SlideShare a Scribd company logo
1 of 26
Presented to: Ma’am Hunza
Presentedby: AmenahGondal
Class: BS.ED VI
Roll no: EDU(s)-2017-F-11
OBJECTIVES
WE WILL DISCUSS:
i. CONOTUR INTEGRATION AND ITS TYPES AND
EXAMPLES
ii. MITTAG LEFFLER THEOREM AND ITS EXAMPLE
CONTOUR INTEGRATION
“Contour integration is the process of calculating the values
of a contour integral around a given contour in the complex
plane.”
TYPES OF CONTOUR INTEGRATION
Form of the integral is 0
2𝜋
𝑓 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 𝑑𝜃 where 𝑓 is a rational function of 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃.
WORKING RULE:
STEP I: Make the substitutions
𝑍 = 𝑒 𝑖𝜃
.
𝑐𝑜𝑠𝜃 =
1
2
(𝑍 +
1
𝑍
)
𝑠𝑖𝑛𝜃 =
1
2𝑖
(𝑍 −
1
𝑍
)
𝑑𝜃 =
𝑑𝑍
𝑖𝑍
𝑎𝑛𝑑 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙
0
2𝜋
𝑓 𝜃 𝑑𝜃 =
𝑐
𝑓 𝑍 𝑑𝑍
Where C is positively oriented unit circle 𝑍 = 1.
TYPE I
STEP II: Calculate the poles of 𝑓 𝑍 . Say at 𝑍0, 𝑍1, 𝑍2, … . , select those poles which lie in the unit circle
𝑍 = 1.then find the residues at the selected poles
𝑅1 𝑓, 𝑍0 , 𝑅2 𝑓, 𝑍1 𝑒𝑡𝑐.
STEP III: 0
2𝜋
𝑓 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 𝑑𝜃 = 𝑐
𝑓 𝑍 𝑑𝑍 = 2𝜋𝑖 𝑗=1
𝑛
𝑅𝑗 (𝑢𝑠𝑖𝑛𝑔 𝐶𝑎𝑢𝑐ℎ𝑦𝑠′ 𝑅𝑒𝑠𝑖𝑑𝑢𝑒 𝑇ℎ𝑒𝑜𝑟𝑒𝑚)
EXAMPLE:
Prove that 𝟎
𝟐𝝅 𝒅𝝑
(𝒂+𝒃𝒄𝒐𝒔𝜽) 𝟐 =
𝟐𝝅𝒂
(𝒂 𝟐−𝒃 𝟐) 𝟑 𝟐.
SOLUTION:
As it is prove that 𝟎
𝟐𝝅 𝒅𝝑
𝒂+𝒃𝒄𝒐𝒔𝜽
=
𝟐𝝅
(𝒂 𝟐−𝒃 𝟐) 𝟏 𝟐 (A)
Differentiating A w.r.t a
0
2𝜋
−1 𝑑𝜗
𝑎 + 𝑏𝑐𝑜𝑠𝜃 2
= 2𝜋(−1 2)(𝑎2
− 𝑏2
)3 2
. 2𝑎
Cancelling negative signs from both sides,
0
2𝜋
𝑑𝜗
𝑎 + 𝑏𝑐𝑜𝑠𝜃 2
= =
2𝜋𝑎
(𝑎2 − 𝑏2)3 2
TYPE II
Form of the integral will be either −∞
∞
𝑓 𝑥 𝑑𝑥 𝑜𝑟 0
∞
𝑓 𝑥 𝑑𝑥.
WORKING RULE:
STEP I:
Replace x by Z in the integral and test whether 𝑍 𝑓 𝑍 → 0𝑎𝑠 𝑍 → ∞.
STEP II:
Find the poles of 𝑓(𝑍), locate those poles which lie in the upper half plane. Find the
residues at the locates poles.
STEP III:
Formula to be used is −∞
∞
𝑓 𝑥 𝑑𝑥 = 2𝜋𝑖 𝑅+ 𝑜𝑟 0
∞
𝑓 𝑥 𝑑𝑥 = 𝜋𝑖 𝑅+ 𝑤ℎ𝑒𝑟𝑒
𝑅+ 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑎𝑡 𝑝𝑜𝑙𝑒𝑠 𝑙𝑦𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 ℎ𝑎𝑙𝑓 𝑝𝑙𝑎𝑛𝑒.
EXAMPLE:
Prove that −∞
∞ 𝒅𝒙
(𝒙 𝟐+𝟏) 𝟑 =
𝟑𝝅
𝟖
.
SOLUTION:
Given 𝑓 𝑥 =
1
(𝒙 𝟐+𝟏) 𝟑
𝑓 𝑍 =
1
(𝒁 𝟐 + 𝟏) 𝟑
𝑍𝑓 𝑍 → 0 𝑎𝑠 𝑍 → ∞
The poles of f(Z) are at Z=±𝑖 of order 3 the only pole which lies in the upper half plane is Z=i of order 3.
The residue at Z=i is
𝑅 𝑓, 𝑖 =
1
2!
𝑑2
𝑑𝑍2
[(𝑍 − 𝑖)3
1
𝑍 − 𝑖 3 𝑍 + 𝑖 3
] 𝑍=𝑖
=
1
2
𝑑2
𝑑𝑍2
1
𝑍 + 𝑖 3
=
1
2
−3 −4
1
(2𝑖)5
=
6
32𝑖
−∞
∞
𝑑𝑥
(𝑥2 + 1)3
= 2𝜋𝑖 ×
6
32𝑖
=
3𝜋
8
TYPE III:
Form of the integral is either
−∞
∞ 𝑃(𝑥)
𝑄(𝑥)
sin 𝑚𝑥 𝑑𝑥 𝑜𝑟 −∞
∞ 𝑃(𝑥)
𝑄(𝑥)
𝑐𝑜𝑠𝑚𝑥 𝑑𝑥 𝑜𝑟 𝑙𝑖𝑚𝑖𝑡 𝑖𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 ∞ , 𝑚 > 0 𝑤ℎ𝑒𝑟𝑒,
• 𝑃 𝑥 𝑎𝑛𝑑 𝑄(𝑥) are polynomials of x.
• 𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑄 𝑥 exceeds the degree of 𝑃 𝑥 .
• 𝑇ℎ𝑒 equation 𝑄 𝑥 = 0 has no real roots.
WORKING RULE:
STEP I:
Replace x by Z and sinmx or cosmx by 𝑒 𝑖𝑚𝑧
. Find the poles of 𝑓(𝑍)𝑒 𝑖𝑚𝑧
and choose those poles which
lie in the upper half plane. Find the residue at the chosen plane.
STEP II:
Then by Cauchy Residue theorem
 −∞
∞
𝑓 𝑥 𝑠𝑖𝑛𝑚𝑥𝑑𝑥 = 𝐼𝑚 (2𝜋𝑖 𝑅) or −∞
∞
𝑓 𝑥 𝑐𝑜𝑠𝑚𝑥𝑑𝑥 = 𝑅𝑒 (2𝜋𝑖 𝑅)
 0
∞
𝑓 𝑥 𝑠𝑖𝑛𝑚𝑥𝑑𝑥 = 𝐼𝑚 (𝜋𝑖 𝑅) or 0
∞
𝑓 𝑥 𝑐𝑜𝑠𝑚𝑥𝑑𝑥 = 𝑅𝑒 (𝜋𝑖 𝑅)
EXAMPLE:
Prove that −∞
∞ 𝐜𝐨𝐬 𝒙 𝒅𝒙
(𝒙 𝟐+𝒂 𝟐)(𝒙 𝟐+𝒃 𝟐)
=
𝝅
𝒂 𝟐−𝒃 𝟐 (
𝒆−𝒃
𝒃
𝒆−𝒂
𝒂
) (a>b>0)
SOLUTION:
Given integral can be written as
−∞
∞
𝑒 𝑖𝑧
𝑑𝑍
(𝑍2 + 𝑎2)(𝑍2+𝑏2)
The poles are at 𝑍 = ±𝑎𝑖 𝑎𝑛𝑑 𝑍 = ±𝑏𝑖.The only poles which lie in the upper half plane are at 𝑍 = 𝑎𝑖 𝑎𝑛𝑑 𝑍𝑏𝑖.
𝑅1 𝑓, 𝑎𝑖 = lim
𝑍→𝑎𝑖
𝑒 𝑖𝑧
𝑍 + 𝑎𝑖 𝑍2 + 𝑏2
=
𝑒−𝑎
2𝑎𝑖(𝑏2 − 𝑎2)
𝑅2 𝑓, 𝑏𝑖 = lim
𝑍→𝑏𝑖
𝑒 𝑖𝑧
𝑍 + 𝑎2 𝑍2 + 𝑏𝑖
=
𝑒−𝑏
2𝑏𝑖(𝑎2 − 𝑏2)
−∞
∞
cos 𝑥 𝑑𝑥
(𝑥2 + 𝑎2)(𝑥2+𝑏2)
= 𝑅𝑒[2𝜋𝑖 ×
1
2𝑖
(
𝑒−𝑏
𝑏 𝑎2 − 𝑏2
−
𝑒−𝑎
𝑎 𝑎2 − 𝑏2
]
= 𝜋
𝑎𝑒−𝑏
− 𝑏𝑒−𝑎
𝑎𝑏 𝑎2 − 𝑏2
=
𝜋
𝑎2 − 𝑏2
[
𝑒−𝑏
𝑏
−
𝑒−𝑎
𝑎
]
Form of the integral is either −∞
∞
𝑓 𝑥 [sin 𝑚𝑥 𝑜𝑟 cos 𝑚𝑥] 𝑑𝑥 𝑜𝑟 0
∞
𝑓 𝑥 [𝑠𝑖𝑛𝑚𝑥 𝑜𝑟 𝑐𝑜𝑠𝑚𝑥]𝑑𝑥.
WORKING RULE:
STEP I: Replace x by Z and cos mx or sin mx by 𝑒 𝑖𝑚𝑧
. Find poles of the integrand. Locate those poles
which lie in the upper half plane and on the real axis.
STEP II: Find the residues at poles in the upper half plane say 𝑅 𝑝 and residues at poles on the x-axis
say 𝑅 𝑥.
STEP III: −∞
∞
𝑓 𝑥 𝑠𝑖𝑛 𝑚𝑥 𝑑𝑥 = 𝐼𝑚[2𝜋𝑖𝑅 𝑝 + 𝜋𝑖𝑅 𝑥] 𝑜𝑟 −∞
∞
𝑓 𝑥 𝑐𝑜𝑠 𝑚𝑥 𝑑𝑥 = 𝑅𝑒 [2𝜋𝑖𝑅 𝑝 + 𝜋𝑖𝑅 𝑥] for
integral 0
∞
𝑑𝑖𝑣𝑖𝑑𝑒 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑏𝑦 2.
TYPE IV: (CASE OF POLES ON THE REAL AXIS OR IDENTATION
OF CONTOURS)
EXAMPLE:
Prove that 𝟎
∞ 𝒄𝒐𝒔𝒂𝒙−𝒄𝒐𝒔𝒃𝒙
𝒙 𝟐 𝒅𝒙 =
𝝅
𝟐
𝒃 − 𝒂 𝒘𝒉𝒆𝒓𝒆 𝒃 > 𝒂 > 𝟎.
SOLUTION:
The given integral
0
∞
𝑐𝑜𝑠𝑎𝑥 − 𝑐𝑜𝑠𝑏𝑥
𝑥2
𝑑𝑥 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠
𝑐
𝑒 𝑎𝑖𝑧 − 𝑒 𝑏𝑖𝑧
𝑍2
𝑑𝑍
The pole is at Z=0 of order 2 lies on the real axis, no pole lies in upper half plane.
𝑅 𝑥 𝑓, 0 =
𝑑
𝑑𝑍
[
𝑒 𝑎𝑖𝑧 − 𝑒 𝑏𝑖𝑧
𝑍2
𝑍2] 𝑍=0 = [𝑎𝑖𝑒 𝑎𝑖𝑧 − 𝑏𝑖𝑒 𝑏𝑖𝑧] 𝑍=0 = 𝑖(𝑎 − 𝑏)
0
∞
𝑐𝑜𝑠𝑎𝑥 − 𝑐𝑜𝑠𝑏𝑥
𝑥2
𝑑𝑥 =
1
2
𝑅𝑒 𝜋𝑖 × 𝑖 𝑎 − 𝑏 =
𝜋
2
𝑏 − 𝑎
In this type, we shall consider cases where the contour integration involves multiple valued function.
CASE I: When the pole lies on the negative part of the real axis
Form of the integral is either 0
∞
𝑥 𝛼−1 𝑓 𝑥 𝑑𝑥 𝑜𝑟 0
∞
𝑥 𝛼 𝑓 𝑥 𝑑𝑥 𝑤ℎ𝑒𝑟𝑒 𝛼 𝑖𝑠 𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑛𝑜𝑛 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
WORKING RULE:
STEP I: Replace x by Z and 𝑥 𝛼−1 = 𝑍 𝛼−1 = 𝑒 𝛼−1 𝑙𝑜𝑔𝑧 = 𝑒 𝛼−1 log 𝑧 +𝑖𝜋
(∴ 𝑝𝑜𝑙𝑒 𝑙𝑖𝑒𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑎𝑙 𝑎𝑥𝑖𝑠 𝑙𝑜𝑔 𝑍 = 𝑙𝑜𝑔 −𝑍 𝑎𝑛𝑑 𝜃 = 𝜋)
∴ 𝜑 𝑍 = 𝑒 𝛼−1 log −𝑧 +𝑖𝜋 𝑓(𝑍)
STEP II: Calculate the poles of f(Z) and consider all the poles which lie in the whole complex plane.
Consider residues at these poles.
STEP III: 0
∞
𝑥 𝛼−1
𝑓 𝑥 𝑑𝑥 =
−𝜋
sin 𝜋𝑎
𝑒−𝑎𝜋𝑖
𝑅
TYPE V: (WHEN THE INTEGRAND INVOLVES MULTIPLE
VALUED FUNCTION)
EXAMPLE:
Prove that 𝟎
∞ 𝒙 𝒂−𝟏
𝟏+𝒙
𝒅𝒙 =
𝝅
𝒔𝒊𝒏𝒂𝝅
(𝟎 < 𝒂 < 𝟏).
SOLUTION:
The given integral is
0
∞
𝑥 𝑎−1
1 + 𝑥
𝑑𝑥 =
𝑐
𝑍 𝑎−1
1 + 𝑍
𝑑𝑍
𝜑 𝑍 = 𝑒 𝑎−1 [log −𝑧 +𝜋𝑖].
1
1 + 𝑍
∴ 𝑓 𝑍 =
1
1 + 𝑍
The pole of 𝑓 𝑍 =
1
1+𝑍
𝑖𝑠 𝑎𝑡 𝑧 = −1
𝑅 𝜑, −1 = [𝑒 𝑎−1 log −𝑧 +𝜋𝑖 .
1 + 𝑍
1 + 𝑍
] 𝑍=−1 ∴ log 1 = 0
𝑅 𝜑, −1 = 𝑒(𝑎−1)𝜋𝑖 = 𝑒 𝑎𝜋𝑖. 𝑒−𝜋𝑖 = −𝑒 𝑎𝜋𝑖
0
∞
𝑥 𝑎−1
1 + 𝑥
𝑑𝑥 =
−𝜋
𝑠𝑖𝑛𝛼𝜋
𝑒−𝛼𝜋𝑖
−𝑒 𝑎𝜋𝑖
=
𝜋
𝑠𝑖𝑛𝛼𝜋
= 𝜋𝑐𝑜𝑠𝑒𝑐𝛼𝜋
CASE II: When the pole lies on the positive part of the real axis
Form of the integral is either
0
∞
𝑥 𝛼−1 𝑓 𝑥 𝑑𝑥 𝑜𝑟 0
∞ 𝑥 𝛼 𝑓 𝑥 𝑑𝑥 𝑤ℎ𝑒𝑟𝑒 𝛼 𝑖𝑠 𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑛𝑜𝑛 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟)
WORKING RULE:
STEP I: Replace x by Z and 𝑥 𝛼−1 = 𝑍 𝛼−1 = 𝑒 𝛼−1 𝑙𝑜𝑔𝑧 = 𝑒 𝛼−1 log 𝑧 +𝑖𝜃
