘’π‘‘π‘
πœ™π‘’
π΄πœ‡
𝑑
𝐴𝜈
𝑏
where I dropped the vanishing term πœ–π‘π‘‘π‘’
πœ™π‘Ž
πœ™π‘
πœ™π‘’
π΄πœ‡
𝑑
𝐴𝜈
π‘Ž
and used the fact that πœ™π‘’
πœ™π‘’
= 1.
So, we can now see that
πœ–π‘Žπ‘π‘
πœ™π‘Ž
π΄πœ‡
𝑏
𝐴𝜈
𝑐
βˆ’ πœ–π‘Žπ‘π‘
πœ™π‘Ž
πœ–π‘π‘‘π‘’
πœ–π‘π‘“π‘”
π΄πœ‡
𝑑
𝐴𝜈
𝑓
πœ™π‘’
πœ™π‘”
= πœ–π‘Žπ‘π‘
πœ™π‘Ž
π΄πœ‡
𝑏
𝐴𝜈
𝑐
βˆ’ πœ–π‘Žπ‘π‘
πœ™π‘Ž
π΄πœ‡
𝑏
𝐴𝜈
𝑐
= 0
So, we have shown that
𝐹
πœ‡πœˆ = πœ•πœ‡(πœ™π‘Ž
𝐴𝜈
π‘Ž
) βˆ’ πœ•πœˆ (πœ™π‘Ž
π΄πœ‡
π‘Ž
) βˆ’
1
𝑒
πœ–π‘Žπ‘π‘
πœ™π‘Ž
πœ•πœ‡πœ™π‘
πœ•πœˆ πœ™π‘
Now, a magnetic field can be defined as
𝐡𝑖 =
1
2
πœ–π‘–π‘—π‘˜πΉ
π‘—π‘˜ = πœ–π‘–π‘—π‘˜πœ•π‘— πœ™π‘Ž
π΄π‘˜
π‘Ž
βˆ’
1
2𝑒
πœ–π‘–π‘—π‘˜πœ–π‘Žπ‘π‘
πœ™π‘Ž
πœ•π‘—πœ™π‘
πœ•π‘˜πœ™π‘
If we try to calculate the surface integral of the magnetic field over a sphere at large distance, we will not get contribution from the first term
in the expression for magnetic field as it is a curl. So, we get;
𝑔 = ∫ 𝑑𝑆𝑖𝐡𝑖 = βˆ’
1
2𝑒 𝑆2
π‘‘π‘†π‘–πœ–π‘–π‘—π‘˜πœ–π‘Žπ‘π‘
πœ™π‘Ž
πœ•π‘—πœ™π‘
πœ•π‘˜πœ™π‘
= βˆ’
1
2𝑒𝑣3
𝑆2
π‘‘π‘†π‘–πœ–π‘–π‘—π‘˜πœ–π‘Žπ‘π‘
πœ™π‘Ž
πœ•π‘—πœ™π‘
πœ•π‘˜πœ™π‘
This integral can be evaluated by choosing the form of πœ™π‘Ž
= 𝑣 π‘₯π‘Ž
at infinity (where π‘₯π‘Ž
= π‘Ÿ π‘₯π‘Ž
). We simply get;
1
𝑣3
𝑆2
π‘‘π‘†π‘–πœ–π‘–π‘—π‘˜πœ–π‘Žπ‘π‘πœ™π‘Ž
πœ•π‘—πœ™π‘
πœ•π‘˜πœ™π‘
=
𝑆2
π‘Ÿ2
𝑑Ω π‘₯π‘–πœ–π‘–π‘—π‘˜πœ–π‘Žπ‘π‘π‘₯π‘Žπœ•π‘—π‘₯π‘πœ•π‘˜π‘₯𝑐
=
𝑆2
𝑑Ω π‘₯π‘–πœ–π‘–π‘—π‘˜πœ–π‘Žπ‘π‘π‘₯π‘Ž π›Ώπ‘π‘—π›Ώπ‘π‘˜ βˆ’ 2𝛿𝑏𝑗π‘₯π‘˜π‘₯𝑐
Where I dropped the vanishing terms and used the identity
πœ•π‘–π‘₯𝑗 =
1
π‘Ÿ
𝛿𝑖𝑗 βˆ’ π‘₯𝑖π‘₯𝑗
Now, using the identities
πœ–π‘–π‘—π‘˜πœ–π‘˜π‘™π‘š = π›Ώπ‘–π‘™π›Ώπ‘—π‘š βˆ’ π›Ώπ‘–π‘šπ›Ώπ‘™π‘—, πœ–π‘–π‘—π‘˜πœ–π‘—π‘˜π‘™ = 2𝛿𝑖𝑙
The above integral becomes;
2
𝑆2
𝑑Ω π‘₯𝑖π‘₯π‘Ž π›Ώπ‘Žπ‘– βˆ’ π›Ώπ‘Žπ‘– + π‘₯𝑖π‘₯π‘Ž = 8πœ‹ β‡’ 𝑔 = βˆ’
4πœ‹
𝑒
Now, I can choose a mapping 𝑓: π‘†πœ™
2
β†’ 𝑆π‘₯
2
such that π‘†πœ™
2
covers 𝑆π‘₯
2
𝑛 times.
This will simply change the integral to be multiplied by 𝑛 as we are going around the π‘†πœ™
2
𝑛 times. So, we get the following condition
𝑒𝑔 = 4πœ‹π‘› 𝑛 ∈ β„€
Bogomol’nyi bound and BPS solution
We calculate the energy of the static solution of YMH theory in the 𝐴0
π‘Ž
= 0 gauge and we get;
𝐸 = ∫ 𝑑3
π‘₯
1
2
𝐡𝑖
π‘Ž
𝐡𝑖
π‘Ž
+
1
2
π·π‘–πœ™π‘Ž 2
+ 𝑉 πœ™ = ∫ 𝑑3
π‘₯
1
2
𝐡𝑖
π‘Ž
βˆ’ π·π‘–πœ™π‘Ž 2
+ 𝐡𝑖
π‘Ž
π·π‘–πœ™π‘Ž
+ 𝑉 πœ™
Using zeroth component of Bianchi identity πœ–π›Όπ›½πœ‡πœˆ
𝐷𝛽𝐹
πœ‡πœˆ
π‘Ž
= 0 and the definition of 𝐡𝑖
π‘Ž
i.e. 2𝐡𝑖
π‘Ž
= πœ–π‘–π‘—π‘˜πΉπ‘—π‘˜
π‘Ž
, we conclude πœ–0π‘–π‘—π‘˜
𝐷𝑖𝐹
π‘—π‘˜
π‘Ž
= 𝐷𝑖𝐡𝑖
π‘Ž
= 0.
Moreover, since 𝐡𝑖
π‘Ž
πœ™π‘Ž
is gauge singlet, we have 𝐷𝑖 𝐡𝑖
π‘Ž
πœ™π‘Ž
= πœ•π‘–(𝐡𝑖
π‘Ž
πœ™π‘Ž
). So, the second term in the energy integrand is πœ•π‘–(𝐡𝑖
π‘Ž
πœ™π‘Ž
) and thus,
we can use divergence theorem and it becomes;
𝐸 = ∫ 𝑑3
π‘₯
1
2
𝐡𝑖
π‘Ž
βˆ’ π·π‘–πœ™π‘Ž 2
+ 𝑉 πœ™ + 𝑣
𝑆2
𝑑𝑆𝑖𝐡𝑖
π‘Ž
πœ™π‘Ž
β‰₯ 𝑣
𝑆2
𝑑𝑆𝑖𝐡𝑖
π‘Ž
πœ™π‘Ž
= 𝑣𝑔
So, the energy of the static monopole solution (mass of the monopole) has a lower bound known as Bogomol’nyi bound.
If we impose the condition 𝐡𝑖
π‘Ž
= π·π‘–πœ™π‘Ž
(also known as the Bogomol'nyi equation) and set 𝑉 πœ™ = 0 everywhere, then the energy of the field
configuration is just 𝑣𝑔. Since we are setting 𝑉 πœ™ = 0 everywhere, it seems as if we won't be able to get a nonzero βŸ¨πœ™π‘Ž
πœ™π‘Ž
⟩. However, since
we need πœ™π‘Ž
πœ™π‘Ž
= 𝑣2
at spatial infinity, we can impose this as a boundary condition.
For BPS solution, if we try to give 𝐴𝑖
π‘Ž
(π‘₯) a non zero vev, it will break Lorentz invariance. Moreover, for the theory to have non zero topological
charge, πœ™π‘Ž
should vary at infinity and thus, solutions can't be rotationally invariant. However, we can make the solutions invariant under the
diagonal subgroup 𝑆𝑂 3 𝑠 Γ— 𝑆𝑂 3 𝑔where 𝑆𝑂 3 𝑔 is the global gauge group. We would not need the detailed form of the BPS solutions
though.
Moduli space of BPS solution
Moduli space is the space of fixed energy and fixed topological charge solutions. The coordinates on the moduli space are called moduli or
collective coordinates.
If πœ™π‘Ž
(π‘₯) is a BPS solution, so is πœ™π‘Ž
(π‘₯ + 𝑋) with 𝑋 fixed due to translational invariance. So, ℝ3
is present as a product in the moduli space of
BPS monopole. Now, equation of motion π·πœ‡πΉ
π‘Ž
πœ‡πœˆ
= π‘’πœ–π‘Žπ‘π‘πœ™π‘π·πœˆ
πœ™π‘ is expanded as;
π·πœ‡ πœ•πœ‡
π΄π‘Ž
𝜈
βˆ’ πœ•πœˆ
π΄π‘Ž
πœ‡
+ π‘’πœ–π‘Žπ‘π‘π΄π‘
πœ‡
𝐴𝑐
𝜈
= π‘’πœ–π‘Žπ‘π‘πœ™π‘[πœ•πœˆ
πœ™π‘ + π‘’πœ–π‘π‘‘π‘’π΄π‘‘
𝜈
πœ™π‘’]
Set 𝜈 = 0 and working in the π΄π‘Ž
0
= 0 gauge, we get;
π·π‘–π΄π‘Ž
𝑖
+ 𝑒 πœ™, πœ™ π‘Ž
= 0
The linearized form of the gauss law for deformations to the BPS solutions (π›Ώπœ™π‘Ž
, 𝛿𝐴𝑖
π‘Ž
) is obtained by letting 𝐴𝑖
π‘Ž
β†’ 𝐴𝑖
π‘Ž
+ 𝛿𝐴𝑖
π‘Ž
, πœ™π‘Ž
β†’ πœ™π‘Ž
+
π›Ώπœ™π‘Ž
and realising that only the deformations are allowed to be time dependant. We get
𝐷𝑖𝛿 π΄π‘Ž
𝑖
+ 𝑒 πœ™, π›Ώπœ™ π‘Ž
= 0
We can expand the Bogomol’nyi equation as well and then linearize it as follows;
πœ–π‘–π‘—π‘˜ πœ•π‘—
π›Ώπ΄π‘Ž
π‘˜
+ π‘’πœ–π‘Žπ‘π‘π΄π‘
𝑗
𝛿𝐴𝑐
π‘˜
= πœ•π‘–π›Ώπœ™π‘Ž
+ π‘’πœ–π‘Žπ‘π‘
𝐴𝑖
𝑏
π›Ώπœ™π‘
+ 𝑒 𝛿𝐴𝑖, πœ™ π‘Ž β‡’ πœ–π‘–π‘—π‘˜π·π‘—
π›Ώπ΄π‘Ž
π‘˜
= π·π‘–π›Ώπœ™π‘Ž + 𝑒 𝛿𝐴𝑖, πœ™ π‘Ž
The solution to the two red equations above is 𝛿𝐴0
π‘Ž
= 0, π›Ώπœ™π‘Ž
= 0, 𝛿𝐴𝑖
π‘Ž
= 𝐷𝑖 πœ‰ 𝑑 πœ™π‘Ž
, πœ‰ 𝑑 is arbitrary function of time.
If πœ‰ = 0 then the change in 𝐴𝑖
π‘Ž
is a large gauge transformation (it doesn’t vanish at infinity). The corresponding π‘ˆ(1) element is π‘’π‘’πœ™
and since
unbroken π‘ˆ(1) is compact, the coordinate πœ‰ is on a compact 𝑆1
. So, the moduli space of the BPS monopole is;
ℝ3
Γ— 𝑆1
Witten effect
We can add a πœƒ term in the lagrangian without breaking gauge invariance. The term is;
β„’πœƒ = βˆ’
πœƒπ‘’2
32πœ‹2
𝐹
πœ‡πœˆ
π‘Ž
βˆ— 𝐹
π‘Ž
πœ‡πœˆ
The prefactor is for later convenience. First, we can do a π‘ˆ(1) case (i.e. the QED case).
QED case
πΉπœ‡πœˆ
βˆ— 𝐹
πœ‡πœˆ =
1
2
πœ–πœ‡πœˆπ›Όπ›½
𝐹
πœ‡πœˆπΉπ›Όπ›½ =
1
2
πœ–0π‘–π‘—π‘˜
𝐹0𝑖𝐹
π‘—π‘˜ + πœ–π‘–0π‘—π‘˜
𝐹𝑖0𝐹
π‘—π‘˜ + πœ–π‘–π‘—0π‘˜
𝐹𝑖𝑗𝐹0π‘˜ + πœ–π‘–π‘—π‘˜0
πΉπ‘–π‘—πΉπ‘˜0 = 2πœ–0π‘–π‘—π‘˜
𝐹0𝑖𝐹
π‘—π‘˜ = 4 𝑬. 𝑩 β‡’ β„’πœƒ = βˆ’
πœƒπ‘’2
8πœ‹2
𝑬. 𝑩
For a static monopole, we have
𝑬 = βˆ‡π΄0, 𝑩 = βˆ‡ Γ— 𝑨 +
𝑔
4πœ‹
𝒓
π‘Ÿ
β‡’ πΏπœƒ = ∫ 𝑑3
π‘₯ β„’πœƒ =
𝑒2
π‘”πœƒ
8πœ‹2
∫ 𝑑3
π‘₯𝐴0𝛿 3
(𝒓)
where I used the following fact;
𝑬. 𝑩 = βˆ‡. 𝐴0 βˆ‡ Γ— 𝐴 +
𝑔
4πœ‹
π‘Ÿ
π‘Ÿ
= βˆ’
𝑔
4πœ‹
𝐴0βˆ‡.
π‘Ÿ
π‘Ÿ
+ 𝑆. 𝑇 = βˆ’π‘”π΄0𝛿 3
(𝒓)
This lagrangian is nothing but the interaction of a particle at origin with background field. The charge of the particle is;
βˆ’
𝑒2
π‘”πœƒ
8πœ‹2
𝑒𝑔=4πœ‹
βˆ’
π‘’πœƒ
2πœ‹
So, the πœƒ term can give electrical charge to the monopoles.
SU(2) case
Consider large gauge transformations that act on π΄πœ‡
π‘Ž
. The finite deformation (without infinitesimal parameter) is;
π›Ώπ΄πœ‡
π‘Ž
=
1
𝑒𝑣
π·πœ‡πœ™π‘Ž
Let 𝒩 be the generator of this gauge transformation. Until now, we don’t have fundamental fields in this theory and the gauge parameter lives
on 𝑆1
an thus, 𝑒2πœ‹π‘–π’©
= 1. 𝒩 is the Noetherian conserved charge (as the gauge transformations act on the fields). It can be easily worked out as
follows.
Expression for 𝒩
𝒩 = ∫ 𝑑3
π‘₯
πœ•β„’
πœ• πœ•0π΄πœ‡
π‘Ž
π›Ώπ΄πœ‡
π‘Ž
Now, we write the lagrangian as;
β„’ = βˆ’
1
4
𝐹
π‘Ž
πœ‡πœˆ
𝐹
πœ‡πœˆ
π‘Ž
βˆ’
πœƒπ‘’2
32πœ‹2
𝐹
πœ‡πœˆ
π‘Ž
βˆ— 𝐹
π‘Ž
πœ‡πœˆ
+
1
2
π·πœ‡πœ™π‘Ž 2
So the required derivative is;
πœ•β„’
πœ• πœ•0π΄πœ‡
π‘Ž
= βˆ’
1
2
𝐹
𝑏
𝛼𝛽 πœ•πΉπ›Όπ›½
𝑏
πœ• πœ•0π΄πœ‡
π‘Ž
βˆ’
πœƒπ‘’2
32πœ‹2
πœ–πœŒπœŽπ›Όπ›½
𝐹𝑏 𝛼𝛽
πœ•πΉ
𝜌𝜎
𝑏
πœ• πœ•0π΄πœ‡
π‘Ž
From the definition of 𝐹
πœ‡πœˆ
π‘Ž
, the derivative appearing above can be calculated as;
πœ•πΉ
𝜌𝜎
𝑏
πœ• πœ•0π΄πœ‡
π‘Ž
= π›Ώπ‘Ž
𝑏
[π›ΏπœŒ
0
π›ΏπœŽ
πœ‡
βˆ’ π›ΏπœŽ
0
π›ΏπœŒ
πœ‡
]
Using this expression and after some elementary simplification, we have;
πœ•β„’
πœ• πœ•0𝐴𝑖
π‘Ž
= βˆ’πΉ
π‘Ž
0𝑖
βˆ’
πœƒπ‘’2
16πœ‹2
πœ–0π‘–π‘—π‘˜
𝐹
π‘Ž π‘—π‘˜ = βˆ’π‘”π‘–π‘—
πΈπ‘Ž 𝑗 βˆ’ 𝑔𝑖𝑗
πœƒπ‘’2
8πœ‹2
(π΅π‘Ž)𝑗 = πΈπ‘Ž 𝑖 +
πœƒπ‘’2
8πœ‹2
π΅π‘Ž 𝑖
Using all the red equations above, we get;
𝒩 = ∫ 𝑑3
π‘₯
1
𝑒𝑣
𝐸𝑖
π‘Ž
+
πœƒπ‘’2
8πœ‹2
𝐡𝑖
π‘Ž
π·π‘–πœ™π‘Ž
=
𝑄
𝑒
+
πœƒπ‘’
8πœ‹2
𝑔 where
𝑄 = π‘£βˆ’1
∫ 𝑑3
π‘₯𝐸𝑖
π‘Ž
π·π‘–πœ™π‘Ž
𝑔 = π‘£βˆ’1
∫ 𝑑3
π‘₯𝐡𝑖
π‘Ž
π·π‘–πœ™π‘Ž
Now, the condition
𝑒2πœ‹π‘–π’©
= 1
implies that
𝒩 = 𝑛𝑒 ∈ β„€
β‡’
𝑄
𝑒
+
πœƒπ‘’π‘”
8πœ‹2
= 𝑛𝑒
Using the condition 𝑒𝑔 = 4πœ‹π‘›π‘š, we get;
𝑄
𝑒
+
πœƒπ‘›π‘š
2πœ‹
= 𝑛𝑒 β‡’ 𝑄 = 𝑒𝑛𝑒 βˆ’
π‘’πœƒ
2πœ‹
π‘›π‘š
So, we can see that for a single monopole (i.e. π‘›π‘š = 1) there is an extra contribution to the electrical charge of the monopoles due to the non
zero πœƒ term. This contribution is
βˆ’
π‘’πœƒ
2πœ‹
This is equal to the electrical charge that we found in the QED case.
Olive Montonen and 𝑆𝐿(2, β„€) duality
Set πœƒ = 0 first. Now, there can be electrically charged states (𝑛𝑒, 0) and magnetic monopoles 0, π‘›π‘š . The mass of an electrically charged state
is the mass of π‘Š boson i.e. π‘€π‘Š = 𝑣𝑒. The mass of a magnetic monopole is 𝑀𝑀 = 𝑣𝑔 ≫ 𝑣𝑒 (at weak coupling). In a dual theory where the
roles of electrical and magnetic charges are replaced, we should have
𝑒 ↔ 𝑔, π‘€π‘Š ↔ 𝑀𝑀
Now, the dual theory should be at strong coupling as small 𝑒 means large 𝑔. Moreover, this proposal of a dual theory is based on the classical
spectrum as was first given by Olive and Montonen in 1977. However, there are some problems pointed by them.
οƒ˜ Potential 𝑉(πœ™) might not remain vanishing when quantum corrections are included.
οƒ˜ The states don’t match exactly as the monopoles don’t have spin 1 like the π‘Š bosons.
οƒ˜ The duality is hard to test because the dual theory is at strong coupling.
We will see that the first two problems are solved by incorporating the theory in 𝑁 = 4 super Yang Mills theory.
Now, let πœƒ β‰  0. Now, the π‘Œπ‘€π» lagrangian is;
β„’ = βˆ’
1
4
𝐹2
βˆ’
πœƒπ‘’2
32πœ‹2
𝐹 βˆ— 𝐹 βˆ’
1
2
π·πœ‡πœ™π‘Ž 2
Now, we let
πœ™π‘Ž
β†’
πœ™π‘Ž
𝑒
, π΄πœ‡
π‘Ž
β†’
π΄πœ‡
π‘Ž
𝑒
β‡’ 𝐹
πœ‡πœˆ
π‘Ž
β†’
𝐹
πœ‡πœˆ
π‘Ž
𝑒
After this rescaling of field, the lagrangian becomes (with covariant derivatives changed accordingly);
β„’ = βˆ’
1
4𝑒2
𝐹2
βˆ’
πœƒ
32πœ‹2
𝐹 βˆ— 𝐹 βˆ’
1
2
π·πœ‡πœ™π‘Ž 2
Now consider this equivalent way of writing the first two terms of the lagrangian
=
1
32πœ‹2
πΌπ‘š
πœƒ
2πœ‹
+
4π‘–πœ‹
𝑒2
𝐹 + 𝑖 βˆ— 𝐹 2
= βˆ’
1
8𝑒2
𝐹2
βˆ’βˆ— 𝐹2
βˆ’
πœƒ
32πœ‹2
𝐹 βˆ— 𝐹 =
1
4𝑒2
𝐹2
βˆ’
πœƒ
32πœ‹2
𝐹 βˆ— 𝐹
where in the last step, I used the fact that 𝐹2
=βˆ’βˆ— 𝐹2
as can be demonstrated
βˆ— 𝐹2
=
1
4
πœ–πœ‡πœˆπ›Όπ›½
πΉπ›Όπ›½πœ–πœ‡πœˆπœŒπœŽπΉπœŒπœŽ
= βˆ’
1
2
π›ΏπœŒ
𝛼
π›ΏπœŽ
𝛽
βˆ’ π›ΏπœŽ
𝛼
π›ΏπœŒ
𝛽
πΉπ›Όπ›½πΉπœŒπœŽ
= βˆ’πΉ2
So, the full lagrangian can be written in case of non zero πœƒ as;
β„’ = βˆ’
1
32πœ‹2
πΌπ‘š 𝜏 𝐹 + 𝑖 βˆ— 𝐹 2
βˆ’
1
2
π·πœ‡πœ™π‘Ž 2
where 𝜏 =
πœƒ
2πœ‹
+
4πœ‹
𝑒2
𝑖
I will use a result from instanton theory. The 𝑛 instantons in this theory are weighed by the factor 𝑒2π‘–πœ‹π‘›πœ
. So, physics is invariant in the
transformation 𝜏 β†’ 𝜏 + 1 (corresponding to πœƒ β†’ πœƒ + 2πœ‹). Moreover, if we set πœƒ = 0, then the electromagnetic duality (𝑒 β†’ 𝑔) corresponds to
𝑒 β†’ 𝑔 =
4πœ‹
𝑒
β‡’ 𝜏 =
4πœ‹π‘–
𝑒2
β†’ βˆ’
𝑒2
4πœ‹π‘–
= βˆ’
1
𝜏
We can identify both of these transformations as special cases of a single general transformation
𝜏 β†’
π‘Žπœ + 𝑏
π‘πœ + 𝑑
, π‘Ž, 𝑏, 𝑐, 𝑑 ∈ β„€, π‘Žπ‘‘ βˆ’ 𝑏𝑐 = 1
This transformation is known as the 𝑆𝐿(2, β„€) transformation and we can identify
𝜏 β†’ 𝜏 + 1 β‡’ π‘Ž = 𝑏 = 𝑑 = 1, 𝑐 = 0
𝜏 β†’ βˆ’
1
𝜏
β‡’ π‘Ž = 𝑑 = 0, 𝑐 = βˆ’π‘ = 1
We can see that
πΌπ‘š 𝜏 =
4πœ‹
𝑒2
> 0
So, we are concerned with the upper half 𝜏 plane only. We can also define a fundamental region such that any 𝜏 in the upper half plane can be
brought into this fundamental region by an appropriate 𝑆𝐿(2, β„€) transformation.
βˆ’
1
2
≀ 𝑅𝑒 𝜏 ≀
1
2
, 𝜏 β‰₯ 1
𝑺𝑳 𝟐, β„€ action on the states
The action of the 𝑆𝐿(2, β„€) group on the states (𝑛𝑒, π‘›π‘š) states requires the electrical charge operator 𝑄𝑒 and magnetic charge operator
𝑄𝑒 = 𝑒𝑛𝑒 βˆ’
π‘’πœƒ
2πœ‹
π‘›π‘š, π‘„π‘š = π‘”π‘›π‘š =
4πœ‹
𝑒
π‘›π‘š
Now, 𝜏 β†’ 𝜏 + 1 β‡’ πœƒ β†’ πœƒ + 2πœ‹ and thus, we have;
𝑄𝑒 β†’ 𝑒 𝑛𝑒 βˆ’ π‘›π‘š βˆ’
π‘’πœƒ
2πœ‹
π‘›π‘š β‡’
𝑛𝑒 β†’ 𝑛𝑒 βˆ’ π‘›π‘š = π‘Žπ‘›π‘’ βˆ’ π‘π‘›π‘š
π‘›π‘š β†’ π‘›π‘š = 𝑐𝑛𝑒 + π‘‘π‘›π‘š
Similarly for the 𝜏 β†’ βˆ’πœβˆ’1
transformation (for πœƒ = 0), we have
𝑄𝑒 = 𝑛𝑒𝑒 β†’ 𝑛𝑒𝑔 β‡’ 𝑛𝑒 β†’ π‘›π‘š = π‘Žπ‘›π‘’ βˆ’ π‘π‘›π‘š
π‘„π‘š = π‘›π‘šπ‘” β†’ π‘›π‘šπ‘’ β‡’ π‘›π‘š β†’ 𝑛𝑒 = 𝑐𝑛𝑒 + π‘‘π‘›π‘š
So, we have the following 𝑆𝐿(2, β„€) action on states (𝑛𝑒, π‘›π‘š)
𝑛𝑒
π‘›π‘š
β†’
π‘Ž βˆ’π‘
𝑐 𝑑
𝑛𝑒
π‘›π‘š
Bogomol’nyi bound revisited
The generalised Bogomol’nyi bound (proved at the end)
𝑀2
β‰₯ 𝑣2
(𝑄𝑒
2
+ π‘„π‘š
2
)
can entirely be written in term of 𝜏 by using the definition of 𝜏 and the expressions for 𝑄𝑒 and π‘„π‘š.
Coupling to fermions
We can add fermions into this theory with proper interactions with πœ™π‘Ž
and π΄πœ‡
π‘Ž
fields. Assume that fermions are in the β€²π‘Ÿβ€² representation of the
π‘†π‘ˆ(2) gauge group. The fermion lagrangian is;
β„’πœ“ = π‘–πœ“π‘›π›Ύπœ‡
π·πœ‡πœ“
𝑛
βˆ’ π‘–πœ“π‘›π‘‡π‘›π‘š
π‘Ž
πœ™π‘Ž
πœ“π‘š
Where π‘‡π‘›π‘š
π‘Ž
are the anti Hermitian generators in the β€²π‘Ÿβ€² representation. The gamma matrices are chosen as;
𝛾0
= βˆ’π‘–
0 𝕀2
βˆ’π•€2 0
, 𝛾𝑗
= βˆ’π‘– πœŽπ‘—
0
0 βˆ’πœŽπ‘—
These matrices satisfy the Clifford algebra π›Ύπœ‡
, π›Ύπœˆ
= 2π‘”πœ‡πœˆ
𝕀4 as can be verified easily. The Dirac equation can be worked out from the above
lagrangian to get (using πœ™π‘›π‘š = πœ™π‘Ž
π‘‡π‘›π‘š
π‘Ž
)
π‘–π›Ύπœ‡
π·πœ‡πœ“
𝑛
βˆ’ π‘–πœ™π‘›π‘šπœ“π‘š = 0
We seek solutions of the form πœ“π‘› 𝑑, π‘₯ = π‘’βˆ’π‘–πΈπ‘‘
πœ“π‘›(π‘₯) and we also set πœ“π‘› π‘₯ = πœ’π‘›
+
π‘₯ πœ’π‘›
βˆ’
π‘₯ 𝑇
. Using the 𝛾 matrices and the Dirac’s
equation, we have;
βˆ’π‘–πΈ
πœ’π‘›
βˆ’
βˆ’πœ’π‘›
+ βˆ’
πœŽπ‘—
π·π‘—πœ’π‘›
+
βˆ’πœŽπ‘—
π·π‘—πœ’π‘›
βˆ’
βˆ’ π‘–πœ™π‘›π‘š
πœ’π‘š
+
πœ’π‘š
βˆ’ = 0
This gives us two equations;
π‘–π›Ώπ‘›π‘šπœŽπ‘—
𝐷𝑗 + πœ™π‘›π‘š πœ’π‘š
βˆ’
= π·π‘›π‘šπœ’π‘š
βˆ’
= πΈπœ’π‘›
+
, π‘–π›Ώπ‘›π‘šπœŽπ‘—
𝐷𝑗 + πœ™π‘›π‘š
†
πœ’π‘š
+
= π·π‘›π‘š
†
πœ’π‘š
+
= πΈπœ’π‘›
βˆ’
,
If the above two equations have a solution with 𝐸 = 0 then there can be fermionic collective coordinates in the BPS moduli space. In other
words, we are looking for the kernels of π·π‘›π‘š and π·π‘›π‘š
†
. It is easy to see that;
ker π·π‘›π‘š
†
βŠ‚ ker π·π‘›π‘™π·π‘™π‘š
†
= {0}
In the last equality, I used the fact that π·π‘›π‘™π·π‘™π‘š
†
is a positive definite operator.
For the kernel of π·π‘›π‘š, I need a result which is derived from index theorems. The result says that;
dim [ker(π·π‘›π‘š)] βˆ’ dim [ker(π·π‘›π‘š
†
)] = 𝐴(π‘Ÿ)π‘›π‘š
Where 𝐴(π‘Ÿ) is a number that depends on the representation β€˜π‘Ÿβ€². For our work, the representations we need are 𝟐 and πŸ‘. The values of 𝐴(π‘Ÿ)
for these representations are
𝐴 𝟐 = 1, 𝐴 πŸ‘ = 2
Fundamental fermions
For the fermions in the fundamental representation, we have only one zero mode for π‘›π‘š = 1 (since 𝐴 π‘Ÿ = 1 and ker π·π‘›π‘š
†
= {0}). We can
write the πœ“ solution as (I will drop the gauge index for some time now)
πœ“(π‘₯) = π‘Ž0πœ“0(π‘₯) + Non zero modes
π‘Ž0 will be our fermionic collective coordinate. The monopole ground states can be built by considering a ground state |Ω⟩ such that π‘Ž0 Ξ© = 0
and then, another state can be built as π‘Ž0
†
|Ω⟩. So, the states |Ω⟩ and π‘Ž0
†
|Ω⟩ are degenerate.
Adjoint Fermions
For adjoint fermions, 𝐴 = 2 and thus, for π‘›π‘š = 1, we have two zero modes. Moreover, since the monopoles with fermions live in the
