Productivity Improvement by Maynards Operation Sequence
Technique & Time Series Forecasting
By
Mr. Gajanan Pathak
M. Tech II Year
119M0078
Prof. Prakash Vaidya
Prof. Suvarna Mane
Guides
Dr. G. N. Kotwal
H.O.D
What is time Study?
Maynard Operation Sequence Technique (MOST®)
 Considered a revolutionary Predetermined Motion Time System(PMTS)
 Developed by Kjell Zandin and H. B. Maynard and Company, Inc. in 1974
 MOST® times represent ranges of motions.
 Very accurate results are produced because ranges are statistically derived.
 Based on Methods Time Measurement(MTM).
Sequence Model and Terminology
Activity Sequence Model Parameter
General Move A B G A B PA A= Action Distance
B= Body Motion
G= Gain control
P= Placement
Controlled Move A B G M X I A M= Move Controlled
X= Process Time
I= Alignment
Tool Use A B G A B P A B P A F= Fasten
L= Loosen
C= Cut
S= Surface Treat
M= Measure
R= Record
T= Think
General Move
 The general move sequence model is: A B G A B P A
 Action Distance(A)
 Body Motion(B)
 Gain Control(G)
 Placement(P) Index values for the General Move in Basic MOST
Controlled Move
 The controlled move sequence model is: A B G M X I A
 Move Controlled(M)
 Process time(X)
 Alignment(I)
Index values for the Controlled Move in Basic MOST
Tool Use
 The controlled move sequence model is: A B G A B P A B P A
 The other parameters in tool use are:
 Fasten(F), Loosen(L), Cut(C), Surface Treat(S), Measure(M), Record(R), Think(T)
Index values for the Tool Use Action Move in Basic MOST
Methodology
Shadow an lobour throughout the shift to understand the flow and the work.
Map all micro activities carried out by labour in detail
Assign the standard timings to each activity as per PMTS
Measure the work and Derive standard work content for the entire process
Understand the different losses & derive the utilization
Identify opportunity for improvements.
Time Unit Used in Most
 A typical MOST work sequence code would look like this:
 A10 B6 G3 A6 P3 A0
 Step – 1 Adds up all the subscript numbers
 10+6+3+6+3+0= 28 (the subscript is the MOST index value)
 Step – 2 multiple the sum of the index by 10. This answer gives the TMU equivalent 28 x
10 = 280 TMU
 Step – 3 Convert to time in seconds 280U *0.036 seconds = 10.08 seconds.
1 TMU= 0.00001 Hour 1 Hour= 100,000 TMU
1 TMU= 0.0006 Minute 1 Minute= 1667 TMU
1 TMU= 0.036 Second 1 Second= 27.8 TMU
Example
Labour- Bhau
Kamble.xlsx
Summary Analysis of Labour’s
Perticulars Labour
Bhau Kamble Pratik Jadhav Ashok Lohar Tukaram Ahire
Genral Information
Department Production Production Production Production
Designation Labour 1 Labour 2 Labour 3 Labour 4
Shift Genral Genral Genral Genral
Shift Information
Estimated Time (Min) 540.00 540.00 540.00 540.00
Breaks (Min) 90.00 90.00 90.00 90.00
Effective Working Time (Min) 450.00 450.00 450.00 450.00
MOST Analysis
Work content (Min) 334.54 276.46 377.62 334.45
Movement (A) 9.51 13.73 28.53 20.82
Body Motion (B) 0.14 0.14 2.22 2.10
Grasping (G) 0.85 0.89 2.7 2.34
Placement (P) 5.91 1.23 4.4 3.99
Move controlled (M) 0.64 0.64 2.11 1.93
Process Time (X) 0.00 0 0.00 0.00
Alignment (I) 3.08 3.08 9.30 8.63