(𝑤ℎ𝑒𝑟𝑒 𝑍 𝑖𝑠 + 𝑣𝑒 𝑎𝑛𝑑 𝜃 = 0)
∴ 𝜑 𝑍 = 𝑒 𝛼−1 logz 𝑓(𝑍)
STEP II: Find the poles of f(Z) and calculate residues at those poles.
STEP III: 0
∞
𝑥 𝛼−1
𝑓 𝑥 𝑑𝑥 = −𝜋𝑐𝑜𝑡𝛼𝜋 𝑅
EXAMPLE:
Prove that 𝟎
∞ 𝒙 𝒂−𝟏
𝟏−𝒙
𝒅𝒙 = 𝝅𝒄𝒐𝒕𝜶𝝅.
SOLUTION:
Replacing x by Z the given integral becomes
0
∞
𝑍 𝑎−1
1 − 𝑍
𝑑𝑍 𝑛𝑜𝑤 𝜑 𝑍 = 𝑒 𝛼−1 𝑙𝑜𝑔𝑧 . 𝑓(𝑍)
𝑓 𝑍 =
1
1 − 𝑍
The pole of 𝑓 𝑍 =
1
1−𝑍
𝑖𝑠 𝑎𝑡 𝑍 = 1
𝑅 𝜑, 1 = [𝑒 𝑎−1 [𝑙𝑜𝑔𝑧]
𝑍 − 1
1 − 𝑍
] 𝑍=1
= −𝑒 𝑎−1 log 1
∴ log 1 = 0 = −𝑒0
= −1
0
∞
𝑥 𝑎−1
1 − 𝑥
𝑑𝑥 = −𝜋𝑐𝑜𝑡𝛼𝜋 −1 = 𝜋𝑐𝑜𝑡𝛼𝜋
STATEMENT:
Let f(Z) be a meromorphic function whose only singularities in the
finite part of the plane are simple poles at 𝒂 𝟏, 𝒂 𝟐, … . . , 𝒂 𝒏 which can
be arranged as 𝟎 < 𝒂 𝟏 < 𝒂 𝟐 < ⋯ < 𝒂 𝒏 which residues
𝒃 𝟏, 𝒃 𝟐, … . . , 𝒃 𝒏 respectively.
Consider a sequence of closed contours 𝑪 𝟏, 𝑪 𝟐, … . . , 𝑪 𝒏
𝑪 𝒏 encloses 𝒂 𝟏, 𝒂 𝟐, … . . , 𝒂 𝒏 and no other poles.
The minimum distances 𝑹 𝒏 of 𝑪 𝒏 from the origin tends to infinity
when 𝒏 → ∞. then for all values of Z except poles,
𝒇 𝒁 = 𝒇 𝟎 +
𝒏=−∞
∞
𝒃 𝒏[
𝟏
𝒁 − 𝒂 𝒏
+
𝟏
𝒂 𝒏
]
PROOF:
Suppose that we have an integral
𝐼 =
1
2𝜋𝑖 𝑐
𝑓( 𝑡 𝑑𝑡
𝑡 𝑡 − 𝑍
𝑤ℎ𝑒𝑟𝑒 𝑍 𝑖𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡
𝑤𝑖𝑡ℎ𝑖𝑛 𝐶 𝑛. the poles of the integrand are at:
𝑖. 𝑡 = 𝑎 𝑚 where m=1,2,3,…. (given) simple poles
𝑖𝑖. 𝑡 = 0 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 1
𝑖𝑖𝑖. 𝑡 = 𝑍 𝑆𝑖𝑚𝑝𝑙𝑒 𝑝𝑜𝑙𝑒
The residues at the poles are
𝑅1 𝑓, 𝑎 𝑚 = lim
𝑡→𝑎 𝑚
[
𝑡−𝑎 𝑚 𝑓(𝑡
𝑡(𝑡−𝑍)
] =
𝑏 𝑚
𝑎 𝑚(𝑎 𝑚−𝑍)
[ 𝑏 𝑚 given]
𝑅2 𝑓, 0 = lim
𝑡→0
[
𝑓(𝑡)
𝑡 − 𝑍
] =
𝑓(0)
−𝑍
𝑅3 𝑓, 𝑍 = lim
𝑡→𝑍
𝑓 𝑡
𝑡
=
𝑓(𝑍)
𝑍
By Cauchy’s residue theorem,
Sum of all residues= 𝑚=1
𝑛 𝑏 𝑚
𝑎 𝑚(𝑎 𝑚−𝑍)
−
𝑓 0
𝑍
+
𝑓(𝑍)
𝑍
𝐼 = 2𝜋𝑖 ×
𝑏 𝑚
𝑎 𝑚(𝑎 𝑚 − 𝑍)
−
𝑓 0
𝑍
+
𝑓 𝑍
𝑍
(𝐴)
Now consider
𝐼 =
1
2𝜋𝑖 𝑐 𝑛
𝑓 𝑡 𝑑𝑡
𝑡(𝑡 − 𝑍)
Taking modulus of both sides
𝐼 =
1
2𝜋 𝑐 𝑛
𝑓 𝑡 𝑑𝑡
𝑡(𝑡 − 𝑍)
∴ 𝑡 − 𝑍 > 𝑡 − 𝑍
1
𝑡 − 𝑍
<
1
𝑡 − 𝑍
∴ 𝐼 ≤
1
2𝜋 𝑐 𝑛
𝑑𝑡 𝑓 𝑡
𝑡 (𝑡 − 𝑍)
(∴ 𝑓 𝑡 ≤ 𝑀 𝑎𝑛𝑑
𝑐 𝑛
𝑑𝑡 = 2𝜋𝑅 𝑛)
≤
2𝜋𝑅 𝑛 𝑀
2𝜋𝑅 𝑛 𝑅 𝑛 − 𝑍
→ 0 𝑎𝑠 𝑅 𝑛 → ∞ ∴ 𝐴 𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚.
𝑓(𝑍)
𝑍
=
𝑓(0)
𝑍
+
𝑚=1
𝑛
𝑏 𝑚
𝑎 𝑚(𝑍 − 𝑎 𝑚)
In general
𝒇 𝒁 = 𝒇 𝟎 +
𝒎=−∞
∞
𝒃 𝒎
𝟏
𝒁 − 𝒂 𝒎
+
𝟏
𝒂 𝒎
𝒂𝒔 𝒎 → ∞ (𝑩)
(B) is the Mittag-Lefflers’ Theorem
WORKING RULE:
STEP I: Given a function𝑓(𝑍). Find 𝑓(0) then
find the poles of integrand and corresponding
residues.
STEP II: 𝑓 𝑍 = 𝑓 0 + 𝑛=1
∞ 1
𝑍−𝑎 𝑛
+
1
𝑎 𝑛
EXAMPLE:
Prove that 𝒄𝒐𝒕𝒁 =
𝟏
𝒁
+ 𝟐𝒁 𝒏=𝟏
∞ 𝟏
𝒁 𝟐−𝒏 𝟐 𝝅 𝟐
Solution:
Consider 𝑓 𝑍 = 𝑐𝑜𝑡𝑍 − 1
𝑍 =
𝑍𝑐𝑜𝑠𝑍−𝑠𝑖𝑛𝑍
𝑍𝑠𝑖𝑛𝑍
lim
𝑧→0
𝑓 𝑍 = lim
𝑍→0
[
𝑍𝑐𝑜𝑠𝑍 − 𝑠𝑖𝑛𝑍
𝑍𝑠𝑖𝑛𝑍
](
0
0
𝑓𝑜𝑟𝑚)
= lim[
𝑍→0
𝑍 −𝑠𝑖𝑛𝑍 + 𝑐𝑜𝑠𝑍 − 𝑠𝑖𝑛𝑍
𝑍𝑐𝑜𝑠𝑍 + 𝑠𝑖𝑛𝑍
](
0
0
𝑓𝑜𝑟𝑚)
= lim
𝑍→0
𝑍(−𝑐𝑜𝑠𝑍) − 𝑠𝑖𝑛𝑍
𝑐𝑜𝑠𝑍 + 𝑍 −𝑠𝑖𝑛𝑍 + 𝑐𝑜𝑠𝑍
=
0
2
= 0
Since f(0)=0, therefore there is no singularity at Z=0 the poles of f(Z) are at 𝑍 = 𝑛𝜋, 𝑛 = ±1, ±2, … .
𝑅 𝑓, 𝑛𝜋 = [ 𝑍 − 𝑛𝜋
𝑍𝑐𝑜𝑠𝑍 − 𝑠𝑖𝑛𝑍
𝑍𝑠𝑖𝑛𝑍
] 𝑍=𝑛𝜋(
0
0
𝑓𝑜𝑟𝑚)
= [ 𝑍 − 𝑛𝜋 {
𝑍 −𝑠𝑖𝑛𝑍) + 𝑐𝑜𝑠𝑍 − 𝑐𝑜𝑠𝑍
𝑍𝑐𝑜𝑠𝑍 + 𝑠𝑖𝑛𝑍
] 𝑍=𝑛𝜋
= [
𝑍𝑐𝑜𝑠𝑍 − 𝑠𝑖𝑛𝑍
𝑍𝑐𝑜𝑠𝑍 + 𝑠𝑖𝑛𝑍
] 𝑍=𝑛𝜋 =
𝑛𝜋(−1) 𝑛
𝑛𝜋(−1) 𝑛
= 1
Now using formula,
𝑓 𝑍 = 𝑓 0 +
−∞
∞
𝑏 𝑛[
1
𝑍 − 𝑎 𝑛
+
1
𝑎 𝑛
]
= 0 +
−∞
∞
1[
1
𝑍 − 𝑛𝜋
+
1
𝑛𝜋
]
=
𝑛=1
∞
[
1
𝑍 − 𝑛𝜋
+
1
𝑛𝜋
+
1
𝑍 + 𝑛𝜋
−
1
𝑛𝜋
]
= 2𝑍
𝑛=1
∞
1
𝑍2 − 𝑛2 𝜋2
Contour integration and Mittag Leffler theorem
Contour integration and Mittag Leffler theorem