π‘†π‘ˆ 2 𝑠 Γ— π‘†π‘ˆ 2 𝑔 group, the fundamental fermions can be singlets because 𝟐 Γ— 𝟐 = πŸ‘ + 𝟏 but this is not the case for adjoint fermions
because πŸ‘ Γ— 𝟐 = πŸ’ + 𝟐. Since there are two fermion zero modes, the fermions can’t have spin 3/2 and thus, the adjoint fermions should live
in the 𝟐 representation of π‘†π‘ˆ 2 𝑠 Γ— π‘†π‘ˆ 2 𝑔. Therefore, the spins of the zero modes must be Β±1/2. So, the πœ“ solution is expanded with the
spins mentioned on the zero modes and the corresponding coefficients as;
πœ“ = π‘Ž0,1/2πœ“0
1
2
+ π‘Ž0,βˆ’1/2πœ“0
βˆ’
1
2
+ Non zero modes
So, we have the four monopole states as shown below
Ξ© Spin 0
π‘Ž0,1/2
†
Ξ© Spin 1/2
π‘Ž0,βˆ’1/2
†
Ξ© Spin βˆ’ 1/2
π‘Ž0,1/2
†
π‘Ž0,βˆ’1/2
†
Ξ© Spin 0
Monopoles in 𝑁 = 4 supersymmetric theories
We need monopoles in 𝑁 = 4 supersymmetry in order to solve two major problems in the Olive Montonen proposal. We don't need to go into
the details of the derivation of the 𝑁 = 4 supersymmetry lagrangian. I will use only the result that the 𝑁 = 4 supersymmetric yang mills Higgs
theory contains only one multiplet (without going into spins higher than 1) with contains one gauge field, six scalars and two Weyl fermions
(two Dirac fermions) and all of them are in the adjoint representation since they are in the same multiplet as the gauge field.
Now, since there are two Dirac fermions in this theory, the number of fermion zero modes double and thus, we have the following creation
operators
π‘Ž
0, Β±
1
2
𝑛†
where n = 1,2
Now, the monopole multiplet is as follows (we again start with the |Ω⟩ state and I drop the 0 subscript from the raising operators. Moreover, I
replace Β±1/2 with Β± for brevity).
State Spin
|Ω⟩ 0
π‘ŽΒ±
𝑛†
|Ω⟩ ±1/2
π‘Žβˆ’
π‘›β€ π‘Ž+
π‘šβ€ 
|Ω⟩ 0
π‘Ž+
1†
π‘Ž+
2†
|Ω⟩ 1
π‘Žβˆ’
1†
π‘Žβˆ’
2†
|Ω⟩ βˆ’1
π‘Žβˆ“
1†
π‘Žβˆ“
2†
π‘ŽΒ±
𝑛†
|Ω⟩ βˆ“1/2
π‘Ž+
1†
π‘Ž+
2†
π‘Žβˆ’
1†
π‘Žβˆ’
2†
|Ω⟩ 0
We can see that in this multiplet, we have states which have spin 1. Moreover, if we compare the spin content of this
multiplet with the 𝑁 = 4 gauge supermultiplet, there is an exact match.
There is another feature of the 𝑁 = 4 theory which is worth mentioning. It is a known fact (I won't go into the details) that
the 𝛽 function of 𝑁 = 4 super Yang Mills theory vanishes and thus, the potential of the 𝑁 = 4 theory won't receive quantum
corrections. Therefore, the first two problems in the Olive Montonen proposal that I mentioned are solved by incorporating 4
dimensional YMH theory in the 𝑁 = 4 supersymmetric gauge theory.
Seiberg Witten duality
Low energy 𝒩 = 2 SYM
The scalar potential for 𝒩 = 2 theory is;
𝑉 𝑧, 𝑧 ∝ 𝑧, 𝑧 2
Now, 𝑉 = 0 for SUSY to remain intact
β‡’ 𝑧, 𝑧 = 0
For π‘†π‘ˆ(2) gauge,
𝑧 =
1
2
π‘Žπ‘— + 𝑖𝑏𝑗 πœŽπ‘—
Gauge invariance renders π‘Ž1 = π‘Ž2 = 0 and 𝑧, 𝑧 = 0 renders 𝑏1 = 𝑏2 = 0. Let π‘Ž = π‘Ž3 + 𝑖𝑏3 and π‘†π‘ˆ(2) Weyl transformation renders π‘Ž ∼ βˆ’π‘Ž.
So, π‘Ž2
is gauge invariant (i.e. π‘‘π‘Ÿ 𝑧2
is gauge invariant).
Define
𝑒 = π‘‘π‘Ÿ 𝑧2
, 𝑧 =
1
2
π‘ŽπœŽ3
Moduli space is the complex 𝑒 plane. π‘£πœ‡
3
, πœ†3
and πœ“3
remain massless due to βŸ¨π‘§βŸ© and thus, low energy theory concerns only one gauge boson.
The lagrangian is π‘ˆ(1) lagrangian now and is given as;
ℒ𝒩=2 𝑒𝑓𝑓 =
1
16πœ‹
∫ 𝑑2
πœƒ β„±β€²β€²
πœ™ π‘Šπ›Ό
π‘Š
𝛼 + ∫ 𝑑2
πœƒπ‘‘2
πœƒ πœ™β„±β€²
πœ™
β„±β€²β€²(𝑧) as metric
The kinetic terms from the low energy lagrangian are
∼ πΌπ‘š β„±β€²β€²
𝑧 πœ•πœ‡π‘§
2
, ∼ βˆ’πΌπ‘š β„±β€²β€²
𝑧 πΉπœ‡πœˆ
𝐹
πœ‡πœˆ
which suggests that β„±β€²β€²(𝑧) is a metric. The metric on the moduli space is
𝑑𝑠2
= πΌπ‘š β„±β€²β€²
π‘Ž π‘‘π‘Žπ‘‘π‘Ž = πΌπ‘š 𝜏 π‘Ž π‘‘π‘Žπ‘‘π‘Ž
Let Ξ¨ be 𝒩 = 2 chiral field. Then the one loop prepotential is;
β„± Ξ¨ =
𝑖
2πœ‹
Ξ¨2
𝐼𝑛
Ξ¨2
Ξ©2
For large π‘Ž, Ξ¨ ∼ π‘Ž and
β„± π‘Ž ∼
𝑖
2πœ‹
π‘Ž2
𝐼𝑛
π‘Ž2
Ξ©2
π‘Ž β†’ ∞ β‡’ 𝜏 π‘Ž =
𝑖
πœ‹
𝐼𝑛
π‘Ž2
Ξ©2
+ 3 π‘Ž β†’ ∞
Since 𝜏(π‘Ž) doesn’t depend on π‘Ž, it is holomorphic β‡’ πΌπ‘š 𝜏 is harmonic function β‡’ it doesn’t have local minima β‡’ πΌπ‘š 𝜏 isn’t positive definite.
So, 𝜏(π‘Ž) and thus, π‘Ž should be defined on certain patches of 𝑒 plane.
Seiberg Witten duality
Define π‘Žπ· = β„±β€²(π‘Ž) and thus,
𝑑𝑠2
= πΌπ‘š β„±β€²β€²
π‘Ž π‘‘π‘Žπ‘‘π‘Ž = πΌπ‘š (π‘‘π‘Žπ‘‘π‘Žπ·)
The metric is symmetric is π‘Ž and π‘Žπ·. We can now define πœ™π· = β„±β€²
πœ™ and the dual prepotential is defined by Legendre transformation
ℱ𝐷 π‘Žπ· = β„± πœ™ βˆ’ πœ™πœ™π· β‡’ πœ™ = βˆ’β„±π·
β€²
(πœ™π·)
The duality transformation (called 𝑆) is
𝑆: πœ™ β†’ πœ™π· = β„±β€²
πœ™ , β„± πœ™ β†’ ℱ𝐷 πœ™π· β‡’ 𝑆:
πœ™π·
πœ™
β†’
0 βˆ’1
1 0
πœ™π·
πœ™
This implies the following term invariant
πΌπ‘š ∫ 𝑑2
πœƒπ‘‘2
πœƒπœ™β„±β€²
πœ™ β†’ πΌπ‘š ∫ 𝑑2
πœƒπ‘‘2
πœƒπœ™π·β„±π·
β€²
πœ™π· = πΌπ‘š ∫ 𝑑2
πœƒπ‘‘2
πœƒπœ™β„±β€²
πœ™
The Bianchi identity πœ–π›Όπ›½πœŽπœŒ
βˆ— 𝐹
𝜎𝜌 = 0 identifies as Im π·π›Όπ‘Šπ›Ό
= 0 in superspace. Imposing this constraint using a lagrange multiplier 𝑉𝐷 in
calculating partition function, we get;
𝑍 = ∫ 𝐷𝑉 exp iβ„’ = ∫ π·π‘Š 𝐷𝑉𝐷 exp
i
16πœ‹
Im ∫ 𝑑4
π‘₯ ∫ 𝑑2
πœƒ β„±β€²β€²
πœ™ π‘Šπ›Ό
π‘Š
𝛼 +
1
2
∫ 𝑑2
πœƒ 𝑑2
πœƒ π‘‰π·π·π›Όπ‘Šπ›Ό
= ∫ 𝐷𝑉𝐷 exp
i
16πœ‹
Im ∫ 𝑑4
π‘₯ 𝑑2
πœƒ βˆ’
1
β„±β€²β€² πœ™
π‘Šπ·
𝛼
π‘Šπ· 𝛼
This gives us a dual coupling
𝜏𝐷 πœ™π· = βˆ’
1
𝜏 πœ™
= βˆ’
1
β„±β€²β€² πœ™
= βˆ’
π‘‘πœ™
π‘‘πœ™π·
= ℱ𝐷
β€²β€²
(πœ™π·)
This gives us the following lagrangian under duality transformation
ℒ𝑁=2 eff β†’
1
16πœ‹
∫ 𝑑2
πœƒ ℱ𝐷
β€²β€²
πœ™π· (π‘Šπ·)𝛼
(π‘Šπ·)𝛼+∫ 𝑑2
πœƒπ‘‘2
πœƒ πœ™π·β„±π·
β€²
πœ™π·
So the lagrangian is invariant under duality transformation.
𝑺𝑳(𝟐, β„€) duality
The forms of 𝑆𝐿(2, β„€) matrices are
𝑆 =
0 1
βˆ’1 0
, π‘ˆ 𝑏 =
1 𝑏
0 1
, 𝑏 ∈ β„€
𝑆 is already realised and π‘ˆ(𝑏) gives
πœ™π· β†’ πœ™π· + π‘πœ™, πœ™ β†’ πœ™ β‡’ πœ™πœ™π· βˆ’ πœ™π·πœ™ β†’ πœ™πœ™π· βˆ’ πœ™π·πœ™, β„±β€²β€²
πœ™ =
π‘‘πœ™π·
π‘‘πœ™
= β„±β€²β€²
πœ™ + 𝑏
β‡’ ℒ𝑁=2 β†’ ℒ𝑁=2 +
𝑏
16πœ‹
Im ∫ 𝑑2
πœƒ π‘Šπ·
𝛼
π‘Šπ· 𝛼 β‡’ ∫ 𝑑4
π‘₯ ℒ𝑁=2 β†’ ∫ 𝑑4
π‘₯ ℒ𝑁=2 +
𝑏
16πœ‹
Im ∫ 𝑑4
π‘₯ 𝑑2
πœƒπ‘Šπ·
𝛼
π‘Šπ· 𝛼
= ∫ 𝑑4
π‘₯ ℒ𝑁=2 βˆ’
b
16πœ‹
∫ 𝑑4
π‘₯πΉπœ‡πœˆ
βˆ— 𝐹
πœ‡πœˆ = ∫ 𝑑4
π‘₯ ℒ𝑁=2 βˆ’ 2πœ‹π‘π‘›
where
𝑛 =
1
32πœ‹2
∫ 𝑑4
π‘₯πΉπœ‡πœˆ
βˆ— 𝐹
πœ‡πœˆ
is Yang Mills instanton number.
Since 𝑒𝑖𝑆
is used in calculation of functional integrals, 𝑆 and 𝑆 βˆ’ 2πœ‹π‘π‘› are equivalent and thus, π‘ˆ(𝑏) is a symmetry transformation. So, Seiberg
Witten duality also extends to 𝑆𝐿(2, β„€) group.
Moduli space structure
Singularity at infinity
As π‘Ž β†’ ∞ β‡’ 𝑒 β†’ ∞, we have;
π‘Žπ· =
πœ•β„±(π‘Ž)
πœ•π‘Ž
=
πœ•
πœ•π‘Ž
𝑖
2πœ‹
π‘Ž2
𝐼𝑛
π‘Ž2
Ξ©2
=
𝑖
πœ‹
π‘Ž 𝐼𝑛
π‘Ž2
Ξ©2
+ 1
Now, 𝑒 β†’ 𝑒2πœ‹π‘–
𝑒 β‡’ π‘Ž β†’ π‘’π‘–πœ‹
π‘Ž = βˆ’π‘Ž and
π‘Žπ· β†’ βˆ’π‘Žπ· + 2π‘Ž
So, we have;
π‘Žπ·
π‘Ž
β†’
βˆ’1 2
0 βˆ’1
π‘Žπ·
π‘Ž
= π‘€βˆž
π‘Žπ·
π‘Ž
Other singularities
The R charges are as follows
𝑧 β†’ 𝑒2π‘–πœ‰
𝑧, π‘Š
𝛼 β†’ π‘’π‘–πœ‰
π‘Š
𝛼, πœƒ β†’ π‘’π‘–πœ‰
πœƒ β‡’ 𝑑2
πœƒ = π‘’βˆ’2π‘–πœ‰
𝑑2
πœƒ β‡’ Ξ¨ β†’ e2π‘–πœ‰
Ξ¨ β‡’ β„± Ξ¨ ∝ Ξ¨2
β†’ 𝑒4π‘–πœ‰
β„±(Ξ¨)
The instanton corrections for β„±(Ξ¨) are given as;
β„± Ξ¨ πΌπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘œπ‘›π‘  = Ξ¨2
𝑗
πœ‡π‘—
Ξ©2
Ξ¨2
2𝑗
The β„± Ξ¨ β†’ 𝑒4π‘–πœ‰
β„±(Ξ¨) in realised now if πœ‰ = 2πœ‹π‘—/8 𝑗 ∈ β„€+
(i.e. β„€8 symmetry) i.e. 𝑧2
β†’ βˆ’π‘§2
and hence 𝑒 β†’ βˆ’π‘’ is a symmetry. So, at least
three non zero points should be singularities or 𝑒 = 0, ∞ should be singularities.
Later case implies π‘€βˆž = 𝑀0 (contour deformation) and thus, π‘Ž2
is a good coordinate on whole of complex plane (which is not true). So, we
should have three singularities 𝑒 β†’ ∞, 𝑒, βˆ’π‘’.
Other singularities
At 𝑒 = 0, the gauge group restores and everything becomes massless. We can try to interpret other singularities the same way.
Singularities can’t be due to gauge boson becoming massless (it requires tπ‘Ÿ πœ™2
to become dimensionless but it’s dimension is 2). The trick is to
consider massless monopoles. Massive states have to be in short representations and thus, mass is proportional to 𝑍.
For 𝒩 = 2,
𝑍 = π‘Žπ‘›π‘’ + π‘Žπ·π‘›π‘š
Thus, π‘Žπ· = 0 at singularities. Coupling 𝒩 = 2 SYM to hypermultiplets, we have SQED with beta function;
Ξ›
π‘‘πœ†π·
𝑑Λ
=
πœ†π·
3
8πœ‹2
Which gives
π‘Žπ·
π‘‘πœπ·
π‘‘π‘Žπ·
= π‘Žπ·
𝑑
π‘‘π‘Žπ·
4πœ‹π‘–
πœ†π·
3 = βˆ’
𝑖
πœ‹
β‡’ 𝜏𝐷 = βˆ’
𝑖
πœ‹
𝐼𝑛 π‘Žπ· = βˆ’
π‘‘π‘Ž
π‘‘π‘Žπ·
β‡’ π‘Ž ∼ π‘Ž +
𝑖
πœ‹
π‘Žπ· 𝐼𝑛 π‘Žπ·
Now, π‘Žπ· = 0 at 𝑒 = 𝑒 , we have π‘Žπ· = 𝜁(𝑒 βˆ’ 𝑒) near 𝑒 = 𝑒 where 𝜁 is a constant and thus, near 𝑒 = 𝑒, we have;
π‘Ž 𝑒 = π‘Ž +
𝑖
πœ‹
𝜁 𝑒 βˆ’ 𝑒 𝐼𝑛 (𝑒 βˆ’ 𝑒)
For 𝑒 βˆ’ 𝑒 β†’ 𝑒2πœ‹π‘–
(𝑒 βˆ’ 𝑒), we have;
π‘Žπ· β†’ π‘Žπ·, π‘Ž β†’ π‘Ž βˆ’ 2π‘Žπ· β‡’
π‘Žπ·
π‘Ž
β†’
1 0
βˆ’2 1
π‘Žπ·
π‘Ž
= 𝑀𝑒
π‘Žπ·
π‘Ž
Using π‘€βˆž = π‘€π‘’π‘€βˆ’π‘’, we have;
π‘€βˆ’π‘’ =
βˆ’1 2
βˆ’2 3
Dyon interpretation
For dyon 𝑛𝑒, π‘›π‘š becoming massless, 𝑍 = π‘Žπ‘›π‘’ + π‘Žπ·π‘›π‘š should be invariant under monodromy action. In other words
𝑍 = π‘›π‘š 𝑛𝑒
π‘Žπ·
π‘Ž
β†’ π‘›π‘š 𝑛𝑒 𝑀
π‘Žπ·
π‘Ž
= 𝑍 β‡’ π‘›π‘š 𝑛𝑒 𝑀 = π‘›π‘š 𝑛𝑒
For 𝑀𝑒 Μƒ, (1 0) is a left eigenvector and for π‘€βˆ’π‘’ , (1 βˆ’1) is left eigenvector (actually (π‘žπ‘›π‘š π‘žπ‘›π‘’) with integer π‘ž is a left eigenvector but
they aren’t stable as 𝑛𝑒 and π‘›π‘š have to be relatively prime).
For π‘›π‘š 𝑛𝑒 to be a left eigenvector, the monodromy matrix is
1 + 2π‘›π‘’π‘›π‘š 2𝑛𝑒
2
βˆ’2π‘›π‘š
2
1 βˆ’ 2π‘›π‘’π‘›π‘š
This shows that (for π‘˜ ∈ β„€)
π‘€βˆž
βˆ’π‘˜
π‘€π‘’π‘€βˆž
π‘˜
= 1 βˆ’ 4π‘˜ 8π‘˜2
βˆ’2 1 + 4π‘˜
corresponds to 𝑛𝑒, π‘›π‘š = (βˆ’2π‘˜, 1)
Moreover,
π‘€βˆž
βˆ’π‘˜
π‘€βˆ’π‘’π‘€βˆž
π‘˜
= βˆ’1 βˆ’ 4π‘˜ 8π‘˜2
+ 2π‘˜ + 8
βˆ’2 3 + 4π‘˜
corresponds to 𝑛𝑒, π‘›π‘š = (βˆ’2π‘˜ βˆ’ 1,1).
Solution for π‘Ž 𝑒 , π‘Žπ·(𝑒)
Consider
𝑑2
πœ“
𝑑𝑧2
βˆ’ 𝑉 𝑧 πœ“ 𝑧 = 0 (1)
Regular singular point 𝑧 = 𝑧0 is such that 𝑧 βˆ’ 𝑧0
2
𝑉(𝑧) is analytic at 𝑧 = 𝑧0.
Theorem: Non trivial constant monodromies correspond to singular points of 𝑉(𝑧) which are regular singular points.
Following Seiberg and Witten, 𝑒 = 1 and thus, the singular points are 𝑒 = Β±1, 𝑒 β†’ ∞.
The terms
1
𝑧 βˆ’ 1
,
1
𝑧 + 1
in 𝑉(𝑧) correspond to third order poles at infinity. So, the general 𝑉(𝑧) is (following the convention)
𝑉 𝑧 = βˆ’
1
4
1 βˆ’ πœ‰1
2
𝑧 + 1 2
+
1 βˆ’ πœ‰2
2
𝑧 βˆ’ 1 2
βˆ’
1 βˆ’ πœ‰1
2
βˆ’ πœ‰2
2
+ πœ‰3
2
𝑧 + 1 𝑧 βˆ’ 1
, πœ‰π‘— > 0
The transformation
πœ“ 𝑧 = 𝑧 + 1
1βˆ’πœ‰1
2 𝑧 βˆ’ 1
1βˆ’πœ‰2
2 𝐺
𝑧 + 1
2
equation (1) becomes;
πœ‡ 1 βˆ’ πœ‡
𝑑2
𝐺 πœ‡
π‘‘πœ‡2
+ 𝑐 βˆ’ π‘Ž + 𝑏 + 1 πœ‡
𝑑𝐺 πœ‡
π‘‘πœ‡
βˆ’ π‘Žπ‘πΊ πœ‡ = 0
where πœ‡ is an independent variable and 2π‘Ž = 1 βˆ’ πœ‰1 βˆ’ πœ‰2 + πœ‰3, 2𝑏 = 1 βˆ’ πœ‰1 βˆ’ πœ‰2 βˆ’ πœ‰3, 𝑐 = 1 βˆ’ πœ‰1.
The solutions to this equation are hypergeometric functions
𝐹 π‘Ž, 𝑏, 𝑐; πœ‡ =
𝑛=0
∞
π‘Ž 𝑛 𝑏 𝑛
𝑐 𝑛
πœ‡π‘›
𝑛!
Where π‘Ž 𝑛 are Pochhammer’s symbol π‘Ž 0 = 1, π‘Ž 𝑛+1 = π‘Ž π‘Ž + 1 … (π‘Ž + 𝑛)
The two solutions that we pick are
𝐺1 πœ‡ = βˆ’πœ‡ βˆ’π‘Ž
𝐹 π‘Ž, π‘Ž + 1 βˆ’ 𝑐, π‘Ž + 1 βˆ’ 𝑏;
1
πœ‡
𝐺2 πœ‡ = 1 βˆ’ πœ‡ π‘βˆ’π‘Žβˆ’π‘
𝐹 𝑐 βˆ’ π‘Ž, 𝑐 βˆ’ 𝑏, 𝑐 + 1 βˆ’ π‘Ž βˆ’ 𝑏; 1 βˆ’ πœ‡
Now, 𝐺1 has trivial monodromy at infinity and 𝐺2 has trivial monodromy at πœ‡ = 1.
Finding 𝒂, 𝒃, 𝒄
For large 𝑧
𝑉 𝑧 = βˆ’
1
4
1 βˆ’ πœ‰3
2
𝑧2
β‡’ 4𝑧2
𝑑2
πœ“ 𝑧
𝑑𝑧2
+ 1 βˆ’ πœ‰3
2
πœ“ 𝑧 = 0
β‡’ πœ“ 𝑧 =
𝑧1Β±πœ‰3
2
πœ‰3 β‰  0 , πœ“ 𝑧 = 𝑧 𝐼𝑛 𝑧 (πœ‰3 = 0)
The large 𝑒 expression for π‘Žπ· resembles the πœ‰3 = 0 case. So, set πœ‰3 = 0. Around 𝑧 = 1
𝑉 𝑧 = βˆ’
1
4
1 βˆ’ πœ‰2
2
𝑧 βˆ’ 1 2
β‡’
𝑑2
πœ“ 𝑦
𝑑𝑦2
+
1 βˆ’ πœ‰2
2
4𝑦2
πœ“ 𝑦 = 0, 𝑦 = 𝑧 βˆ’ 1
π‘Žπ· is linear in 𝑒 βˆ’ 1 around 𝑒 = 1 and thus, the second derivative should vanish and this, πœ‰2 = 1. β„€2 symmetry implies πœ‰1 = 1.
β‡’ π‘Ž = βˆ’
1
2
, 𝑏 = βˆ’
1
2
, 𝑐 = 0
β‡’ πœ“ 𝑧 = 𝐺
𝑧 + 1
2
β‡’ 𝐺1 𝑒 = 𝑖
𝑒 + 1
2
1
2
𝐹
1
2
, βˆ’
1
2
, 1;
2
𝑒 + 1
, 𝐺2 𝑒 = βˆ’
𝑒 βˆ’ 1
2
𝐹
1
2
,
1
2
, 2;
1 βˆ’ 𝑒
2
The solutions for π‘Ž and π‘Žπ· which give correct asymptotics are
π‘Žπ· 𝑒 = βˆ’π‘–πΊ2 𝑒 = 𝑖
𝑒 βˆ’ 1
2
𝐹
1
2
,
1
2
, 2;
1 βˆ’ 𝑒
2
π‘Ž 𝑒 = βˆ’2𝑖𝐺1 𝑒 = 2 𝑒 + 1
1
2𝐹
1
2
, βˆ’
1
2
, 1;
2
𝑒 + 1
We can find π‘Žπ·(π‘Ž) now and then, β„±(π‘Ž) is determined by integrating π‘Žπ· π‘Ž = β„±β€²(π‘Ž) with respect to π‘Ž which gives you low energy lagrangian.
Further developements
Extensions
οƒ˜ N. Seiberg and E. Witten added hypermultiplets in 1994.
οƒ˜ A first step was taken to generalize to π‘†π‘ˆ(𝑁) group in 1995 by A. Klemm et al.
οƒ˜ Low energy action was calculated by Klemm et al. for π‘†π‘ˆ(3) in 1995.
οƒ˜ A. Brandhuber et al. calculated the low energy action for 𝑆𝑂(2𝑁) in 1995.
οƒ˜ U. H. Danielsson et al. wrote the weak coupling limit for arbitrary gauge groups and wrote the solution for 𝑆𝑂(2π‘Ÿ + 1) groups in 1995.
οƒ˜ P.C. Argyres et al. worked out the description of metric on moduli space for π‘†π‘ˆ(𝑁) theory in 1995.
οƒ˜ U.H. Danielsson and B. Sundborg address the same problem with some simple groups with matter multiplets in 1996.
Tests
οƒ˜ E. Witten and C. Vafa proposed a test at strong coupling in 1994.
οƒ˜ A. Lossev, N. Nekrasov and S.L. Shatashvilli proposed a test of Seiberg Witten solution by instanton calculations in 1999.
οƒ˜ The test proposed in 1999 was performed by N. Nekrasov (and the low instanton results matched the literature values) in 2003.
Proof of generalized Bogomol’nyi bound (𝑄𝑒, π‘„π‘š)
In the presence of electrical fields (keeping 𝐴0
π‘Ž
= 0 still), we have the following mass for the dyon;
𝑀 =
1
2
∫ 𝑑3
π‘₯ 𝐸𝑖
π‘Ž
𝐸𝑖
π‘Ž
+ 𝐡𝑖
π‘Ž
𝐡𝑖
π‘Ž
+ π·π‘–πœ™π‘Ž 2
=
1
2
∫ 𝑑3
π‘₯ 𝐸𝑖
π‘Ž
βˆ’ cos 𝛼 π·π‘–πœ™π‘Ž
+ 𝐡𝑖
π‘Ž
βˆ’ sin 𝛼 𝐷𝑖 πœ™π‘Ž 2
+ ∫ 𝑑3
π‘₯ cos 𝛼 𝐸𝑖
π‘Ž
π·π‘–πœ™π‘Ž
+ sin 𝛼 𝐡𝑖
π‘Ž
π·π‘–πœ™π‘Ž
β‰₯ cos 𝛼 𝑄𝑒 + sin 𝛼 π‘„π‘š
Now, we can make the bound as tight as possible by differentiating the above expression w.r.t 𝛼 and setting it to zero. This gives;
tan 𝛼 =
π‘„π‘š
𝑄𝑒
β‡’ sin 𝛼 =
π‘„π‘š
𝑄𝑒
2
+ π‘„π‘š
2
, cos 𝛼 =
𝑄𝑒
𝑄𝑒
2
+ π‘„π‘š
2
This gives us;
𝑀 β‰₯ 𝑣 𝑄𝑒
2
+ π‘„π‘š
2
1
2
This is the generalised Bogomol’nyi bound in terms of (𝑄𝑒, π‘„π‘š).
Acknowledgements
I would like to thank
οƒ˜ My family for their support in these difficult times.
οƒ˜ My supervisor and other teachers for guiding me about various things regarding the thesis.
οƒ˜ My friends for their support.
οƒ˜ People with whom I had useful discussions, specially Dr. K.S. Narain.
Proof of generalized Bogomol’nyi bound (e,g)
In the presence of electrical fields (keeping π΄πœ‡
π‘Ž
= 0 still), we have the following mass for the dyon;
𝑀 =
1
2
∫ 𝑑3
π‘₯ 𝐸𝑖
π‘Ž
𝐸𝑖
π‘Ž
+ 𝐡𝑖
π‘Ž
𝐡𝑖
π‘Ž
+ π·π‘–πœ™π‘Ž 2
=
1
2
∫ 𝑑3
π‘₯ 𝐸𝑖
π‘Ž
βˆ’ cos 𝛼 π·π‘–πœ™π‘Ž
+ 𝐡𝑖
π‘Ž
βˆ’ sin 𝛼 𝐷𝑖 πœ™π‘Ž 2
+ ∫ 𝑑3
π‘₯ cos 𝛼 𝐸𝑖
π‘Ž
π·π‘–πœ™π‘Ž
+ sin 𝛼 𝐡𝑖
π‘Ž
π·π‘–πœ™π‘Ž
We proved previously that π΅π‘Ž
π·π‘–πœ™π‘Ž
= πœ•π‘–(𝐡𝑖
π‘Ž
πœ™π‘–). We can also prove that 𝐸𝑖
π‘Ž
π·π‘–πœ™π‘Ž
= πœ•π‘– 𝐸𝑖
π‘Ž
πœ™π‘Ž
as follows.
We see that 𝐸𝑖
π‘Ž
π·π‘–πœ™π‘Ž
= 𝐷𝑖 𝐸𝑖
π‘Ž
πœ™π‘Ž
βˆ’ πœ™π‘Ž
𝐷𝑖𝐸𝑖
π‘Ž
= πœ•π‘– 𝐸𝑖
π‘Ž
πœ™π‘Ž
βˆ’ πœ™π‘Ž
𝐷𝑖𝐸𝑖
π‘Ž
as 𝐸𝑖
π‘Ž
πœ™π‘Ž
is gauge singlet. Now, we prove that 𝐷𝑖𝐸𝑖
π‘Ž
= 0.
Use the zeroth component of Gauss’ constraint to get;
𝐷𝑖𝐹𝑖0
π‘Ž
= π‘’πœ–π‘Žπ‘π‘
πœ™π‘
𝐷0πœ™π‘
= 0
The last equality follows because πœ™π‘Ž
is time independent and 𝐴0
π‘Ž
= 0. So, 𝐷𝑖𝐹𝑖0
π‘Ž
= βˆ’π·π‘–πΉ0𝑖
π‘Ž
= βˆ’π·π‘–πΈπ‘–
π‘Ž
= 0
So, we get;
𝑀 β‰₯ ∫ 𝑑3
π‘₯ cos 𝛼 πœ•π‘– 𝐸𝑖
π‘Ž
πœ™π‘Ž
+ sin 𝛼 πœ•π‘– 𝐡𝑖
π‘Ž
πœ™π‘Ž
= 𝑣[cos 𝛼 𝑒 + sin 𝛼 𝑔]
Now, we can make the bound as tight as possible by differentiating the above expression w.r.t 𝛼 and setting it to zero. This gives;
tan 𝛼 =
𝑔
𝑒
β‡’ sin 𝛼 =
𝑔
𝑒2 + 𝑔2
, cos 𝛼 =
𝑒
𝑒2 + 𝑔2
This gives us;
𝑀 β‰₯ 𝑣 𝑒2
+ 𝑔2
1
2
Questions?