Tool Use (T) 53.09 46.93 43.01 34.26
Clocked Activity © 33.01 49.68 41 53.57
Time Wasted 115.46 173.54 72.00 115.59
Summary Analysis
90.00 90.00 90.00 90.00
334.54
276.46
377.62
334.45
115.46
173.54
72.00
115.59
540.00 540.00 540.00 540.00
BHAU KAMBLE PRATIK JADHAV ASHOK LOHAR TUKARAM AHIRE
MOST SUMMARY
Breaks (Min) Work content (Min) Time Wasted Estimated Time (Min)
Average of MOST Summary
Bhau
Kamble
Pratik
Jadhav
Ashok
Lohar
Tukaram
Ahire
Breaks (Min) 90.00 90.00 90.00 90.00
Work content (Min) 334.54 276.46 377.62 334.45
Time Wasted 115.46 173.54 72.00 115.59
Estimated Time (Min) 540.00 540.00 540.00 540.00
Breaks (Min) 90.00
Work content (Min) 330.77
Time Wasted 119.15
Estimated Time (Min) 540.00
Average of MOST Summary
MOST Summary
90.00
330.77
119.15
540.00
BREAKS (MIN) WORK CONTENT
(MIN)
TIME WASTED ESTIMATED TIME
(MIN)
Average of MOST Summary
Breaks (Min)
Work content (Min)
Time Wasted
Estimated Time (Min)
Summary of All Micro Activities of Each Labour’s
Movement (A), 9.51, 9%
Body Motion (B), 0.14, 0%
Grasping (G), 0.85, 1%
Placement (P), 5.91, 5%
Move controlled (M), 0.64, 1%
Process Time (X), 0.00, 0%
Alignment (I), 3.08, 3%
Tool Use (T), 53.09, 50%
Clocked Activity ©, 33.01, 31%
Labour 1- Bhau Kamble
Movement (A)
Body Motion (B)
Grasping (G)
Placement (P)
Move controlled (M)
Process Time (X)
Alignment (I)
Tool Use (T)
Clocked Activity ©
Movement (A), 13.73, 12%
Body Motion (B), 0.14, 0%
Grasping (G), 0.89, 1%
Placement (P), 1.23, 1%
Move controlled (M), 0.64, 0%
Process Time (X), 0, 0%
Alignment (I), 3.08, 3%
Tool Use (T), 46.93, 40%
Clocked Activity ©, 49.68, 43%
Labour 2- Pratik jadhav
Movement (A)
Body Motion (B)
Grasping (G)
Placement (P)
Move controlled (M)
Process Time (X)
Alignment (I)
Tool Use (T)
Clocked Activity ©
Movement (A), 28.53, 21%
Body Motion (B), 2.22, 2%
Grasping (G), 2.7, 2%
Placement (P), 4.4, 3%
Move controlled (M), 2.11, 2%
Process Time (X), 0.00, 0%
Alignment (I), 9.30, 7%
Tool Use (T), 43.01, 32%
Clocked Activity ©, 41, 31%
Labour 3- Ashok Lohar
Movement (A)
Body Motion (B)
Grasping (G)
Placement (P)
Move controlled (M)
Process Time (X)
Alignment (I)
Tool Use (T)
Clocked Activity ©
Movement (A), 20.82, 16%
Body Motion (B), 2.10, 2%
Grasping (G), 2.34, 2%
Placement (P), 3.99, 3%
Move controlled (M), 1.93, 1%
Process Time (X), 0.00, 0%
Alignment (I), 8.63, 7%
Tool Use (T), 34.26, 27%
Clocked Activity ©, 53.57, 42%
Labour 4- Tukaram Ahire
Movement (A)
Body Motion (B)
Grasping (G)
Placement (P)
Move controlled (M)
Process Time (X)
Alignment (I)
Tool Use (T)
Clocked Activity ©
Observation’s
 Time is wasted for collected material for stitching belt
 Time is wasted due to long distance between machine and storage
 Time wasted for adjusting material
 More time taken for starting their work
 Time is wasted for adjusting machines
 more time taken for cutting of material
 Time is wasted due to collection of material
 more time taken for handling machines
 More Time is wasted in clocked activities
Result and Conclusion
Time in Min Percentage
Shift 540.00 100.00
Breaks 90.00 16.67
Effective working time 450.00 83.33
Work content by Most 377.62 69.93