More Related Content

What's hot

Math induction principle (slides)
Math induction principle (slides)Math induction principle (slides)
Math induction principle (slides)IIUM
 
Basics & asymptotic notations
Basics & asymptotic notationsBasics & asymptotic notations
Basics & asymptotic notationsRajendran
 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations8laddu8
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integralKamel Attar
 
Power series convergence ,taylor & laurent's theorem
Power series  convergence ,taylor & laurent's theoremPower series  convergence ,taylor & laurent's theorem
Power series convergence ,taylor & laurent's theoremPARIKH HARSHIL
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022anasKhalaf4
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equationsNisarg Amin
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiationTanuj Parikh
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)tejaspatel1997
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficientSanjay Singh
 
Matrix Operations
Matrix OperationsMatrix Operations
Matrix OperationsRon Eick
 
Laplace transform
Laplace transformLaplace transform
Laplace transformAmit Kundu
 
linear transformation
linear transformationlinear transformation
linear transformationmansi acharya
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference InterpolationVARUN KUMAR
 

What's hot (20)

Math induction principle (slides)
Math induction principle (slides)Math induction principle (slides)
Math induction principle (slides)
 
Basics & asymptotic notations
Basics & asymptotic notationsBasics & asymptotic notations
Basics & asymptotic notations
 
partial diffrentialequations
partial diffrentialequationspartial diffrentialequations
partial diffrentialequations
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Convolution
ConvolutionConvolution
Convolution
 
Solved exercises line integral
Solved exercises line integralSolved exercises line integral
Solved exercises line integral
 
Power series convergence ,taylor & laurent's theorem
Power series  convergence ,taylor & laurent's theoremPower series  convergence ,taylor & laurent's theorem
Power series convergence ,taylor & laurent's theorem
 
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022 ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
ملزمة الرياضيات للصف السادس التطبيقي الفصل الاول الاعداد المركبة 2022
 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
 
Partial differentiation
Partial differentiationPartial differentiation
Partial differentiation
 
Fourier series
Fourier seriesFourier series
Fourier series
 
complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)complex variable PPT ( SEM 2 / CH -2 / GTU)
complex variable PPT ( SEM 2 / CH -2 / GTU)
 
Linear differential equation with constant coefficient
Linear differential equation with constant coefficientLinear differential equation with constant coefficient
Linear differential equation with constant coefficient
 
Matrix Operations
Matrix OperationsMatrix Operations
Matrix Operations
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Relations
RelationsRelations
Relations
 
Group Theory
Group TheoryGroup Theory
Group Theory
 
linear transformation
linear transformationlinear transformation
linear transformation
 
Newton's Forward/Backward Difference Interpolation
Newton's Forward/Backward  Difference InterpolationNewton's Forward/Backward  Difference Interpolation
Newton's Forward/Backward Difference Interpolation
 
Lyapunov stability
Lyapunov stability Lyapunov stability
Lyapunov stability
 

Similar to Contour integration and Mittag Leffler theorem

B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationRai University
 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...IJMER
 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxjyotidighole2
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Rai University
 
Semana 10 numeros complejos i álgebra-uni ccesa007
Semana 10   numeros complejos i álgebra-uni ccesa007Semana 10   numeros complejos i álgebra-uni ccesa007
Semana 10 numeros complejos i álgebra-uni ccesa007Demetrio Ccesa Rayme
 
Física Integrales_Katherine Jaya
Física Integrales_Katherine JayaFísica Integrales_Katherine Jaya
Física Integrales_Katherine JayaXimeJaya
 
Change variablethm
Change variablethmChange variablethm
Change variablethmJasonleav
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Demetrio Ccesa Rayme
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggrisimmochacha
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxHebaEng
 
Dynamics slideshare
Dynamics slideshareDynamics slideshare
Dynamics slideshareMalarMohana
 

Similar to Contour integration and Mittag Leffler theorem (20)

lec38.ppt
lec38.pptlec38.ppt
lec38.ppt
 
B.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integrationB.tech ii unit-5 material vector integration
B.tech ii unit-5 material vector integration
 
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
 
Complex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptxComplex differentiation contains analytic function.pptx
Complex differentiation contains analytic function.pptx
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
The derivatives module03
The derivatives module03The derivatives module03
The derivatives module03
 
lec35.ppt
lec35.pptlec35.ppt
lec35.ppt
 
lec39.ppt
lec39.pptlec39.ppt
lec39.ppt
 
Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5Btech_II_ engineering mathematics_unit5
Btech_II_ engineering mathematics_unit5
 
Semana 10 numeros complejos i álgebra-uni ccesa007
Semana 10   numeros complejos i álgebra-uni ccesa007Semana 10   numeros complejos i álgebra-uni ccesa007
Semana 10 numeros complejos i álgebra-uni ccesa007
 
Ch 5 integration
Ch 5 integration  Ch 5 integration
Ch 5 integration
 
Física Integrales_Katherine Jaya
Física Integrales_Katherine JayaFísica Integrales_Katherine Jaya
Física Integrales_Katherine Jaya
 
Change variablethm
Change variablethmChange variablethm
Change variablethm
 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
 
Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007Semana 24 funciones iv álgebra uni ccesa007
Semana 24 funciones iv álgebra uni ccesa007
 
Integral dalam Bahasa Inggris
Integral dalam Bahasa InggrisIntegral dalam Bahasa Inggris
Integral dalam Bahasa Inggris
 
Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 
lec37.ppt
lec37.pptlec37.ppt
lec37.ppt
 
Dynamics slideshare
Dynamics slideshareDynamics slideshare
Dynamics slideshare
 
Dynamics problems
Dynamics problemsDynamics problems
Dynamics problems
 

More from AmenahGondal1

Ethnographic Research
Ethnographic ResearchEthnographic Research
Ethnographic ResearchAmenahGondal1
 
