SlideShare a Scribd company logo
Induksi Matematik 
Bekerjasama dengan 
Rinaldi Munir
Prinsip Induksi Kuat 
•Misalkan p(n) adalah pernyataan perihal bilangan bulat dan kita ingin membuktikan bahwa p(n) benar untuk semua bilangan bulat n  n0. Untuk membuktikan ini, kita hanya perlu menunjukkan bahwa: 
1. p(n0) benar, dan 
2. jika p(n0 ), p(n0+1), …, p(n) benar maka p(n+1) juga benar untuk semua bilangan bulat n  n0,.
Contoh 7. Bilangan bulat positif disebut prima jika dan hanya jika bilangan bulat tersebut habis dibagi dengan 1 dan dirinya sendiri. Kita ingin membuktikan bahwa setiap bilangan bulat positif n (n  2) dapat dinyatakan sebagai perkalian dari (satu atau lebih) bilangan prima. Buktikan dengan prinsip induksi kuat. Penyelesaian: Basis induksi. Jika n = 2, maka 2 sendiri adalah bilangan prima dan di sini 2 dapat dinyatakan sebagai perkalian dari satu buah bilangan prima, yaitu dirinya sendiri.
Langkah induksi. Misalkan pernyataan bahwa bilangan 2, 3, …, n dapat dinyatakan sebagai perkalian (satu atau lebih) bilangan prima adalah benar (hipotesis induksi). Kita perlu menunjukkan bahwa n + 1 juga dapat dinyatakan sebagai perkalian bilangan prima. Ada dua kemungkinan nilai n + 1: (a) Jika n + 1 sendiri bilangan prima, maka jelas ia dapat dinyatakan sebagai perkalian satu atau lebih bilangan prima. (b) Jika n + 1 bukan bilangan prima, maka terdapat bilangan bulat positif a yang membagi habis n + 1 tanpa sisa. Dengan kata lain, (n + 1)/ a = b atau (n + 1) = ab yang dalam hal ini, 2  a  b  n. Menurut hipotesis induksi, a dan b dapat dinyatakan sebagai perkalian satu atau lebih bilangan prima. Ini berarti, n + 1 jelas dapat dinyatakan sebagai perkalian bilangan prima, karena n + 1 = ab. Karena langkah (i) dan (ii) sudah ditunjukkan benar, maka terbukti bahwa setiap bilangan bulat positif n (n  2) dapat dinyatakan sebagai perkalian dari (satu atau lebih) bilangan prima.
•Contoh 8. [LIU85] Teka-teki susun potongan gambar (jigsaw puzzle) terdiri dari sejumlah potongan (bagian) gambar (lihat Gambar). Dua atau lebih potongan dapat disatukan untuk membentuk potongan yang lebih besar. Lebih tepatnya, kita gunakan istilah blok bagi satu potongan gambar. Blok-blok dengan batas yang cocok dapat disatukan membentuk blok yang lain yang lebih besar.
Akhirnya, jika semua potongan telah disatukan menjadi satu buah blok, teka-teki susun gambar itu dikatakan telah dipecahkan. Menggabungkan dua buah blok dengan batas yang cocok dihitung sebagai satu langkah. Gunakan prinsip induksi kuat untuk membuktikan bahwa untuk suatu teka-teki susun gambar dengan n potongan, selalu diperlukan n – 1 langkah untuk memecahkan teki-teki itu.
Penyelesaian: 
(i) Basis induksi. Untuk teka-teki susun gambar dengan satu 
potongan, tidak diperlukan langkah apa-apa untuk memecahkan 
teka-teki itu.
(ii) Langkah induksi. Misalkan pernyataan bahwa untuk teka-teki dengan n potongan (n = 1, 2, 3, …, k) diperlukan sejumlah n – 1 langkah untuk memecahkan teka-teki itu adalah benar (hipotesis induksi). Kita harus membuktikan bahwa untuk n + 1 potongan diperlukan n langkah. 
Bagilah n + 1 potongan menjadi dua buah blok –satu dengan n1 potongan dan satu lagi dengan n2 potongan, dan n1 + n2 = n + 1. 
n1 
n2 
n+1
Untuk langkah terakhir yang memecahkan teka-teki ini, dua buah blok disatukan sehingga membentuk satu blok besar. Menurut hipotesis induksi, diperlukan n1 - 1 langkah untuk menyatukan blok yang satu dan n2 – 1 langkah untuk menyatukan blok yang lain. Digabungkan dengan langkah terakhir yang menyatukan kedua blok tersebut, maka banyaknya langkah adalah 
(n1 – 1) + (n2 – 1) + 1 langkah terakhir = (n1 + n2) – 2 + 1 = n + 1 – 1 = n. 
Karena langkah (i) dan (ii) sudah diperlihatkan benar maka terbukti bahwa suatu teka-teki susun gambar dengan n potongan, selalu diperlukan n - 1 langkah untuk memecahkan teki-teki itu.
Soal latihan 
1.Jika A1, A2, …, An masing-masing adalah himpunan, buktikan dengan induksi matematik hukum De Morgan rampatan berikut: 
nnAAAAAA2121
2.Buktikan dengan induksi matematik bahwa n5 – n habis dibagi 5 untuk n bilangan bulat positif.
3.Di dalam sebuah pesta, setiap tamu berjabat tangan dengan tamu lainnya hanya sekali saja. Buktikan dengan induksi matematik bahwa jika ada n orang tamu maka jumlah jabat tangan yang terjadi adalah n(n – 1)/2.
4.Perlihatkan bahwa [(p1  p2)  (p2  p3)  …  (pn–1  pn)]  [(p1  p2  …  pn–1) pn ] adalah tautologi bilamana p1, p2, …, pn adalah proposisi.
Apa yang salah dari pembuktian induki ini? 
Tunjukkan apa yang salah dari pembuktian di bawah ini yang menyimpulkan bahwa semua kuda berwarna sama? 
Misalkan p(n) adalah pernyataan bahwa semua kuda di dalam sebuah himpunan berwarna sama. 
Basis induksi: jika kuda di dalam himpunan hanya seekor, jelaslah p(1) benar.
Langkah induksi: Misalkan p(n) benar, yaitu asumsikan bahwa semua kuda di dalam himpunan n ekor kuda berwarna sama. Tinjau untuk himpunan dengan n + 1 kuda; nomori kuda-kuda tersebut dengan 1, 2, 3, …, n, n+1. Tinjau dua himpunan, yaitu n ekor kuda yang pertama (1, 2, …n) harus berwarna sama, dan n ekor kuda yang terakhir (2, 3, …, n, n+1) juga harus berwarna sama. Karena himpunan n kuda pertama dan himpunan n kuda terakhir beririsan, maka semua n+1 kuda harus berwarna sama. Ini membuktikan bahwa P(n+1) benar.
Penyelesaian: langkah induksi tidak benar jika n + 1 = 2, sebab dua himpunan (yang masing-masing beranggotakan n = 1 elemen) tidak beririsan.