Time wasted 72.38 13.40
Akash Lohar
Time in Min Percentage
Shift 540.00 100.00
Breaks 90.00 16.67
Effective working time 450.00 83.33
Work content by Most 334.54 61.95
Time wasted 115.46 21.38
Bhau Kamble
Time in Min Percentage
Shift 540.00 100.00
Breaks 90.00 16.67
Effective working time 450.00 83.33
Work content by Most 276.46 51.20
Time wasted 173.54 32.14
Pratik Jadhav
Time in Min Percentage
Shift 540.00 100.00
Breaks 90.00 16.67
Effective working time 450.00 83.33
Work content by Most 334.45 61.94
Time wasted 115.55 21.40
Tukaram Ahire
Improvement
 They can start their work earlier without wasting time
 They should sort their material in store room for ease of finding them
 The distance should be less between machine and storage if possible
 Less time should take for discussion and phone calls i.e. clocked activities
Time Series Forecasting
Different Time Series Component
 Trend Component
 Seasonal Component
 Residual Component
Methodology
 The quarterly sale of number of orders is given below:
 Create line chart with markers for visualization of data and the chart is given below:
Year Quarter Number of orders per 1000
2017 1 4.8
2 4.1
3 6
4 6.5
2018 1 5.8
2 5.2
3 6.8
4 7.4
2019 1 6
2 5.6
3 7.5
4 7.8
2020 1 6.3
2 5.9
3 8
4 8.4
Step 1:
4.8
4.1
6
6.5
5.8
5.2
6.8
7.4
6
5.6
7.5
7.8
6.3
5.9
8
8.4
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2017 2018 2019 2020
Number of orders per 1000
Number of orders per 1000
Step 2: Insert Time Column
Step 3: Take Moving Average of 4 Period
T year Quarter Number of orders per 1000
1 2017 1 4.8
2 2 4.1
3 3 6
4 4 6.5
5 2018 1 5.8
6 2 5.2
7 3 6.8
8 4 7.4
9 2019 1 6
10 2 5.6
11 3 7.5
12 4 7.8
13 2020 1 6.3
14 2 5.9
15 3 8
16 4 8.4
T year Quarter Number of orders per 1000 MA(4)
1 2017 1 4.8
2 2 4.1
3 3 6 5.4
4 4 6.5 5.6
5 2018 1 5.8 5.9
6 2 5.2 6.1
7 3 6.8 6.3
8 4 7.4 6.4
9 2019 1 6 6.5
10 2 5.6 6.6
11 3 7.5 6.7
12 4 7.8 6.8
13 2020 1 6.3 6.9
14 2 5.9 7.0
15 3 8 7.2
16 4 8.4
Step 4: Calculate Center Moving Average
t year
Quarte
r
Number of orders per
1000 MA(4)
CMA(4
)
1 2017 1 4.8
2 2 4.1
3 3 6 5.4 5.5
4 4 6.5 5.6 5.7
5 2018 1 5.8 5.9 6.0
6 2 5.2 6.1 6.2
7 3 6.8 6.3 6.3
8 4 7.4 6.4 6.4
9 2019 1 6 6.5 6.5
10 2 5.6 6.6 6.7
11 3 7.5 6.7 6.8
12 4 7.8 6.8 6.8
13 2020 1 6.3 6.9 6.9
14 2 5.9 7.0 7.1
15 3 8 7.2
16 4 8.4
4.8
4.1
6
6.5
5.8
5.2
6.8
7.4
6
5.6
7.5
7.8
6.3
5.9
8
8.4
5.5
5.7
6.0
6.2 6.3 6.4 6.5 6.7 6.8 6.8 6.9 7.1
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2017 2018 2019 2020
Number of orders per 1000 CMA(4)
Step 5: Calculate Seasonality and Irregularity
T year Quarter Number of orders per 1000 MA(4) CMA(4) St, It
1 2017 1 4.8
2 2 4.1
3 3 6 5.4 5.5 1.10
4 4 6.5 5.6 5.7 1.13
5 2018 1 5.8 5.9 6.0 0.97
6 2 5.2 6.1 6.2 0.84
7 3 6.8 6.3 6.3 1.08
8 4 7.4 6.4 6.4 1.16
9 2019 1 6 6.5 6.5 0.92
10 2 5.6 6.6 6.7 0.84
11 3 7.5 6.7 6.8 1.11
12 4 7.8 6.8 6.8 1.14
13 2020 1 6.3 6.9 6.9 0.91
14 2 5.9 7.0 7.1 0.83
15 3 8 7.2
16 4 8.4
Yt= St x It x Tt
Yt is orders per quarter
So in order to calculate
St, It is a Yt/CMA i.e
St, It = Yt/CMA
Step 6: Let’s Get Rid of Irregularity and
Deseasonalize the Data
T year
Quart
er
Number of orders per
