PRML                   2.4

                  (id:syou6162)


       June 13, 2009




       (id:syou6162)     PRML   2.4
2.4


      2


      x                                η

      p(x|η) = h(x)g(η) exp {ηT µ(x)}
          x

          η                        (natural parameter) u(x)   x




                       (id:syou6162)   PRML   2.4
Figure:                   Figure:




Figure:                         Figure: t


           (id:syou6162)       PRML         2.4
?




hoge


                              ←




       (id:syou6162)   PRML       2.4
hoge



  (                            )

               η                          ηML


       (   )




                   (id:syou6162)   PRML         2.4
∈
(1/2)

                       : p(x|µ) = Bern(x|µ) = µ x (1 − µ)1−x


         →                                p(x|η) = h(x)g(η) exp {ηT µ(x)}

    p(x|µ) = (1 − µ) exp {log( 1−µ )x}
                                µ

                               natural parameter η
    η=   log( 1−µ )
               µ

         µ                            µ = σ(η)
                      1
         σ(η) =   1+exp(−η)


                          (id:syou6162)     PRML     2.4
∈
(2/2)

                                         (2.194)
    p(x|η) = σ(−η) exp(ηx)
                  p(x|η) = h(x)g(η) exp {ηT µ(x)}

        η = log( 1−µ )
                  µ

        µ(x) = x
        h(x) = 1
        g(η) = σ(−η)




                         (id:syou6162)    PRML     2.4
∈

                  :
            M    x                      M
p(x|µ) =    k=1 µk k     = exp {        k=1   xk log µk }
                                               (2.194)
       p(x|µ) = exp(ηT x)
    ηk = log uk          η = (η1 , · · · , ηM )T
                  p(x|η) = h(x)g(η) exp {ηT µ(x)}

    µ(x) = x
    h(x) = 1
    g(η) = 1




                      (id:syou6162)   PRML         2.4
uk (k = 1, · · · , M)
M
k=1 uk   =1
→             uk                 M−1


                    M−1




               (id:syou6162)   PRML    2.4
M
                     
                     
exp        xk log uk 
    
                     
                      
                     
        k=1
                     
          M−1                        
                                     
= exp      xk log uk + x M log u M 
      
                                     
                                      
                                     
        k=1
                                     
       M−1                   M−1 
                                                M−1
                                                          
                                                       
= exp      xk log uk + 1 −        xk  log 1 −
                                                      
                                                       µk  
                                                      
                        
                         
                                      
                                       
                                             
                                              
                                                         
                                                          
                                                          
        k=1                    k=1                 k=1
      
       M−1              M−1
                                           M−1
                                                              M−1
                                                                       
                                                                   
= exp      xk log uk −       xk log 1 −          + log 1 −
                                                                   
                                                µk                 µk  
                                     
                                                                    
                                                 
                                                           
                                                            
                                                                      
                                                                       
                                                                       
        k=1               k=1               k=1                 k=1
      
       M−1                                    M−1
                                                          
                          µk                            
= exp      xk log                  + log 1 −
                  
                                   
                                                        
                                                       µk  
                                                        
                            M−1
                                   
                     1 − j=1 µ j
                  
                                   
                                             
                                              
                                                         
                                                          
                                                          
        k=1                                        k=1
      
       M−1
                    M−1                        
                                        µk      
= 1 −      µk  exp      xk log 
  
              
                    
                                 
                                                  
                                                   
                                            M−1
                                                  
                                    1 − j=1 µ j 
  
  
              
               
                                
                                                  
                                                   
       k=1             k=1
                     

                                  (id:syou6162)   PRML       2.4
(1/2)


           M−1                     M−1
1−         k=1 µk      exp         k=1   xk log   1−
                                                        µk
                                                        M−1
                                                              µj
                                                        j=1

log   1−
           µk
            M−1
                  µj
                       = ηk
            j=1

                         k
               exp(ηk )
  µk =      1+ M−1 exp(η j )
                j=1


                  4




                         (id:syou6162)   PRML     2.4
(2/2)