More Related Content

What's hot

01 barisan-dan-deret
01 barisan-dan-deret01 barisan-dan-deret
01 barisan-dan-deret
Arif Nur Rahman
 
4.matriks dan relasi
4.matriks dan relasi4.matriks dan relasi
4.matriks dan relasi
Nada Try Pasha Julian
 
Aturan Inferensi dan Metode Pembuktian
Aturan Inferensi dan Metode PembuktianAturan Inferensi dan Metode Pembuktian
Aturan Inferensi dan Metode Pembuktian
Fahrul Usman
 
Pertemuan 3 relasi & fungsi
Pertemuan 3 relasi & fungsiPertemuan 3 relasi & fungsi
Pertemuan 3 relasi & fungsiaansyahrial
 
Matematika Diskrit - 06 relasi dan fungsi - 06
Matematika Diskrit - 06 relasi dan fungsi - 06Matematika Diskrit - 06 relasi dan fungsi - 06
Matematika Diskrit - 06 relasi dan fungsi - 06
KuliahKita
 
Pertemuan 02 teori dasar himpunan
Pertemuan 02   teori dasar himpunanPertemuan 02   teori dasar himpunan
Pertemuan 02 teori dasar himpunanFajar Istiqomah
 
Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )
Kelinci Coklat
 
Relasi dan Hasil Kali Cartesius
Relasi dan Hasil Kali CartesiusRelasi dan Hasil Kali Cartesius
Relasi dan Hasil Kali Cartesius
Eman Mendrofa
 
Matematika Diskrit - 11 kompleksitas algoritma - 03
Matematika Diskrit - 11 kompleksitas algoritma - 03Matematika Diskrit - 11 kompleksitas algoritma - 03
Matematika Diskrit - 11 kompleksitas algoritma - 03
KuliahKita
 
Algoritma penjadwalan proses
Algoritma penjadwalan prosesAlgoritma penjadwalan proses
Algoritma penjadwalan proses
Rakhmi Khalida, M.M.S.I
 
Rekursi
Rekursi Rekursi
Rekursi
Fahrul Usman
 
Bilangan kompleks
Bilangan kompleksBilangan kompleks
Bilangan kompleks
PT.surga firdaus
 
Logika dasr
Logika dasrLogika dasr
Ruang Vektor ( Aljabar Linear Elementer )
Ruang Vektor ( Aljabar Linear Elementer )Ruang Vektor ( Aljabar Linear Elementer )
Ruang Vektor ( Aljabar Linear Elementer )
Kelinci Coklat
 
Relasi dan fungsi - matematika diskrit
Relasi dan fungsi - matematika diskritRelasi dan fungsi - matematika diskrit
Relasi dan fungsi - matematika diskrithaqiemisme
 
Pembuktian Sifat – Sifat Operasi Matriks
Pembuktian Sifat – Sifat Operasi MatriksPembuktian Sifat – Sifat Operasi Matriks
Pembuktian Sifat – Sifat Operasi MatriksIpit Sabrina
 
Bab 5 penyederhanaan fungsi boolean
Bab 5 penyederhanaan fungsi booleanBab 5 penyederhanaan fungsi boolean
Bab 5 penyederhanaan fungsi booleanCliquerz Javaneze
 