More Related Content

What's hot

The wkb approximation..
The wkb approximation..The wkb approximation..
The wkb approximation..DHRUBANKA Sarma
Β 
Hilbert space representation of the minimal length uncertainty relation
Hilbert space representation of the minimal length uncertainty relationHilbert space representation of the minimal length uncertainty relation
Hilbert space representation of the minimal length uncertainty relationMilad Hajebrahimi
Β 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillationsharshsharma5537
Β 
On Some Partial Orderings for Bimatrices
On Some Partial Orderings for BimatricesOn Some Partial Orderings for Bimatrices
On Some Partial Orderings for BimatricesIJMER
Β 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis Lake Como School of Advanced Studies
Β 
Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics The Chinese University of Hong Kong
Β 
Conformal symmetry transformations and nonlinear Maxwell equations, G.A.Goldi...
Conformal symmetry transformations and nonlinear Maxwell equations, G.A.Goldi...Conformal symmetry transformations and nonlinear Maxwell equations, G.A.Goldi...
Conformal symmetry transformations and nonlinear Maxwell equations, G.A.Goldi...Steven Duplij (Stepan Douplii)
Β 
Neil Lambert - From D-branes to M-branes
Neil Lambert - From D-branes to M-branesNeil Lambert - From D-branes to M-branes
Neil Lambert - From D-branes to M-branesSEENET-MTP
Β 
Maxwell's formulation - differential forms on euclidean space
Maxwell's formulation  - differential forms on euclidean spaceMaxwell's formulation  - differential forms on euclidean space
Maxwell's formulation - differential forms on euclidean spacegreentask
Β 
S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...
S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...
S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...Steven Duplij (Stepan Douplii)
Β 
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18foxtrot jp R
Β 
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromOutgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromfoxtrot jp R
Β 
3). work & energy (finished)
3). work & energy (finished)3). work & energy (finished)
3). work & energy (finished)PhysicsLover
Β 
Phase transition and casimir effect
Phase transition and casimir effectPhase transition and casimir effect
Phase transition and casimir effectnguyenthamhn
Β 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximationZahid Mehmood
Β 
Lit review-Thomas Acton
Lit review-Thomas ActonLit review-Thomas Acton
Lit review-Thomas ActonThomas Actn
Β 