                  M−1          −1
p(x|η) = 1 +      j=1 exp(η j ) exp(ηT x)
    natural parameter η = (η1 , · · · , ηM−1 )T
                 p(x|η) = h(x)g(η) exp {ηT µ(x)}

    µ(x) = x
    h(x) = 1
                   M−1               −1
    g(η) = 1 +     j=1   exp(η j )




                   (id:syou6162)   PRML   2.4
∈
                  :
                  1
p(x|µ, σ) =           1   exp {− 1 σ2(x − µ)2}
                                 2
              (2πσ2 ) 2
                                             (2.194)
                               1               1                      1 2
       p(x|µ, σ) =                1    exp {− 2σ2 x2 +    µ
                                                          σ2
                                                             x   −   2σ2
                                                                         µ}
                          (2πσ2 ) 2
                  p(x|η) = h(x)g(η) exp {ηT µ(x)}

            µ/σ2
    η=
          −1/2σ2
              x
    µ(x) =
             x2
                 1
    h(x) = (2π)− 2
                   1        η2
    g(η) = (−2η2 ) 2 exp ( 4η12 )



                           (id:syou6162)   PRML     2.4
2.4.1


   η
   p(x|η) = h(x)g(η) exp {ηT µ(x)}

        → g(η) h(x) exp {ηT u(x)}dx +
        g(η) h(x) exp {ηT u(x)}u(x)dx = 0
                  − log g(η) = E[u(x)]
             −    log g(η) = cor[u(x)]




                     (id:syou6162)   PRML   2.4
& i.i.d.

X = (x1, · · · , xn )

             : p(X|η) = L(η; X) =
    N                                          N
    n=1 h(xn )   g(η)N exp ηT                  n=1 u(xn )
                                                  :
                 1       N
− g(ηML ) =      N       n=1 u(xn )
                        N
                        n=1 u(xn )

                                                            (sufficient
statistic)


                        (id:syou6162)   PRML          2.4
u(x) = x
    N
    n=1 xn
               u(x) = (x, x2 )T
      N       N
    ( n=1 xn, n=1 x2 )T
                   n
(              )


                               8



               (id:syou6162)       PRML   2.4
2.4.2


            :




        (                       )
        (                       )




                (id:syou6162)       PRML   2.4
p(η|χ) = f (χ, ν)g(η)ν exp {νηT χ}
                 =            ×
   = p(η|χ) × p(X|η)
   = f (χ, ν)g(η)ν exp {νηT χ}
         N                       N
                                              
                    g(η)N exp ηT
                                             
              h(xn)                    u(xn )
        
                  
                                             
     × 
                                           
                             
                                             
          n=1                      n=1
                                             
                     N               
                    T
                                     
   ∝ g(η) µ+N
              exp η 
                      u(xn) + νχ  
                                       
                                       
                                     
                                 n=1
                   
                 (id:syou6162)     PRML   2.4
ν



                           µ(x)   χ




(id:syou6162)       PRML    2.4
2.4.3


                                             ν


                            ν




        →

            (id:syou6162)       PRML   2.4
2.4.3

   λ    K
                                         1
                                p(λ) =   K
                                                       x
                                              1
                                  p(x) =     b−a


                           constant

            1                                      1

            2


                (id:syou6162)    PRML    2.4
1:



                                      1




→          (improper prior)


     (                                    )




         (id:syou6162)   PRML   2.4
(2.3.6                                                    )
                                      p(µ) = N(µ0 , σ2)
                                                     0

                                       →                                  µ0 = 0


                         → σ0 → ∞



         →
            σ2                Nσ20                 σ2 /σ2
                                                        0              N
    µN =         µ
           Nσ2 +σ 0
                         +         µ
                             Nσ2 +σ ML
                                              =   N+σ/σ2 0
                                                            µ   +           µ
                                                                     N+σ/σ2 ML
                                                                                 →
             0                 0                          0               0
    µML
     1     1        N        N
    σ2
       =   σ2
                +   σ2
                         →   σ2
     N      0


                              (id:syou6162)       PRML              2.4
(1/2)

            h(λ)                            λ = η2
         η = h(η2)
         ˆ
                                pλ (λ)                       λ = η2

     pη (η) = pλ (λ)| dλ | = pλ (η2 )2η ∝ η
                      dη
pλ (λ)                                              pη (η)




                     (id:syou6162)   PRML     2.4
(2/2)
                                        ?




