SlideShare a Scribd company logo
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 662
Modelling and Fuzzy Logic Control of the Pitch of a Wind Turbine
Silpa Baburajan1, Dr. Abdulla Ismail2
1Graduate Student, Dept. of Electrical Engineering, Rochester Institute of Technology, Dubai, UAE
2Professor, Dept. of Electrical Engineering, Rochester Institute of Technology, Dubai, UAE
---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - Recently, the renewable energy, especially
wind energy, has been paid much attention due to the
energy shortage and environmental concern. As the
penetration of the wind energy into the electrical power
grid is extensively increased, the influence of the wind
turbine systems on the frequency and voltage stability
becomes more and more significant [1]– [4]. Wind turbine
rotor bears different types of loads; aerodynamic loads,
gravitational loads and centrifugal loads. These loads cause
fatigue and vibration in blades, which cause degradation to
the rotor blades. These loads can be overcome and the
amount of collected power can be controlled using a good
pitch controller (PC) which will tune the attack angle of a
wind turbine rotor blade into or out of the wind. Each blade
is exposed to different loads due to the variation of the wind
speed across the rotor blades. For this reason, individual
electric drives can be used in future to control the pitch of
the blades in a process called Individual Pitch Control. In
this thesis work, a new pitch angle control strategy based on
the fuzzy logic control is proposed to cope with the
nonlinear characteristics of wind turbine as well as to
reduce the loads on the blades. A mathematical model of
wind turbine (pitch control system) is developed and is
tested with Fuzzy Controller and conventional PID
Controller. After comparing the proposed strategy, the
simulation results show that the Fuzzy logic controller has
the optimum response as it controls the pitch system as well
as the disturbances and uncertain factors associated with
the system.
Key Words: Energy, Wind-Power, Pitch Controller,
PID, Fuzzy Controller.
1. INTRODUCTION
Energy crisis is the one of the biggest problems faced by
people in the twenty-first century. The increase in the
demand for electric energy along with the availability of
limited fossil fuels have together contributed to the need
for shifting from the human dependency on conventional
resources for energy to the renewable energy resources.
There are three important renewable energy resources
available to us: solar, gravitational and geothermal energy.
Wind energy is one of the indirect consequence from the
incident solar energy, promoting air circulation between
hot and cold zones [1]. The kinetic energy present in the
wind can be converted to mechanical energy by using a
wind turbine and further into electrical energy by using
wind turbine generator.
2. MOTIVATION
To increase the power capacity of the wind turbine, larger
rotors are being built which causes an increase in
aerodynamics and other loads across the blades. The
aerodynamics and other loads contribute to fatigue failure
which results in decrease in the lifespan and efficiency of
the wind turbine [5]. With the help of good pitch angle
controllers, the lift profile of the rotor blades can have
altered which results in reduction of the aerodynamics
and other loads across the blades. This mechanism uses
the fact that much of the fatigue causing loads are partly
deterministic, periodic and vary slowly over a fixed time
[7]. Therefore, in this thesis the main goal is to design an
optimum controller to control the pitch angle of the wind
turbine system so that the loads on the blades are reduced.
Reduction in the loads on the blades will ultimately help to
improve the performance, efficiency and power output
daily of the wind turbine.
3. Control Techniques of Wind Turbine
System:
It The wind energy captured by the turbine can be
increased by the following two control strategies: pitch
control and stall control. The initial step in both strategies
is to check the turbine’s power output several times per
second using an electronic controller. In case the output
power is too high, a signal is send to the blade pitch
mechanism because of which the rotor blades turn slightly
out of the wind, adapting the attack angle. Once the wind
drops, these blades are turned back into the wind.
Turbines with this type of control mechanism is known as
pitch controlled wind turbines.
In the stall control technique, the rotor blades are fixed
onto the hub at a fixed angle. But the geometry of the rotor
blade is aerodynamically designed in such a way that it
ensures that from the moment the wind speed becomes
too high, it is caused turbulence on the side of the rotor
blade which is not facing the wind, creating a stall which
prevents the lifting force of the rotor blade from acting on
the rotor [1]. In the modern turbines, the pitch control
technique is used because it helps in controlling the output
power simultaneously operating at variable speed to
control tip speed ratio and so the power extraction for
different wind speeds [8].
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 663
4. Model of the Wind Turbine System
The block diagram of a typical wind turbine system
model is shown in the figure below [6]. In the following
sections, the pitch actuator model and the drive terrain
model are explained.
Figure 1: Wind Turbine System Feedback Control
System Model
5. Pitch Actuator Model
The pitch actuator is used to turn blades along their
longitudinal axis. The actuator model describes a dynamic
behavior between a pitch demand, from the pitch
controller and measurement of pitch angle [6]
The change in pitch angle is given by
This is the required Transfer Function. The value of
time constant of pitch actuator, T p can be calculated from
initial parameters of Wind Turbine [6] shown in Table I.
Table 1: Parameters of Wind Turbine
6. Drive Terrain Model
Figure 2: Mechanical model of drive train
The parameters taken while modelling the drive train are
shown in Table 2.
Table 2: Mechanical Model Parameters of Drive Train
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 664
The dynamics of drive-train are described by following
differential equations
This is the required first order Transfer function of
Drivetrain. This can also be represented as
Thus, the mathematical model of wind turbine is derived.
7. Implementation of Conventional PID