What's hot (20)

01 barisan-dan-deret
01 barisan-dan-deret01 barisan-dan-deret
01 barisan-dan-deret
 
4.matriks dan relasi
4.matriks dan relasi4.matriks dan relasi
4.matriks dan relasi
 
Aturan Inferensi dan Metode Pembuktian
Aturan Inferensi dan Metode PembuktianAturan Inferensi dan Metode Pembuktian
Aturan Inferensi dan Metode Pembuktian
 
Pertemuan 3 relasi & fungsi
Pertemuan 3 relasi & fungsiPertemuan 3 relasi & fungsi
Pertemuan 3 relasi & fungsi
 
Matematika Diskrit - 06 relasi dan fungsi - 06
Matematika Diskrit - 06 relasi dan fungsi - 06Matematika Diskrit - 06 relasi dan fungsi - 06
Matematika Diskrit - 06 relasi dan fungsi - 06
 
Pembuktian dalam matematika
Pembuktian dalam matematikaPembuktian dalam matematika
Pembuktian dalam matematika
 
Pertemuan 02 teori dasar himpunan
Pertemuan 02   teori dasar himpunanPertemuan 02   teori dasar himpunan
Pertemuan 02 teori dasar himpunan
 
Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )
 
Relasi dan Hasil Kali Cartesius
Relasi dan Hasil Kali CartesiusRelasi dan Hasil Kali Cartesius
Relasi dan Hasil Kali Cartesius
 
Matematika Diskrit - 11 kompleksitas algoritma - 03
Matematika Diskrit - 11 kompleksitas algoritma - 03Matematika Diskrit - 11 kompleksitas algoritma - 03
Matematika Diskrit - 11 kompleksitas algoritma - 03
 
02.logika
02.logika02.logika
02.logika
 
Algoritma penjadwalan proses
Algoritma penjadwalan prosesAlgoritma penjadwalan proses
Algoritma penjadwalan proses
 
Rekursi
Rekursi Rekursi
Rekursi
 
Bilangan kompleks
Bilangan kompleksBilangan kompleks
Bilangan kompleks
 
Logika dasr
Logika dasrLogika dasr
Logika dasr
 
Ruang Vektor ( Aljabar Linear Elementer )
Ruang Vektor ( Aljabar Linear Elementer )Ruang Vektor ( Aljabar Linear Elementer )
Ruang Vektor ( Aljabar Linear Elementer )
 
Relasi dan fungsi - matematika diskrit
Relasi dan fungsi - matematika diskritRelasi dan fungsi - matematika diskrit
Relasi dan fungsi - matematika diskrit
 
Pembuktian Sifat – Sifat Operasi Matriks
Pembuktian Sifat – Sifat Operasi MatriksPembuktian Sifat – Sifat Operasi Matriks
Pembuktian Sifat – Sifat Operasi Matriks
 
Bab 5 penyederhanaan fungsi boolean
Bab 5 penyederhanaan fungsi booleanBab 5 penyederhanaan fungsi boolean
Bab 5 penyederhanaan fungsi boolean
 
relasi himpunan
relasi himpunanrelasi himpunan
relasi himpunan
 

Similar to Matemaika Diskrit - 04 induksi matematik - 03

Induksi Matematik beserta contoh soal dan penyelesaiannya
Induksi Matematik beserta contoh soal dan penyelesaiannyaInduksi Matematik beserta contoh soal dan penyelesaiannya
Induksi Matematik beserta contoh soal dan penyelesaiannya
hestinoviyana1
 
Induksi Matematik.ppt
Induksi Matematik.pptInduksi Matematik.ppt
Induksi Matematik.ppt
AriyaIda
 
induksi matematik
   induksi matematik   induksi matematik
induksi matematik
Farichah Riha
 
Induksi matematika
Induksi matematikaInduksi matematika
Induksi matematika
yusufhidayat1995
 
11841986
1184198611841986
11841986
HardinanSinaga
 
Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)
1724143052
 
Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)
1724143052
 
Induksi matematik
Induksi matematikInduksi matematik
Induksi matematik
Aadidin Nich
 
Induksi mtk
Induksi mtkInduksi mtk
Induksi Matematika
Induksi MatematikaInduksi Matematika
Induksi Matematika
Riza Nafis
 
Induksi matematika
Induksi matematikaInduksi matematika
Induksi matematikatafrikan
 
Power Point Induksi Matematika
Power Point Induksi MatematikaPower Point Induksi Matematika
Power Point Induksi Matematika
nanasaf
 
Ppt
PptPpt
Ppt
PptPpt
Matematika Diskrit - 04 induksi matematik - 02
Matematika Diskrit - 04 induksi matematik - 02Matematika Diskrit - 04 induksi matematik - 02
Matematika Diskrit - 04 induksi matematik - 02
KuliahKita
 
Induksi matematika kls xii
Induksi matematika kls xiiInduksi matematika kls xii
Induksi matematika kls xii
Medi Harja
 
Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.ovalainita
 
Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.ovalainita
 
Induksi matematika
Induksi matematikaInduksi matematika
Induksi matematika
Abdul Wahid Mubarrok
 