What's hot (20)

The wkb approximation..
The wkb approximation..The wkb approximation..
The wkb approximation..
Β 
Hilbert space representation of the minimal length uncertainty relation
Hilbert space representation of the minimal length uncertainty relationHilbert space representation of the minimal length uncertainty relation
Hilbert space representation of the minimal length uncertainty relation
Β 
Small amplitude oscillations
Small amplitude oscillationsSmall amplitude oscillations
Small amplitude oscillations
Β 
On Some Partial Orderings for Bimatrices
On Some Partial Orderings for BimatricesOn Some Partial Orderings for Bimatrices
On Some Partial Orderings for Bimatrices
Β 
Quantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko RobnikQuantum chaos of generic systems - Marko Robnik
Quantum chaos of generic systems - Marko Robnik
Β 
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis Complex Dynamics and Statistics  in Hamiltonian 1-D Lattices - Tassos Bountis
Complex Dynamics and Statistics in Hamiltonian 1-D Lattices - Tassos Bountis
Β 
Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics Quick run through on classical mechancis and quantum mechanics
Quick run through on classical mechancis and quantum mechanics
Β 
Quantum chaos in clean many-body systems - TomaΕΎ Prosen
Quantum chaos in clean many-body systems - TomaΕΎ ProsenQuantum chaos in clean many-body systems - TomaΕΎ Prosen
Quantum chaos in clean many-body systems - TomaΕΎ Prosen
Β 
Conformal symmetry transformations and nonlinear Maxwell equations, G.A.Goldi...
Conformal symmetry transformations and nonlinear Maxwell equations, G.A.Goldi...Conformal symmetry transformations and nonlinear Maxwell equations, G.A.Goldi...
Conformal symmetry transformations and nonlinear Maxwell equations, G.A.Goldi...
Β 
Neil Lambert - From D-branes to M-branes
Neil Lambert - From D-branes to M-branesNeil Lambert - From D-branes to M-branes
Neil Lambert - From D-branes to M-branes
Β 
Two
TwoTwo
Two
Β 
Maxwell's formulation - differential forms on euclidean space
Maxwell's formulation  - differential forms on euclidean spaceMaxwell's formulation  - differential forms on euclidean space
Maxwell's formulation - differential forms on euclidean space
Β 
S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...
S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...
S.Duplij,G.Goldin,V.Shtelen.On Lagrangian and non-Lagrangian conformal-invari...
Β 
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Outgoing ingoingkleingordon spvmforminit_proceedfrom12dec18
Β 
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfromOutgoing ingoingkleingordon spvmforminit_proceedfrom
Outgoing ingoingkleingordon spvmforminit_proceedfrom
Β 
3). work & energy (finished)
3). work & energy (finished)3). work & energy (finished)
3). work & energy (finished)
Β 
Phase transition and casimir effect
Phase transition and casimir effectPhase transition and casimir effect
Phase transition and casimir effect
Β 
Part VI - Group Theory
Part VI - Group TheoryPart VI - Group Theory
Part VI - Group Theory
Β 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximation
Β 
Lit review-Thomas Acton
Lit review-Thomas ActonLit review-Thomas Acton
Lit review-Thomas Acton
Β 

Similar to Review of Seiberg Witten duality.pptx

Schwarzchild solution derivation
Schwarzchild solution derivationSchwarzchild solution derivation
Schwarzchild solution derivationHassaan Saleem
Β 
Tutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfTutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfssuserfb9ae6
Β 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationIJERA Editor
Β 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Root Locus ...
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Root Locus ...Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Root Locus ...
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Root Locus ...AIMST University
Β 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)PhysicsLover
Β 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximationDHRUBANKA Sarma
Β 
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptxThe Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptxtsdalmutairi
Β 
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)Pooja M
Β 
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfSEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfWasswaderrick3
Β 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - System ModelsLecture Notes:  EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System ModelsAIMST University
Β 
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...Wasswaderrick3
Β 
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic ManifoldCR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic ManifoldIOSR Journals
Β 
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...IJMER
Β 
Conformal Boundary conditions
Conformal Boundary conditionsConformal Boundary conditions
Conformal Boundary conditionsHassaan Saleem
Β 
Dynamics of Machines and Mechanism, Mechanical Engineering
Dynamics of Machines and Mechanism, Mechanical EngineeringDynamics of Machines and Mechanism, Mechanical Engineering
Dynamics of Machines and Mechanism, Mechanical Engineeringbinodhar2000
Β 

Similar to Review of Seiberg Witten duality.pptx (20)

Schwarzchild solution derivation
Schwarzchild solution derivationSchwarzchild solution derivation
Schwarzchild solution derivation
Β 
Waveguides
WaveguidesWaveguides
Waveguides
Β 
Tutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdfTutorial_3_Solution_.pdf
Tutorial_3_Solution_.pdf
Β 
Generalized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral TransformationGeneralized Laplace - Mellin Integral Transformation
Generalized Laplace - Mellin Integral Transformation
Β 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Root Locus ...
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Root Locus ...Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - Root Locus ...
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - Root Locus ...
Β 
7). mechanical waves (finished)
7). mechanical waves (finished)7). mechanical waves (finished)
7). mechanical waves (finished)
Β 
The wkb approximation
The wkb approximationThe wkb approximation
The wkb approximation
Β 
Ondas Gravitacionales (en ingles)
Ondas Gravitacionales (en ingles)Ondas Gravitacionales (en ingles)
Ondas Gravitacionales (en ingles)
Β 
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptxThe Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
The Harmonic Oscillator/ Why do we need to study harmonic oscillator model?.pptx
Β 
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
CLASS XII - CHAPTER 5: OSCILLATION (PHYSICS - MAHARASHTRA STATE BOARD)
Β 
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdfSEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
SEMI-INFINITE ROD SOLUTION FOR TRANSIENT AND STEADY STATE.pdf
Β 
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes:  EEEC4340318 Instrumentation and Control Systems - System ModelsLecture Notes:  EEEC4340318 Instrumentation and Control Systems - System Models
Lecture Notes: EEEC4340318 Instrumentation and Control Systems - System Models
Β 
lec19.ppt
lec19.pptlec19.ppt
lec19.ppt
Β 
lec14.ppt
lec14.pptlec14.ppt
lec14.ppt
Β 
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
TRANSIENT AND STEADY STATE HEAT CONDUCTION WITH NO LATERAL CONVECTION SOLVED ...
Β 
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic ManifoldCR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
CR- Submanifoldsof a Nearly Hyperbolic Cosymplectic Manifold
Β 
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
On ranges and null spaces of a special type of operator named 𝝀 βˆ’ π’‹π’†π’„π’•π’Šπ’π’. – ...
Β 
Conformal Boundary conditions
Conformal Boundary conditionsConformal Boundary conditions
Conformal Boundary conditions
Β 
Dynamics of Machines and Mechanism, Mechanical Engineering
Dynamics of Machines and Mechanism, Mechanical EngineeringDynamics of Machines and Mechanism, Mechanical Engineering
Dynamics of Machines and Mechanism, Mechanical Engineering
Β 
probablity
 probablity probablity
probablity
Β 

Recently uploaded

Call Girls In Nihal Vihar Delhi ❀️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❀️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❀️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❀️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
Β 
Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.aasikanpl
Β 
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
Β 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPirithiRaju
Β 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
Β 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
Β 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555kikilily0909
Β 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
Β 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
Β 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
Β 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
Β 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxEran Akiva Sinbar
Β 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
Β 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
Β 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
Β 
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxBREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxPABOLU TEJASREE
Β 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentationtahreemzahra82
Β 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
Β 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
Β 

Recently uploaded (20)

Call Girls In Nihal Vihar Delhi ❀️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❀️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❀️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❀️8860477959 Looking Escorts In 24/7 Delhi NCR
Β 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
Β 
Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Call Girls in Mayapuri Delhi πŸ’―Call Us πŸ”9953322196πŸ” πŸ’―Escort.
Β 
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❀️8860477959 EscorTs Service In 24/7 Delh...
Β 
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdfPests of castor_Binomics_Identification_Dr.UPR.pdf
Pests of castor_Binomics_Identification_Dr.UPR.pdf
Β 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
Β 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
Β 
‏‏VIRUS - 123455555555555555555555555555555555555555
‏‏VIRUS -  123455555555555555555555555555555555555555‏‏VIRUS -  123455555555555555555555555555555555555555
‏‏VIRUS - 123455555555555555555555555555555555555555
Β 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
Β 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Β 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
Β 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
Β 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Β 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
Β 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Β 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Β 
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxBREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
Β 
Harmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms PresentationHarmful and Useful Microorganisms Presentation
Harmful and Useful Microorganisms Presentation
Β 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Β 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
Β 