Controller
The Simulink model of wind turbine pitch control system
with conventional PID Controller is shown in Fig. 3 and the
control parameters for the PID controller are shown in
Fg.4.
Figure 3: Simulink diagram of PID Controller
Implementation
Figure 4: PID Controller Parameters
8. Implementation of Fuzzy Logic Controller
First the rules-surface diagrams for each parameter Kp, Ki,
Kd are shown in the figures 5,6 and 7. Then all the 49 rules
are displayed in the figure 8. Finally, the Simulink model of
wind turbine pitch control system with fuzzy logic is
shown in Fig. 9 and the subsystems are shown in Fig 10
and Fig 11.
Figure 5:Surface Rule Diagram for Kp
Figure 6:Surface Rule for Ki
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 665
Figure 7:Surface Rule Diagram for Kd
Figure 8:Rule Viewer for Fuzzy Controller
Figure 9: Simulation diagram of fuzzy controller for
pitch control system
Figure 10: Fuzzy Controller Subsystem
Figure 11: Plant Subsystem
10. Simulation and Result of System without
Controllers
The figures below show the Simulink model of wind
turbine without any controllers and the output graph
Figure 12: Wind Turbine System Without Controllers
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 666
Figure 13:The unit step response of wind turbine
without controllers
We see that the desired output is not reached as well
Settling time very high. Also the Overshoot and
Undershoot is high. Hence, we need to implement
controller to overcome these drawbacks.
11. Simulation of the Plant with PID
Controller
Figure 14:The unit step response of wind turbine with
PID controller
The unit step response of wind turbine pitch control
system is shown in Fig. 17. Time domain specifications are
observed from the response graphs and tabulated in Table
6. With PID controller, we observed less rise time, settling
time and peak overshoot when compared to the wind
turbine model without any controllers.
12. Simulation of the Plant with Fuzzy
Controller
Figure 15:The unit step response of wind turbine with
Fuzzy controller
The unit step response of wind turbine pitch control
system is shown in Fig.18. Time domain specifications are
observed from the response graphs and tabulated in Table
6. With fuzzy controller, we observed more rise time and
less settling time compared to conventional PID controller
and a very little overshoot.
14. Comparison of Simulation Results of the
Plant using PID, Fuzzy and an Adaptive
Fuzzy-PID Controller
Figure 16:Comparision of unit step response of wind
turbine pitch controllers
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056
Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072
© 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 667
Table 3:Comparison of Time Domain Specifications of
Pitch Control System for Unit Step Input Using
From the Table above and Fig.20, we can see that the
Fuzzy Logic Controller has the best response when
compared to the PID controller. The settling time is fast
and overshoot is very less, hence the Fuzzy Logic
Controller gives a better control for the pitch angle of the
wind turbine system.
15. CONCLUSIONS AND FUTURE WORK
In this paper, we developed the wind turbine
pitch control system mathematical model and simulated
with conventional PID, fuzzy and fuzzy adaptive PID
controllers using MATLAB/Simulink to achieve optimum
response. We compared the responses in terms of time
domain specifications for unit step input using
conventional PID and fuzzy logic controllers. Even though,
the PID controller produces the response with lower delay
time and rise time, it has oscillations with a peak
overshoot of 11.8%, which causes the damage in the
system performance. To suppress these oscillations fuzzy
logic controller is proposed to use. From the results, it can
be observed that, this controller can effectively suppress
the oscillations and produces smooth response. This
technique is much better to realize the control of pitch
system and to guarantee the stability of wind turbine
output power.
In future, one can use artificial neural networks
to control the pitch angle of the wind turbine system and
check its performance with the Adaptive Fuzzy PID
controller. Also, Individual pitch control method can be
used along with the Adaptive Fuzzy PID controller to
improve the overall performance of the system.
REFERENCES
[1]. Civelek, Zafer, Ertuğrul Çam, Murat Lüy, and Hayati
Mamur. "Proportional–integral–derivative Parameter
Optimisation of Blade Pitch Controller in Wind Turbines
by a New Intelligent Genetic Algorithm." IET Renewable
Power Generation 10.8 (2016): 1220-228.
[2] C. Tan and H. Wang, "A Review on Pitch Angle Control
Strategy of Variable Pitch Wind Turbines", Advanced
Materials Research, vol. 772, pp. 744-748, 2013.
[3] Dunne, F. "Optimizing Blade Pitch Control of Wind
Turbines with Preview Measurements of the Wind." Order
No. 10108716 University of Colorado at Boulder, 2016.
Ann Arbor: ProQuest. Web. 4 Feb. 2017.
[4]. Han, Bing, Lawu Zhou, Fan Yang, and Zeng Xiang.
"Individual Pitch Controller Based on Fuzzy Logic Control
for Wind Turbine Load Mitigation." IET Renewable Power
Generation 10.5 (2016): 687-93. Kozak, Peter. "Blade Pitch
Optimization Methods for Vertical-axis Wind Turbines."
Thesis. ProQuest Dissertations Publishing, n.d. 2016.
[5] Jason T Brown. Montana environmental information
centre. http://meic.org, 2013.
[6] Novak P, Ekelund T, Jovik I, and Schmidt Bauer B.
"Modeling andControl of Variable-Speed Wind-Turbine
Drive-System Dynamics,"IEEE Control Syst Mag 1995;
15(4), pp. 28-38.
[7] Sharma, R.D. (2013). ‘Feedforward Learning Control
for Individual Blade Pitch Control of Modern Two-Bladed
Wind Turbines’.
[8] S.Suryanarayanan, A.Dixit, "Control of Large Wind
Turbines: Review and Suggested Approach to
Multivariable Design", Proc. of the American Control
Conference 2005, Portland, USA, pp. 686-690.
BIOGRAPHIES
Silpa Baburajan obtained her B.SC
Electrical Engineering degree from
American University of Sharjah (2015)
and is currently pursuing her Master’s
degree in Electrical Engineering,
specializing in Control System, at
Rochester Institute of Technology (RIT),
Dubai Campus.
Dr Abdulla Ismail obtained his B.Sc.
(’80), M.Sc. (’83), and Ph.D. (’86) in
electrical engineering, from the
University of Arizona, U.S.A. Currently,
he is working as a professor in the
Electrical Engineering Department
and assistant to the President at the
Rochester Institute of Technology,
Dubai, UAE