Error analysis in numerical integration
Error analysis in numerical integrationError analysis in numerical integration
Error analysis in numerical integrationAmenahGondal1
 
ISOMORPHIC (SIMILAR) ORDERD SETS
ISOMORPHIC (SIMILAR) ORDERD SETSISOMORPHIC (SIMILAR) ORDERD SETS
ISOMORPHIC (SIMILAR) ORDERD SETSAmenahGondal1
 
MOTION OF A RIGID BODY IN SPACE
MOTION OF A RIGID BODY IN SPACEMOTION OF A RIGID BODY IN SPACE
MOTION OF A RIGID BODY IN SPACEAmenahGondal1
 
Population Education
Population EducationPopulation Education
Population EducationAmenahGondal1
 
Descriptive Research
Descriptive  ResearchDescriptive  Research
Descriptive ResearchAmenahGondal1
 
Curvature and its types
Curvature and its typesCurvature and its types
Curvature and its typesAmenahGondal1
 
MATHEMATICS TEACHING AIDS
MATHEMATICS TEACHING AIDSMATHEMATICS TEACHING AIDS
MATHEMATICS TEACHING AIDSAmenahGondal1
 
IMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTURE
IMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTUREIMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTURE
IMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTUREAmenahGondal1
 
DEMONSTRATION METHOD
DEMONSTRATION METHODDEMONSTRATION METHOD
DEMONSTRATION METHODAmenahGondal1
 
UNDETERMINED COEFFICIENT
UNDETERMINED COEFFICIENTUNDETERMINED COEFFICIENT
UNDETERMINED COEFFICIENTAmenahGondal1
 
Composition of Forces
Composition of ForcesComposition of Forces
Composition of ForcesAmenahGondal1
 

More from AmenahGondal1 (20)

Ethnographic Research
Ethnographic ResearchEthnographic Research
Ethnographic Research
 
ARABIC
ARABIC ARABIC
ARABIC
 
Error analysis in numerical integration
Error analysis in numerical integrationError analysis in numerical integration
Error analysis in numerical integration
 
Sdgs and Mdgs
Sdgs and MdgsSdgs and Mdgs
Sdgs and Mdgs
 
Diversity
DiversityDiversity
Diversity
 
ISOMORPHIC (SIMILAR) ORDERD SETS
ISOMORPHIC (SIMILAR) ORDERD SETSISOMORPHIC (SIMILAR) ORDERD SETS
ISOMORPHIC (SIMILAR) ORDERD SETS
 
Connectedness
ConnectednessConnectedness
Connectedness
 
MOTION OF A RIGID BODY IN SPACE
MOTION OF A RIGID BODY IN SPACEMOTION OF A RIGID BODY IN SPACE
MOTION OF A RIGID BODY IN SPACE
 
Gender Disparity
Gender DisparityGender Disparity
Gender Disparity
 
Population Education
Population EducationPopulation Education
Population Education
 
ORDERED SETS
ORDERED SETSORDERED SETS
ORDERED SETS
 
Universal literacy
Universal literacyUniversal literacy
Universal literacy
 
Descriptive Research
Descriptive  ResearchDescriptive  Research
Descriptive Research
 
T test
T testT test
T test
 
Curvature and its types
Curvature and its typesCurvature and its types
Curvature and its types
 
MATHEMATICS TEACHING AIDS
MATHEMATICS TEACHING AIDSMATHEMATICS TEACHING AIDS
MATHEMATICS TEACHING AIDS
 
IMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTURE
IMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTUREIMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTURE
IMPACT OF TECHNOLOGY AND MEDIA ON SCHOOL AND CULTURE
 
DEMONSTRATION METHOD
DEMONSTRATION METHODDEMONSTRATION METHOD
DEMONSTRATION METHOD
 
UNDETERMINED COEFFICIENT
UNDETERMINED COEFFICIENTUNDETERMINED COEFFICIENT
UNDETERMINED COEFFICIENT
 
Composition of Forces
Composition of ForcesComposition of Forces
Composition of Forces
 

Recently uploaded

Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​kaibalyasahoo82800
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )aarthirajkumar25
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...Sérgio Sacani
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |aasikanpl
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoSérgio Sacani
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
The Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravityThe Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravitySubhadipsau21168
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 

Recently uploaded (20)

Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Nanoparticles synthesis and characterization​ ​
Nanoparticles synthesis and characterization​  ​Nanoparticles synthesis and characterization​  ​
Nanoparticles synthesis and characterization​ ​
 
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )Recombination DNA Technology (Nucleic Acid Hybridization )
Recombination DNA Technology (Nucleic Acid Hybridization )
 
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
PossibleEoarcheanRecordsoftheGeomagneticFieldPreservedintheIsuaSupracrustalBe...
 
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
Call Us ≽ 9953322196 ≼ Call Girls In Mukherjee Nagar(Delhi) |
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Isotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on IoIsotopic evidence of long-lived volcanism on Io
Isotopic evidence of long-lived volcanism on Io
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
The Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravityThe Black hole shadow in Modified Gravity
The Black hole shadow in Modified Gravity
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 