Review of Seiberg Witten duality.pptx

  • 1. Review of Seiberg Witten duality MuhammadHassaan Saleem Supervisor: Dr. Bushra haider
  • 2. Objective and structure We want to work out the form of low energy 𝑁 = 2 SYM ℒ𝑁=2 = 1 16πœ‹ πΌπ‘š ∫ 𝑑2 πœƒ β„±β€² β€² πœ™ π‘Šπ›Ό π‘Š 𝛼 + ∫ 𝑑2 πœƒ 𝑑2 πœƒ πœ™ β„±β€² πœ™ where β„± πœ™ is known as the prepotential. We essentially need to find the prepotential. The work is divided as follows: 1) Review of 𝒩 = 2 SYM theory and the topics needed to understand it. 2) Review of Olive Montonen duality (1977) 3) Review of Seiberg Witten duality (1994)
  • 4. SUSY algebra The SUSY algebra is Where 𝑍𝐼𝐽 are called central charges and they are antisymmetric in their indices. Moreover, πœŽπœ‡πœˆ 𝛼 𝛽 = πœŽπ›Όπ›Ύ πœ‡ 𝜎𝜈 𝛾𝛽 βˆ’ (πœ‡ ↔ 𝜈) where πœŽπœ‡ = (1, 𝝈) and πœŽπœ‡ = (1, βˆ’πˆ).
  • 5. Massless multiplets Take 𝑃 πœ‡ = (𝐸, 0,0, 𝐸) and we get 𝑄1 𝐼 , 𝑄1 𝐽 = 0 , 𝑄2 𝐼 , 𝑄2 𝐽 = 4𝐸. So 𝑄1 𝐼 = 𝑄1 𝐼 = 0 (Positivity of Hilbert space). Define π‘ŽπΌ = 1 4𝐸 𝑄2 𝐼 , (π‘Žβ€  )𝐼 = 1 4𝐸 𝑄2 𝐼 β‡’ π‘ŽπΌ , π‘Žπ½ = 1 The states π‘Žβ€  1 π‘Žβ€  2 … π‘Žβ€  𝑗 |π‘—βŸ© are built and they are 2𝑁 in number if 𝐼 = 1,2, … 𝑁. N=1 multiplets 𝑗 = 0 β†’ 0, 1 2 βŠ• βˆ’ 1 2 , 0 (chiral multiplet) 𝑗 = 1 2 β†’ 1 2 , 1 βŠ• βˆ’1, βˆ’ 1 2 gauge multiplet N=2 multiplets 𝑗 = 0 β†’ 0, 1 2 , 1 2 , 1 βŠ• βˆ’1, βˆ’ 1 2 , βˆ’ 1 2 , 0 (gauge multiplet) 𝑗 = βˆ’ 1 2 β†’ βˆ’ 1 2 , 0,0, 1 2 βŠ• βˆ’ 1 2 , 0,0, 1 2 (hypermultiplet)
  • 6. Massive multiplets (𝒩 = 2) Let 𝑃 πœ‡ = (π‘š, 𝟎) and then , we have 𝑄𝛼 𝐼 , 𝑄𝛽 𝐽 † = 2π‘šπ›Ώπ›Όπ›½π›ΏπΌπ½ , 𝑄𝛼 𝐼 , 𝑄𝛽 𝐽 = πœ–π›Όπ›½π‘πΌπ½ , 𝑄𝛼 𝐼 † , 𝑄𝛽 𝐽 † = πœ–π›Όπ›½ π‘βˆ— 𝐼𝐽 Since 𝑍𝐼𝐽 is anti symmetric, we can write it as 𝑍𝐼𝐽 = 0 𝑍 βˆ’π‘ 0 , 𝑍 > 0 Define 𝐴𝛼 = 1 2 𝑄𝛼 1 + πœ–π›Όπ›½ 𝑄𝛽 2 † , 𝐡𝛼 = 1 2 𝑄𝛼 1 βˆ’ πœ–π›Όπ›½ 𝑄𝛽 2 † β‡’ 𝐴𝛼, 𝐴𝛽 † = 2π‘š βˆ’ 𝑍 𝛿𝛼𝛽, 𝐡𝛼, 𝐡𝛽 † = 2π‘š + 𝑍 𝛿𝛼𝛽 For positivity of Hilbert space, 2π‘š βˆ’ 𝑍 β‰₯ 0. If 2π‘š = 𝑍 then it is called a BPS multiplet (or short multiplet).
  • 7. Chiral and vector superfield In superspace (π‘₯πœ‡ , πœƒ, πœƒ), a general field is 𝐹 π‘₯πœ‡ , πœƒ, πœƒ = 𝑓 π‘₯ + πœƒπœ“ π‘₯ + πœƒπœ’ π‘₯ + πœƒπœƒπ‘› π‘₯ + πœƒπœƒπ‘š π‘₯ + πœƒπœŽπœ‡ πœƒπ‘£πœ‡ π‘₯ + πœƒπœƒπœƒπœ† π‘₯ + πœƒπœƒπœƒπœŒ π‘₯ + πœƒπœƒπœƒπœƒπ‘‘(π‘₯) While the SUSY transformation is; 𝐹 β†’ π‘’βˆ’π‘– πœ–π‘„+πœ–π‘„ 𝐹𝑒𝑖 πœ–π‘„+πœ–π‘„ , 𝛿𝐹 = 𝑖 πœ–π‘„ + πœ–π‘„ 𝐹, 𝑄𝛼 = βˆ’π‘– πœ• πœ•πœƒπ›Ό βˆ’ πœŽπ›Όπ›½ πœ‡ πœƒπ›½ πœ•πœ‡, 𝑄𝛼 = 𝑖 πœ• πœ•πœƒπ›Ό + πœƒπ›½ πœŽπ›½π›Ό πœ‡ πœ•πœ‡ Define 𝐷𝛼 = πœ• πœ•πœƒπ›Ό + π‘–πœŽπ›Όπ›½ πœ‡ πœƒπ›½ πœ•πœ‡, 𝐷𝛼 = πœ• πœ•πœƒπ›Ό + π‘–πœƒπ›½ πœŽπ›½π›Ό πœ‡ πœ•πœ‡, 𝐷𝛼, 𝑄𝛽 = 0 Chiral superfield π·π›Όπœ™ = 0 chiral , π·π›Όπœ™ = 0 (anti βˆ’ chiral) 𝐷𝛼 πœƒ = 0, π·π›Όπ‘¦πœ‡ = 𝐷𝛼 π‘₯ πœ‡ + π‘–πœƒπ›½ πœŽπ›½π›Ό πœ‡ πœƒπ›Ό = 0 β‡’ πœ™ πœƒ, π‘¦πœ‡ = 𝑧 𝑦 + 2πœƒπœ“ 𝑦 βˆ’ πœƒπœƒπ‘“(𝑦) Vector superfield Let’s impose 𝐹 = 𝐹 and to accommodate π‘£πœ‡ β†’ π‘£πœ‡ + πœ•πœ‡π›Ό gauge, let’s have 𝐹 β†’ 𝐹 + πœ™ + πœ™ gauge (Wess Zumino gauge). Then we have 𝑉 = πœƒπœŽπœ‡ πœƒπ‘£πœ‡ + π‘–πœƒπœƒπœ†πœƒ βˆ’ π‘–πœƒπœƒπœƒπœ† + 1 2 πœƒπœƒπœƒπœƒπ‘‘ Non abelian gauge is 𝑒𝑉 β†’ 𝑒𝑖Ω† 𝑒𝑉 π‘’βˆ’π‘–Ξ©β€  but the form of vector superfield is the same.
  • 8. 𝒩 = 1 SYM The following actions are supersymmetric ∫ 𝑑4 π‘₯∫ 𝑑2 πœƒπ‘‘2 πœƒ 𝐹, ∫ 𝑑4 π‘₯∫ 𝑑2 πœƒ π‘Š , π·π›Όπ‘Š = 0, 𝑑2 πœƒ = 1 2 π‘‘πœƒπ‘‘πœƒ Now, π‘Š 𝛼 = βˆ’ 1 4 𝐷2 (π‘’βˆ’π‘‰ 𝐷𝛼𝑒𝑉 ) Is chiral as 𝐷3 = 0. Moreover, π‘Š 𝛼 β†’ 𝑒𝑖Λ π‘Š π›Όπ‘’βˆ’π‘–Ξ› as usual for non abelian theories. The gauge invariant term is π‘‘π‘Ÿ(π‘Šπ›Ό π‘Š 𝛼). ℒ𝑁=1 = πΌπ‘š 𝜏 32πœ‹ ∫ 𝑑2 πœƒ π‘‘π‘Ÿ π‘Šπ›Ό π‘Š 𝛼 = π‘‘π‘Ÿ βˆ’ 1 4 πΉπœ‡πœˆ 𝐹 πœ‡πœˆ βˆ’ π‘–πœ†πœŽπœ‡ π·πœ‡πœ† + 1 2 𝑑2 + Ξ˜π‘”2 32πœ‹2 πΉπœ‡πœˆ βˆ— 𝐹 πœ‡πœˆ Where 𝜏 = Θ 2πœ‹ + 𝑖 4πœ‹ 𝑔2 , π·πœ‡πœ†π›½ = πœ•πœ‡πœ†π›½ βˆ’ 𝑖 2 π‘£πœ‡, πœ†π›½ , 𝐹 πœ‡πœˆ = πœ•πœ‡π‘£πœˆ βˆ’ πœ•πœˆ π‘£πœ‡ βˆ’ 𝑖 2 π‘£πœ‡, π‘£πœˆ , βˆ— 𝐹 πœ‡πœˆ = 1 2 πœ–πœ‡πœˆπ›Όπ›½πΉπ›Όπ›½
  • 9. 𝒩 = 1 SYM with matter The chiral field is πœ™π‘– invariant under the gauge transformation πœ™π‘– β†’ 𝑒𝑖Λ 𝑗 𝑖 πœ™π‘— , Ξ› = Ξ›π‘Ž 𝑇𝐺 π‘Ž , D𝛼Λ = 0 which implies that πœ™β€  𝑒2𝑔𝑉 πœ™ is gauge invariant and thus, the matter lagrangian is β„’π‘šπ‘Žπ‘‘π‘‘π‘’π‘Ÿ = ∫ 𝑑2 πœƒ 𝑑2 πœƒ πœ™π‘’2𝑔𝑉 πœ™ = π·πœ‡π‘§ † π·πœ‡ 𝑧 βˆ’ π‘–πœ“πœŽπœ‡ π·πœ‡πœ“ + 𝑓𝑓 + 𝑖𝑔 2 π‘§πœ†πœ“ βˆ’ 𝑖𝑔 2 πœ“πœ†π‘§ + 𝑔𝑧𝑑𝑧 where π·πœ‡π‘§ = πœ•πœ‡π‘§ βˆ’ 𝑖 2 π‘”π‘£πœ‡ 𝑗 𝑇𝐺 𝑗 𝑧 So, the total 𝒩 = 1 lagrangian is ℒ𝒩=1 = β„’π‘”π‘Žπ‘’π‘”π‘’ + β„’π‘šπ‘Žπ‘‘π‘‘π‘’π‘Ÿ = πΌπ‘š 𝜏 32πœ‹ ∫ 𝑑2 πœƒ π‘‘π‘Ÿ π‘Šπ›Ό π‘Š 𝛼 + ∫ 𝑑2 πœƒ 𝑑2 πœƒ πœ™π‘’2𝑔𝑉 πœ™ = π‘‘π‘Ÿ βˆ’ 1 4 πΉπœ‡πœˆ 𝐹 πœ‡πœˆ βˆ’ π‘–πœ†πœŽπœ‡ π·πœ‡πœ† + 1 2 𝑑2 + Ξ˜π‘”2 32πœ‹2 πΉπœ‡πœˆ βˆ— 𝐹 πœ‡πœˆ + π·πœ‡π‘§ † π·πœ‡ 𝑧 βˆ’ π‘–πœ“πœŽπœ‡ π·πœ‡πœ“ + 𝑓𝑓 + 𝑖𝑔 2 π‘§πœ†πœ“ βˆ’ 𝑖𝑔 2 πœ“πœ†π‘§ + 𝑔𝑧𝑑𝑧
  • 10. 𝒩 = 2 SYM In 𝒩 = 2 theory, the gauge representation is adjoint with the representation matrices π‘‡π‘Ž . Using this, we can write the terms in 𝒩 = 1 lagrangian as; π·πœ‡π‘§ π‘Ž † π·πœ‡ 𝑧 π‘Ž = π‘‘π‘Ÿ π·πœ‡π‘§ † π·πœ‡ 𝑧 , π‘–πœ“π‘Ž πœŽπœ‡π·πœ‡ πœ“ π‘Ž = π‘‘π‘Ÿ πœ“πœŽπœ‡π·πœ‡ πœ“ , π‘“π‘Žπ‘“π‘Ž = π‘‘π‘Ÿ [𝑓𝑓] π‘§π‘Žπœ†π‘ 𝑇𝑏 𝑐 π‘Ž πœ“π‘ = π‘‘π‘Ÿ 𝑧 πœ†, πœ“ , πœ“πœ†π‘§ = π‘‘π‘Ÿ πœ“, πœ† 𝑧 , π‘§π‘Žπ‘‘π‘ 𝑇𝑏 𝑐 π‘Ž 𝑧𝑐 = π‘‘π‘Ÿ 𝑑 𝑧, 𝑧 Making these arrangements, the 𝒩 = 1 lagrangian becomes; β„’ = π‘‘π‘Ÿ βˆ’ 1 4 πΉπœ‡πœˆ 𝐹 πœ‡πœˆ βˆ’ π‘–πœ†πœŽπœ‡ π·πœ‡πœ† + 1 2 𝑑2 + Ξ˜π‘”2 32πœ‹2 πΉπœ‡πœˆ βˆ— 𝐹 πœ‡πœˆ + π·πœ‡π‘§ † π·πœ‡ 𝑧 βˆ’ π‘–πœ“πœŽπœ‡ π·πœ‡πœ“ + 𝑓𝑓 + 𝑖𝑔 2𝑧 πœ†, πœ“ βˆ’ 𝑖𝑔 2 πœ“, πœ† 𝑧 + 𝑔𝑑 𝑧, 𝑧 It is symmetric under the exchange πœ“ ↔ πœ† (and also under the 𝑅 symmetry) so it is 𝒩 = 2 supersymmetric. So, the 𝒩 = 2 lagrangian is; ℒ𝒩=2 = πΌπ‘š 𝜏 32πœ‹ ∫ 𝑑2 πœƒ π‘‘π‘Ÿ π‘Šπ›Ό π‘Š 𝛼 + ∫ 𝑑2 πœƒπ‘‘2 πœƒ π‘‘π‘Ÿ πœ™β€  𝑒2𝑔𝑉 πœ™
  • 11. Low energy 𝒩 = 2 SYM SUSY breaking The field equations for π‘“π‘Ž and π‘‘π‘Ž give; π‘“π‘Ž = 0, π‘‘π‘Ž = βˆ’π‘” 𝑧, 𝑧 π‘Ž This gives the scalar potential 𝑉 = 𝑓𝑓 + 1 2 𝑔𝑑2 = 1 2 𝑔 𝑧, 𝑧 2 For SUSY to break, the potential should vanish as 𝑄𝛼 𝐼 Ξ© 2 + 𝑄𝛼 𝐼 Ξ© 2 = 4 Ξ© 𝑃0 Ξ© β‰₯ 0 β‡’ 𝑄𝛼 𝐼 Ξ© = 0 βˆ€ 𝐼 if Ξ© 𝑃0 Ξ© = 0 β‡’ 𝑉 = 0 Low energy effective lagrangian In 𝒩 = 2 lagrangian, πœπ›Ώπ‘Žπ‘ can be replaced by an arbitrary function π‘“π‘Žπ‘(𝑧) and πœ™π‘Ž can be replaced by an arbitrary function πΎπ‘Ž(𝑧) (details in the sigma model). π‘“π‘Žπ‘ 𝑧 and πΎπ‘Ž(𝑧) can be expressed in terms of prepotential as π‘“π‘Žπ‘ 𝑧 = 𝑔2 4πœ‹π‘– β„±π‘Žπ‘ 𝑧 , 𝐾 𝑧, 𝑧 = 𝑔2 8πœ‹π‘– π‘§π‘Ž πœ•β„± 𝑧 πœ•π‘§π‘Ž βˆ’ π‘§π‘Ž πœ•β„± 𝑧 πœ•π‘§π‘Ž This gives the following effective lagrangian ℒ𝒩=2 eff = 1 16πœ‹ Im ∫ 𝑑2 πœƒ β„±π‘Žπ‘ πœ™ π‘Šπ›Όπ‘Ž π‘Š 𝛼 𝑏 + ∫ 𝑑2 πœƒ 𝑑2 πœƒ πœ™π‘’2𝑔𝑉 π‘Ž β„±π‘Ž(πœ™)
  • 13. What is duality? Duality is the presence of two different perspectives of a single problem or of a single physical system. The main examples of the presence of duality would include the wave particle duality. A physical system can be viewed in the position space wave function (i.e. βŸ¨πœ“|π‘₯⟩) and it can also be seen in the momentum space wave function (i.e. βŸ¨πœ“|π‘βŸ©). Another example for the concept of duality would be seen in the harmonic oscillator with the lagrangian. 𝐿 = 𝑝2 2π‘š βˆ’ 1 2 π‘šπœ”2 π‘₯2 It is easy to see that in the replacement π‘₯ β†’ 𝑝 mπœ” , 𝑝 β†’ βˆ’π‘šπœ”π‘₯ the harmonic oscillator is self dual as can be seen below 𝐿 β†’ βˆ’π‘šπœ”π‘₯ 2 2π‘š βˆ’ 1 2 π‘šπœ”2 𝑝 π‘šπœ” 2 = βˆ’ 𝑝2 2π‘š βˆ’ 1 2 π‘šπœ”2 π‘₯2 = βˆ’πΏ So, the lagrangian changes by an overall factor but that doesn’t change the equations of motion.
  • 14. Electromagnetic duality Sourcless Maxwell equations (MEs) are invariant in the transformations 𝐷: 𝐸𝑖 β†’ 𝐡𝑖 , 𝐡𝑖 β†’ βˆ’πΈπ‘– . It can be generalized to 𝐸𝑖 = 𝐸𝑖 cos πœƒ + 𝐡𝑖 sin πœƒ , 𝐡𝑖 = βˆ’πΈπ‘– sin πœƒ + 𝐡𝑖 cos πœƒ and MEs will still be invariant as can be seen below for the Faraday and Maxwell laws (written in term of indices and πœ•π‘‘ is time derivative); πœ–π‘–π‘—π‘˜πœ•π‘—π΅π‘˜ = πœ•π‘‘πΈπ‘– πœ–π‘–π‘—π‘˜πœ•π‘—πΈπ‘˜ = βˆ’πœ•π‘‘π΅π‘– β‡’ πœ–π‘–π‘—π‘˜ πœ•π‘— cos πœƒ πΈπ‘˜ + sin πœƒ π΅π‘˜ = βˆ’πœ•π‘‘ cos πœƒ 𝐡𝑖 βˆ’ sin πœƒ 𝐸𝑖 β‡’ πœ–π‘–π‘—π‘˜πœ•π‘—πΈπ‘˜ β€² = βˆ’πœ•π‘‘π΅π‘– β€² πœ–π‘–π‘—π‘˜ πœ•π‘— cos πœƒ π΅π‘˜ βˆ’ sin πœƒ πΈπ‘˜ = πœ•π‘‘ cos πœƒ 𝐸𝑖 + sin πœƒ 𝐡𝑖 β‡’ πœ–π‘–π‘—π‘˜πœ•π‘—π΅π‘˜ β€² = πœ•π‘‘πΈπ‘– β€² Introduce 𝐹 πœ‡πœˆ with 𝐹0𝑖 = 𝐸𝑖, 𝐡𝑖 = 1 2 πœ–π‘–π‘—π‘˜πΉ π‘—π‘˜. So we can visualize 𝐷 transformation as 𝐸𝑖 β†’ 𝐡𝑖 β‡’ 𝐹0𝑖 β†’ 1 2 πœ–π‘–π‘—π‘˜πΉ π‘—π‘˜ =βˆ— 𝐹0𝑖, 𝐡𝑖 β†’ βˆ’πΈπ‘– β‡’ 1 2 πœ–π‘–π‘—π‘˜πΉ π‘—π‘˜ β†’ βˆ’πΉ0𝑖 = 1 2 πœ–π‘–π‘—π‘˜ βˆ— 𝐹 π‘—π‘˜, βˆ— 𝐹 πœ‡πœˆ = 1 2 πœ–πœ‡πœˆπ›Όπ›½πΉπ›Όπ›½ So, we can see that the 𝐷 transformation as 𝐹 πœ‡πœˆ =βˆ— 𝐹 πœ‡πœˆ. If there are no monopoles, we can take 𝐡𝑖 = 1 2 πœ–π‘–π‘—π‘˜ 𝐹 π‘—π‘˜ = βˆ‡ Γ— 𝐴 𝑖 = 1 2 πœ–π‘–π‘—π‘˜ πœ•π‘—π΄π‘˜ βˆ’ πœ•π‘˜π΄π‘— , 𝐸𝑖 = 𝐹0𝑖 = βˆ’βˆ‡πœ™ βˆ’ πœ•π‘¨ πœ•π‘‘ 𝑖 = πœ•0𝐴𝑖 βˆ’ πœ•π‘–π΄0 β‡’ 𝐹 πœ‡πœˆ = πœ•πœ‡π΄πœˆ βˆ’ πœ•πœˆπ΄πœ‡
  • 15. Electromagnetism in Quantum Mechanics In Quantum Mechanics, the electromagnetic coupling can be realised by minimum coupling scheme 𝑝𝑖 β†’ βˆ’π‘– βˆ‡ βˆ’ ieA 𝑖 Moreover it is well known that the Schrodinger wave equation (SWE) is invariant in the gauge transformation πœ“ β†’ π‘’βˆ’π‘–π‘’πœ’ πœ“, 𝐴𝑖 β†’ 𝐴𝑖 βˆ’ 𝑖 𝑒 π‘’π‘–π‘’πœ’ βˆ‡π‘’βˆ’π‘–π‘’πœ’ , π‘’π‘–π‘’πœ’ ∈ π‘ˆ(1) Consider a magnetic monopole at π‘Ÿ = 0 and since we have a magnetic monopole now, it cant the case that 𝐡𝑖 = βˆ‡ Γ— 𝐴 𝑖 everywhere. We can still define 𝐴𝑖 in patches and in the region where the patches overlap, they should differ by a gauge transformation. For π‘Ÿ > π‘Ÿ0 > 0, the magnetic field should look like; 𝑩 = π‘”π‘Ÿ 4πœ‹π‘Ÿ2 Now, we want some 𝑨 to give the above magnetic field by taking it’s curl. We use the polar coordinate system and in this system, 𝑩 (for an arbitrary 𝑨 is) π΅π‘Ÿ = 1 π‘Ÿ π‘ π‘–π‘›πœƒ πœ• sin πœƒ π΄πœ™ πœ•πœƒ βˆ’ πœ•π΄πœƒ πœ•πœ™ , π΅πœƒ = βˆ’ 1 π‘Ÿ π‘ π‘–π‘›πœƒ πœ•π΄π‘Ÿ πœ•πœ™ βˆ’ sin πœƒ πœ•(π‘Ÿπ΄πœ™) πœ•π‘Ÿ , π΅πœ™ = 1 π‘Ÿ πœ•(π‘Ÿπ΄πœƒ) πœ•π‘Ÿ βˆ’ πœ•π΄π‘Ÿ πœ•πœƒ Since we want the πœ™ component of 𝑩 to vanish, we set π΄πœƒ = π΄π‘Ÿ = 0. Moreover, 𝑩 falls as 1/π‘Ÿ2 and thus, 𝑨 falls as 1/π‘Ÿ. Therefore, π‘Ÿπ΄πœ™ should be independent of π‘Ÿ. So, π΅πœƒ is zero as well. π΅π‘Ÿ = 1 π‘Ÿ π‘ π‘–π‘›πœƒ πœ• sin πœƒ π΄πœ™ πœ•πœƒ = 𝑔 4πœ‹π‘Ÿ2 β‡’ π΄πœ™ = 𝑔 4πœ‹π‘Ÿ πœ‰ βˆ’ cos πœƒ sin πœƒ Where πœ‰ is arbitrary. [1] P.A.M Dirac (1931)
  • 16. Now, we choose 𝑨 in two patches and then them 𝑨𝑁 and 𝑨𝑆 (i.e. for Northern patch and the Southern patch). We choose πœ‰ = 1 for 𝑨𝑁 and πœ‰ = βˆ’1 for 𝑨𝑆 and we have; 𝑨𝑁 = 𝑔 4πœ‹π‘Ÿ 1 βˆ’ cos πœƒ sin πœƒ πœ™, 𝑨𝑆 = βˆ’ 𝑔 4πœ‹π‘Ÿ 1 + cos πœƒ sin πœƒ πœ™ The overlap region happens to be 2πœƒ = πœ‹ circle and on that circle, the difference of the two potentials is 𝑨𝑁 πœƒ = πœ‹ 2 βˆ’ 𝑨𝑆 πœƒ = πœ‹ 2 = 𝑔 2πœ‹π‘Ÿ πœ™ = βˆ’βˆ‡ βˆ’ 𝑔 2πœ‹ πœ™ = βˆ’βˆ‡πœ’ So, the difference is a gauge transformation. The π‘ˆ(1) element π‘’π‘–π‘’πœ’ should be continuous and thus, we have the following condition; 𝑒𝑖𝑒 πœ’ 2πœ‹ βˆ’πœ’ 0 = 1 β‡’ 𝑒 πœ’ 2πœ‹ βˆ’ πœ’ 0 = 2πœ‹π‘›, 𝑛 ∈ β„€ Using the expression for πœ’, we get 𝑒𝑔 = 2πœ‹π‘›, 𝑛 ∈ β„€ Comments οƒ˜ A single monopole will ensure the quantization of electrical charge. οƒ˜ π‘’πœ’ = 0 and π‘’πœ’ = 2πœ‹ represent the same π‘ˆ(1) element and thus, the π‘ˆ(1) group is compact. So, we have the following two equivalent statements (they are the contrapositive of each other) π‘€π‘œπ‘›π‘œπ‘π‘œπ‘™π‘’π‘  β‡’ πΆπ‘œπ‘šπ‘π‘Žπ‘π‘‘ π‘ˆ 1 π‘”π‘Ÿπ‘œπ‘’π‘ π‘π‘œ πΆπ‘œπ‘šπ‘π‘Žπ‘π‘‘ π‘ˆ 1 π‘”π‘Ÿπ‘œπ‘’π‘ β‡’ π‘π‘œ π‘šπ‘œπ‘›π‘œπ‘π‘œπ‘™π‘’ π‘ π‘œπ‘™π‘’π‘‘π‘–π‘œπ‘›π‘  Compact π‘ˆ(1) group will be realised when a theory with compact gauge group is spontaneously broken to a group containing π‘ˆ(1) as a product group.