More Related Content

What's hot

Implementation and assemplingof a small wind turbine
Implementation and assemplingof a small wind turbineImplementation and assemplingof a small wind turbine
Implementation and assemplingof a small wind turbine
Rayan Hameed
 
Thesis- Cont sys for wind turbines (Sept 2015 revision)
Thesis- Cont sys for wind turbines (Sept 2015 revision)Thesis- Cont sys for wind turbines (Sept 2015 revision)
Thesis- Cont sys for wind turbines (Sept 2015 revision)Larry Branscomb
 
The fuzzy-PID based-pitch angle controller for small-scale wind turbine
The fuzzy-PID based-pitch angle controller for small-scale wind turbineThe fuzzy-PID based-pitch angle controller for small-scale wind turbine
The fuzzy-PID based-pitch angle controller for small-scale wind turbine
International Journal of Power Electronics and Drive Systems
 
Automatic power generation control structure for smart electrical power grids
Automatic power generation control structure for smart electrical power gridsAutomatic power generation control structure for smart electrical power grids
Automatic power generation control structure for smart electrical power grids
eSAT Publishing House
 
Sliding mode performance control applied to a DFIG system for a wind energy p...
Sliding mode performance control applied to a DFIG system for a wind energy p...Sliding mode performance control applied to a DFIG system for a wind energy p...
Sliding mode performance control applied to a DFIG system for a wind energy p...
IJECEIAES
 
Study on power control of doubly fed induction generator
Study on power control of doubly fed induction generatorStudy on power control of doubly fed induction generator
Study on power control of doubly fed induction generator
IRJET Journal
 
Speed Control of Dc Motor using Adaptive PID with SMC Scheme
Speed Control of Dc Motor using Adaptive PID with SMC SchemeSpeed Control of Dc Motor using Adaptive PID with SMC Scheme
Speed Control of Dc Motor using Adaptive PID with SMC Scheme
IRJET Journal
 
PSO-Backstepping controller of a grid connected DFIG based wind turbine
PSO-Backstepping controller of a grid connected DFIG based wind turbine PSO-Backstepping controller of a grid connected DFIG based wind turbine
PSO-Backstepping controller of a grid connected DFIG based wind turbine
IJECEIAES
 
IRJET- Automated Flow Control in Solid Material Packaging Machines
IRJET- Automated Flow Control in Solid Material Packaging MachinesIRJET- Automated Flow Control in Solid Material Packaging Machines
IRJET- Automated Flow Control in Solid Material Packaging Machines
IRJET Journal
 
Suppression of frequency fluctuations in Hybrid Power System using Pitch-Angl...
Suppression of frequency fluctuations in Hybrid Power System using Pitch-Angl...Suppression of frequency fluctuations in Hybrid Power System using Pitch-Angl...
Suppression of frequency fluctuations in Hybrid Power System using Pitch-Angl...
ijtsrd
 
Fuzzy Logic Pitch Control of Variable Speed Wind Turbine
Fuzzy Logic Pitch Control of Variable Speed Wind TurbineFuzzy Logic Pitch Control of Variable Speed Wind Turbine
Fuzzy Logic Pitch Control of Variable Speed Wind Turbine
IRJET Journal
 
Robust power control methods for wind turbines using DFIG-generator
Robust power control methods for wind turbines using DFIG-generatorRobust power control methods for wind turbines using DFIG-generator
Robust power control methods for wind turbines using DFIG-generator
International Journal of Power Electronics and Drive Systems
 
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET Journal
 
Speed Control of DC Motor using PID Controller for Industrial Application
Speed Control of DC Motor using PID Controller for Industrial ApplicationSpeed Control of DC Motor using PID Controller for Industrial Application
Speed Control of DC Motor using PID Controller for Industrial Application
ijtsrd
 
Performance and Fault diagnosis of Horizontal Axis Wind Turbine Components
Performance and Fault diagnosis of Horizontal Axis Wind Turbine ComponentsPerformance and Fault diagnosis of Horizontal Axis Wind Turbine Components
Performance and Fault diagnosis of Horizontal Axis Wind Turbine Components
ijsrd.com
 
Control Strategy Used in DFIG and PMSG Based Wind Turbines an Overview
Control Strategy Used in DFIG and PMSG Based Wind Turbines an OverviewControl Strategy Used in DFIG and PMSG Based Wind Turbines an Overview
Control Strategy Used in DFIG and PMSG Based Wind Turbines an Overview
International Journal of Power Electronics and Drive Systems
 
Design and construction of vertical axis wind turbine
Design and construction of vertical axis wind turbineDesign and construction of vertical axis wind turbine
Design and construction of vertical axis wind turbine
IAEME Publication
 
Lecture 2 Wind Energy Course
Lecture 2  Wind Energy Course Lecture 2  Wind Energy Course
Lecture 2 Wind Energy Course
Narvik University College
 
Study of Characteristics of DFIG Based Wind Turbine
Study of Characteristics of DFIG Based Wind TurbineStudy of Characteristics of DFIG Based Wind Turbine
Study of Characteristics of DFIG Based Wind Turbine
IJMTST Journal
 
Cuckoo search algorithm based for tunning both PI and FOPID controllers for ...
Cuckoo search algorithm based for tunning both PI  and FOPID controllers for ...Cuckoo search algorithm based for tunning both PI  and FOPID controllers for ...
Cuckoo search algorithm based for tunning both PI and FOPID controllers for ...
IJECEIAES
 

What's hot (20)

Implementation and assemplingof a small wind turbine
Implementation and assemplingof a small wind turbineImplementation and assemplingof a small wind turbine
Implementation and assemplingof a small wind turbine
 
Thesis- Cont sys for wind turbines (Sept 2015 revision)
Thesis- Cont sys for wind turbines (Sept 2015 revision)Thesis- Cont sys for wind turbines (Sept 2015 revision)
Thesis- Cont sys for wind turbines (Sept 2015 revision)
 
The fuzzy-PID based-pitch angle controller for small-scale wind turbine
The fuzzy-PID based-pitch angle controller for small-scale wind turbineThe fuzzy-PID based-pitch angle controller for small-scale wind turbine
The fuzzy-PID based-pitch angle controller for small-scale wind turbine
 
Automatic power generation control structure for smart electrical power grids
Automatic power generation control structure for smart electrical power gridsAutomatic power generation control structure for smart electrical power grids
Automatic power generation control structure for smart electrical power grids
 
Sliding mode performance control applied to a DFIG system for a wind energy p...
Sliding mode performance control applied to a DFIG system for a wind energy p...Sliding mode performance control applied to a DFIG system for a wind energy p...
Sliding mode performance control applied to a DFIG system for a wind energy p...
 