Contour integration and Mittag Leffler theorem

  • 1.
  • 2. Presented to: Ma’am Hunza Presentedby: AmenahGondal Class: BS.ED VI Roll no: EDU(s)-2017-F-11
  • 3. OBJECTIVES WE WILL DISCUSS: i. CONOTUR INTEGRATION AND ITS TYPES AND EXAMPLES ii. MITTAG LEFFLER THEOREM AND ITS EXAMPLE
  • 4.
  • 5. CONTOUR INTEGRATION “Contour integration is the process of calculating the values of a contour integral around a given contour in the complex plane.”
  • 6. TYPES OF CONTOUR INTEGRATION Form of the integral is 0 2𝜋 𝑓 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 𝑑𝜃 where 𝑓 is a rational function of 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃. WORKING RULE: STEP I: Make the substitutions 𝑍 = 𝑒 𝑖𝜃 . 𝑐𝑜𝑠𝜃 = 1 2 (𝑍 + 1 𝑍 ) 𝑠𝑖𝑛𝜃 = 1 2𝑖 (𝑍 − 1 𝑍 ) 𝑑𝜃 = 𝑑𝑍 𝑖𝑍 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 0 2𝜋 𝑓 𝜃 𝑑𝜃 = 𝑐 𝑓 𝑍 𝑑𝑍 Where C is positively oriented unit circle 𝑍 = 1. TYPE I
  • 7. STEP II: Calculate the poles of 𝑓 𝑍 . Say at 𝑍0, 𝑍1, 𝑍2, … . , select those poles which lie in the unit circle 𝑍 = 1.then find the residues at the selected poles 𝑅1 𝑓, 𝑍0 , 𝑅2 𝑓, 𝑍1 𝑒𝑡𝑐. STEP III: 0 2𝜋 𝑓 𝑠𝑖𝑛𝜃, 𝑐𝑜𝑠𝜃 𝑑𝜃 = 𝑐 𝑓 𝑍 𝑑𝑍 = 2𝜋𝑖 𝑗=1 𝑛 𝑅𝑗 (𝑢𝑠𝑖𝑛𝑔 𝐶𝑎𝑢𝑐ℎ𝑦𝑠′ 𝑅𝑒𝑠𝑖𝑑𝑢𝑒 𝑇ℎ𝑒𝑜𝑟𝑒𝑚) EXAMPLE: Prove that 𝟎 𝟐𝝅 𝒅𝝑 (𝒂+𝒃𝒄𝒐𝒔𝜽) 𝟐 = 𝟐𝝅𝒂 (𝒂 𝟐−𝒃 𝟐) 𝟑 𝟐. SOLUTION: As it is prove that 𝟎 𝟐𝝅 𝒅𝝑 𝒂+𝒃𝒄𝒐𝒔𝜽 = 𝟐𝝅 (𝒂 𝟐−𝒃 𝟐) 𝟏 𝟐 (A) Differentiating A w.r.t a 0 2𝜋 −1 𝑑𝜗 𝑎 + 𝑏𝑐𝑜𝑠𝜃 2 = 2𝜋(−1 2)(𝑎2 − 𝑏2 )3 2 . 2𝑎 Cancelling negative signs from both sides, 0 2𝜋 𝑑𝜗 𝑎 + 𝑏𝑐𝑜𝑠𝜃 2 = = 2𝜋𝑎 (𝑎2 − 𝑏2)3 2
  • 8. TYPE II Form of the integral will be either −∞ ∞ 𝑓 𝑥 𝑑𝑥 𝑜𝑟 0 ∞ 𝑓 𝑥 𝑑𝑥. WORKING RULE: STEP I: Replace x by Z in the integral and test whether 𝑍 𝑓 𝑍 → 0𝑎𝑠 𝑍 → ∞. STEP II: Find the poles of 𝑓(𝑍), locate those poles which lie in the upper half plane. Find the residues at the locates poles. STEP III: Formula to be used is −∞ ∞ 𝑓 𝑥 𝑑𝑥 = 2𝜋𝑖 𝑅+ 𝑜𝑟 0 ∞ 𝑓 𝑥 𝑑𝑥 = 𝜋𝑖 𝑅+ 𝑤ℎ𝑒𝑟𝑒 𝑅+ 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑠𝑢𝑚 𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠 𝑎𝑡 𝑝𝑜𝑙𝑒𝑠 𝑙𝑦𝑖𝑛𝑔 𝑖𝑛 𝑡ℎ𝑒 𝑢𝑝𝑝𝑒𝑟 ℎ𝑎𝑙𝑓 𝑝𝑙𝑎𝑛𝑒.
  • 9. EXAMPLE: Prove that −∞ ∞ 𝒅𝒙 (𝒙 𝟐+𝟏) 𝟑 = 𝟑𝝅 𝟖 . SOLUTION: Given 𝑓 𝑥 = 1 (𝒙 𝟐+𝟏) 𝟑 𝑓 𝑍 = 1 (𝒁 𝟐 + 𝟏) 𝟑 𝑍𝑓 𝑍 → 0 𝑎𝑠 𝑍 → ∞ The poles of f(Z) are at Z=±𝑖 of order 3 the only pole which lies in the upper half plane is Z=i of order 3. The residue at Z=i is 𝑅 𝑓, 𝑖 = 1 2! 𝑑2 𝑑𝑍2 [(𝑍 − 𝑖)3 1 𝑍 − 𝑖 3 𝑍 + 𝑖 3 ] 𝑍=𝑖 = 1 2 𝑑2 𝑑𝑍2 1 𝑍 + 𝑖 3 = 1 2 −3 −4 1 (2𝑖)5 = 6 32𝑖 −∞ ∞ 𝑑𝑥 (𝑥2 + 1)3 = 2𝜋𝑖 × 6 32𝑖 = 3𝜋 8
  • 10. TYPE III: Form of the integral is either −∞ ∞ 𝑃(𝑥) 𝑄(𝑥) sin 𝑚𝑥 𝑑𝑥 𝑜𝑟 −∞ ∞ 𝑃(𝑥) 𝑄(𝑥) 𝑐𝑜𝑠𝑚𝑥 𝑑𝑥 𝑜𝑟 𝑙𝑖𝑚𝑖𝑡 𝑖𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 ∞ , 𝑚 > 0 𝑤ℎ𝑒𝑟𝑒, • 𝑃 𝑥 𝑎𝑛𝑑 𝑄(𝑥) are polynomials of x. • 𝐷𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑄 𝑥 exceeds the degree of 𝑃 𝑥 . • 𝑇ℎ𝑒 equation 𝑄 𝑥 = 0 has no real roots. WORKING RULE: STEP I: Replace x by Z and sinmx or cosmx by 𝑒 𝑖𝑚𝑧 . Find the poles of 𝑓(𝑍)𝑒 𝑖𝑚𝑧 and choose those poles which lie in the upper half plane. Find the residue at the chosen plane. STEP II: Then by Cauchy Residue theorem  −∞ ∞ 𝑓 𝑥 𝑠𝑖𝑛𝑚𝑥𝑑𝑥 = 𝐼𝑚 (2𝜋𝑖 𝑅) or −∞ ∞ 𝑓 𝑥 𝑐𝑜𝑠𝑚𝑥𝑑𝑥 = 𝑅𝑒 (2𝜋𝑖 𝑅)  0 ∞ 𝑓 𝑥 𝑠𝑖𝑛𝑚𝑥𝑑𝑥 = 𝐼𝑚 (𝜋𝑖 𝑅) or 0 ∞ 𝑓 𝑥 𝑐𝑜𝑠𝑚𝑥𝑑𝑥 = 𝑅𝑒 (𝜋𝑖 𝑅)