1000 MA(4)
CMA(
4) St, It St
1 2017 1 4.8 0.93
2 2 4.1 0.84
3 3 6 5.4 5.5 1.10 1.09
4 4 6.5 5.6 5.7 1.13 1.14
5 2018 1 5.8 5.9 6.0 0.97 0.93
6 2 5.2 6.1 6.2 0.84 0.84
7 3 6.8 6.3 6.3 1.08 1.09
8 4 7.4 6.4 6.4 1.16 1.14
9 2019 1 6 6.5 6.5 0.92 0.93
10 2 5.6 6.6 6.7 0.84 0.84
11 3 7.5 6.7 6.8 1.11 1.09
12 4 7.8 6.8 6.8 1.14 1.14
13 2020 1 6.3 6.9 6.9 0.91 0.93
14 2 5.9 7.0 7.1 0.83 0.84
15 3 8 7.2 1.09
16 4 8.4 1.14
T year
Quar
ter
Number of
orders per 1000
MA(
4)
CMA
(4) St, It St
Deseason
alise
1 2017 1 4.8 0.93 5.1
2 2 4.1 0.84 4.9
3 3 6 5.4 5.5 1.10 1.09 5.5
4 4 6.5 5.6 5.7 1.13 1.14 5.7
5 2018 1 5.8 5.9 6.0 0.97 0.93 6.2
6 2 5.2 6.1 6.2 0.84 0.84 6.2
7 3 6.8 6.3 6.3 1.08 1.09 6.2
8 4 7.4 6.4 6.4 1.16 1.14 6.5
9 2019 1 6 6.5 6.5 0.92 0.93 6.4
10 2 5.6 6.6 6.7 0.84 0.84 6.7
11 3 7.5 6.7 6.8 1.11 1.09 6.9
12 4 7.8 6.8 6.8 1.14 1.14 6.8
13 2020 1 6.3 6.9 6.9 0.91 0.93 6.8
14 2 5.9 7.0 7.1 0.83 0.84 7.0
15 3 8 7.2 1.09 7.3
16 4 8.4 1.14 7.3
Step 7: Find Out Trend Component
Coefficients
Intercept 5.09961
t 0.147139
Short Summary of Simple
linear regression
T year
Quarte
r
Number of orders per
1000 MA(4)
CMA(4
) St, It St
Deseasonali
se Tt
1 2017 1 4.8 0.93 5.1 5.25
2 2 4.1 0.84 4.9 5.39
3 3 6 5.4 5.5 1.10 1.09 5.5 5.54
4 4 6.5 5.6 5.7 1.13 1.14 5.7 5.69
5 2018 1 5.8 5.9 6.0 0.97 0.93 6.2 5.84
6 2 5.2 6.1 6.2 0.84 0.84 6.2 5.98
7 3 6.8 6.3 6.3 1.08 1.09 6.2 6.13
8 4 7.4 6.4 6.4 1.16 1.14 6.5 6.28
9 2019 1 6 6.5 6.5 0.92 0.93 6.4 6.42
10 2 5.6 6.6 6.7 0.84 0.84 6.7 6.57
11 3 7.5 6.7 6.8 1.11 1.09 6.9 6.72
12 4 7.8 6.8 6.8 1.14 1.14 6.8 6.87
13 2020 1 6.3 6.9 6.9 0.91 0.93 6.8 7.01
14 2 5.9 7.0 7.1 0.83 0.84 7.0 7.16
15 3 8 7.2 1.09 7.3 7.31
16 4 8.4 1.14 7.3 7.45
Do the Simple Linear
Regression of Deseanonalize
Data for Finding the Trend
Component
Step 8: Forecasting the Time Series Data
T year
Quarte
r
Number of
orders per
1000
MA(4
)
CMA(4
) St, It St
Deseasonali
se Tt
Forecas
t
1 2017 1 4.8 0.93 5.1 5.25 4.89
2 2 4.1 0.84 4.9 5.39 4.52
3 3 6 5.4 5.5 1.10 1.09 5.5 5.54 6.06
4 4 6.5 5.6 5.7 1.13 1.14 5.7 5.69 6.50
5 2018 1 5.8 5.9 6.0 0.97 0.93 6.2 5.84 5.44
6 2 5.2 6.1 6.2 0.84 0.84 6.2 5.98 5.01
7 3 6.8 6.3 6.3 1.08 1.09 6.2 6.13 6.70
8 4 7.4 6.4 6.4 1.16 1.14 6.5 6.28 7.18
9 2019 1 6 6.5 6.5 0.92 0.93 6.4 6.42 5.99
10 2 5.6 6.6 6.7 0.84 0.84 6.7 6.57 5.50
11 3 7.5 6.7 6.8 1.11 1.09 6.9 6.72 7.35
12 4 7.8 6.8 6.8 1.14 1.14 6.8 6.87 7.85
13 2020 1 6.3 6.9 6.9 0.91 0.93 6.8 7.01 6.54
14 2 5.9 7.0 7.1 0.83 0.84 7.0 7.16 6.00
15 3 8 7.2 1.09 7.3 7.31 7.99
16 4 8.4 1.14 7.3 7.45 8.52
17 2021 1 0.93 7.60 7.09
18 2 0.84 7.75 6.49
19 3 1.09 7.90 8.63
20 4 1.14 8.04 9.19
4.8
4.1
6
6.5
5.8
5.2
6.8
7.4
6
5.6
7.5
7.8
6.3
5.9
8
8.4
5.5
5.7 6.0 6.2 6.3 6.4 6.5 6.7 6.8 6.8 6.9 7.1
4.89
4.52
6.06
6.50
5.44
5.01
6.70
7.18
5.99
5.50
7.35
7.85
6.54
6.00
7.99
8.52
7.09
6.49
8.63
9.19
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
2017 2018 2019 2020 2021
Number of orders per 1000 CMA(4) Forecast
Result
 So the Final Forecasted Data is given below:
Year Quarter
Forecast(Per 1000
Orders)
2021 1 7.09
2 6.49
3 8.63
4 9.19
Thank You

Maynards operation sequence technique

  • 1.