Study on power control of doubly fed induction generator
Study on power control of doubly fed induction generatorStudy on power control of doubly fed induction generator
Study on power control of doubly fed induction generator
 
Speed Control of Dc Motor using Adaptive PID with SMC Scheme
Speed Control of Dc Motor using Adaptive PID with SMC SchemeSpeed Control of Dc Motor using Adaptive PID with SMC Scheme
Speed Control of Dc Motor using Adaptive PID with SMC Scheme
 
PSO-Backstepping controller of a grid connected DFIG based wind turbine
PSO-Backstepping controller of a grid connected DFIG based wind turbine PSO-Backstepping controller of a grid connected DFIG based wind turbine
PSO-Backstepping controller of a grid connected DFIG based wind turbine
 
IRJET- Automated Flow Control in Solid Material Packaging Machines
IRJET- Automated Flow Control in Solid Material Packaging MachinesIRJET- Automated Flow Control in Solid Material Packaging Machines
IRJET- Automated Flow Control in Solid Material Packaging Machines
 
Suppression of frequency fluctuations in Hybrid Power System using Pitch-Angl...
Suppression of frequency fluctuations in Hybrid Power System using Pitch-Angl...Suppression of frequency fluctuations in Hybrid Power System using Pitch-Angl...
Suppression of frequency fluctuations in Hybrid Power System using Pitch-Angl...
 
Fuzzy Logic Pitch Control of Variable Speed Wind Turbine
Fuzzy Logic Pitch Control of Variable Speed Wind TurbineFuzzy Logic Pitch Control of Variable Speed Wind Turbine
Fuzzy Logic Pitch Control of Variable Speed Wind Turbine
 
Robust power control methods for wind turbines using DFIG-generator
Robust power control methods for wind turbines using DFIG-generatorRobust power control methods for wind turbines using DFIG-generator
Robust power control methods for wind turbines using DFIG-generator
 
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
IRJET - Measurement and Analysis of the Voltage Current Characteristic of a M...
 
Speed Control of DC Motor using PID Controller for Industrial Application
Speed Control of DC Motor using PID Controller for Industrial ApplicationSpeed Control of DC Motor using PID Controller for Industrial Application
Speed Control of DC Motor using PID Controller for Industrial Application
 
Performance and Fault diagnosis of Horizontal Axis Wind Turbine Components
Performance and Fault diagnosis of Horizontal Axis Wind Turbine ComponentsPerformance and Fault diagnosis of Horizontal Axis Wind Turbine Components
Performance and Fault diagnosis of Horizontal Axis Wind Turbine Components
 
Control Strategy Used in DFIG and PMSG Based Wind Turbines an Overview
Control Strategy Used in DFIG and PMSG Based Wind Turbines an OverviewControl Strategy Used in DFIG and PMSG Based Wind Turbines an Overview
Control Strategy Used in DFIG and PMSG Based Wind Turbines an Overview
 
Design and construction of vertical axis wind turbine
Design and construction of vertical axis wind turbineDesign and construction of vertical axis wind turbine
Design and construction of vertical axis wind turbine
 
Lecture 2 Wind Energy Course
Lecture 2  Wind Energy Course Lecture 2  Wind Energy Course
Lecture 2 Wind Energy Course
 
Study of Characteristics of DFIG Based Wind Turbine
Study of Characteristics of DFIG Based Wind TurbineStudy of Characteristics of DFIG Based Wind Turbine
Study of Characteristics of DFIG Based Wind Turbine
 
Cuckoo search algorithm based for tunning both PI and FOPID controllers for ...
Cuckoo search algorithm based for tunning both PI  and FOPID controllers for ...Cuckoo search algorithm based for tunning both PI  and FOPID controllers for ...
Cuckoo search algorithm based for tunning both PI and FOPID controllers for ...
 

Similar to Modelling and Fuzzy Logic Control of the Pitch of a Wind Turbine

Fuzzy and Pid Based Pitch Angle Control of Variable Speed Wind Turbines
Fuzzy and Pid Based Pitch Angle Control of Variable Speed Wind TurbinesFuzzy and Pid Based Pitch Angle Control of Variable Speed Wind Turbines
Fuzzy and Pid Based Pitch Angle Control of Variable Speed Wind Turbines
IRJET Journal
 
IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...
IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...
IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...
IRJET Journal
 
IRJET- Modelling of a PMSG Wind Turbine with Voltage Control
IRJET-  	  Modelling of a PMSG Wind Turbine with Voltage ControlIRJET-  	  Modelling of a PMSG Wind Turbine with Voltage Control
IRJET- Modelling of a PMSG Wind Turbine with Voltage Control
IRJET Journal
 
Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...
Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...
Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...
Kashif Mehmood
 
paper.pdf
paper.pdfpaper.pdf
paper.pdf
ssusere9b19f
 
IRJET- Design and Fabrication of a Self Balancing Mono Wheel Vehicle
IRJET- Design and Fabrication of a Self Balancing Mono Wheel VehicleIRJET- Design and Fabrication of a Self Balancing Mono Wheel Vehicle
IRJET- Design and Fabrication of a Self Balancing Mono Wheel Vehicle
IRJET Journal
 
IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...
IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...
IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...
IRJET Journal
 
Quadrotor Control using Adaptive Fuzzy PD Technique
Quadrotor Control using Adaptive Fuzzy PD TechniqueQuadrotor Control using Adaptive Fuzzy PD Technique
Quadrotor Control using Adaptive Fuzzy PD Technique
IRJET Journal
 
IRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling UnitsIRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling Units
IRJET Journal
 
IRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling UnitsIRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling Units
IRJET Journal
 
Power Optimization and Control in Wind Energy Conversion Systems using Fracti...
Power Optimization and Control in Wind Energy Conversion Systems using Fracti...Power Optimization and Control in Wind Energy Conversion Systems using Fracti...
Power Optimization and Control in Wind Energy Conversion Systems using Fracti...
IRJET Journal
 
Modelling & Thermal analysis of pulse jet engine using CFD
Modelling & Thermal analysis of pulse jet engine using CFDModelling & Thermal analysis of pulse jet engine using CFD
Modelling & Thermal analysis of pulse jet engine using CFD
IRJET Journal
 
Hardware-in-the-loop simulator of wind turbine emulator using labview
Hardware-in-the-loop simulator of wind turbine emulator using labviewHardware-in-the-loop simulator of wind turbine emulator using labview
Hardware-in-the-loop simulator of wind turbine emulator using labview
International Journal of Power Electronics and Drive Systems
 
IRJET- Decoupled Control Technique of DFIG with Dual PWM Converters for Wind ...
IRJET- Decoupled Control Technique of DFIG with Dual PWM Converters for Wind ...IRJET- Decoupled Control Technique of DFIG with Dual PWM Converters for Wind ...
IRJET- Decoupled Control Technique of DFIG with Dual PWM Converters for Wind ...
IRJET Journal
 
Fault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy System
Fault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy SystemFault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy System
Fault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy System
IRJET Journal
 
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
IRJET Journal
 
IRJET- Performance Enhancement of DFIG based Wind Farms Integrated in Power S...
IRJET- Performance Enhancement of DFIG based Wind Farms Integrated in Power S...IRJET- Performance Enhancement of DFIG based Wind Farms Integrated in Power S...
IRJET- Performance Enhancement of DFIG based Wind Farms Integrated in Power S...
IRJET Journal
 
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
IRJET Journal
 
IRJET- Solar Powered Water Pumping Framework using Induction Motor
IRJET- Solar Powered Water Pumping Framework using Induction MotorIRJET- Solar Powered Water Pumping Framework using Induction Motor
IRJET- Solar Powered Water Pumping Framework using Induction Motor
IRJET Journal
 

Similar to Modelling and Fuzzy Logic Control of the Pitch of a Wind Turbine (20)

Fuzzy and Pid Based Pitch Angle Control of Variable Speed Wind Turbines
Fuzzy and Pid Based Pitch Angle Control of Variable Speed Wind TurbinesFuzzy and Pid Based Pitch Angle Control of Variable Speed Wind Turbines
Fuzzy and Pid Based Pitch Angle Control of Variable Speed Wind Turbines
 
IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...
IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...
IRJET- Fuzzy predictive control of Variable Speed Wind Turbines using Fuzzy T...
 
IRJET- Modelling of a PMSG Wind Turbine with Voltage Control
IRJET-  	  Modelling of a PMSG Wind Turbine with Voltage ControlIRJET-  	  Modelling of a PMSG Wind Turbine with Voltage Control
IRJET- Modelling of a PMSG Wind Turbine with Voltage Control
 
Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...
Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...
Effcacious pitch angle control of variable-speed wind turbine using fuzzy bas...
 
paper.pdf
paper.pdfpaper.pdf
paper.pdf
 
IRJET- Design and Fabrication of a Self Balancing Mono Wheel Vehicle
IRJET- Design and Fabrication of a Self Balancing Mono Wheel VehicleIRJET- Design and Fabrication of a Self Balancing Mono Wheel Vehicle
IRJET- Design and Fabrication of a Self Balancing Mono Wheel Vehicle
 
IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...
IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...
IRJET-Investigation of Three Phase Induction Speed Control Strategies using N...
 
Quadrotor Control using Adaptive Fuzzy PD Technique
Quadrotor Control using Adaptive Fuzzy PD TechniqueQuadrotor Control using Adaptive Fuzzy PD Technique
Quadrotor Control using Adaptive Fuzzy PD Technique
 
196 200
196 200196 200
196 200
 
IRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling UnitsIRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling Units
 
IRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling UnitsIRJET- Review Paper on the Control System of the Air Handling Units
IRJET- Review Paper on the Control System of the Air Handling Units
 
Power Optimization and Control in Wind Energy Conversion Systems using Fracti...
Power Optimization and Control in Wind Energy Conversion Systems using Fracti...Power Optimization and Control in Wind Energy Conversion Systems using Fracti...
Power Optimization and Control in Wind Energy Conversion Systems using Fracti...
 
Modelling & Thermal analysis of pulse jet engine using CFD
Modelling & Thermal analysis of pulse jet engine using CFDModelling & Thermal analysis of pulse jet engine using CFD
Modelling & Thermal analysis of pulse jet engine using CFD
 
Hardware-in-the-loop simulator of wind turbine emulator using labview
Hardware-in-the-loop simulator of wind turbine emulator using labviewHardware-in-the-loop simulator of wind turbine emulator using labview
Hardware-in-the-loop simulator of wind turbine emulator using labview
 
IRJET- Decoupled Control Technique of DFIG with Dual PWM Converters for Wind ...
IRJET- Decoupled Control Technique of DFIG with Dual PWM Converters for Wind ...IRJET- Decoupled Control Technique of DFIG with Dual PWM Converters for Wind ...
IRJET- Decoupled Control Technique of DFIG with Dual PWM Converters for Wind ...
 