             (translation invariance)
             (scale invariance)




        (id:syou6162)   PRML   2.4
p(x|µ) = f (x − µ)

x                                 x = x+c
                                  ˆ            µ =µ+c
                                               ˆ

p(x|µ) = f ( x − µ) = f ((x + c) − (µ + c)) = p( x|µ)
             ˆ ˆ                                 ˆˆ




                  (id:syou6162)   PRML   2.4
A≤µ≤B
          A−c ≤µ≤ B−c

 B                   B−c                      B
A
     p(µ)dµ =     p(µ)dµ =
                    A−c                      A
                                                  p(µ − c)dµ
              A B
      → p(µ − c) = p(µ)
         p(µ)
                ?



                      (id:syou6162)   PRML         2.4
µ
                                   µ0 = 0

        σ2               Nσ20
µN =         µ
       Nσ2 +σ 0
                    +         µ
                        Nσ2 +σ ML
                                            =
         0                0
 σ2 /σ2
      0             N
N+σ/σ2 0
          µ   +          µ
                  N+σ/σ2 ML
                                        → µML
        0              0
                       σ2 →
                          0             ∞

                                            µ




                        (id:syou6162)    PRML   2.4
1      x
σ>0                                        p(x|σ) =   σ   f (σ)

x                              x = cx
                               ˆ                     σ = cσ
                                                      ˆ
                      1    x   1     cx          1   cx
          p(x|σ) = σ f ( σ ) = σ f ( cσ ) =      σ f(σ) =
                                                      ˆ
 1     x
       ˆ     1     x
                   ˆ
cσ f ( σ ) = σ f ( σ )p( x|σ)
       ˆ     ˆ     ˆ     ˆˆ




                    (id:syou6162)   PRML   2.4
A≤σ≤B
            A/c ≤ µ ≤ B/c
 B                 B/c                           B
A
     p(σ)dσ =     p(σ)dσ =
                  A/c                           A
                                                        p( 1 σ) 1 dσ
                                                           c    c
              A B
      → p(σ) = p( 1 σ) 1
                  c    c
                 1
         p(σ) ∝ σ
                                         ?                       ?
      f (x) = 1/x      x = 10
      f (10/2) × 2 = f (5) × 1 = 0.2 ×
                 1
                             2
                                                    1
                                                    2
                                                        = 0.1 = f (10)
                           1/x

                         (id:syou6162)       PRML          2.4
µ
        σ
     N(x|µ, σ2 ) ∝ σ−1 exp{−( x/σ)2 }
                              ˆ
     x= x−µ
     ˆ


     λ = 1/σ2
                               p(σ) ∝ 1/σ          p(λ) ∝ 1/λ
                                             3              3
     p(λ) = p(σ) × | dσ | = p(σ) × | − λ− 2 /2| ∝ 1/σ × λ− 2 =
                     dλ
      1/2   −3
             2 = 1/λ
     λ ×λ
                √
            σ = 1/λ
                        3
            dσ/dλ = −λ− 2 /2
λ                             (2.146)
Gam(λ|a0 , b0 )
                      (id:syou6162)   PRML   2.4
Figure: (2.146)                       Gam(λ|a, b)
           a      b     a=b=0



                      (id:syou6162)    PRML         2.4
a0 = 0 b0 = 0

    a N = a0 + N2
              N
    bN = 1 n=1 (xn − µ)2 = b0 + N σ2
          2                     2       ML
a0 = 0 b0 = 0