    Productivity Improvement byMaynards Operation Sequence Technique & Time Series Forecasting By Mr. Gajanan Pathak M. Tech II Year 119M0078 Prof. Prakash Vaidya Prof. Suvarna Mane Guides Dr. G. N. Kotwal H.O.D
  • 2.
  • 3.
    Maynard Operation SequenceTechnique (MOST®)  Considered a revolutionary Predetermined Motion Time System(PMTS)  Developed by Kjell Zandin and H. B. Maynard and Company, Inc. in 1974  MOST® times represent ranges of motions.  Very accurate results are produced because ranges are statistically derived.  Based on Methods Time Measurement(MTM).
  • 4.
    Sequence Model andTerminology Activity Sequence Model Parameter General Move A B G A B PA A= Action Distance B= Body Motion G= Gain control P= Placement Controlled Move A B G M X I A M= Move Controlled X= Process Time I= Alignment Tool Use A B G A B P A B P A F= Fasten L= Loosen C= Cut S= Surface Treat M= Measure R= Record T= Think
  • 5.
    General Move  Thegeneral move sequence model is: A B G A B P A  Action Distance(A)  Body Motion(B)  Gain Control(G)  Placement(P) Index values for the General Move in Basic MOST
  • 6.
    Controlled Move  Thecontrolled move sequence model is: A B G M X I A  Move Controlled(M)  Process time(X)  Alignment(I) Index values for the Controlled Move in Basic MOST
  • 7.
    Tool Use  Thecontrolled move sequence model is: A B G A B P A B P A  The other parameters in tool use are:  Fasten(F), Loosen(L), Cut(C), Surface Treat(S), Measure(M), Record(R), Think(T) Index values for the Tool Use Action Move in Basic MOST
  • 8.
    Methodology Shadow an lobourthroughout the shift to understand the flow and the work. Map all micro activities carried out by labour in detail Assign the standard timings to each activity as per PMTS Measure the work and Derive standard work content for the entire process Understand the different losses & derive the utilization Identify opportunity for improvements.
  • 9.
    Time Unit Usedin Most  A typical MOST work sequence code would look like this:  A10 B6 G3 A6 P3 A0  Step – 1 Adds up all the subscript numbers  10+6+3+6+3+0= 28 (the subscript is the MOST index value)  Step – 2 multiple the sum of the index by 10. This answer gives the TMU equivalent 28 x 10 = 280 TMU  Step – 3 Convert to time in seconds 280U *0.036 seconds = 10.08 seconds. 1 TMU= 0.00001 Hour 1 Hour= 100,000 TMU 1 TMU= 0.0006 Minute 1 Minute= 1667 TMU 1 TMU= 0.036 Second 1 Second= 27.8 TMU
  • 10.
  • 11.
    Summary Analysis ofLabour’s Perticulars Labour Bhau Kamble Pratik Jadhav Ashok Lohar Tukaram Ahire Genral Information Department Production Production Production Production Designation Labour 1 Labour 2 Labour 3 Labour 4 Shift Genral Genral Genral Genral Shift Information Estimated Time (Min) 540.00 540.00 540.00 540.00 Breaks (Min) 90.00 90.00 90.00 90.00 Effective Working Time (Min) 450.00 450.00 450.00 450.00 MOST Analysis Work content (Min) 334.54 276.46 377.62 334.45 Movement (A) 9.51 13.73 28.53 20.82 Body Motion (B) 0.14 0.14 2.22 2.10 Grasping (G) 0.85 0.89 2.7 2.34 Placement (P) 5.91 1.23 4.4 3.99 Move controlled (M) 0.64 0.64 2.11 1.93 Process Time (X) 0.00 0 0.00 0.00 Alignment (I) 3.08 3.08 9.30 8.63 Tool Use (T) 53.09 46.93 43.01 34.26 Clocked Activity © 33.01 49.68 41 53.57 Time Wasted 115.46 173.54 72.00 115.59
  • 12.
    Summary Analysis 90.00 90.0090.00 90.00 334.54 276.46 377.62 334.45 115.46 173.54 72.00 115.59 540.00 540.00 540.00 540.00 BHAU KAMBLE PRATIK JADHAV ASHOK LOHAR TUKARAM AHIRE MOST SUMMARY Breaks (Min) Work content (Min) Time Wasted Estimated Time (Min)
  • 13.