Fault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy System
Fault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy SystemFault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy System
Fault Analysis and Prediction in Gas Turbine using Neuro-Fuzzy System
 
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
IRJET- Improvement of Wind Turbine DFIG using Fault Ride Through Capability T...
 
IRJET- Performance Enhancement of DFIG based Wind Farms Integrated in Power S...
IRJET- Performance Enhancement of DFIG based Wind Farms Integrated in Power S...IRJET- Performance Enhancement of DFIG based Wind Farms Integrated in Power S...
IRJET- Performance Enhancement of DFIG based Wind Farms Integrated in Power S...
 
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
Review of different Fault Ride through (FRT) Control Strategies for a DFIG Wi...
 
IRJET- Solar Powered Water Pumping Framework using Induction Motor
IRJET- Solar Powered Water Pumping Framework using Induction MotorIRJET- Solar Powered Water Pumping Framework using Induction Motor
IRJET- Solar Powered Water Pumping Framework using Induction Motor
 

More from IRJET Journal

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
IRJET Journal
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
IRJET Journal
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
IRJET Journal
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
IRJET Journal
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
IRJET Journal
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
IRJET Journal
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
IRJET Journal
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
IRJET Journal
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
IRJET Journal
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
IRJET Journal
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
IRJET Journal
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
IRJET Journal
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
IRJET Journal
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
IRJET Journal
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
IRJET Journal
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
IRJET Journal
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
IRJET Journal
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
IRJET Journal
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
IRJET Journal
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
IRJET Journal
 

More from IRJET Journal (20)

TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
TUNNELING IN HIMALAYAS WITH NATM METHOD: A SPECIAL REFERENCES TO SUNGAL TUNNE...
 
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURESTUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
STUDY THE EFFECT OF RESPONSE REDUCTION FACTOR ON RC FRAMED STRUCTURE
 
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
A COMPARATIVE ANALYSIS OF RCC ELEMENT OF SLAB WITH STARK STEEL (HYSD STEEL) A...
 
Effect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil CharacteristicsEffect of Camber and Angles of Attack on Airfoil Characteristics
Effect of Camber and Angles of Attack on Airfoil Characteristics
 
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
A Review on the Progress and Challenges of Aluminum-Based Metal Matrix Compos...
 
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
Dynamic Urban Transit Optimization: A Graph Neural Network Approach for Real-...
 
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
Structural Analysis and Design of Multi-Storey Symmetric and Asymmetric Shape...
 
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
A Review of “Seismic Response of RC Structures Having Plan and Vertical Irreg...
 
A REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADASA REVIEW ON MACHINE LEARNING IN ADAS
A REVIEW ON MACHINE LEARNING IN ADAS
 
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
Long Term Trend Analysis of Precipitation and Temperature for Asosa district,...
 
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD ProP.E.B. Framed Structure Design and Analysis Using STAAD Pro
P.E.B. Framed Structure Design and Analysis Using STAAD Pro
 
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
A Review on Innovative Fiber Integration for Enhanced Reinforcement of Concre...
 
Survey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare SystemSurvey Paper on Cloud-Based Secured Healthcare System
Survey Paper on Cloud-Based Secured Healthcare System
 
Review on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridgesReview on studies and research on widening of existing concrete bridges
Review on studies and research on widening of existing concrete bridges
 
React based fullstack edtech web application
React based fullstack edtech web applicationReact based fullstack edtech web application
React based fullstack edtech web application
 
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
A Comprehensive Review of Integrating IoT and Blockchain Technologies in the ...
 
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
A REVIEW ON THE PERFORMANCE OF COCONUT FIBRE REINFORCED CONCRETE.
 
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
Optimizing Business Management Process Workflows: The Dynamic Influence of Mi...
 
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic DesignMultistoried and Multi Bay Steel Building Frame by using Seismic Design
Multistoried and Multi Bay Steel Building Frame by using Seismic Design
 
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
Cost Optimization of Construction Using Plastic Waste as a Sustainable Constr...
 

Recently uploaded

Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
Kamal Acharya
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
Kamal Acharya
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
SamSarthak3
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
ssuser9bd3ba
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
Massimo Talia
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
Kamal Acharya
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
obonagu
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
PrashantGoswami42
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Sreedhar Chowdam
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
ShahidSultan24
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
Divya Somashekar
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
Kamal Acharya
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
MuhammadTufail242431
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
gerogepatton
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
Kamal Acharya
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Teleport Manpower Consultant
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Dr.Costas Sachpazis
 

Recently uploaded (20)

Student information management system project report ii.pdf
Student information management system project report ii.pdfStudent information management system project report ii.pdf
Student information management system project report ii.pdf
 
Automobile Management System Project Report.pdf
Automobile Management System Project Report.pdfAutomobile Management System Project Report.pdf
Automobile Management System Project Report.pdf
 
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdfAKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
AKS UNIVERSITY Satna Final Year Project By OM Hardaha.pdf
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024Nuclear Power Economics and Structuring 2024
Nuclear Power Economics and Structuring 2024
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdfCOLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
COLLEGE BUS MANAGEMENT SYSTEM PROJECT REPORT.pdf
 
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
在线办理(ANU毕业证书)澳洲国立大学毕业证录取通知书一模一样
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&BDesign and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
Design and Analysis of Algorithms-DP,Backtracking,Graphs,B&B
 
addressing modes in computer architecture
addressing modes  in computer architectureaddressing modes  in computer architecture
addressing modes in computer architecture
 
block diagram and signal flow graph representation
block diagram and signal flow graph representationblock diagram and signal flow graph representation
block diagram and signal flow graph representation
 