  • 17. The t’Hooft, Polyakov monopole In the Dirac’s treatment of the monopole, the interior of the monopole is not studied. In order to study the interior of a monopole, we study a monopole configuration called t’Hooft, Polyakov monopole. It is nothing but a non abelian Yang Mills Higgs theory in 3 + 1 dimensions. The lagrangian is as follows; β„’ = βˆ’ 1 4 𝐹 πœ‡πœˆ π‘Ž 𝐹 π‘Ž πœ‡πœˆ + 1 2 π·πœ‡πœ™π‘Ž π·πœ‡ πœ™π‘Ž βˆ’ 𝑉 πœ™ , πœ™ = 𝑣 β‰  0 The EOM for 𝐹 πœ‡πœˆ π‘Ž is (also called Gauss constraint) is π·πœ‡πΉ π‘Ž πœ‡πœˆ = π‘’πœ–π‘Žπ‘π‘πœ™π‘π·πœˆ πœ™π‘ We define πΉπœ‡πœˆ as 𝐹 πœ‡πœˆ = πœ™π‘Ž 𝐹 πœ‡πœˆ π‘Ž βˆ’ 1 𝑒 πœ–π‘Žπ‘π‘ πœ™π‘Ž π·πœ‡πœ™π‘ π·πœˆπœ™π‘ where πœ™π‘Ž is a unit vector in the direction of πœ™π‘Ž and for πœ™π‘Ž to exist, πœ™π‘Ž β‰  0 everywhere. Note that 𝐹 πœ‡πœˆ is gauge invariant. It can be shown that 𝐹 πœ‡πœˆ = πœ•πœ‡(πœ™π‘Ž 𝐴𝜈 π‘Ž ) βˆ’ πœ•πœˆ (πœ™π‘Ž π΄πœ‡ π‘Ž ) βˆ’ 1 𝑒 πœ–π‘Žπ‘π‘ πœ™π‘Ž πœ•πœ‡πœ™π‘ πœ•πœˆ πœ™π‘ The proof is as follows. The definition of 𝐹 πœ‡πœˆ can be expanded and written as follows; 𝐹 πœ‡πœˆ = πœ™π‘Ž πœ•πœ‡π΄πœˆ π‘Ž βˆ’ πœ•πœˆπ΄πœ‡ π‘Ž + π‘’πœ–π‘Žπ‘π‘ π΄πœ‡ 𝑏 𝐴𝜈 𝑐 βˆ’ 1 𝑒 πœ–π‘Žπ‘π‘ πœ™π‘Ž πœ•πœ‡πœ™π‘ + π‘’πœ–π‘π‘‘π‘’ π΄πœ‡ 𝑑 πœ™π‘’ πœ•πœˆπœ™π‘ + π‘’πœ–π‘π‘“π‘” 𝐴𝜈 𝑓 πœ™π‘” = πœ•πœ‡ πœ™π‘Ž 𝐴𝜈 π‘Ž βˆ’ πœ•πœˆ πœ™π‘Ž π΄πœ‡ π‘Ž βˆ’ 1 𝑒 πœ–π‘Žπ‘π‘ πœ™π‘ πœ•πœ‡πœ™π‘ πœ•πœˆπœ™π‘ +π΄πœ‡ 𝑑 πœ•πœˆπœ™π‘Ž π›Ώπ‘Žπ‘‘ βˆ’ πœ•πœˆπœ™π‘ πœ–π‘Žπ‘π‘ πœ–π‘π‘‘π‘’ πœ™π‘Ž πœ™π‘’ βˆ’ 𝐴𝜈 𝑓 π›Ώπ‘Žπ‘“ πœ•πœ‡πœ™π‘Ž + πœ•πœ‡πœ™π‘ πœ–π‘Žπ‘π‘ πœ–π‘π‘“π‘” πœ™π‘Ž πœ™π‘” + π‘’πœ–π‘Žπ‘π‘ πœ™π‘Ž π΄πœ‡ 𝑏 𝐴𝜈 𝑐 βˆ’ π‘’πœ–π‘Žπ‘π‘ πœ™π‘Ž πœ–π‘π‘‘π‘’ πœ–π‘π‘“π‘” π΄πœ‡ 𝑑 𝐴𝜈 𝑓 πœ™π‘’ πœ™π‘”
  • 18. The terms that we actually want are the red terms. The extra terms can be shown to be zero. For example, the first bracketed expression is; πœ•πœˆπœ™π‘Ž π›Ώπ‘Žπ‘‘ βˆ’ πœ•πœˆπœ™π‘ πœ–π‘Žπ‘π‘ πœ–π‘π‘‘π‘’ πœ™π‘Ž πœ™π‘’ = πœ•πœˆπœ™π‘‘ + πœ•πœˆπœ™π‘ π›Ώπ‘Žπ‘‘ 𝛿𝑐𝑒 βˆ’ π›Ώπ‘Žπ‘’ 𝛿𝑐𝑑 πœ™π‘Ž πœ™π‘’ = πœ•πœˆπœ™π‘‘ + πœ™π‘‘ πœ™π‘’ πœ•πœˆπœ™π‘’ βˆ’ πœ•πœˆπœ™π‘‘ = 0 Where I used the fact that πœ™π‘Ž πœ•πœˆπœ™π‘Ž = 1 2 πœ•πœˆ πœ™π‘Ž πœ™π‘Ž = 1 2 πœ•πœˆ 1 = 0 The second bracketed term vanishes by a similar proof. Now we need to prove that πœ–π‘Žπ‘π‘ πœ™π‘Ž π΄πœ‡ 𝑏 𝐴𝜈 𝑐 βˆ’ πœ–π‘Žπ‘π‘ πœ™π‘Ž πœ–π‘π‘‘π‘’ πœ–π‘π‘“π‘” π΄πœ‡ 𝑑 𝐴𝜈 𝑓 πœ™π‘’ πœ™π‘” vanishes. For this task, we can manipulate the last term as; πœ–π‘Žπ‘π‘ πœ™π‘Ž πœ–π‘π‘‘π‘’ πœ–π‘π‘“π‘” π΄πœ‡ 𝑑 𝐴𝜈 𝑓 πœ™π‘’ πœ™π‘” = π›Ώπ‘Žπ‘“ 𝛿𝑏𝑔 βˆ’ π›Ώπ‘Žπ‘” 𝛿𝑏𝑓 πœ™π‘Ž πœ–π‘π‘‘π‘’ π΄πœ‡ 𝑑 𝐴𝜈 𝑓 πœ™π‘’ πœ™π‘” = πœ–π‘’π‘‘π‘ πœ™π‘’ π΄πœ‡ 𝑑 𝐴𝜈 𝑏 where I dropped the vanishing term πœ–π‘π‘‘π‘’ πœ™π‘Ž πœ™π‘ πœ™π‘’ π΄πœ‡ 𝑑 𝐴𝜈 π‘Ž and used the fact that πœ™π‘’ πœ™π‘’ = 1. So, we can now see that πœ–π‘Žπ‘π‘ πœ™π‘Ž π΄πœ‡ 𝑏 𝐴𝜈 𝑐 βˆ’ πœ–π‘Žπ‘π‘ πœ™π‘Ž πœ–π‘π‘‘π‘’ πœ–π‘π‘“π‘” π΄πœ‡ 𝑑 𝐴𝜈 𝑓 πœ™π‘’ πœ™π‘” = πœ–π‘Žπ‘π‘ πœ™π‘Ž π΄πœ‡ 𝑏 𝐴𝜈 𝑐 βˆ’ πœ–π‘Žπ‘π‘ πœ™π‘Ž π΄πœ‡ 𝑏 𝐴𝜈 𝑐 = 0 So, we have shown that 𝐹 πœ‡πœˆ = πœ•πœ‡(πœ™π‘Ž 𝐴𝜈 π‘Ž ) βˆ’ πœ•πœˆ (πœ™π‘Ž π΄πœ‡ π‘Ž ) βˆ’ 1 𝑒 πœ–π‘Žπ‘π‘ πœ™π‘Ž πœ•πœ‡πœ™π‘ πœ•πœˆ πœ™π‘
  • 19. Now, a magnetic field can be defined as 𝐡𝑖 = 1 2 πœ–π‘–π‘—π‘˜πΉ π‘—π‘˜ = πœ–π‘–π‘—π‘˜πœ•π‘— πœ™π‘Ž π΄π‘˜ π‘Ž βˆ’ 1 2𝑒 πœ–π‘–π‘—π‘˜πœ–π‘Žπ‘π‘ πœ™π‘Ž πœ•π‘—πœ™π‘ πœ•π‘˜πœ™π‘ If we try to calculate the surface integral of the magnetic field over a sphere at large distance, we will not get contribution from the first term in the expression for magnetic field as it is a curl. So, we get; 𝑔 = ∫ 𝑑𝑆𝑖𝐡𝑖 = βˆ’ 1 2𝑒 𝑆2 π‘‘π‘†π‘–πœ–π‘–π‘—π‘˜πœ–π‘Žπ‘π‘ πœ™π‘Ž πœ•π‘—πœ™π‘ πœ•π‘˜πœ™π‘ = βˆ’ 1 2𝑒𝑣3 𝑆2 π‘‘π‘†π‘–πœ–π‘–π‘—π‘˜πœ–π‘Žπ‘π‘ πœ™π‘Ž πœ•π‘—πœ™π‘ πœ•π‘˜πœ™π‘ This integral can be evaluated by choosing the form of πœ™π‘Ž = 𝑣 π‘₯π‘Ž at infinity (where π‘₯π‘Ž = π‘Ÿ π‘₯π‘Ž ). We simply get; 1 𝑣3 𝑆2 π‘‘π‘†π‘–πœ–π‘–π‘—π‘˜πœ–π‘Žπ‘π‘πœ™π‘Ž πœ•π‘—πœ™π‘ πœ•π‘˜πœ™π‘ = 𝑆2 π‘Ÿ2 𝑑Ω π‘₯π‘–πœ–π‘–π‘—π‘˜πœ–π‘Žπ‘π‘π‘₯π‘Žπœ•π‘—π‘₯π‘πœ•π‘˜π‘₯𝑐 = 𝑆2 𝑑Ω π‘₯π‘–πœ–π‘–π‘—π‘˜πœ–π‘Žπ‘π‘π‘₯π‘Ž π›Ώπ‘π‘—π›Ώπ‘π‘˜ βˆ’ 2𝛿𝑏𝑗π‘₯π‘˜π‘₯𝑐 Where I dropped the vanishing terms and used the identity πœ•π‘–π‘₯𝑗 = 1 π‘Ÿ 𝛿𝑖𝑗 βˆ’ π‘₯𝑖π‘₯𝑗 Now, using the identities πœ–π‘–π‘—π‘˜πœ–π‘˜π‘™π‘š = π›Ώπ‘–π‘™π›Ώπ‘—π‘š βˆ’ π›Ώπ‘–π‘šπ›Ώπ‘™π‘—, πœ–π‘–π‘—π‘˜πœ–π‘—π‘˜π‘™ = 2𝛿𝑖𝑙 The above integral becomes; 2 𝑆2 𝑑Ω π‘₯𝑖π‘₯π‘Ž π›Ώπ‘Žπ‘– βˆ’ π›Ώπ‘Žπ‘– + π‘₯𝑖π‘₯π‘Ž = 8πœ‹ β‡’ 𝑔 = βˆ’ 4πœ‹ 𝑒 Now, I can choose a mapping 𝑓: π‘†πœ™ 2 β†’ 𝑆π‘₯ 2 such that π‘†πœ™ 2 covers 𝑆π‘₯ 2 𝑛 times. This will simply change the integral to be multiplied by 𝑛 as we are going around the π‘†πœ™ 2 𝑛 times. So, we get the following condition 𝑒𝑔 = 4πœ‹π‘› 𝑛 ∈ β„€
  • 20. Bogomol’nyi bound and BPS solution We calculate the energy of the static solution of YMH theory in the 𝐴0 π‘Ž = 0 gauge and we get; 𝐸 = ∫ 𝑑3 π‘₯ 1 2 𝐡𝑖 π‘Ž 𝐡𝑖 π‘Ž + 1 2 π·π‘–πœ™π‘Ž 2 + 𝑉 πœ™ = ∫ 𝑑3 π‘₯ 1 2 𝐡𝑖 π‘Ž βˆ’ π·π‘–πœ™π‘Ž 2 + 𝐡𝑖 π‘Ž π·π‘–πœ™π‘Ž + 𝑉 πœ™ Using zeroth component of Bianchi identity πœ–π›Όπ›½πœ‡πœˆ 𝐷𝛽𝐹 πœ‡πœˆ π‘Ž = 0 and the definition of 𝐡𝑖 π‘Ž i.e. 2𝐡𝑖 π‘Ž = πœ–π‘–π‘—π‘˜πΉπ‘—π‘˜ π‘Ž , we conclude πœ–0π‘–π‘—π‘˜ 𝐷𝑖𝐹 π‘—π‘˜ π‘Ž = 𝐷𝑖𝐡𝑖 π‘Ž = 0. Moreover, since 𝐡𝑖 π‘Ž πœ™π‘Ž is gauge singlet, we have 𝐷𝑖 𝐡𝑖 π‘Ž πœ™π‘Ž = πœ•π‘–(𝐡𝑖 π‘Ž πœ™π‘Ž ). So, the second term in the energy integrand is πœ•π‘–(𝐡𝑖 π‘Ž πœ™π‘Ž ) and thus, we can use divergence theorem and it becomes; 𝐸 = ∫ 𝑑3 π‘₯ 1 2 𝐡𝑖 π‘Ž βˆ’ π·π‘–πœ™π‘Ž 2 + 𝑉 πœ™ + 𝑣 𝑆2 𝑑𝑆𝑖𝐡𝑖 π‘Ž πœ™π‘Ž β‰₯ 𝑣 𝑆2 𝑑𝑆𝑖𝐡𝑖 π‘Ž πœ™π‘Ž = 𝑣𝑔 So, the energy of the static monopole solution (mass of the monopole) has a lower bound known as Bogomol’nyi bound. If we impose the condition 𝐡𝑖 π‘Ž = π·π‘–πœ™π‘Ž (also known as the Bogomol'nyi equation) and set 𝑉 πœ™ = 0 everywhere, then the energy of the field configuration is just 𝑣𝑔. Since we are setting 𝑉 πœ™ = 0 everywhere, it seems as if we won't be able to get a nonzero βŸ¨πœ™π‘Ž πœ™π‘Ž ⟩. However, since we need πœ™π‘Ž πœ™π‘Ž = 𝑣2 at spatial infinity, we can impose this as a boundary condition. For BPS solution, if we try to give 𝐴𝑖 π‘Ž (π‘₯) a non zero vev, it will break Lorentz invariance. Moreover, for the theory to have non zero topological charge, πœ™π‘Ž should vary at infinity and thus, solutions can't be rotationally invariant. However, we can make the solutions invariant under the diagonal subgroup 𝑆𝑂 3 𝑠 Γ— 𝑆𝑂 3 𝑔where 𝑆𝑂 3 𝑔 is the global gauge group. We would not need the detailed form of the BPS solutions though.
  • 21. Moduli space of BPS solution Moduli space is the space of fixed energy and fixed topological charge solutions. The coordinates on the moduli space are called moduli or collective coordinates. If πœ™π‘Ž (π‘₯) is a BPS solution, so is πœ™π‘Ž (π‘₯ + 𝑋) with 𝑋 fixed due to translational invariance. So, ℝ3 is present as a product in the moduli space of BPS monopole. Now, equation of motion π·πœ‡πΉ π‘Ž πœ‡πœˆ = π‘’πœ–π‘Žπ‘π‘πœ™π‘π·πœˆ πœ™π‘ is expanded as; π·πœ‡ πœ•πœ‡ π΄π‘Ž 𝜈 βˆ’ πœ•πœˆ π΄π‘Ž πœ‡ + π‘’πœ–π‘Žπ‘π‘π΄π‘ πœ‡ 𝐴𝑐 𝜈 = π‘’πœ–π‘Žπ‘π‘πœ™π‘[πœ•πœˆ πœ™π‘ + π‘’πœ–π‘π‘‘π‘’π΄π‘‘ 𝜈 πœ™π‘’] Set 𝜈 = 0 and working in the π΄π‘Ž 0 = 0 gauge, we get; π·π‘–π΄π‘Ž 𝑖 + 𝑒 πœ™, πœ™ π‘Ž = 0 The linearized form of the gauss law for deformations to the BPS solutions (π›Ώπœ™π‘Ž , 𝛿𝐴𝑖 π‘Ž ) is obtained by letting 𝐴𝑖 π‘Ž β†’ 𝐴𝑖 π‘Ž + 𝛿𝐴𝑖 π‘Ž , πœ™π‘Ž β†’ πœ™π‘Ž + π›Ώπœ™π‘Ž and realising that only the deformations are allowed to be time dependant. We get 𝐷𝑖𝛿 π΄π‘Ž 𝑖 + 𝑒 πœ™, π›Ώπœ™ π‘Ž = 0 We can expand the Bogomol’nyi equation as well and then linearize it as follows; πœ–π‘–π‘—π‘˜ πœ•π‘— π›Ώπ΄π‘Ž π‘˜ + π‘’πœ–π‘Žπ‘π‘π΄π‘ 𝑗 𝛿𝐴𝑐 π‘˜ = πœ•π‘–π›Ώπœ™π‘Ž + π‘’πœ–π‘Žπ‘π‘ 𝐴𝑖 𝑏 π›Ώπœ™π‘ + 𝑒 𝛿𝐴𝑖, πœ™ π‘Ž β‡’ πœ–π‘–π‘—π‘˜π·π‘— π›Ώπ΄π‘Ž π‘˜ = π·π‘–π›Ώπœ™π‘Ž + 𝑒 𝛿𝐴𝑖, πœ™ π‘Ž The solution to the two red equations above is 𝛿𝐴0 π‘Ž = 0, π›Ώπœ™π‘Ž = 0, 𝛿𝐴𝑖 π‘Ž = 𝐷𝑖 πœ‰ 𝑑 πœ™π‘Ž , πœ‰ 𝑑 is arbitrary function of time. If πœ‰ = 0 then the change in 𝐴𝑖 π‘Ž is a large gauge transformation (it doesn’t vanish at infinity). The corresponding π‘ˆ(1) element is π‘’π‘’πœ™ and since unbroken π‘ˆ(1) is compact, the coordinate πœ‰ is on a compact 𝑆1 . So, the moduli space of the BPS monopole is; ℝ3 Γ— 𝑆1
  • 22. Witten effect We can add a πœƒ term in the lagrangian without breaking gauge invariance. The term is; β„’πœƒ = βˆ’ πœƒπ‘’2 32πœ‹2 𝐹 πœ‡πœˆ π‘Ž βˆ— 𝐹 π‘Ž πœ‡πœˆ The prefactor is for later convenience. First, we can do a π‘ˆ(1) case (i.e. the QED case). QED case πΉπœ‡πœˆ βˆ— 𝐹 πœ‡πœˆ = 1 2 πœ–πœ‡πœˆπ›Όπ›½ 𝐹 πœ‡πœˆπΉπ›Όπ›½ = 1 2 πœ–0π‘–π‘—π‘˜ 𝐹0𝑖𝐹 π‘—π‘˜ + πœ–π‘–0π‘—π‘˜ 𝐹𝑖0𝐹 π‘—π‘˜ + πœ–π‘–π‘—0π‘˜ 𝐹𝑖𝑗𝐹0π‘˜ + πœ–π‘–π‘—π‘˜0 πΉπ‘–π‘—πΉπ‘˜0 = 2πœ–0π‘–π‘—π‘˜ 𝐹0𝑖𝐹 π‘—π‘˜ = 4 𝑬. 𝑩 β‡’ β„’πœƒ = βˆ’ πœƒπ‘’2 8πœ‹2 𝑬. 𝑩 For a static monopole, we have 𝑬 = βˆ‡π΄0, 𝑩 = βˆ‡ Γ— 𝑨 + 𝑔 4πœ‹ 𝒓 π‘Ÿ β‡’ πΏπœƒ = ∫ 𝑑3 π‘₯ β„’πœƒ = 𝑒2 π‘”πœƒ 8πœ‹2 ∫ 𝑑3 π‘₯𝐴0𝛿 3 (𝒓) where I used the following fact; 𝑬. 𝑩 = βˆ‡. 𝐴0 βˆ‡ Γ— 𝐴 + 𝑔 4πœ‹ π‘Ÿ π‘Ÿ = βˆ’ 𝑔 4πœ‹ 𝐴0βˆ‡. π‘Ÿ π‘Ÿ + 𝑆. 𝑇 = βˆ’π‘”π΄0𝛿 3 (𝒓) This lagrangian is nothing but the interaction of a particle at origin with background field. The charge of the particle is; βˆ’ 𝑒2 π‘”πœƒ 8πœ‹2 𝑒𝑔=4πœ‹ βˆ’ π‘’πœƒ 2πœ‹ So, the πœƒ term can give electrical charge to the monopoles.
  • 23. SU(2) case Consider large gauge transformations that act on π΄πœ‡ π‘Ž . The finite deformation (without infinitesimal parameter) is; π›Ώπ΄πœ‡ π‘Ž = 1 𝑒𝑣 π·πœ‡πœ™π‘Ž Let 𝒩 be the generator of this gauge transformation. Until now, we don’t have fundamental fields in this theory and the gauge parameter lives on 𝑆1 an thus, 𝑒2πœ‹π‘–π’© = 1. 𝒩 is the Noetherian conserved charge (as the gauge transformations act on the fields). It can be easily worked out as follows. Expression for 𝒩 𝒩 = ∫ 𝑑3 π‘₯ πœ•β„’ πœ• πœ•0π΄πœ‡ π‘Ž π›Ώπ΄πœ‡ π‘Ž Now, we write the lagrangian as; β„’ = βˆ’ 1 4 𝐹 π‘Ž πœ‡πœˆ 𝐹 πœ‡πœˆ π‘Ž βˆ’ πœƒπ‘’2 32πœ‹2 𝐹 πœ‡πœˆ π‘Ž βˆ— 𝐹 π‘Ž πœ‡πœˆ + 1 2 π·πœ‡πœ™π‘Ž 2 So the required derivative is; πœ•β„’ πœ• πœ•0π΄πœ‡ π‘Ž = βˆ’ 1 2 𝐹 𝑏 𝛼𝛽 πœ•πΉπ›Όπ›½ 𝑏 πœ• πœ•0π΄πœ‡ π‘Ž βˆ’ πœƒπ‘’2 32πœ‹2 πœ–πœŒπœŽπ›Όπ›½ 𝐹𝑏 𝛼𝛽 πœ•πΉ 𝜌𝜎 𝑏 πœ• πœ•0π΄πœ‡ π‘Ž From the definition of 𝐹 πœ‡πœˆ π‘Ž , the derivative appearing above can be calculated as; πœ•πΉ 𝜌𝜎 𝑏 πœ• πœ•0π΄πœ‡ π‘Ž = π›Ώπ‘Ž 𝑏 [π›ΏπœŒ 0 π›ΏπœŽ πœ‡ βˆ’ π›ΏπœŽ 0 π›ΏπœŒ πœ‡ ] Using this expression and after some elementary simplification, we have; πœ•β„’ πœ• πœ•0𝐴𝑖 π‘Ž = βˆ’πΉ π‘Ž 0𝑖 βˆ’ πœƒπ‘’2 16πœ‹2 πœ–0π‘–π‘—π‘˜ 𝐹 π‘Ž π‘—π‘˜ = βˆ’π‘”π‘–π‘— πΈπ‘Ž 𝑗 βˆ’ 𝑔𝑖𝑗 πœƒπ‘’2 8πœ‹2 (π΅π‘Ž)𝑗 = πΈπ‘Ž 𝑖 + πœƒπ‘’2 8πœ‹2 π΅π‘Ž 𝑖 Using all the red equations above, we get; 𝒩 = ∫ 𝑑3 π‘₯ 1 𝑒𝑣 𝐸𝑖 π‘Ž + πœƒπ‘’2 8πœ‹2 𝐡𝑖 π‘Ž π·π‘–πœ™π‘Ž = 𝑄 𝑒 + πœƒπ‘’ 8πœ‹2 𝑔 where 𝑄 = π‘£βˆ’1 ∫ 𝑑3 π‘₯𝐸𝑖 π‘Ž π·π‘–πœ™π‘Ž 𝑔 = π‘£βˆ’1 ∫ 𝑑3 π‘₯𝐡𝑖 π‘Ž π·π‘–πœ™π‘Ž