    Average of MOSTSummary Bhau Kamble Pratik Jadhav Ashok Lohar Tukaram Ahire Breaks (Min) 90.00 90.00 90.00 90.00 Work content (Min) 334.54 276.46 377.62 334.45 Time Wasted 115.46 173.54 72.00 115.59 Estimated Time (Min) 540.00 540.00 540.00 540.00 Breaks (Min) 90.00 Work content (Min) 330.77 Time Wasted 119.15 Estimated Time (Min) 540.00 Average of MOST Summary MOST Summary 90.00 330.77 119.15 540.00 BREAKS (MIN) WORK CONTENT (MIN) TIME WASTED ESTIMATED TIME (MIN) Average of MOST Summary Breaks (Min) Work content (Min) Time Wasted Estimated Time (Min)
  • 14.
    Summary of AllMicro Activities of Each Labour’s Movement (A), 9.51, 9% Body Motion (B), 0.14, 0% Grasping (G), 0.85, 1% Placement (P), 5.91, 5% Move controlled (M), 0.64, 1% Process Time (X), 0.00, 0% Alignment (I), 3.08, 3% Tool Use (T), 53.09, 50% Clocked Activity ©, 33.01, 31% Labour 1- Bhau Kamble Movement (A) Body Motion (B) Grasping (G) Placement (P) Move controlled (M) Process Time (X) Alignment (I) Tool Use (T) Clocked Activity ©
  • 15.
    Movement (A), 13.73,12% Body Motion (B), 0.14, 0% Grasping (G), 0.89, 1% Placement (P), 1.23, 1% Move controlled (M), 0.64, 0% Process Time (X), 0, 0% Alignment (I), 3.08, 3% Tool Use (T), 46.93, 40% Clocked Activity ©, 49.68, 43% Labour 2- Pratik jadhav Movement (A) Body Motion (B) Grasping (G) Placement (P) Move controlled (M) Process Time (X) Alignment (I) Tool Use (T) Clocked Activity ©
  • 16.
    Movement (A), 28.53,21% Body Motion (B), 2.22, 2% Grasping (G), 2.7, 2% Placement (P), 4.4, 3% Move controlled (M), 2.11, 2% Process Time (X), 0.00, 0% Alignment (I), 9.30, 7% Tool Use (T), 43.01, 32% Clocked Activity ©, 41, 31% Labour 3- Ashok Lohar Movement (A) Body Motion (B) Grasping (G) Placement (P) Move controlled (M) Process Time (X) Alignment (I) Tool Use (T) Clocked Activity ©
  • 17.
    Movement (A), 20.82,16% Body Motion (B), 2.10, 2% Grasping (G), 2.34, 2% Placement (P), 3.99, 3% Move controlled (M), 1.93, 1% Process Time (X), 0.00, 0% Alignment (I), 8.63, 7% Tool Use (T), 34.26, 27% Clocked Activity ©, 53.57, 42% Labour 4- Tukaram Ahire Movement (A) Body Motion (B) Grasping (G) Placement (P) Move controlled (M) Process Time (X) Alignment (I) Tool Use (T) Clocked Activity ©
  • 18.
    Observation’s  Time iswasted for collected material for stitching belt  Time is wasted due to long distance between machine and storage  Time wasted for adjusting material  More time taken for starting their work  Time is wasted for adjusting machines  more time taken for cutting of material  Time is wasted due to collection of material  more time taken for handling machines  More Time is wasted in clocked activities
  • 19.
    Result and Conclusion Timein Min Percentage Shift 540.00 100.00 Breaks 90.00 16.67 Effective working time 450.00 83.33 Work content by Most 377.62 69.93 Time wasted 72.38 13.40 Akash Lohar Time in Min Percentage Shift 540.00 100.00 Breaks 90.00 16.67 Effective working time 450.00 83.33 Work content by Most 334.54 61.95 Time wasted 115.46 21.38 Bhau Kamble Time in Min Percentage Shift 540.00 100.00 Breaks 90.00 16.67 Effective working time 450.00 83.33 Work content by Most 276.46 51.20 Time wasted 173.54 32.14 Pratik Jadhav Time in Min Percentage Shift 540.00 100.00 Breaks 90.00 16.67 Effective working time 450.00 83.33 Work content by Most 334.45 61.94 Time wasted 115.55 21.40 Tukaram Ahire
  • 20.
    Improvement  They canstart their work earlier without wasting time  They should sort their material in store room for ease of finding them  The distance should be less between machine and storage if possible  Less time should take for discussion and phone calls i.e. clocked activities
  • 21.
  • 22.
    Different Time SeriesComponent  Trend Component  Seasonal Component  Residual Component
  • 23.
    Methodology  The quarterlysale of number of orders is given below:  Create line chart with markers for visualization of data and the chart is given below: Year Quarter Number of orders per 1000 2017 1 4.8 2 4.1 3 6 4 6.5 2018 1 5.8 2 5.2 3 6.8 4 7.4 2019 1 6 2 5.6 3 7.5 4 7.8 2020 1 6.3 2 5.9 3 8 4 8.4 Step 1: 4.8 4.1 6 6.5 5.8 5.2 6.8 7.4 6 5.6 7.5 7.8 6.3 5.9 8 8.4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2017 2018 2019 2020 Number of orders per 1000 Number of orders per 1000
  • 24.