Tugas uas bahasa indonesia
Tugas uas bahasa indonesiaTugas uas bahasa indonesia
Tugas uas bahasa indonesiaovalainita
 

Similar to Matemaika Diskrit - 04 induksi matematik - 03 (20)

Induksi Matematik beserta contoh soal dan penyelesaiannya
Induksi Matematik beserta contoh soal dan penyelesaiannyaInduksi Matematik beserta contoh soal dan penyelesaiannya
Induksi Matematik beserta contoh soal dan penyelesaiannya
 
Induksi Matematik.ppt
Induksi Matematik.pptInduksi Matematik.ppt
Induksi Matematik.ppt
 
induksi matematik
   induksi matematik   induksi matematik
induksi matematik
 
Induksi matematika
Induksi matematikaInduksi matematika
Induksi matematika
 
11841986
1184198611841986
11841986
 
Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)
 
Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)Teori bilangan (induksi matematika)
Teori bilangan (induksi matematika)
 
Induksi matematik
Induksi matematikInduksi matematik
Induksi matematik
 
Induksi mtk
Induksi mtkInduksi mtk
Induksi mtk
 
Induksi Matematika
Induksi MatematikaInduksi Matematika
Induksi Matematika
 
Induksi matematika
Induksi matematikaInduksi matematika
Induksi matematika
 
Power Point Induksi Matematika
Power Point Induksi MatematikaPower Point Induksi Matematika
Power Point Induksi Matematika
 
Ppt
PptPpt
Ppt
 
Ppt
PptPpt
Ppt
 
Matematika Diskrit - 04 induksi matematik - 02
Matematika Diskrit - 04 induksi matematik - 02Matematika Diskrit - 04 induksi matematik - 02
Matematika Diskrit - 04 induksi matematik - 02
 
Induksi matematika kls xii
Induksi matematika kls xiiInduksi matematika kls xii
Induksi matematika kls xii
 
Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.
 
Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.Tugas makalah bahasa indonesia.
Tugas makalah bahasa indonesia.
 
Induksi matematika
Induksi matematikaInduksi matematika
Induksi matematika
 
Tugas uas bahasa indonesia
Tugas uas bahasa indonesiaTugas uas bahasa indonesia
Tugas uas bahasa indonesia
 

More from KuliahKita

CSS Eksperimen - 05-2 Popup Menu
CSS Eksperimen - 05-2 Popup MenuCSS Eksperimen - 05-2 Popup Menu
CSS Eksperimen - 05-2 Popup Menu
KuliahKita
 
CSS Eksperimen - 05-1 Popup Konfirmasi
CSS Eksperimen - 05-1 Popup KonfirmasiCSS Eksperimen - 05-1 Popup Konfirmasi
CSS Eksperimen - 05-1 Popup Konfirmasi
KuliahKita
 
CSS Eksperimen - 04-4 Elemen Sliding Door
CSS Eksperimen - 04-4 Elemen Sliding DoorCSS Eksperimen - 04-4 Elemen Sliding Door
CSS Eksperimen - 04-4 Elemen Sliding Door
KuliahKita
 
CSS Eksperimen - 04-3 Elemen Card Flip
CSS Eksperimen - 04-3 Elemen Card FlipCSS Eksperimen - 04-3 Elemen Card Flip
CSS Eksperimen - 04-3 Elemen Card Flip
KuliahKita
 
CSS Eksperimen - 04-2 accordion
CSS Eksperimen - 04-2 accordionCSS Eksperimen - 04-2 accordion
CSS Eksperimen - 04-2 accordion
KuliahKita
 
CSS Eksperimen - 04-1 informasi tab
CSS Eksperimen - 04-1 informasi tabCSS Eksperimen - 04-1 informasi tab
CSS Eksperimen - 04-1 informasi tab
KuliahKita
 
CSS Eksperimen - 03-3 Slide Side Menu
CSS Eksperimen - 03-3 Slide Side MenuCSS Eksperimen - 03-3 Slide Side Menu
CSS Eksperimen - 03-3 Slide Side Menu
KuliahKita
 
CSS Eksperimen - 03-2 Breadcrumb
CSS Eksperimen - 03-2 BreadcrumbCSS Eksperimen - 03-2 Breadcrumb
CSS Eksperimen - 03-2 Breadcrumb
KuliahKita
 
CSS Eksperimen - 03-1 navigasi dasar
CSS Eksperimen - 03-1 navigasi dasarCSS Eksperimen - 03-1 navigasi dasar
CSS Eksperimen - 03-1 navigasi dasar
KuliahKita
 
CSS Eksperimen - 02-2 Flexbox Grid
CSS Eksperimen - 02-2 Flexbox GridCSS Eksperimen - 02-2 Flexbox Grid
CSS Eksperimen - 02-2 Flexbox Grid
KuliahKita
 
Eksperimen CSS - 02-1 grid layout
Eksperimen CSS - 02-1 grid layoutEksperimen CSS - 02-1 grid layout
Eksperimen CSS - 02-1 grid layout
KuliahKita
 