  • 24. Now, the condition 𝑒2πœ‹π‘–π’© = 1 implies that 𝒩 = 𝑛𝑒 ∈ β„€ β‡’ 𝑄 𝑒 + πœƒπ‘’π‘” 8πœ‹2 = 𝑛𝑒 Using the condition 𝑒𝑔 = 4πœ‹π‘›π‘š, we get; 𝑄 𝑒 + πœƒπ‘›π‘š 2πœ‹ = 𝑛𝑒 β‡’ 𝑄 = 𝑒𝑛𝑒 βˆ’ π‘’πœƒ 2πœ‹ π‘›π‘š So, we can see that for a single monopole (i.e. π‘›π‘š = 1) there is an extra contribution to the electrical charge of the monopoles due to the non zero πœƒ term. This contribution is βˆ’ π‘’πœƒ 2πœ‹ This is equal to the electrical charge that we found in the QED case.
  • 25. Olive Montonen and 𝑆𝐿(2, β„€) duality Set πœƒ = 0 first. Now, there can be electrically charged states (𝑛𝑒, 0) and magnetic monopoles 0, π‘›π‘š . The mass of an electrically charged state is the mass of π‘Š boson i.e. π‘€π‘Š = 𝑣𝑒. The mass of a magnetic monopole is 𝑀𝑀 = 𝑣𝑔 ≫ 𝑣𝑒 (at weak coupling). In a dual theory where the roles of electrical and magnetic charges are replaced, we should have 𝑒 ↔ 𝑔, π‘€π‘Š ↔ 𝑀𝑀 Now, the dual theory should be at strong coupling as small 𝑒 means large 𝑔. Moreover, this proposal of a dual theory is based on the classical spectrum as was first given by Olive and Montonen in 1977. However, there are some problems pointed by them. οƒ˜ Potential 𝑉(πœ™) might not remain vanishing when quantum corrections are included. οƒ˜ The states don’t match exactly as the monopoles don’t have spin 1 like the π‘Š bosons. οƒ˜ The duality is hard to test because the dual theory is at strong coupling. We will see that the first two problems are solved by incorporating the theory in 𝑁 = 4 super Yang Mills theory. Now, let πœƒ β‰  0. Now, the π‘Œπ‘€π» lagrangian is; β„’ = βˆ’ 1 4 𝐹2 βˆ’ πœƒπ‘’2 32πœ‹2 𝐹 βˆ— 𝐹 βˆ’ 1 2 π·πœ‡πœ™π‘Ž 2 Now, we let πœ™π‘Ž β†’ πœ™π‘Ž 𝑒 , π΄πœ‡ π‘Ž β†’ π΄πœ‡ π‘Ž 𝑒 β‡’ 𝐹 πœ‡πœˆ π‘Ž β†’ 𝐹 πœ‡πœˆ π‘Ž 𝑒 After this rescaling of field, the lagrangian becomes (with covariant derivatives changed accordingly); β„’ = βˆ’ 1 4𝑒2 𝐹2 βˆ’ πœƒ 32πœ‹2 𝐹 βˆ— 𝐹 βˆ’ 1 2 π·πœ‡πœ™π‘Ž 2
  • 26. Now consider this equivalent way of writing the first two terms of the lagrangian = 1 32πœ‹2 πΌπ‘š πœƒ 2πœ‹ + 4π‘–πœ‹ 𝑒2 𝐹 + 𝑖 βˆ— 𝐹 2 = βˆ’ 1 8𝑒2 𝐹2 βˆ’βˆ— 𝐹2 βˆ’ πœƒ 32πœ‹2 𝐹 βˆ— 𝐹 = 1 4𝑒2 𝐹2 βˆ’ πœƒ 32πœ‹2 𝐹 βˆ— 𝐹 where in the last step, I used the fact that 𝐹2 =βˆ’βˆ— 𝐹2 as can be demonstrated βˆ— 𝐹2 = 1 4 πœ–πœ‡πœˆπ›Όπ›½ πΉπ›Όπ›½πœ–πœ‡πœˆπœŒπœŽπΉπœŒπœŽ = βˆ’ 1 2 π›ΏπœŒ 𝛼 π›ΏπœŽ 𝛽 βˆ’ π›ΏπœŽ 𝛼 π›ΏπœŒ 𝛽 πΉπ›Όπ›½πΉπœŒπœŽ = βˆ’πΉ2 So, the full lagrangian can be written in case of non zero πœƒ as; β„’ = βˆ’ 1 32πœ‹2 πΌπ‘š 𝜏 𝐹 + 𝑖 βˆ— 𝐹 2 βˆ’ 1 2 π·πœ‡πœ™π‘Ž 2 where 𝜏 = πœƒ 2πœ‹ + 4πœ‹ 𝑒2 𝑖 I will use a result from instanton theory. The 𝑛 instantons in this theory are weighed by the factor 𝑒2π‘–πœ‹π‘›πœ . So, physics is invariant in the transformation 𝜏 β†’ 𝜏 + 1 (corresponding to πœƒ β†’ πœƒ + 2πœ‹). Moreover, if we set πœƒ = 0, then the electromagnetic duality (𝑒 β†’ 𝑔) corresponds to 𝑒 β†’ 𝑔 = 4πœ‹ 𝑒 β‡’ 𝜏 = 4πœ‹π‘– 𝑒2 β†’ βˆ’ 𝑒2 4πœ‹π‘– = βˆ’ 1 𝜏 We can identify both of these transformations as special cases of a single general transformation 𝜏 β†’ π‘Žπœ + 𝑏 π‘πœ + 𝑑 , π‘Ž, 𝑏, 𝑐, 𝑑 ∈ β„€, π‘Žπ‘‘ βˆ’ 𝑏𝑐 = 1 This transformation is known as the 𝑆𝐿(2, β„€) transformation and we can identify 𝜏 β†’ 𝜏 + 1 β‡’ π‘Ž = 𝑏 = 𝑑 = 1, 𝑐 = 0 𝜏 β†’ βˆ’ 1 𝜏 β‡’ π‘Ž = 𝑑 = 0, 𝑐 = βˆ’π‘ = 1 We can see that πΌπ‘š 𝜏 = 4πœ‹ 𝑒2 > 0 So, we are concerned with the upper half 𝜏 plane only. We can also define a fundamental region such that any 𝜏 in the upper half plane can be brought into this fundamental region by an appropriate 𝑆𝐿(2, β„€) transformation. βˆ’ 1 2 ≀ 𝑅𝑒 𝜏 ≀ 1 2 , 𝜏 β‰₯ 1
  • 27. 𝑺𝑳 𝟐, β„€ action on the states The action of the 𝑆𝐿(2, β„€) group on the states (𝑛𝑒, π‘›π‘š) states requires the electrical charge operator 𝑄𝑒 and magnetic charge operator 𝑄𝑒 = 𝑒𝑛𝑒 βˆ’ π‘’πœƒ 2πœ‹ π‘›π‘š, π‘„π‘š = π‘”π‘›π‘š = 4πœ‹ 𝑒 π‘›π‘š Now, 𝜏 β†’ 𝜏 + 1 β‡’ πœƒ β†’ πœƒ + 2πœ‹ and thus, we have; 𝑄𝑒 β†’ 𝑒 𝑛𝑒 βˆ’ π‘›π‘š βˆ’ π‘’πœƒ 2πœ‹ π‘›π‘š β‡’ 𝑛𝑒 β†’ 𝑛𝑒 βˆ’ π‘›π‘š = π‘Žπ‘›π‘’ βˆ’ π‘π‘›π‘š π‘›π‘š β†’ π‘›π‘š = 𝑐𝑛𝑒 + π‘‘π‘›π‘š Similarly for the 𝜏 β†’ βˆ’πœβˆ’1 transformation (for πœƒ = 0), we have 𝑄𝑒 = 𝑛𝑒𝑒 β†’ 𝑛𝑒𝑔 β‡’ 𝑛𝑒 β†’ π‘›π‘š = π‘Žπ‘›π‘’ βˆ’ π‘π‘›π‘š π‘„π‘š = π‘›π‘šπ‘” β†’ π‘›π‘šπ‘’ β‡’ π‘›π‘š β†’ 𝑛𝑒 = 𝑐𝑛𝑒 + π‘‘π‘›π‘š So, we have the following 𝑆𝐿(2, β„€) action on states (𝑛𝑒, π‘›π‘š) 𝑛𝑒 π‘›π‘š β†’ π‘Ž βˆ’π‘ 𝑐 𝑑 𝑛𝑒 π‘›π‘š Bogomol’nyi bound revisited The generalised Bogomol’nyi bound (proved at the end) 𝑀2 β‰₯ 𝑣2 (𝑄𝑒 2 + π‘„π‘š 2 ) can entirely be written in term of 𝜏 by using the definition of 𝜏 and the expressions for 𝑄𝑒 and π‘„π‘š.
  • 28. Coupling to fermions We can add fermions into this theory with proper interactions with πœ™π‘Ž and π΄πœ‡ π‘Ž fields. Assume that fermions are in the β€²π‘Ÿβ€² representation of the π‘†π‘ˆ(2) gauge group. The fermion lagrangian is; β„’πœ“ = π‘–πœ“π‘›π›Ύπœ‡ π·πœ‡πœ“ 𝑛 βˆ’ π‘–πœ“π‘›π‘‡π‘›π‘š π‘Ž πœ™π‘Ž πœ“π‘š Where π‘‡π‘›π‘š π‘Ž are the anti Hermitian generators in the β€²π‘Ÿβ€² representation. The gamma matrices are chosen as; 𝛾0 = βˆ’π‘– 0 𝕀2 βˆ’π•€2 0 , 𝛾𝑗 = βˆ’π‘– πœŽπ‘— 0 0 βˆ’πœŽπ‘— These matrices satisfy the Clifford algebra π›Ύπœ‡ , π›Ύπœˆ = 2π‘”πœ‡πœˆ 𝕀4 as can be verified easily. The Dirac equation can be worked out from the above lagrangian to get (using πœ™π‘›π‘š = πœ™π‘Ž π‘‡π‘›π‘š π‘Ž ) π‘–π›Ύπœ‡ π·πœ‡πœ“ 𝑛 βˆ’ π‘–πœ™π‘›π‘šπœ“π‘š = 0 We seek solutions of the form πœ“π‘› 𝑑, π‘₯ = π‘’βˆ’π‘–πΈπ‘‘ πœ“π‘›(π‘₯) and we also set πœ“π‘› π‘₯ = πœ’π‘› + π‘₯ πœ’π‘› βˆ’ π‘₯ 𝑇 . Using the 𝛾 matrices and the Dirac’s equation, we have; βˆ’π‘–πΈ πœ’π‘› βˆ’ βˆ’πœ’π‘› + βˆ’ πœŽπ‘— π·π‘—πœ’π‘› + βˆ’πœŽπ‘— π·π‘—πœ’π‘› βˆ’ βˆ’ π‘–πœ™π‘›π‘š πœ’π‘š + πœ’π‘š βˆ’ = 0 This gives us two equations; π‘–π›Ώπ‘›π‘šπœŽπ‘— 𝐷𝑗 + πœ™π‘›π‘š πœ’π‘š βˆ’ = π·π‘›π‘šπœ’π‘š βˆ’ = πΈπœ’π‘› + , π‘–π›Ώπ‘›π‘šπœŽπ‘— 𝐷𝑗 + πœ™π‘›π‘š † πœ’π‘š + = π·π‘›π‘š † πœ’π‘š + = πΈπœ’π‘› βˆ’ , If the above two equations have a solution with 𝐸 = 0 then there can be fermionic collective coordinates in the BPS moduli space. In other words, we are looking for the kernels of π·π‘›π‘š and π·π‘›π‘š † . It is easy to see that; ker π·π‘›π‘š † βŠ‚ ker π·π‘›π‘™π·π‘™π‘š † = {0} In the last equality, I used the fact that π·π‘›π‘™π·π‘™π‘š † is a positive definite operator.
  • 29. For the kernel of π·π‘›π‘š, I need a result which is derived from index theorems. The result says that; dim [ker(π·π‘›π‘š)] βˆ’ dim [ker(π·π‘›π‘š † )] = 𝐴(π‘Ÿ)π‘›π‘š Where 𝐴(π‘Ÿ) is a number that depends on the representation β€˜π‘Ÿβ€². For our work, the representations we need are 𝟐 and πŸ‘. The values of 𝐴(π‘Ÿ) for these representations are 𝐴 𝟐 = 1, 𝐴 πŸ‘ = 2 Fundamental fermions For the fermions in the fundamental representation, we have only one zero mode for π‘›π‘š = 1 (since 𝐴 π‘Ÿ = 1 and ker π·π‘›π‘š † = {0}). We can write the πœ“ solution as (I will drop the gauge index for some time now) πœ“(π‘₯) = π‘Ž0πœ“0(π‘₯) + Non zero modes π‘Ž0 will be our fermionic collective coordinate. The monopole ground states can be built by considering a ground state |Ω⟩ such that π‘Ž0 Ξ© = 0 and then, another state can be built as π‘Ž0 † |Ω⟩. So, the states |Ω⟩ and π‘Ž0 † |Ω⟩ are degenerate. Adjoint Fermions For adjoint fermions, 𝐴 = 2 and thus, for π‘›π‘š = 1, we have two zero modes. Moreover, since the monopoles with fermions live in the π‘†π‘ˆ 2 𝑠 Γ— π‘†π‘ˆ 2 𝑔 group, the fundamental fermions can be singlets because 𝟐 Γ— 𝟐 = πŸ‘ + 𝟏 but this is not the case for adjoint fermions because πŸ‘ Γ— 𝟐 = πŸ’ + 𝟐. Since there are two fermion zero modes, the fermions can’t have spin 3/2 and thus, the adjoint fermions should live in the 𝟐 representation of π‘†π‘ˆ 2 𝑠 Γ— π‘†π‘ˆ 2 𝑔. Therefore, the spins of the zero modes must be Β±1/2. So, the πœ“ solution is expanded with the spins mentioned on the zero modes and the corresponding coefficients as; πœ“ = π‘Ž0,1/2πœ“0 1 2 + π‘Ž0,βˆ’1/2πœ“0 βˆ’ 1 2 + Non zero modes So, we have the four monopole states as shown below Ξ© Spin 0 π‘Ž0,1/2 † Ξ© Spin 1/2 π‘Ž0,βˆ’1/2 † Ξ© Spin βˆ’ 1/2 π‘Ž0,1/2 † π‘Ž0,βˆ’1/2 † Ξ© Spin 0
  • 30. Monopoles in 𝑁 = 4 supersymmetric theories We need monopoles in 𝑁 = 4 supersymmetry in order to solve two major problems in the Olive Montonen proposal. We don't need to go into the details of the derivation of the 𝑁 = 4 supersymmetry lagrangian. I will use only the result that the 𝑁 = 4 supersymmetric yang mills Higgs theory contains only one multiplet (without going into spins higher than 1) with contains one gauge field, six scalars and two Weyl fermions (two Dirac fermions) and all of them are in the adjoint representation since they are in the same multiplet as the gauge field. Now, since there are two Dirac fermions in this theory, the number of fermion zero modes double and thus, we have the following creation operators π‘Ž 0, Β± 1 2 𝑛† where n = 1,2 Now, the monopole multiplet is as follows (we again start with the |Ω⟩ state and I drop the 0 subscript from the raising operators. Moreover, I replace Β±1/2 with Β± for brevity). State Spin |Ω⟩ 0 π‘ŽΒ± 𝑛† |Ω⟩ Β±1/2 π‘Žβˆ’ π‘›β€ π‘Ž+ π‘šβ€  |Ω⟩ 0 π‘Ž+ 1† π‘Ž+ 2† |Ω⟩ 1 π‘Žβˆ’ 1† π‘Žβˆ’ 2† |Ω⟩ βˆ’1 π‘Žβˆ“ 1† π‘Žβˆ“ 2† π‘ŽΒ± 𝑛† |Ω⟩ βˆ“1/2 π‘Ž+ 1† π‘Ž+ 2† π‘Žβˆ’ 1† π‘Žβˆ’ 2† |Ω⟩ 0
  • 31. We can see that in this multiplet, we have states which have spin 1. Moreover, if we compare the spin content of this multiplet with the 𝑁 = 4 gauge supermultiplet, there is an exact match. There is another feature of the 𝑁 = 4 theory which is worth mentioning. It is a known fact (I won't go into the details) that the 𝛽 function of 𝑁 = 4 super Yang Mills theory vanishes and thus, the potential of the 𝑁 = 4 theory won't receive quantum corrections. Therefore, the first two problems in the Olive Montonen proposal that I mentioned are solved by incorporating 4 dimensional YMH theory in the 𝑁 = 4 supersymmetric gauge theory.
  • 33. Low energy 𝒩 = 2 SYM The scalar potential for 𝒩 = 2 theory is; 𝑉 𝑧, 𝑧 ∝ 𝑧, 𝑧 2 Now, 𝑉 = 0 for SUSY to remain intact β‡’ 𝑧, 𝑧 = 0 For π‘†π‘ˆ(2) gauge, 𝑧 = 1 2 π‘Žπ‘— + 𝑖𝑏𝑗 πœŽπ‘— Gauge invariance renders π‘Ž1 = π‘Ž2 = 0 and 𝑧, 𝑧 = 0 renders 𝑏1 = 𝑏2 = 0. Let π‘Ž = π‘Ž3 + 𝑖𝑏3 and π‘†π‘ˆ(2) Weyl transformation renders π‘Ž ∼ βˆ’π‘Ž. So, π‘Ž2 is gauge invariant (i.e. π‘‘π‘Ÿ 𝑧2 is gauge invariant). Define 𝑒 = π‘‘π‘Ÿ 𝑧2 , 𝑧 = 1 2 π‘ŽπœŽ3 Moduli space is the complex 𝑒 plane. π‘£πœ‡ 3 , πœ†3 and πœ“3 remain massless due to βŸ¨π‘§βŸ© and thus, low energy theory concerns only one gauge boson. The lagrangian is π‘ˆ(1) lagrangian now and is given as; ℒ𝒩=2 𝑒𝑓𝑓 = 1 16πœ‹ ∫ 𝑑2 πœƒ β„±β€²β€² πœ™ π‘Šπ›Ό π‘Š 𝛼 + ∫ 𝑑2 πœƒπ‘‘2 πœƒ πœ™β„±β€² πœ™
  • 34. β„±β€²β€²(𝑧) as metric The kinetic terms from the low energy lagrangian are ∼ πΌπ‘š β„±β€²β€² 𝑧 πœ•πœ‡π‘§ 2 , ∼ βˆ’πΌπ‘š β„±β€²β€² 𝑧 πΉπœ‡πœˆ 𝐹 πœ‡πœˆ which suggests that β„±β€²β€²(𝑧) is a metric. The metric on the moduli space is 𝑑𝑠2 = πΌπ‘š β„±β€²β€² π‘Ž π‘‘π‘Žπ‘‘π‘Ž = πΌπ‘š 𝜏 π‘Ž π‘‘π‘Žπ‘‘π‘Ž Let Ξ¨ be 𝒩 = 2 chiral field. Then the one loop prepotential is; β„± Ξ¨ = 𝑖 2πœ‹ Ξ¨2 𝐼𝑛 Ξ¨2 Ξ©2 For large π‘Ž, Ξ¨ ∼ π‘Ž and β„± π‘Ž ∼ 𝑖 2πœ‹ π‘Ž2 𝐼𝑛 π‘Ž2 Ξ©2 π‘Ž β†’ ∞ β‡’ 𝜏 π‘Ž = 𝑖 πœ‹ 𝐼𝑛 π‘Ž2 Ξ©2 + 3 π‘Ž β†’ ∞ Since 𝜏(π‘Ž) doesn’t depend on π‘Ž, it is holomorphic β‡’ πΌπ‘š 𝜏 is harmonic function β‡’ it doesn’t have local minima β‡’ πΌπ‘š 𝜏 isn’t positive definite. So, 𝜏(π‘Ž) and thus, π‘Ž should be defined on certain patches of 𝑒 plane.