Final project report on grocery store management system..pdf
Final project report on grocery store management system..pdfFinal project report on grocery store management system..pdf
Final project report on grocery store management system..pdf
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
Halogenation process of chemical process industries
Halogenation process of chemical process industriesHalogenation process of chemical process industries
Halogenation process of chemical process industries
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Cosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdfCosmetic shop management system project report.pdf
Cosmetic shop management system project report.pdf
 
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdfTop 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
Top 10 Oil and Gas Projects in Saudi Arabia 2024.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 

Modelling and Fuzzy Logic Control of the Pitch of a Wind Turbine

  • 1. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 662 Modelling and Fuzzy Logic Control of the Pitch of a Wind Turbine Silpa Baburajan1, Dr. Abdulla Ismail2 1Graduate Student, Dept. of Electrical Engineering, Rochester Institute of Technology, Dubai, UAE 2Professor, Dept. of Electrical Engineering, Rochester Institute of Technology, Dubai, UAE ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Recently, the renewable energy, especially wind energy, has been paid much attention due to the energy shortage and environmental concern. As the penetration of the wind energy into the electrical power grid is extensively increased, the influence of the wind turbine systems on the frequency and voltage stability becomes more and more significant [1]– [4]. Wind turbine rotor bears different types of loads; aerodynamic loads, gravitational loads and centrifugal loads. These loads cause fatigue and vibration in blades, which cause degradation to the rotor blades. These loads can be overcome and the amount of collected power can be controlled using a good pitch controller (PC) which will tune the attack angle of a wind turbine rotor blade into or out of the wind. Each blade is exposed to different loads due to the variation of the wind speed across the rotor blades. For this reason, individual electric drives can be used in future to control the pitch of the blades in a process called Individual Pitch Control. In this thesis work, a new pitch angle control strategy based on the fuzzy logic control is proposed to cope with the nonlinear characteristics of wind turbine as well as to reduce the loads on the blades. A mathematical model of wind turbine (pitch control system) is developed and is tested with Fuzzy Controller and conventional PID Controller. After comparing the proposed strategy, the simulation results show that the Fuzzy logic controller has the optimum response as it controls the pitch system as well as the disturbances and uncertain factors associated with the system. Key Words: Energy, Wind-Power, Pitch Controller, PID, Fuzzy Controller. 1. INTRODUCTION Energy crisis is the one of the biggest problems faced by people in the twenty-first century. The increase in the demand for electric energy along with the availability of limited fossil fuels have together contributed to the need for shifting from the human dependency on conventional resources for energy to the renewable energy resources. There are three important renewable energy resources available to us: solar, gravitational and geothermal energy. Wind energy is one of the indirect consequence from the incident solar energy, promoting air circulation between hot and cold zones [1]. The kinetic energy present in the wind can be converted to mechanical energy by using a wind turbine and further into electrical energy by using wind turbine generator. 2. MOTIVATION To increase the power capacity of the wind turbine, larger rotors are being built which causes an increase in aerodynamics and other loads across the blades. The aerodynamics and other loads contribute to fatigue failure which results in decrease in the lifespan and efficiency of the wind turbine [5]. With the help of good pitch angle controllers, the lift profile of the rotor blades can have altered which results in reduction of the aerodynamics and other loads across the blades. This mechanism uses the fact that much of the fatigue causing loads are partly deterministic, periodic and vary slowly over a fixed time [7]. Therefore, in this thesis the main goal is to design an optimum controller to control the pitch angle of the wind turbine system so that the loads on the blades are reduced. Reduction in the loads on the blades will ultimately help to improve the performance, efficiency and power output daily of the wind turbine. 3. Control Techniques of Wind Turbine System: It The wind energy captured by the turbine can be increased by the following two control strategies: pitch control and stall control. The initial step in both strategies is to check the turbine’s power output several times per second using an electronic controller. In case the output power is too high, a signal is send to the blade pitch mechanism because of which the rotor blades turn slightly out of the wind, adapting the attack angle. Once the wind drops, these blades are turned back into the wind. Turbines with this type of control mechanism is known as pitch controlled wind turbines. In the stall control technique, the rotor blades are fixed onto the hub at a fixed angle. But the geometry of the rotor blade is aerodynamically designed in such a way that it ensures that from the moment the wind speed becomes too high, it is caused turbulence on the side of the rotor blade which is not facing the wind, creating a stall which prevents the lifting force of the rotor blade from acting on the rotor [1]. In the modern turbines, the pitch control technique is used because it helps in controlling the output power simultaneously operating at variable speed to control tip speed ratio and so the power extraction for different wind speeds [8].
  • 2. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 663 4. Model of the Wind Turbine System The block diagram of a typical wind turbine system model is shown in the figure below [6]. In the following sections, the pitch actuator model and the drive terrain model are explained. Figure 1: Wind Turbine System Feedback Control System Model 5. Pitch Actuator Model The pitch actuator is used to turn blades along their longitudinal axis. The actuator model describes a dynamic behavior between a pitch demand, from the pitch controller and measurement of pitch angle [6] The change in pitch angle is given by This is the required Transfer Function. The value of time constant of pitch actuator, T p can be calculated from initial parameters of Wind Turbine [6] shown in Table I. Table 1: Parameters of Wind Turbine 6. Drive Terrain Model Figure 2: Mechanical model of drive train The parameters taken while modelling the drive train are shown in Table 2. Table 2: Mechanical Model Parameters of Drive Train