Eksperimen CSS - 01 Pendahuluan
Eksperimen CSS - 01 PendahuluanEksperimen CSS - 01 Pendahuluan
Eksperimen CSS - 01 Pendahuluan
KuliahKita
 
07 equity research (bagian 2)
07 equity research (bagian 2)07 equity research (bagian 2)
07 equity research (bagian 2)
KuliahKita
 
Pasar Saham - 32 Discounted Cash Flow (DCF)
Pasar Saham - 32 Discounted Cash Flow (DCF)Pasar Saham - 32 Discounted Cash Flow (DCF)
Pasar Saham - 32 Discounted Cash Flow (DCF)
KuliahKita
 
Pasar Saham - Equity Research (bagian 1)
Pasar Saham - Equity Research (bagian 1)Pasar Saham - Equity Research (bagian 1)
Pasar Saham - Equity Research (bagian 1)
KuliahKita
 
Pasar Saham - 30 Investment Due Dilligence
Pasar Saham - 30 Investment Due DilligencePasar Saham - 30 Investment Due Dilligence
Pasar Saham - 30 Investment Due Dilligence
KuliahKita
 
Pasar Saham - 29 Financial Ratio 03
Pasar Saham - 29 Financial Ratio 03Pasar Saham - 29 Financial Ratio 03
Pasar Saham - 29 Financial Ratio 03
KuliahKita
 
Pasar Saham - 28 Financial Ratio 02
Pasar Saham - 28 Financial Ratio 02Pasar Saham - 28 Financial Ratio 02
Pasar Saham - 28 Financial Ratio 02
KuliahKita
 
Pasar Saham -27 financial ratio 01
Pasar Saham -27 financial ratio  01Pasar Saham -27 financial ratio  01
Pasar Saham -27 financial ratio 01
KuliahKita
 
Pasar Saham - 26 Cash Flow Statement
Pasar Saham - 26 Cash Flow StatementPasar Saham - 26 Cash Flow Statement
Pasar Saham - 26 Cash Flow Statement
KuliahKita
 

More from KuliahKita (20)

CSS Eksperimen - 05-2 Popup Menu
CSS Eksperimen - 05-2 Popup MenuCSS Eksperimen - 05-2 Popup Menu
CSS Eksperimen - 05-2 Popup Menu
 
CSS Eksperimen - 05-1 Popup Konfirmasi
CSS Eksperimen - 05-1 Popup KonfirmasiCSS Eksperimen - 05-1 Popup Konfirmasi
CSS Eksperimen - 05-1 Popup Konfirmasi
 
CSS Eksperimen - 04-4 Elemen Sliding Door
CSS Eksperimen - 04-4 Elemen Sliding DoorCSS Eksperimen - 04-4 Elemen Sliding Door
CSS Eksperimen - 04-4 Elemen Sliding Door
 
CSS Eksperimen - 04-3 Elemen Card Flip
CSS Eksperimen - 04-3 Elemen Card FlipCSS Eksperimen - 04-3 Elemen Card Flip
CSS Eksperimen - 04-3 Elemen Card Flip
 
CSS Eksperimen - 04-2 accordion
CSS Eksperimen - 04-2 accordionCSS Eksperimen - 04-2 accordion
CSS Eksperimen - 04-2 accordion
 
CSS Eksperimen - 04-1 informasi tab
CSS Eksperimen - 04-1 informasi tabCSS Eksperimen - 04-1 informasi tab
CSS Eksperimen - 04-1 informasi tab
 
CSS Eksperimen - 03-3 Slide Side Menu
CSS Eksperimen - 03-3 Slide Side MenuCSS Eksperimen - 03-3 Slide Side Menu
CSS Eksperimen - 03-3 Slide Side Menu
 
CSS Eksperimen - 03-2 Breadcrumb
CSS Eksperimen - 03-2 BreadcrumbCSS Eksperimen - 03-2 Breadcrumb
CSS Eksperimen - 03-2 Breadcrumb
 
CSS Eksperimen - 03-1 navigasi dasar
CSS Eksperimen - 03-1 navigasi dasarCSS Eksperimen - 03-1 navigasi dasar
CSS Eksperimen - 03-1 navigasi dasar
 
CSS Eksperimen - 02-2 Flexbox Grid
CSS Eksperimen - 02-2 Flexbox GridCSS Eksperimen - 02-2 Flexbox Grid
CSS Eksperimen - 02-2 Flexbox Grid
 
Eksperimen CSS - 02-1 grid layout
Eksperimen CSS - 02-1 grid layoutEksperimen CSS - 02-1 grid layout
Eksperimen CSS - 02-1 grid layout
 
Eksperimen CSS - 01 Pendahuluan
Eksperimen CSS - 01 PendahuluanEksperimen CSS - 01 Pendahuluan
Eksperimen CSS - 01 Pendahuluan
 
07 equity research (bagian 2)
07 equity research (bagian 2)07 equity research (bagian 2)
07 equity research (bagian 2)
 
Pasar Saham - 32 Discounted Cash Flow (DCF)
Pasar Saham - 32 Discounted Cash Flow (DCF)Pasar Saham - 32 Discounted Cash Flow (DCF)
Pasar Saham - 32 Discounted Cash Flow (DCF)
 