                 (id:syou6162)   PRML   2.4

Prml

  • 1.
    PRML 2.4 (id:syou6162) June 13, 2009 (id:syou6162) PRML 2.4
  • 2.
    2.4 2 x η p(x|η) = h(x)g(η) exp {ηT µ(x)} x η (natural parameter) u(x) x (id:syou6162) PRML 2.4
  • 3.
    Figure: Figure: Figure: Figure: t (id:syou6162) PRML 2.4
  • 4.
    ? hoge ← (id:syou6162) PRML 2.4
  • 5.
    hoge ( ) η ηML ( ) (id:syou6162) PRML 2.4
  • 6.
    ∈ (1/2) : p(x|µ) = Bern(x|µ) = µ x (1 − µ)1−x → p(x|η) = h(x)g(η) exp {ηT µ(x)} p(x|µ) = (1 − µ) exp {log( 1−µ )x} µ natural parameter η η= log( 1−µ ) µ µ µ = σ(η) 1 σ(η) = 1+exp(−η) (id:syou6162) PRML 2.4
  • 7.
    ∈ (2/2) (2.194) p(x|η) = σ(−η) exp(ηx) p(x|η) = h(x)g(η) exp {ηT µ(x)} η = log( 1−µ ) µ µ(x) = x h(x) = 1 g(η) = σ(−η) (id:syou6162) PRML 2.4
  • 8.
    : M x M p(x|µ) = k=1 µk k = exp { k=1 xk log µk } (2.194) p(x|µ) = exp(ηT x) ηk = log uk η = (η1 , · · · , ηM )T p(x|η) = h(x)g(η) exp {ηT µ(x)} µ(x) = x h(x) = 1 g(η) = 1 (id:syou6162) PRML 2.4
  • 9.
    uk (k =1, · · · , M) M k=1 uk =1 → uk M−1 M−1 (id:syou6162) PRML 2.4
  • 10.
    M     exp  xk log uk        k=1    M−1    = exp  xk log uk + x M log u M        k=1    M−1  M−1    M−1      = exp  xk log uk + 1 − xk  log 1 −      µk                     k=1 k=1 k=1   M−1 M−1  M−1   M−1       = exp  xk log uk − xk log 1 −  + log 1 −      µk  µk                   k=1 k=1 k=1 k=1   M−1    M−1   µk   = exp  xk log   + log 1 −        µk      M−1   1 − j=1 µ j            k=1 k=1  M−1    M−1      µk  = 1 − µk  exp  xk log            M−1   1 − j=1 µ j             k=1 k=1  (id:syou6162) PRML 2.4
  • 11.
    (1/2) M−1 M−1 1− k=1 µk exp k=1 xk log 1− µk M−1 µj j=1 log 1− µk M−1 µj = ηk j=1 k exp(ηk ) µk = 1+ M−1 exp(η j ) j=1 4 (id:syou6162) PRML 2.4
  • 12.
    (2/2) M−1 −1 p(x|η) = 1 + j=1 exp(η j ) exp(ηT x) natural parameter η = (η1 , · · · , ηM−1 )T p(x|η) = h(x)g(η) exp {ηT µ(x)} µ(x) = x h(x) = 1 M−1 −1 g(η) = 1 + j=1 exp(η j ) (id:syou6162) PRML 2.4
  • 13.
    : 1 p(x|µ, σ) = 1 exp {− 1 σ2(x − µ)2} 2 (2πσ2 ) 2 (2.194) 1 1 1 2 p(x|µ, σ) = 1 exp {− 2σ2 x2 + µ σ2 x − 2σ2 µ} (2πσ2 ) 2 p(x|η) = h(x)g(η) exp {ηT µ(x)} µ/σ2 η= −1/2σ2 x µ(x) = x2 1 h(x) = (2π)− 2 1 η2 g(η) = (−2η2 ) 2 exp ( 4η12 ) (id:syou6162) PRML 2.4