    Step 2: InsertTime Column Step 3: Take Moving Average of 4 Period T year Quarter Number of orders per 1000 1 2017 1 4.8 2 2 4.1 3 3 6 4 4 6.5 5 2018 1 5.8 6 2 5.2 7 3 6.8 8 4 7.4 9 2019 1 6 10 2 5.6 11 3 7.5 12 4 7.8 13 2020 1 6.3 14 2 5.9 15 3 8 16 4 8.4 T year Quarter Number of orders per 1000 MA(4) 1 2017 1 4.8 2 2 4.1 3 3 6 5.4 4 4 6.5 5.6 5 2018 1 5.8 5.9 6 2 5.2 6.1 7 3 6.8 6.3 8 4 7.4 6.4 9 2019 1 6 6.5 10 2 5.6 6.6 11 3 7.5 6.7 12 4 7.8 6.8 13 2020 1 6.3 6.9 14 2 5.9 7.0 15 3 8 7.2 16 4 8.4
  • 25.
    Step 4: CalculateCenter Moving Average t year Quarte r Number of orders per 1000 MA(4) CMA(4 ) 1 2017 1 4.8 2 2 4.1 3 3 6 5.4 5.5 4 4 6.5 5.6 5.7 5 2018 1 5.8 5.9 6.0 6 2 5.2 6.1 6.2 7 3 6.8 6.3 6.3 8 4 7.4 6.4 6.4 9 2019 1 6 6.5 6.5 10 2 5.6 6.6 6.7 11 3 7.5 6.7 6.8 12 4 7.8 6.8 6.8 13 2020 1 6.3 6.9 6.9 14 2 5.9 7.0 7.1 15 3 8 7.2 16 4 8.4 4.8 4.1 6 6.5 5.8 5.2 6.8 7.4 6 5.6 7.5 7.8 6.3 5.9 8 8.4 5.5 5.7 6.0 6.2 6.3 6.4 6.5 6.7 6.8 6.8 6.9 7.1 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2017 2018 2019 2020 Number of orders per 1000 CMA(4)
  • 26.
    Step 5: CalculateSeasonality and Irregularity T year Quarter Number of orders per 1000 MA(4) CMA(4) St, It 1 2017 1 4.8 2 2 4.1 3 3 6 5.4 5.5 1.10 4 4 6.5 5.6 5.7 1.13 5 2018 1 5.8 5.9 6.0 0.97 6 2 5.2 6.1 6.2 0.84 7 3 6.8 6.3 6.3 1.08 8 4 7.4 6.4 6.4 1.16 9 2019 1 6 6.5 6.5 0.92 10 2 5.6 6.6 6.7 0.84 11 3 7.5 6.7 6.8 1.11 12 4 7.8 6.8 6.8 1.14 13 2020 1 6.3 6.9 6.9 0.91 14 2 5.9 7.0 7.1 0.83 15 3 8 7.2 16 4 8.4 Yt= St x It x Tt Yt is orders per quarter So in order to calculate St, It is a Yt/CMA i.e St, It = Yt/CMA
  • 27.
    Step 6: Let’sGet Rid of Irregularity and Deseasonalize the Data T year Quart er Number of orders per 1000 MA(4) CMA( 4) St, It St 1 2017 1 4.8 0.93 2 2 4.1 0.84 3 3 6 5.4 5.5 1.10 1.09 4 4 6.5 5.6 5.7 1.13 1.14 5 2018 1 5.8 5.9 6.0 0.97 0.93 6 2 5.2 6.1 6.2 0.84 0.84 7 3 6.8 6.3 6.3 1.08 1.09 8 4 7.4 6.4 6.4 1.16 1.14 9 2019 1 6 6.5 6.5 0.92 0.93 10 2 5.6 6.6 6.7 0.84 0.84 11 3 7.5 6.7 6.8 1.11 1.09 12 4 7.8 6.8 6.8 1.14 1.14 13 2020 1 6.3 6.9 6.9 0.91 0.93 14 2 5.9 7.0 7.1 0.83 0.84 15 3 8 7.2 1.09 16 4 8.4 1.14 T year Quar ter Number of orders per 1000 MA( 4) CMA (4) St, It St Deseason alise 1 2017 1 4.8 0.93 5.1 2 2 4.1 0.84 4.9 3 3 6 5.4 5.5 1.10 1.09 5.5 4 4 6.5 5.6 5.7 1.13 1.14 5.7 5 2018 1 5.8 5.9 6.0 0.97 0.93 6.2 6 2 5.2 6.1 6.2 0.84 0.84 6.2 7 3 6.8 6.3 6.3 1.08 1.09 6.2 8 4 7.4 6.4 6.4 1.16 1.14 6.5 9 2019 1 6 6.5 6.5 0.92 0.93 6.4 10 2 5.6 6.6 6.7 0.84 0.84 6.7 11 3 7.5 6.7 6.8 1.11 1.09 6.9 12 4 7.8 6.8 6.8 1.14 1.14 6.8 13 2020 1 6.3 6.9 6.9 0.91 0.93 6.8 14 2 5.9 7.0 7.1 0.83 0.84 7.0 15 3 8 7.2 1.09 7.3 16 4 8.4 1.14 7.3
  • 28.