Pasar Saham - Equity Research (bagian 1)
Pasar Saham - Equity Research (bagian 1)Pasar Saham - Equity Research (bagian 1)
Pasar Saham - Equity Research (bagian 1)
 
Pasar Saham - 30 Investment Due Dilligence
Pasar Saham - 30 Investment Due DilligencePasar Saham - 30 Investment Due Dilligence
Pasar Saham - 30 Investment Due Dilligence
 
Pasar Saham - 29 Financial Ratio 03
Pasar Saham - 29 Financial Ratio 03Pasar Saham - 29 Financial Ratio 03
Pasar Saham - 29 Financial Ratio 03
 
Pasar Saham - 28 Financial Ratio 02
Pasar Saham - 28 Financial Ratio 02Pasar Saham - 28 Financial Ratio 02
Pasar Saham - 28 Financial Ratio 02
 
Pasar Saham -27 financial ratio 01
Pasar Saham -27 financial ratio  01Pasar Saham -27 financial ratio  01
Pasar Saham -27 financial ratio 01
 
Pasar Saham - 26 Cash Flow Statement
Pasar Saham - 26 Cash Flow StatementPasar Saham - 26 Cash Flow Statement
Pasar Saham - 26 Cash Flow Statement
 

Recently uploaded

Pembangkit Listrik Tenaga Surya PLTS.pptx
Pembangkit Listrik Tenaga Surya PLTS.pptxPembangkit Listrik Tenaga Surya PLTS.pptx
Pembangkit Listrik Tenaga Surya PLTS.pptx
muhhaekalsn
 
Power Point TEMA 7 SUB TEMA 3 Pembelajaran 2
Power Point TEMA 7 SUB TEMA 3 Pembelajaran 2Power Point TEMA 7 SUB TEMA 3 Pembelajaran 2
Power Point TEMA 7 SUB TEMA 3 Pembelajaran 2
HADIANNAS
 
SURVEY REKAYASA SURVEY REKAYASA SURVEY REKAYASA
SURVEY REKAYASA SURVEY REKAYASA SURVEY REKAYASASURVEY REKAYASA SURVEY REKAYASA SURVEY REKAYASA
SURVEY REKAYASA SURVEY REKAYASA SURVEY REKAYASA
AnandhaAdkhaM1
 
RANGKAIAN LISTRIK MATERI 7 ANALISIS MESH.pptx
RANGKAIAN LISTRIK MATERI 7 ANALISIS MESH.pptxRANGKAIAN LISTRIK MATERI 7 ANALISIS MESH.pptx
RANGKAIAN LISTRIK MATERI 7 ANALISIS MESH.pptx
muhammadiswahyudi12
 
COOLING TOWER petrokimia gresik okdong d
COOLING TOWER petrokimia gresik okdong dCOOLING TOWER petrokimia gresik okdong d
COOLING TOWER petrokimia gresik okdong d
delphijean1
 
Daftar Lembaga Penyedia Jasa Linkungan.pdf
Daftar Lembaga Penyedia Jasa Linkungan.pdfDaftar Lembaga Penyedia Jasa Linkungan.pdf
Daftar Lembaga Penyedia Jasa Linkungan.pdf
Tsabitpattipeilohy
 
Matematika diskrit: metode pohon/trees.ppt
Matematika diskrit: metode pohon/trees.pptMatematika diskrit: metode pohon/trees.ppt
Matematika diskrit: metode pohon/trees.ppt
AzrilAld
 
TUGAS UJI KOMPETENSI-INDAH ROSANTI-AHLI UTAMA MANAJEMEN KONSTRUKSI.pptx
TUGAS UJI KOMPETENSI-INDAH ROSANTI-AHLI UTAMA MANAJEMEN KONSTRUKSI.pptxTUGAS UJI KOMPETENSI-INDAH ROSANTI-AHLI UTAMA MANAJEMEN KONSTRUKSI.pptx
TUGAS UJI KOMPETENSI-INDAH ROSANTI-AHLI UTAMA MANAJEMEN KONSTRUKSI.pptx
indahrosantiTeknikSi
 
436102098-0-K3-Elevator-Dan-Eskalator.ppt
436102098-0-K3-Elevator-Dan-Eskalator.ppt436102098-0-K3-Elevator-Dan-Eskalator.ppt
436102098-0-K3-Elevator-Dan-Eskalator.ppt
rhamset
 
TUGAS pelaksana pekerjaan jalan jenjang empat 4 .pptx -.pdf
TUGAS pelaksana pekerjaan jalan jenjang empat 4 .pptx -.pdfTUGAS pelaksana pekerjaan jalan jenjang empat 4 .pptx -.pdf
TUGAS pelaksana pekerjaan jalan jenjang empat 4 .pptx -.pdf
jayakartalumajang1
 

Recently uploaded (10)

Pembangkit Listrik Tenaga Surya PLTS.pptx
Pembangkit Listrik Tenaga Surya PLTS.pptxPembangkit Listrik Tenaga Surya PLTS.pptx
Pembangkit Listrik Tenaga Surya PLTS.pptx
 