  • 3. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 664 The dynamics of drive-train are described by following differential equations This is the required first order Transfer function of Drivetrain. This can also be represented as Thus, the mathematical model of wind turbine is derived. 7. Implementation of Conventional PID Controller The Simulink model of wind turbine pitch control system with conventional PID Controller is shown in Fig. 3 and the control parameters for the PID controller are shown in Fg.4. Figure 3: Simulink diagram of PID Controller Implementation Figure 4: PID Controller Parameters 8. Implementation of Fuzzy Logic Controller First the rules-surface diagrams for each parameter Kp, Ki, Kd are shown in the figures 5,6 and 7. Then all the 49 rules are displayed in the figure 8. Finally, the Simulink model of wind turbine pitch control system with fuzzy logic is shown in Fig. 9 and the subsystems are shown in Fig 10 and Fig 11. Figure 5:Surface Rule Diagram for Kp Figure 6:Surface Rule for Ki
  • 4. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 665 Figure 7:Surface Rule Diagram for Kd Figure 8:Rule Viewer for Fuzzy Controller Figure 9: Simulation diagram of fuzzy controller for pitch control system Figure 10: Fuzzy Controller Subsystem Figure 11: Plant Subsystem 10. Simulation and Result of System without Controllers The figures below show the Simulink model of wind turbine without any controllers and the output graph Figure 12: Wind Turbine System Without Controllers
  • 5. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 666 Figure 13:The unit step response of wind turbine without controllers We see that the desired output is not reached as well Settling time very high. Also the Overshoot and Undershoot is high. Hence, we need to implement controller to overcome these drawbacks. 11. Simulation of the Plant with PID Controller Figure 14:The unit step response of wind turbine with PID controller The unit step response of wind turbine pitch control system is shown in Fig. 17. Time domain specifications are observed from the response graphs and tabulated in Table 6. With PID controller, we observed less rise time, settling time and peak overshoot when compared to the wind turbine model without any controllers. 12. Simulation of the Plant with Fuzzy Controller Figure 15:The unit step response of wind turbine with Fuzzy controller The unit step response of wind turbine pitch control system is shown in Fig.18. Time domain specifications are observed from the response graphs and tabulated in Table 6. With fuzzy controller, we observed more rise time and less settling time compared to conventional PID controller and a very little overshoot. 14. Comparison of Simulation Results of the Plant using PID, Fuzzy and an Adaptive Fuzzy-PID Controller Figure 16:Comparision of unit step response of wind turbine pitch controllers
  • 6. International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 04 Issue: 09 | Sep -2017 www.irjet.net p-ISSN: 2395-0072 © 2017, IRJET | Impact Factor value: 5.181 | ISO 9001:2008 Certified Journal | Page 667 Table 3:Comparison of Time Domain Specifications of Pitch Control System for Unit Step Input Using From the Table above and Fig.20, we can see that the Fuzzy Logic Controller has the best response when compared to the PID controller. The settling time is fast and overshoot is very less, hence the Fuzzy Logic Controller gives a better control for the pitch angle of the wind turbine system. 15. CONCLUSIONS AND FUTURE WORK In this paper, we developed the wind turbine pitch control system mathematical model and simulated with conventional PID, fuzzy and fuzzy adaptive PID controllers using MATLAB/Simulink to achieve optimum response. We compared the responses in terms of time domain specifications for unit step input using conventional PID and fuzzy logic controllers. Even though, the PID controller produces the response with lower delay time and rise time, it has oscillations with a peak overshoot of 11.8%, which causes the damage in the system performance. To suppress these oscillations fuzzy logic controller is proposed to use. From the results, it can be observed that, this controller can effectively suppress the oscillations and produces smooth response. This technique is much better to realize the control of pitch system and to guarantee the stability of wind turbine output power. In future, one can use artificial neural networks to control the pitch angle of the wind turbine system and check its performance with the Adaptive Fuzzy PID controller. Also, Individual pitch control method can be used along with the Adaptive Fuzzy PID controller to improve the overall performance of the system. REFERENCES [1]. Civelek, Zafer, Ertuğrul Çam, Murat Lüy, and Hayati Mamur. "Proportional–integral–derivative Parameter Optimisation of Blade Pitch Controller in Wind Turbines by a New Intelligent Genetic Algorithm." IET Renewable Power Generation 10.8 (2016): 1220-228. [2] C. Tan and H. Wang, "A Review on Pitch Angle Control Strategy of Variable Pitch Wind Turbines", Advanced Materials Research, vol. 772, pp. 744-748, 2013. [3] Dunne, F. "Optimizing Blade Pitch Control of Wind Turbines with Preview Measurements of the Wind." Order No. 10108716 University of Colorado at Boulder, 2016. Ann Arbor: ProQuest. Web. 4 Feb. 2017. [4]. Han, Bing, Lawu Zhou, Fan Yang, and Zeng Xiang. "Individual Pitch Controller Based on Fuzzy Logic Control for Wind Turbine Load Mitigation." IET Renewable Power Generation 10.5 (2016): 687-93. Kozak, Peter. "Blade Pitch Optimization Methods for Vertical-axis Wind Turbines." Thesis. ProQuest Dissertations Publishing, n.d. 2016. [5] Jason T Brown. Montana environmental information centre. http://meic.org, 2013. [6] Novak P, Ekelund T, Jovik I, and Schmidt Bauer B. "Modeling andControl of Variable-Speed Wind-Turbine Drive-System Dynamics,"IEEE Control Syst Mag 1995; 15(4), pp. 28-38. [7] Sharma, R.D. (2013). ‘Feedforward Learning Control for Individual Blade Pitch Control of Modern Two-Bladed Wind Turbines’. [8] S.Suryanarayanan, A.Dixit, "Control of Large Wind Turbines: Review and Suggested Approach to Multivariable Design", Proc. of the American Control Conference 2005, Portland, USA, pp. 686-690. BIOGRAPHIES Silpa Baburajan obtained her B.SC Electrical Engineering degree from American University of Sharjah (2015) and is currently pursuing her Master’s degree in Electrical Engineering, specializing in Control System, at Rochester Institute of Technology (RIT), Dubai Campus. Dr Abdulla Ismail obtained his B.Sc. (’80), M.Sc. (’83), and Ph.D. (’86) in electrical engineering, from the University of Arizona, U.S.A. Currently, he is working as a professor in the Electrical Engineering Department and assistant to the President at the Rochester Institute of Technology, Dubai, UAE