  • 11. EXAMPLE: Prove that −∞ ∞ 𝐜𝐨𝐬 𝒙 𝒅𝒙 (𝒙 𝟐+𝒂 𝟐)(𝒙 𝟐+𝒃 𝟐) = 𝝅 𝒂 𝟐−𝒃 𝟐 ( 𝒆−𝒃 𝒃 𝒆−𝒂 𝒂 ) (a>b>0) SOLUTION: Given integral can be written as −∞ ∞ 𝑒 𝑖𝑧 𝑑𝑍 (𝑍2 + 𝑎2)(𝑍2+𝑏2) The poles are at 𝑍 = ±𝑎𝑖 𝑎𝑛𝑑 𝑍 = ±𝑏𝑖.The only poles which lie in the upper half plane are at 𝑍 = 𝑎𝑖 𝑎𝑛𝑑 𝑍𝑏𝑖. 𝑅1 𝑓, 𝑎𝑖 = lim 𝑍→𝑎𝑖 𝑒 𝑖𝑧 𝑍 + 𝑎𝑖 𝑍2 + 𝑏2 = 𝑒−𝑎 2𝑎𝑖(𝑏2 − 𝑎2) 𝑅2 𝑓, 𝑏𝑖 = lim 𝑍→𝑏𝑖 𝑒 𝑖𝑧 𝑍 + 𝑎2 𝑍2 + 𝑏𝑖 = 𝑒−𝑏 2𝑏𝑖(𝑎2 − 𝑏2) −∞ ∞ cos 𝑥 𝑑𝑥 (𝑥2 + 𝑎2)(𝑥2+𝑏2) = 𝑅𝑒[2𝜋𝑖 × 1 2𝑖 ( 𝑒−𝑏 𝑏 𝑎2 − 𝑏2 − 𝑒−𝑎 𝑎 𝑎2 − 𝑏2 ] = 𝜋 𝑎𝑒−𝑏 − 𝑏𝑒−𝑎 𝑎𝑏 𝑎2 − 𝑏2 = 𝜋 𝑎2 − 𝑏2 [ 𝑒−𝑏 𝑏 − 𝑒−𝑎 𝑎 ]
  • 12. Form of the integral is either −∞ ∞ 𝑓 𝑥 [sin 𝑚𝑥 𝑜𝑟 cos 𝑚𝑥] 𝑑𝑥 𝑜𝑟 0 ∞ 𝑓 𝑥 [𝑠𝑖𝑛𝑚𝑥 𝑜𝑟 𝑐𝑜𝑠𝑚𝑥]𝑑𝑥. WORKING RULE: STEP I: Replace x by Z and cos mx or sin mx by 𝑒 𝑖𝑚𝑧 . Find poles of the integrand. Locate those poles which lie in the upper half plane and on the real axis. STEP II: Find the residues at poles in the upper half plane say 𝑅 𝑝 and residues at poles on the x-axis say 𝑅 𝑥. STEP III: −∞ ∞ 𝑓 𝑥 𝑠𝑖𝑛 𝑚𝑥 𝑑𝑥 = 𝐼𝑚[2𝜋𝑖𝑅 𝑝 + 𝜋𝑖𝑅 𝑥] 𝑜𝑟 −∞ ∞ 𝑓 𝑥 𝑐𝑜𝑠 𝑚𝑥 𝑑𝑥 = 𝑅𝑒 [2𝜋𝑖𝑅 𝑝 + 𝜋𝑖𝑅 𝑥] for integral 0 ∞ 𝑑𝑖𝑣𝑖𝑑𝑒 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑏𝑦 2. TYPE IV: (CASE OF POLES ON THE REAL AXIS OR IDENTATION OF CONTOURS)
  • 13. EXAMPLE: Prove that 𝟎 ∞ 𝒄𝒐𝒔𝒂𝒙−𝒄𝒐𝒔𝒃𝒙 𝒙 𝟐 𝒅𝒙 = 𝝅 𝟐 𝒃 − 𝒂 𝒘𝒉𝒆𝒓𝒆 𝒃 > 𝒂 > 𝟎. SOLUTION: The given integral 0 ∞ 𝑐𝑜𝑠𝑎𝑥 − 𝑐𝑜𝑠𝑏𝑥 𝑥2 𝑑𝑥 𝑐𝑎𝑛 𝑏𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠 𝑐 𝑒 𝑎𝑖𝑧 − 𝑒 𝑏𝑖𝑧 𝑍2 𝑑𝑍 The pole is at Z=0 of order 2 lies on the real axis, no pole lies in upper half plane. 𝑅 𝑥 𝑓, 0 = 𝑑 𝑑𝑍 [ 𝑒 𝑎𝑖𝑧 − 𝑒 𝑏𝑖𝑧 𝑍2 𝑍2] 𝑍=0 = [𝑎𝑖𝑒 𝑎𝑖𝑧 − 𝑏𝑖𝑒 𝑏𝑖𝑧] 𝑍=0 = 𝑖(𝑎 − 𝑏) 0 ∞ 𝑐𝑜𝑠𝑎𝑥 − 𝑐𝑜𝑠𝑏𝑥 𝑥2 𝑑𝑥 = 1 2 𝑅𝑒 𝜋𝑖 × 𝑖 𝑎 − 𝑏 = 𝜋 2 𝑏 − 𝑎
  • 14. In this type, we shall consider cases where the contour integration involves multiple valued function. CASE I: When the pole lies on the negative part of the real axis Form of the integral is either 0 ∞ 𝑥 𝛼−1 𝑓 𝑥 𝑑𝑥 𝑜𝑟 0 ∞ 𝑥 𝛼 𝑓 𝑥 𝑑𝑥 𝑤ℎ𝑒𝑟𝑒 𝛼 𝑖𝑠 𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑛𝑜𝑛 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟) WORKING RULE: STEP I: Replace x by Z and 𝑥 𝛼−1 = 𝑍 𝛼−1 = 𝑒 𝛼−1 𝑙𝑜𝑔𝑧 = 𝑒 𝛼−1 log 𝑧 +𝑖𝜋 (∴ 𝑝𝑜𝑙𝑒 𝑙𝑖𝑒𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑎𝑙 𝑎𝑥𝑖𝑠 𝑙𝑜𝑔 𝑍 = 𝑙𝑜𝑔 −𝑍 𝑎𝑛𝑑 𝜃 = 𝜋) ∴ 𝜑 𝑍 = 𝑒 𝛼−1 log −𝑧 +𝑖𝜋 𝑓(𝑍) STEP II: Calculate the poles of f(Z) and consider all the poles which lie in the whole complex plane. Consider residues at these poles. STEP III: 0 ∞ 𝑥 𝛼−1 𝑓 𝑥 𝑑𝑥 = −𝜋 sin 𝜋𝑎 𝑒−𝑎𝜋𝑖 𝑅 TYPE V: (WHEN THE INTEGRAND INVOLVES MULTIPLE VALUED FUNCTION)
  • 15. EXAMPLE: Prove that 𝟎 ∞ 𝒙 𝒂−𝟏 𝟏+𝒙 𝒅𝒙 = 𝝅 𝒔𝒊𝒏𝒂𝝅 (𝟎 < 𝒂 < 𝟏). SOLUTION: The given integral is 0 ∞ 𝑥 𝑎−1 1 + 𝑥 𝑑𝑥 = 𝑐 𝑍 𝑎−1 1 + 𝑍 𝑑𝑍 𝜑 𝑍 = 𝑒 𝑎−1 [log −𝑧 +𝜋𝑖]. 1 1 + 𝑍 ∴ 𝑓 𝑍 = 1 1 + 𝑍 The pole of 𝑓 𝑍 = 1 1+𝑍 𝑖𝑠 𝑎𝑡 𝑧 = −1 𝑅 𝜑, −1 = [𝑒 𝑎−1 log −𝑧 +𝜋𝑖 . 1 + 𝑍 1 + 𝑍 ] 𝑍=−1 ∴ log 1 = 0 𝑅 𝜑, −1 = 𝑒(𝑎−1)𝜋𝑖 = 𝑒 𝑎𝜋𝑖. 𝑒−𝜋𝑖 = −𝑒 𝑎𝜋𝑖 0 ∞ 𝑥 𝑎−1 1 + 𝑥 𝑑𝑥 = −𝜋 𝑠𝑖𝑛𝛼𝜋 𝑒−𝛼𝜋𝑖 −𝑒 𝑎𝜋𝑖 = 𝜋 𝑠𝑖𝑛𝛼𝜋 = 𝜋𝑐𝑜𝑠𝑒𝑐𝛼𝜋