Power Point TEMA 7 SUB TEMA 3 Pembelajaran 2
Power Point TEMA 7 SUB TEMA 3 Pembelajaran 2Power Point TEMA 7 SUB TEMA 3 Pembelajaran 2
Power Point TEMA 7 SUB TEMA 3 Pembelajaran 2
 
SURVEY REKAYASA SURVEY REKAYASA SURVEY REKAYASA
SURVEY REKAYASA SURVEY REKAYASA SURVEY REKAYASASURVEY REKAYASA SURVEY REKAYASA SURVEY REKAYASA
SURVEY REKAYASA SURVEY REKAYASA SURVEY REKAYASA
 
RANGKAIAN LISTRIK MATERI 7 ANALISIS MESH.pptx
RANGKAIAN LISTRIK MATERI 7 ANALISIS MESH.pptxRANGKAIAN LISTRIK MATERI 7 ANALISIS MESH.pptx
RANGKAIAN LISTRIK MATERI 7 ANALISIS MESH.pptx
 
COOLING TOWER petrokimia gresik okdong d
COOLING TOWER petrokimia gresik okdong dCOOLING TOWER petrokimia gresik okdong d
COOLING TOWER petrokimia gresik okdong d
 
Daftar Lembaga Penyedia Jasa Linkungan.pdf
Daftar Lembaga Penyedia Jasa Linkungan.pdfDaftar Lembaga Penyedia Jasa Linkungan.pdf
Daftar Lembaga Penyedia Jasa Linkungan.pdf
 
Matematika diskrit: metode pohon/trees.ppt
Matematika diskrit: metode pohon/trees.pptMatematika diskrit: metode pohon/trees.ppt
Matematika diskrit: metode pohon/trees.ppt
 
TUGAS UJI KOMPETENSI-INDAH ROSANTI-AHLI UTAMA MANAJEMEN KONSTRUKSI.pptx
TUGAS UJI KOMPETENSI-INDAH ROSANTI-AHLI UTAMA MANAJEMEN KONSTRUKSI.pptxTUGAS UJI KOMPETENSI-INDAH ROSANTI-AHLI UTAMA MANAJEMEN KONSTRUKSI.pptx
TUGAS UJI KOMPETENSI-INDAH ROSANTI-AHLI UTAMA MANAJEMEN KONSTRUKSI.pptx
 
436102098-0-K3-Elevator-Dan-Eskalator.ppt
436102098-0-K3-Elevator-Dan-Eskalator.ppt436102098-0-K3-Elevator-Dan-Eskalator.ppt
436102098-0-K3-Elevator-Dan-Eskalator.ppt
 
TUGAS pelaksana pekerjaan jalan jenjang empat 4 .pptx -.pdf
TUGAS pelaksana pekerjaan jalan jenjang empat 4 .pptx -.pdfTUGAS pelaksana pekerjaan jalan jenjang empat 4 .pptx -.pdf
TUGAS pelaksana pekerjaan jalan jenjang empat 4 .pptx -.pdf
 