  • 35. Seiberg Witten duality Define π‘Žπ· = β„±β€²(π‘Ž) and thus, 𝑑𝑠2 = πΌπ‘š β„±β€²β€² π‘Ž π‘‘π‘Žπ‘‘π‘Ž = πΌπ‘š (π‘‘π‘Žπ‘‘π‘Žπ·) The metric is symmetric is π‘Ž and π‘Žπ·. We can now define πœ™π· = β„±β€² πœ™ and the dual prepotential is defined by Legendre transformation ℱ𝐷 π‘Žπ· = β„± πœ™ βˆ’ πœ™πœ™π· β‡’ πœ™ = βˆ’β„±π· β€² (πœ™π·) The duality transformation (called 𝑆) is 𝑆: πœ™ β†’ πœ™π· = β„±β€² πœ™ , β„± πœ™ β†’ ℱ𝐷 πœ™π· β‡’ 𝑆: πœ™π· πœ™ β†’ 0 βˆ’1 1 0 πœ™π· πœ™ This implies the following term invariant πΌπ‘š ∫ 𝑑2 πœƒπ‘‘2 πœƒπœ™β„±β€² πœ™ β†’ πΌπ‘š ∫ 𝑑2 πœƒπ‘‘2 πœƒπœ™π·β„±π· β€² πœ™π· = πΌπ‘š ∫ 𝑑2 πœƒπ‘‘2 πœƒπœ™β„±β€² πœ™ The Bianchi identity πœ–π›Όπ›½πœŽπœŒ βˆ— 𝐹 𝜎𝜌 = 0 identifies as Im π·π›Όπ‘Šπ›Ό = 0 in superspace. Imposing this constraint using a lagrange multiplier 𝑉𝐷 in calculating partition function, we get; 𝑍 = ∫ 𝐷𝑉 exp iβ„’ = ∫ π·π‘Š 𝐷𝑉𝐷 exp i 16πœ‹ Im ∫ 𝑑4 π‘₯ ∫ 𝑑2 πœƒ β„±β€²β€² πœ™ π‘Šπ›Ό π‘Š 𝛼 + 1 2 ∫ 𝑑2 πœƒ 𝑑2 πœƒ π‘‰π·π·π›Όπ‘Šπ›Ό = ∫ 𝐷𝑉𝐷 exp i 16πœ‹ Im ∫ 𝑑4 π‘₯ 𝑑2 πœƒ βˆ’ 1 β„±β€²β€² πœ™ π‘Šπ· 𝛼 π‘Šπ· 𝛼 This gives us a dual coupling 𝜏𝐷 πœ™π· = βˆ’ 1 𝜏 πœ™ = βˆ’ 1 β„±β€²β€² πœ™ = βˆ’ π‘‘πœ™ π‘‘πœ™π· = ℱ𝐷 β€²β€² (πœ™π·)
  • 36. This gives us the following lagrangian under duality transformation ℒ𝑁=2 eff β†’ 1 16πœ‹ ∫ 𝑑2 πœƒ ℱ𝐷 β€²β€² πœ™π· (π‘Šπ·)𝛼 (π‘Šπ·)𝛼+∫ 𝑑2 πœƒπ‘‘2 πœƒ πœ™π·β„±π· β€² πœ™π· So the lagrangian is invariant under duality transformation. 𝑺𝑳(𝟐, β„€) duality The forms of 𝑆𝐿(2, β„€) matrices are 𝑆 = 0 1 βˆ’1 0 , π‘ˆ 𝑏 = 1 𝑏 0 1 , 𝑏 ∈ β„€ 𝑆 is already realised and π‘ˆ(𝑏) gives πœ™π· β†’ πœ™π· + π‘πœ™, πœ™ β†’ πœ™ β‡’ πœ™πœ™π· βˆ’ πœ™π·πœ™ β†’ πœ™πœ™π· βˆ’ πœ™π·πœ™, β„±β€²β€² πœ™ = π‘‘πœ™π· π‘‘πœ™ = β„±β€²β€² πœ™ + 𝑏 β‡’ ℒ𝑁=2 β†’ ℒ𝑁=2 + 𝑏 16πœ‹ Im ∫ 𝑑2 πœƒ π‘Šπ· 𝛼 π‘Šπ· 𝛼 β‡’ ∫ 𝑑4 π‘₯ ℒ𝑁=2 β†’ ∫ 𝑑4 π‘₯ ℒ𝑁=2 + 𝑏 16πœ‹ Im ∫ 𝑑4 π‘₯ 𝑑2 πœƒπ‘Šπ· 𝛼 π‘Šπ· 𝛼 = ∫ 𝑑4 π‘₯ ℒ𝑁=2 βˆ’ b 16πœ‹ ∫ 𝑑4 π‘₯πΉπœ‡πœˆ βˆ— 𝐹 πœ‡πœˆ = ∫ 𝑑4 π‘₯ ℒ𝑁=2 βˆ’ 2πœ‹π‘π‘› where 𝑛 = 1 32πœ‹2 ∫ 𝑑4 π‘₯πΉπœ‡πœˆ βˆ— 𝐹 πœ‡πœˆ is Yang Mills instanton number. Since 𝑒𝑖𝑆 is used in calculation of functional integrals, 𝑆 and 𝑆 βˆ’ 2πœ‹π‘π‘› are equivalent and thus, π‘ˆ(𝑏) is a symmetry transformation. So, Seiberg Witten duality also extends to 𝑆𝐿(2, β„€) group.
  • 37. Moduli space structure Singularity at infinity As π‘Ž β†’ ∞ β‡’ 𝑒 β†’ ∞, we have; π‘Žπ· = πœ•β„±(π‘Ž) πœ•π‘Ž = πœ• πœ•π‘Ž 𝑖 2πœ‹ π‘Ž2 𝐼𝑛 π‘Ž2 Ξ©2 = 𝑖 πœ‹ π‘Ž 𝐼𝑛 π‘Ž2 Ξ©2 + 1 Now, 𝑒 β†’ 𝑒2πœ‹π‘– 𝑒 β‡’ π‘Ž β†’ π‘’π‘–πœ‹ π‘Ž = βˆ’π‘Ž and π‘Žπ· β†’ βˆ’π‘Žπ· + 2π‘Ž So, we have; π‘Žπ· π‘Ž β†’ βˆ’1 2 0 βˆ’1 π‘Žπ· π‘Ž = π‘€βˆž π‘Žπ· π‘Ž Other singularities The R charges are as follows 𝑧 β†’ 𝑒2π‘–πœ‰ 𝑧, π‘Š 𝛼 β†’ π‘’π‘–πœ‰ π‘Š 𝛼, πœƒ β†’ π‘’π‘–πœ‰ πœƒ β‡’ 𝑑2 πœƒ = π‘’βˆ’2π‘–πœ‰ 𝑑2 πœƒ β‡’ Ξ¨ β†’ e2π‘–πœ‰ Ξ¨ β‡’ β„± Ξ¨ ∝ Ξ¨2 β†’ 𝑒4π‘–πœ‰ β„±(Ξ¨) The instanton corrections for β„±(Ξ¨) are given as; β„± Ξ¨ πΌπ‘›π‘ π‘‘π‘Žπ‘›π‘‘π‘œπ‘›π‘  = Ξ¨2 𝑗 πœ‡π‘— Ξ©2 Ξ¨2 2𝑗 The β„± Ξ¨ β†’ 𝑒4π‘–πœ‰ β„±(Ξ¨) in realised now if πœ‰ = 2πœ‹π‘—/8 𝑗 ∈ β„€+ (i.e. β„€8 symmetry) i.e. 𝑧2 β†’ βˆ’π‘§2 and hence 𝑒 β†’ βˆ’π‘’ is a symmetry. So, at least three non zero points should be singularities or 𝑒 = 0, ∞ should be singularities. Later case implies π‘€βˆž = 𝑀0 (contour deformation) and thus, π‘Ž2 is a good coordinate on whole of complex plane (which is not true). So, we should have three singularities 𝑒 β†’ ∞, 𝑒, βˆ’π‘’.
  • 38. Other singularities At 𝑒 = 0, the gauge group restores and everything becomes massless. We can try to interpret other singularities the same way. Singularities can’t be due to gauge boson becoming massless (it requires tπ‘Ÿ πœ™2 to become dimensionless but it’s dimension is 2). The trick is to consider massless monopoles. Massive states have to be in short representations and thus, mass is proportional to 𝑍. For 𝒩 = 2, 𝑍 = π‘Žπ‘›π‘’ + π‘Žπ·π‘›π‘š Thus, π‘Žπ· = 0 at singularities. Coupling 𝒩 = 2 SYM to hypermultiplets, we have SQED with beta function; Ξ› π‘‘πœ†π· 𝑑Λ = πœ†π· 3 8πœ‹2 Which gives π‘Žπ· π‘‘πœπ· π‘‘π‘Žπ· = π‘Žπ· 𝑑 π‘‘π‘Žπ· 4πœ‹π‘– πœ†π· 3 = βˆ’ 𝑖 πœ‹ β‡’ 𝜏𝐷 = βˆ’ 𝑖 πœ‹ 𝐼𝑛 π‘Žπ· = βˆ’ π‘‘π‘Ž π‘‘π‘Žπ· β‡’ π‘Ž ∼ π‘Ž + 𝑖 πœ‹ π‘Žπ· 𝐼𝑛 π‘Žπ· Now, π‘Žπ· = 0 at 𝑒 = 𝑒 , we have π‘Žπ· = 𝜁(𝑒 βˆ’ 𝑒) near 𝑒 = 𝑒 where 𝜁 is a constant and thus, near 𝑒 = 𝑒, we have; π‘Ž 𝑒 = π‘Ž + 𝑖 πœ‹ 𝜁 𝑒 βˆ’ 𝑒 𝐼𝑛 (𝑒 βˆ’ 𝑒) For 𝑒 βˆ’ 𝑒 β†’ 𝑒2πœ‹π‘– (𝑒 βˆ’ 𝑒), we have; π‘Žπ· β†’ π‘Žπ·, π‘Ž β†’ π‘Ž βˆ’ 2π‘Žπ· β‡’ π‘Žπ· π‘Ž β†’ 1 0 βˆ’2 1 π‘Žπ· π‘Ž = 𝑀𝑒 π‘Žπ· π‘Ž Using π‘€βˆž = π‘€π‘’π‘€βˆ’π‘’, we have; π‘€βˆ’π‘’ = βˆ’1 2 βˆ’2 3
  • 39. Dyon interpretation For dyon 𝑛𝑒, π‘›π‘š becoming massless, 𝑍 = π‘Žπ‘›π‘’ + π‘Žπ·π‘›π‘š should be invariant under monodromy action. In other words 𝑍 = π‘›π‘š 𝑛𝑒 π‘Žπ· π‘Ž β†’ π‘›π‘š 𝑛𝑒 𝑀 π‘Žπ· π‘Ž = 𝑍 β‡’ π‘›π‘š 𝑛𝑒 𝑀 = π‘›π‘š 𝑛𝑒 For 𝑀𝑒 Μƒ, (1 0) is a left eigenvector and for π‘€βˆ’π‘’ , (1 βˆ’1) is left eigenvector (actually (π‘žπ‘›π‘š π‘žπ‘›π‘’) with integer π‘ž is a left eigenvector but they aren’t stable as 𝑛𝑒 and π‘›π‘š have to be relatively prime). For π‘›π‘š 𝑛𝑒 to be a left eigenvector, the monodromy matrix is 1 + 2π‘›π‘’π‘›π‘š 2𝑛𝑒 2 βˆ’2π‘›π‘š 2 1 βˆ’ 2π‘›π‘’π‘›π‘š This shows that (for π‘˜ ∈ β„€) π‘€βˆž βˆ’π‘˜ π‘€π‘’π‘€βˆž π‘˜ = 1 βˆ’ 4π‘˜ 8π‘˜2 βˆ’2 1 + 4π‘˜ corresponds to 𝑛𝑒, π‘›π‘š = (βˆ’2π‘˜, 1) Moreover, π‘€βˆž βˆ’π‘˜ π‘€βˆ’π‘’π‘€βˆž π‘˜ = βˆ’1 βˆ’ 4π‘˜ 8π‘˜2 + 2π‘˜ + 8 βˆ’2 3 + 4π‘˜ corresponds to 𝑛𝑒, π‘›π‘š = (βˆ’2π‘˜ βˆ’ 1,1).
  • 40. Solution for π‘Ž 𝑒 , π‘Žπ·(𝑒) Consider 𝑑2 πœ“ 𝑑𝑧2 βˆ’ 𝑉 𝑧 πœ“ 𝑧 = 0 (1) Regular singular point 𝑧 = 𝑧0 is such that 𝑧 βˆ’ 𝑧0 2 𝑉(𝑧) is analytic at 𝑧 = 𝑧0. Theorem: Non trivial constant monodromies correspond to singular points of 𝑉(𝑧) which are regular singular points. Following Seiberg and Witten, 𝑒 = 1 and thus, the singular points are 𝑒 = Β±1, 𝑒 β†’ ∞. The terms 1 𝑧 βˆ’ 1 , 1 𝑧 + 1 in 𝑉(𝑧) correspond to third order poles at infinity. So, the general 𝑉(𝑧) is (following the convention) 𝑉 𝑧 = βˆ’ 1 4 1 βˆ’ πœ‰1 2 𝑧 + 1 2 + 1 βˆ’ πœ‰2 2 𝑧 βˆ’ 1 2 βˆ’ 1 βˆ’ πœ‰1 2 βˆ’ πœ‰2 2 + πœ‰3 2 𝑧 + 1 𝑧 βˆ’ 1 , πœ‰π‘— > 0 The transformation πœ“ 𝑧 = 𝑧 + 1 1βˆ’πœ‰1 2 𝑧 βˆ’ 1 1βˆ’πœ‰2 2 𝐺 𝑧 + 1 2 equation (1) becomes; πœ‡ 1 βˆ’ πœ‡ 𝑑2 𝐺 πœ‡ π‘‘πœ‡2 + 𝑐 βˆ’ π‘Ž + 𝑏 + 1 πœ‡ 𝑑𝐺 πœ‡ π‘‘πœ‡ βˆ’ π‘Žπ‘πΊ πœ‡ = 0 where πœ‡ is an independent variable and 2π‘Ž = 1 βˆ’ πœ‰1 βˆ’ πœ‰2 + πœ‰3, 2𝑏 = 1 βˆ’ πœ‰1 βˆ’ πœ‰2 βˆ’ πœ‰3, 𝑐 = 1 βˆ’ πœ‰1.
  • 41. The solutions to this equation are hypergeometric functions 𝐹 π‘Ž, 𝑏, 𝑐; πœ‡ = 𝑛=0 ∞ π‘Ž 𝑛 𝑏 𝑛 𝑐 𝑛 πœ‡π‘› 𝑛! Where π‘Ž 𝑛 are Pochhammer’s symbol π‘Ž 0 = 1, π‘Ž 𝑛+1 = π‘Ž π‘Ž + 1 … (π‘Ž + 𝑛) The two solutions that we pick are 𝐺1 πœ‡ = βˆ’πœ‡ βˆ’π‘Ž 𝐹 π‘Ž, π‘Ž + 1 βˆ’ 𝑐, π‘Ž + 1 βˆ’ 𝑏; 1 πœ‡ 𝐺2 πœ‡ = 1 βˆ’ πœ‡ π‘βˆ’π‘Žβˆ’π‘ 𝐹 𝑐 βˆ’ π‘Ž, 𝑐 βˆ’ 𝑏, 𝑐 + 1 βˆ’ π‘Ž βˆ’ 𝑏; 1 βˆ’ πœ‡ Now, 𝐺1 has trivial monodromy at infinity and 𝐺2 has trivial monodromy at πœ‡ = 1. Finding 𝒂, 𝒃, 𝒄 For large 𝑧 𝑉 𝑧 = βˆ’ 1 4 1 βˆ’ πœ‰3 2 𝑧2 β‡’ 4𝑧2 𝑑2 πœ“ 𝑧 𝑑𝑧2 + 1 βˆ’ πœ‰3 2 πœ“ 𝑧 = 0 β‡’ πœ“ 𝑧 = 𝑧1Β±πœ‰3 2 πœ‰3 β‰  0 , πœ“ 𝑧 = 𝑧 𝐼𝑛 𝑧 (πœ‰3 = 0) The large 𝑒 expression for π‘Žπ· resembles the πœ‰3 = 0 case. So, set πœ‰3 = 0. Around 𝑧 = 1 𝑉 𝑧 = βˆ’ 1 4 1 βˆ’ πœ‰2 2 𝑧 βˆ’ 1 2 β‡’ 𝑑2 πœ“ 𝑦 𝑑𝑦2 + 1 βˆ’ πœ‰2 2 4𝑦2 πœ“ 𝑦 = 0, 𝑦 = 𝑧 βˆ’ 1 π‘Žπ· is linear in 𝑒 βˆ’ 1 around 𝑒 = 1 and thus, the second derivative should vanish and this, πœ‰2 = 1. β„€2 symmetry implies πœ‰1 = 1. β‡’ π‘Ž = βˆ’ 1 2 , 𝑏 = βˆ’ 1 2 , 𝑐 = 0
  • 42. β‡’ πœ“ 𝑧 = 𝐺 𝑧 + 1 2 β‡’ 𝐺1 𝑒 = 𝑖 𝑒 + 1 2 1 2 𝐹 1 2 , βˆ’ 1 2 , 1; 2 𝑒 + 1 , 𝐺2 𝑒 = βˆ’ 𝑒 βˆ’ 1 2 𝐹 1 2 , 1 2 , 2; 1 βˆ’ 𝑒 2 The solutions for π‘Ž and π‘Žπ· which give correct asymptotics are π‘Žπ· 𝑒 = βˆ’π‘–πΊ2 𝑒 = 𝑖 𝑒 βˆ’ 1 2 𝐹 1 2 , 1 2 , 2; 1 βˆ’ 𝑒 2 π‘Ž 𝑒 = βˆ’2𝑖𝐺1 𝑒 = 2 𝑒 + 1 1 2𝐹 1 2 , βˆ’ 1 2 , 1; 2 𝑒 + 1 We can find π‘Žπ·(π‘Ž) now and then, β„±(π‘Ž) is determined by integrating π‘Žπ· π‘Ž = β„±β€²(π‘Ž) with respect to π‘Ž which gives you low energy lagrangian.
  • 43. Further developements Extensions οƒ˜ N. Seiberg and E. Witten added hypermultiplets in 1994. οƒ˜ A first step was taken to generalize to π‘†π‘ˆ(𝑁) group in 1995 by A. Klemm et al. οƒ˜ Low energy action was calculated by Klemm et al. for π‘†π‘ˆ(3) in 1995. οƒ˜ A. Brandhuber et al. calculated the low energy action for 𝑆𝑂(2𝑁) in 1995. οƒ˜ U. H. Danielsson et al. wrote the weak coupling limit for arbitrary gauge groups and wrote the solution for 𝑆𝑂(2π‘Ÿ + 1) groups in 1995. οƒ˜ P.C. Argyres et al. worked out the description of metric on moduli space for π‘†π‘ˆ(𝑁) theory in 1995. οƒ˜ U.H. Danielsson and B. Sundborg address the same problem with some simple groups with matter multiplets in 1996. Tests οƒ˜ E. Witten and C. Vafa proposed a test at strong coupling in 1994. οƒ˜ A. Lossev, N. Nekrasov and S.L. Shatashvilli proposed a test of Seiberg Witten solution by instanton calculations in 1999. οƒ˜ The test proposed in 1999 was performed by N. Nekrasov (and the low instanton results matched the literature values) in 2003.
  • 44. Proof of generalized Bogomol’nyi bound (𝑄𝑒, π‘„π‘š) In the presence of electrical fields (keeping 𝐴0 π‘Ž = 0 still), we have the following mass for the dyon; 𝑀 = 1 2 ∫ 𝑑3 π‘₯ 𝐸𝑖 π‘Ž 𝐸𝑖 π‘Ž + 𝐡𝑖 π‘Ž 𝐡𝑖 π‘Ž + π·π‘–πœ™π‘Ž 2 = 1 2 ∫ 𝑑3 π‘₯ 𝐸𝑖 π‘Ž βˆ’ cos 𝛼 π·π‘–πœ™π‘Ž + 𝐡𝑖 π‘Ž βˆ’ sin 𝛼 𝐷𝑖 πœ™π‘Ž 2 + ∫ 𝑑3 π‘₯ cos 𝛼 𝐸𝑖 π‘Ž π·π‘–πœ™π‘Ž + sin 𝛼 𝐡𝑖 π‘Ž π·π‘–πœ™π‘Ž β‰₯ cos 𝛼 𝑄𝑒 + sin 𝛼 π‘„π‘š Now, we can make the bound as tight as possible by differentiating the above expression w.r.t 𝛼 and setting it to zero. This gives; tan 𝛼 = π‘„π‘š 𝑄𝑒 β‡’ sin 𝛼 = π‘„π‘š 𝑄𝑒 2 + π‘„π‘š 2 , cos 𝛼 = 𝑄𝑒 𝑄𝑒 2 + π‘„π‘š 2 This gives us; 𝑀 β‰₯ 𝑣 𝑄𝑒 2 + π‘„π‘š 2 1 2 This is the generalised Bogomol’nyi bound in terms of (𝑄𝑒, π‘„π‘š).
  • 45. Acknowledgements I would like to thank οƒ˜ My family for their support in these difficult times. οƒ˜ My supervisor and other teachers for guiding me about various things regarding the thesis. οƒ˜ My friends for their support. οƒ˜ People with whom I had useful discussions, specially Dr. K.S. Narain.
  • 46. Proof of generalized Bogomol’nyi bound (e,g) In the presence of electrical fields (keeping π΄πœ‡ π‘Ž = 0 still), we have the following mass for the dyon; 𝑀 = 1 2 ∫ 𝑑3 π‘₯ 𝐸𝑖 π‘Ž 𝐸𝑖 π‘Ž + 𝐡𝑖 π‘Ž 𝐡𝑖 π‘Ž + π·π‘–πœ™π‘Ž 2 = 1 2 ∫ 𝑑3 π‘₯ 𝐸𝑖 π‘Ž βˆ’ cos 𝛼 π·π‘–πœ™π‘Ž + 𝐡𝑖 π‘Ž βˆ’ sin 𝛼 𝐷𝑖 πœ™π‘Ž 2 + ∫ 𝑑3 π‘₯ cos 𝛼 𝐸𝑖 π‘Ž π·π‘–πœ™π‘Ž + sin 𝛼 𝐡𝑖 π‘Ž π·π‘–πœ™π‘Ž We proved previously that π΅π‘Ž π·π‘–πœ™π‘Ž = πœ•π‘–(𝐡𝑖 π‘Ž πœ™π‘–). We can also prove that 𝐸𝑖 π‘Ž π·π‘–πœ™π‘Ž = πœ•π‘– 𝐸𝑖 π‘Ž πœ™π‘Ž as follows. We see that 𝐸𝑖 π‘Ž π·π‘–πœ™π‘Ž = 𝐷𝑖 𝐸𝑖 π‘Ž πœ™π‘Ž βˆ’ πœ™π‘Ž 𝐷𝑖𝐸𝑖 π‘Ž = πœ•π‘– 𝐸𝑖 π‘Ž πœ™π‘Ž βˆ’ πœ™π‘Ž 𝐷𝑖𝐸𝑖 π‘Ž as 𝐸𝑖 π‘Ž πœ™π‘Ž is gauge singlet. Now, we prove that 𝐷𝑖𝐸𝑖 π‘Ž = 0. Use the zeroth component of Gauss’ constraint to get; 𝐷𝑖𝐹𝑖0 π‘Ž = π‘’πœ–π‘Žπ‘π‘ πœ™π‘ 𝐷0πœ™π‘ = 0 The last equality follows because πœ™π‘Ž is time independent and 𝐴0 π‘Ž = 0. So, 𝐷𝑖𝐹𝑖0 π‘Ž = βˆ’π·π‘–πΉ0𝑖 π‘Ž = βˆ’π·π‘–πΈπ‘– π‘Ž = 0 So, we get; 𝑀 β‰₯ ∫ 𝑑3 π‘₯ cos 𝛼 πœ•π‘– 𝐸𝑖 π‘Ž πœ™π‘Ž + sin 𝛼 πœ•π‘– 𝐡𝑖 π‘Ž πœ™π‘Ž = 𝑣[cos 𝛼 𝑒 + sin 𝛼 𝑔] Now, we can make the bound as tight as possible by differentiating the above expression w.r.t 𝛼 and setting it to zero. This gives; tan 𝛼 = 𝑔 𝑒 β‡’ sin 𝛼 = 𝑔 𝑒2 + 𝑔2 , cos 𝛼 = 𝑒 𝑒2 + 𝑔2 This gives us; 𝑀 β‰₯ 𝑣 𝑒2 + 𝑔2 1 2