  • 16. CASE II: When the pole lies on the positive part of the real axis Form of the integral is either 0 ∞ 𝑥 𝛼−1 𝑓 𝑥 𝑑𝑥 𝑜𝑟 0 ∞ 𝑥 𝛼 𝑓 𝑥 𝑑𝑥 𝑤ℎ𝑒𝑟𝑒 𝛼 𝑖𝑠 𝑎 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑛𝑜𝑛 − 𝑖𝑛𝑡𝑒𝑔𝑒𝑟) WORKING RULE: STEP I: Replace x by Z and 𝑥 𝛼−1 = 𝑍 𝛼−1 = 𝑒 𝛼−1 𝑙𝑜𝑔𝑧 = 𝑒 𝛼−1 log 𝑧 +𝑖𝜃 (𝑤ℎ𝑒𝑟𝑒 𝑍 𝑖𝑠 + 𝑣𝑒 𝑎𝑛𝑑 𝜃 = 0) ∴ 𝜑 𝑍 = 𝑒 𝛼−1 logz 𝑓(𝑍) STEP II: Find the poles of f(Z) and calculate residues at those poles. STEP III: 0 ∞ 𝑥 𝛼−1 𝑓 𝑥 𝑑𝑥 = −𝜋𝑐𝑜𝑡𝛼𝜋 𝑅
  • 17. EXAMPLE: Prove that 𝟎 ∞ 𝒙 𝒂−𝟏 𝟏−𝒙 𝒅𝒙 = 𝝅𝒄𝒐𝒕𝜶𝝅. SOLUTION: Replacing x by Z the given integral becomes 0 ∞ 𝑍 𝑎−1 1 − 𝑍 𝑑𝑍 𝑛𝑜𝑤 𝜑 𝑍 = 𝑒 𝛼−1 𝑙𝑜𝑔𝑧 . 𝑓(𝑍) 𝑓 𝑍 = 1 1 − 𝑍 The pole of 𝑓 𝑍 = 1 1−𝑍 𝑖𝑠 𝑎𝑡 𝑍 = 1 𝑅 𝜑, 1 = [𝑒 𝑎−1 [𝑙𝑜𝑔𝑧] 𝑍 − 1 1 − 𝑍 ] 𝑍=1 = −𝑒 𝑎−1 log 1 ∴ log 1 = 0 = −𝑒0 = −1 0 ∞ 𝑥 𝑎−1 1 − 𝑥 𝑑𝑥 = −𝜋𝑐𝑜𝑡𝛼𝜋 −1 = 𝜋𝑐𝑜𝑡𝛼𝜋
  • 18.
  • 19. STATEMENT: Let f(Z) be a meromorphic function whose only singularities in the finite part of the plane are simple poles at 𝒂 𝟏, 𝒂 𝟐, … . . , 𝒂 𝒏 which can be arranged as 𝟎 < 𝒂 𝟏 < 𝒂 𝟐 < ⋯ < 𝒂 𝒏 which residues 𝒃 𝟏, 𝒃 𝟐, … . . , 𝒃 𝒏 respectively. Consider a sequence of closed contours 𝑪 𝟏, 𝑪 𝟐, … . . , 𝑪 𝒏 𝑪 𝒏 encloses 𝒂 𝟏, 𝒂 𝟐, … . . , 𝒂 𝒏 and no other poles. The minimum distances 𝑹 𝒏 of 𝑪 𝒏 from the origin tends to infinity when 𝒏 → ∞. then for all values of Z except poles, 𝒇 𝒁 = 𝒇 𝟎 + 𝒏=−∞ ∞ 𝒃 𝒏[ 𝟏 𝒁 − 𝒂 𝒏 + 𝟏 𝒂 𝒏 ]
  • 20. PROOF: Suppose that we have an integral 𝐼 = 1 2𝜋𝑖 𝑐 𝑓( 𝑡 𝑑𝑡 𝑡 𝑡 − 𝑍 𝑤ℎ𝑒𝑟𝑒 𝑍 𝑖𝑠 𝑎 𝑝𝑜𝑖𝑛𝑡 𝑤𝑖𝑡ℎ𝑖𝑛 𝐶 𝑛. the poles of the integrand are at: 𝑖. 𝑡 = 𝑎 𝑚 where m=1,2,3,…. (given) simple poles 𝑖𝑖. 𝑡 = 0 𝑜𝑓 𝑜𝑟𝑑𝑒𝑟 1 𝑖𝑖𝑖. 𝑡 = 𝑍 𝑆𝑖𝑚𝑝𝑙𝑒 𝑝𝑜𝑙𝑒 The residues at the poles are 𝑅1 𝑓, 𝑎 𝑚 = lim 𝑡→𝑎 𝑚 [ 𝑡−𝑎 𝑚 𝑓(𝑡 𝑡(𝑡−𝑍) ] = 𝑏 𝑚 𝑎 𝑚(𝑎 𝑚−𝑍) [ 𝑏 𝑚 given] 𝑅2 𝑓, 0 = lim 𝑡→0 [ 𝑓(𝑡) 𝑡 − 𝑍 ] = 𝑓(0) −𝑍 𝑅3 𝑓, 𝑍 = lim 𝑡→𝑍 𝑓 𝑡 𝑡 = 𝑓(𝑍) 𝑍 By Cauchy’s residue theorem, Sum of all residues= 𝑚=1 𝑛 𝑏 𝑚 𝑎 𝑚(𝑎 𝑚−𝑍) − 𝑓 0 𝑍 + 𝑓(𝑍) 𝑍 𝐼 = 2𝜋𝑖 × 𝑏 𝑚 𝑎 𝑚(𝑎 𝑚 − 𝑍) − 𝑓 0 𝑍 + 𝑓 𝑍 𝑍 (𝐴)
  • 21. Now consider 𝐼 = 1 2𝜋𝑖 𝑐 𝑛 𝑓 𝑡 𝑑𝑡 𝑡(𝑡 − 𝑍) Taking modulus of both sides 𝐼 = 1 2𝜋 𝑐 𝑛 𝑓 𝑡 𝑑𝑡 𝑡(𝑡 − 𝑍) ∴ 𝑡 − 𝑍 > 𝑡 − 𝑍 1 𝑡 − 𝑍 < 1 𝑡 − 𝑍 ∴ 𝐼 ≤ 1 2𝜋 𝑐 𝑛 𝑑𝑡 𝑓 𝑡 𝑡 (𝑡 − 𝑍) (∴ 𝑓 𝑡 ≤ 𝑀 𝑎𝑛𝑑 𝑐 𝑛 𝑑𝑡 = 2𝜋𝑅 𝑛) ≤ 2𝜋𝑅 𝑛 𝑀 2𝜋𝑅 𝑛 𝑅 𝑛 − 𝑍 → 0 𝑎𝑠 𝑅 𝑛 → ∞ ∴ 𝐴 𝑡𝑎𝑘𝑒𝑠 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚. 𝑓(𝑍) 𝑍 = 𝑓(0) 𝑍 + 𝑚=1 𝑛 𝑏 𝑚 𝑎 𝑚(𝑍 − 𝑎 𝑚) In general 𝒇 𝒁 = 𝒇 𝟎 + 𝒎=−∞ ∞ 𝒃 𝒎 𝟏 𝒁 − 𝒂 𝒎 + 𝟏 𝒂 𝒎 𝒂𝒔 𝒎 → ∞ (𝑩) (B) is the Mittag-Lefflers’ Theorem
  • 22. WORKING RULE: STEP I: Given a function𝑓(𝑍). Find 𝑓(0) then find the poles of integrand and corresponding residues. STEP II: 𝑓 𝑍 = 𝑓 0 + 𝑛=1 ∞ 1 𝑍−𝑎 𝑛 + 1 𝑎 𝑛
  • 23. EXAMPLE: Prove that 𝒄𝒐𝒕𝒁 = 𝟏 𝒁 + 𝟐𝒁 𝒏=𝟏 ∞ 𝟏 𝒁 𝟐−𝒏 𝟐 𝝅 𝟐 Solution: Consider 𝑓 𝑍 = 𝑐𝑜𝑡𝑍 − 1 𝑍 = 𝑍𝑐𝑜𝑠𝑍−𝑠𝑖𝑛𝑍 𝑍𝑠𝑖𝑛𝑍 lim 𝑧→0 𝑓 𝑍 = lim 𝑍→0 [ 𝑍𝑐𝑜𝑠𝑍 − 𝑠𝑖𝑛𝑍 𝑍𝑠𝑖𝑛𝑍 ]( 0 0 𝑓𝑜𝑟𝑚) = lim[ 𝑍→0 𝑍 −𝑠𝑖𝑛𝑍 + 𝑐𝑜𝑠𝑍 − 𝑠𝑖𝑛𝑍 𝑍𝑐𝑜𝑠𝑍 + 𝑠𝑖𝑛𝑍 ]( 0 0 𝑓𝑜𝑟𝑚) = lim 𝑍→0 𝑍(−𝑐𝑜𝑠𝑍) − 𝑠𝑖𝑛𝑍 𝑐𝑜𝑠𝑍 + 𝑍 −𝑠𝑖𝑛𝑍 + 𝑐𝑜𝑠𝑍 = 0 2 = 0 Since f(0)=0, therefore there is no singularity at Z=0 the poles of f(Z) are at 𝑍 = 𝑛𝜋, 𝑛 = ±1, ±2, … . 𝑅 𝑓, 𝑛𝜋 = [ 𝑍 − 𝑛𝜋 𝑍𝑐𝑜𝑠𝑍 − 𝑠𝑖𝑛𝑍 𝑍𝑠𝑖𝑛𝑍 ] 𝑍=𝑛𝜋( 0 0 𝑓𝑜𝑟𝑚) = [ 𝑍 − 𝑛𝜋 { 𝑍 −𝑠𝑖𝑛𝑍) + 𝑐𝑜𝑠𝑍 − 𝑐𝑜𝑠𝑍 𝑍𝑐𝑜𝑠𝑍 + 𝑠𝑖𝑛𝑍 ] 𝑍=𝑛𝜋 = [ 𝑍𝑐𝑜𝑠𝑍 − 𝑠𝑖𝑛𝑍 𝑍𝑐𝑜𝑠𝑍 + 𝑠𝑖𝑛𝑍 ] 𝑍=𝑛𝜋 = 𝑛𝜋(−1) 𝑛 𝑛𝜋(−1) 𝑛 = 1
  • 24. Now using formula, 𝑓 𝑍 = 𝑓 0 + −∞ ∞ 𝑏 𝑛[ 1 𝑍 − 𝑎 𝑛 + 1 𝑎 𝑛 ] = 0 + −∞ ∞ 1[ 1 𝑍 − 𝑛𝜋 + 1 𝑛𝜋 ] = 𝑛=1 ∞ [ 1 𝑍 − 𝑛𝜋 + 1 𝑛𝜋 + 1 𝑍 + 𝑛𝜋 − 1 𝑛𝜋 ] = 2𝑍 𝑛=1 ∞ 1 𝑍2 − 𝑛2 𝜋2