Matemaika Diskrit - 04 induksi matematik - 03

  • 1. Induksi Matematik Bekerjasama dengan Rinaldi Munir
  • 2. Prinsip Induksi Kuat •Misalkan p(n) adalah pernyataan perihal bilangan bulat dan kita ingin membuktikan bahwa p(n) benar untuk semua bilangan bulat n  n0. Untuk membuktikan ini, kita hanya perlu menunjukkan bahwa: 1. p(n0) benar, dan 2. jika p(n0 ), p(n0+1), …, p(n) benar maka p(n+1) juga benar untuk semua bilangan bulat n  n0,.
  • 3. Contoh 7. Bilangan bulat positif disebut prima jika dan hanya jika bilangan bulat tersebut habis dibagi dengan 1 dan dirinya sendiri. Kita ingin membuktikan bahwa setiap bilangan bulat positif n (n  2) dapat dinyatakan sebagai perkalian dari (satu atau lebih) bilangan prima. Buktikan dengan prinsip induksi kuat. Penyelesaian: Basis induksi. Jika n = 2, maka 2 sendiri adalah bilangan prima dan di sini 2 dapat dinyatakan sebagai perkalian dari satu buah bilangan prima, yaitu dirinya sendiri.
  • 4. Langkah induksi. Misalkan pernyataan bahwa bilangan 2, 3, …, n dapat dinyatakan sebagai perkalian (satu atau lebih) bilangan prima adalah benar (hipotesis induksi). Kita perlu menunjukkan bahwa n + 1 juga dapat dinyatakan sebagai perkalian bilangan prima. Ada dua kemungkinan nilai n + 1: (a) Jika n + 1 sendiri bilangan prima, maka jelas ia dapat dinyatakan sebagai perkalian satu atau lebih bilangan prima. (b) Jika n + 1 bukan bilangan prima, maka terdapat bilangan bulat positif a yang membagi habis n + 1 tanpa sisa. Dengan kata lain, (n + 1)/ a = b atau (n + 1) = ab yang dalam hal ini, 2  a  b  n. Menurut hipotesis induksi, a dan b dapat dinyatakan sebagai perkalian satu atau lebih bilangan prima. Ini berarti, n + 1 jelas dapat dinyatakan sebagai perkalian bilangan prima, karena n + 1 = ab. Karena langkah (i) dan (ii) sudah ditunjukkan benar, maka terbukti bahwa setiap bilangan bulat positif n (n  2) dapat dinyatakan sebagai perkalian dari (satu atau lebih) bilangan prima.
  • 5. •Contoh 8. [LIU85] Teka-teki susun potongan gambar (jigsaw puzzle) terdiri dari sejumlah potongan (bagian) gambar (lihat Gambar). Dua atau lebih potongan dapat disatukan untuk membentuk potongan yang lebih besar. Lebih tepatnya, kita gunakan istilah blok bagi satu potongan gambar. Blok-blok dengan batas yang cocok dapat disatukan membentuk blok yang lain yang lebih besar.
  • 6. Akhirnya, jika semua potongan telah disatukan menjadi satu buah blok, teka-teki susun gambar itu dikatakan telah dipecahkan. Menggabungkan dua buah blok dengan batas yang cocok dihitung sebagai satu langkah. Gunakan prinsip induksi kuat untuk membuktikan bahwa untuk suatu teka-teki susun gambar dengan n potongan, selalu diperlukan n – 1 langkah untuk memecahkan teki-teki itu.
  • 7.
  • 8. Penyelesaian: (i) Basis induksi. Untuk teka-teki susun gambar dengan satu potongan, tidak diperlukan langkah apa-apa untuk memecahkan teka-teki itu.
  • 9. (ii) Langkah induksi. Misalkan pernyataan bahwa untuk teka-teki dengan n potongan (n = 1, 2, 3, …, k) diperlukan sejumlah n – 1 langkah untuk memecahkan teka-teki itu adalah benar (hipotesis induksi). Kita harus membuktikan bahwa untuk n + 1 potongan diperlukan n langkah. Bagilah n + 1 potongan menjadi dua buah blok –satu dengan n1 potongan dan satu lagi dengan n2 potongan, dan n1 + n2 = n + 1. n1 n2 n+1
  • 10. Untuk langkah terakhir yang memecahkan teka-teki ini, dua buah blok disatukan sehingga membentuk satu blok besar. Menurut hipotesis induksi, diperlukan n1 - 1 langkah untuk menyatukan blok yang satu dan n2 – 1 langkah untuk menyatukan blok yang lain. Digabungkan dengan langkah terakhir yang menyatukan kedua blok tersebut, maka banyaknya langkah adalah (n1 – 1) + (n2 – 1) + 1 langkah terakhir = (n1 + n2) – 2 + 1 = n + 1 – 1 = n. Karena langkah (i) dan (ii) sudah diperlihatkan benar maka terbukti bahwa suatu teka-teki susun gambar dengan n potongan, selalu diperlukan n - 1 langkah untuk memecahkan teki-teki itu.
  • 11. Soal latihan 1.Jika A1, A2, …, An masing-masing adalah himpunan, buktikan dengan induksi matematik hukum De Morgan rampatan berikut: nnAAAAAA2121
  • 12. 2.Buktikan dengan induksi matematik bahwa n5 – n habis dibagi 5 untuk n bilangan bulat positif.
  • 13. 3.Di dalam sebuah pesta, setiap tamu berjabat tangan dengan tamu lainnya hanya sekali saja. Buktikan dengan induksi matematik bahwa jika ada n orang tamu maka jumlah jabat tangan yang terjadi adalah n(n – 1)/2.
  • 14. 4.Perlihatkan bahwa [(p1  p2)  (p2  p3)  …  (pn–1  pn)]  [(p1  p2  …  pn–1) pn ] adalah tautologi bilamana p1, p2, …, pn adalah proposisi.
  • 15. Apa yang salah dari pembuktian induki ini? Tunjukkan apa yang salah dari pembuktian di bawah ini yang menyimpulkan bahwa semua kuda berwarna sama? Misalkan p(n) adalah pernyataan bahwa semua kuda di dalam sebuah himpunan berwarna sama. Basis induksi: jika kuda di dalam himpunan hanya seekor, jelaslah p(1) benar.
  • 16. Langkah induksi: Misalkan p(n) benar, yaitu asumsikan bahwa semua kuda di dalam himpunan n ekor kuda berwarna sama. Tinjau untuk himpunan dengan n + 1 kuda; nomori kuda-kuda tersebut dengan 1, 2, 3, …, n, n+1. Tinjau dua himpunan, yaitu n ekor kuda yang pertama (1, 2, …n) harus berwarna sama, dan n ekor kuda yang terakhir (2, 3, …, n, n+1) juga harus berwarna sama. Karena himpunan n kuda pertama dan himpunan n kuda terakhir beririsan, maka semua n+1 kuda harus berwarna sama. Ini membuktikan bahwa P(n+1) benar.
  • 17. Penyelesaian: langkah induksi tidak benar jika n + 1 = 2, sebab dua himpunan (yang masing-masing beranggotakan n = 1 elemen) tidak beririsan.