    Step 7: FindOut Trend Component Coefficients Intercept 5.09961 t 0.147139 Short Summary of Simple linear regression T year Quarte r Number of orders per 1000 MA(4) CMA(4 ) St, It St Deseasonali se Tt 1 2017 1 4.8 0.93 5.1 5.25 2 2 4.1 0.84 4.9 5.39 3 3 6 5.4 5.5 1.10 1.09 5.5 5.54 4 4 6.5 5.6 5.7 1.13 1.14 5.7 5.69 5 2018 1 5.8 5.9 6.0 0.97 0.93 6.2 5.84 6 2 5.2 6.1 6.2 0.84 0.84 6.2 5.98 7 3 6.8 6.3 6.3 1.08 1.09 6.2 6.13 8 4 7.4 6.4 6.4 1.16 1.14 6.5 6.28 9 2019 1 6 6.5 6.5 0.92 0.93 6.4 6.42 10 2 5.6 6.6 6.7 0.84 0.84 6.7 6.57 11 3 7.5 6.7 6.8 1.11 1.09 6.9 6.72 12 4 7.8 6.8 6.8 1.14 1.14 6.8 6.87 13 2020 1 6.3 6.9 6.9 0.91 0.93 6.8 7.01 14 2 5.9 7.0 7.1 0.83 0.84 7.0 7.16 15 3 8 7.2 1.09 7.3 7.31 16 4 8.4 1.14 7.3 7.45 Do the Simple Linear Regression of Deseanonalize Data for Finding the Trend Component
  • 29.
    Step 8: Forecastingthe Time Series Data T year Quarte r Number of orders per 1000 MA(4 ) CMA(4 ) St, It St Deseasonali se Tt Forecas t 1 2017 1 4.8 0.93 5.1 5.25 4.89 2 2 4.1 0.84 4.9 5.39 4.52 3 3 6 5.4 5.5 1.10 1.09 5.5 5.54 6.06 4 4 6.5 5.6 5.7 1.13 1.14 5.7 5.69 6.50 5 2018 1 5.8 5.9 6.0 0.97 0.93 6.2 5.84 5.44 6 2 5.2 6.1 6.2 0.84 0.84 6.2 5.98 5.01 7 3 6.8 6.3 6.3 1.08 1.09 6.2 6.13 6.70 8 4 7.4 6.4 6.4 1.16 1.14 6.5 6.28 7.18 9 2019 1 6 6.5 6.5 0.92 0.93 6.4 6.42 5.99 10 2 5.6 6.6 6.7 0.84 0.84 6.7 6.57 5.50 11 3 7.5 6.7 6.8 1.11 1.09 6.9 6.72 7.35 12 4 7.8 6.8 6.8 1.14 1.14 6.8 6.87 7.85 13 2020 1 6.3 6.9 6.9 0.91 0.93 6.8 7.01 6.54 14 2 5.9 7.0 7.1 0.83 0.84 7.0 7.16 6.00 15 3 8 7.2 1.09 7.3 7.31 7.99 16 4 8.4 1.14 7.3 7.45 8.52 17 2021 1 0.93 7.60 7.09 18 2 0.84 7.75 6.49 19 3 1.09 7.90 8.63 20 4 1.14 8.04 9.19 4.8 4.1 6 6.5 5.8 5.2 6.8 7.4 6 5.6 7.5 7.8 6.3 5.9 8 8.4 5.5 5.7 6.0 6.2 6.3 6.4 6.5 6.7 6.8 6.8 6.9 7.1 4.89 4.52 6.06 6.50 5.44 5.01 6.70 7.18 5.99 5.50 7.35 7.85 6.54 6.00 7.99 8.52 7.09 6.49 8.63 9.19 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 2017 2018 2019 2020 2021 Number of orders per 1000 CMA(4) Forecast
  • 30.
    Result  So theFinal Forecasted Data is given below: Year Quarter Forecast(Per 1000 Orders) 2021 1 7.09 2 6.49 3 8.63 4 9.19
  • 31.