  • 14.
    2.4.1 η p(x|η) = h(x)g(η) exp {ηT µ(x)} → g(η) h(x) exp {ηT u(x)}dx + g(η) h(x) exp {ηT u(x)}u(x)dx = 0 − log g(η) = E[u(x)] − log g(η) = cor[u(x)] (id:syou6162) PRML 2.4
  • 15.
    & i.i.d. X =(x1, · · · , xn ) : p(X|η) = L(η; X) = N N n=1 h(xn ) g(η)N exp ηT n=1 u(xn ) : 1 N − g(ηML ) = N n=1 u(xn ) N n=1 u(xn ) (sufficient statistic) (id:syou6162) PRML 2.4
  • 16.
    u(x) = x N n=1 xn u(x) = (x, x2 )T N N ( n=1 xn, n=1 x2 )T n ( ) 8 (id:syou6162) PRML 2.4
  • 17.
    2.4.2 : ( ) ( ) (id:syou6162) PRML 2.4
  • 18.
    p(η|χ) = f(χ, ν)g(η)ν exp {νηT χ} = × = p(η|χ) × p(X|η) = f (χ, ν)g(η)ν exp {νηT χ}  N   N   g(η)N exp ηT   h(xn) u(xn )      ×           n=1 n=1     N   T    ∝ g(η) µ+N exp η     u(xn) + νχ       n=1  (id:syou6162) PRML 2.4
  • 19.
    ν µ(x) χ (id:syou6162) PRML 2.4
  • 20.
    2.4.3 ν ν → (id:syou6162) PRML 2.4
  • 21.
    2.4.3 λ K 1 p(λ) = K x 1 p(x) = b−a constant 1 1 2 (id:syou6162) PRML 2.4
  • 22.
    1: 1 → (improper prior) ( ) (id:syou6162) PRML 2.4
  • 23.
    (2.3.6 ) p(µ) = N(µ0 , σ2) 0 → µ0 = 0 → σ0 → ∞ → σ2 Nσ20 σ2 /σ2 0 N µN = µ Nσ2 +σ 0 + µ Nσ2 +σ ML = N+σ/σ2 0 µ + µ N+σ/σ2 ML → 0 0 0 0 µML 1 1 N N σ2 = σ2 + σ2 → σ2 N 0 (id:syou6162) PRML 2.4
  • 24.
    (1/2) h(λ) λ = η2 η = h(η2) ˆ pλ (λ) λ = η2 pη (η) = pλ (λ)| dλ | = pλ (η2 )2η ∝ η dη pλ (λ) pη (η) (id:syou6162) PRML 2.4
  • 25.
    (2/2) ? (translation invariance) (scale invariance) (id:syou6162) PRML 2.4
  • 26.
    p(x|µ) = f(x − µ) x x = x+c ˆ µ =µ+c ˆ p(x|µ) = f ( x − µ) = f ((x + c) − (µ + c)) = p( x|µ) ˆ ˆ ˆˆ (id:syou6162) PRML 2.4
  • 27.
    A≤µ≤B A−c ≤µ≤ B−c B B−c B A p(µ)dµ = p(µ)dµ = A−c A p(µ − c)dµ A B → p(µ − c) = p(µ) p(µ) ? (id:syou6162) PRML 2.4
  • 28.
    µ µ0 = 0 σ2 Nσ20 µN = µ Nσ2 +σ 0 + µ Nσ2 +σ ML = 0 0 σ2 /σ2 0 N N+σ/σ2 0 µ + µ N+σ/σ2 ML → µML 0 0 σ2 → 0 ∞ µ (id:syou6162) PRML 2.4
  • 29.
    1 x σ>0 p(x|σ) = σ f (σ) x x = cx ˆ σ = cσ ˆ 1 x 1 cx 1 cx p(x|σ) = σ f ( σ ) = σ f ( cσ ) = σ f(σ) = ˆ 1 x ˆ 1 x ˆ cσ f ( σ ) = σ f ( σ )p( x|σ) ˆ ˆ ˆ ˆˆ (id:syou6162) PRML 2.4
  • 30.
    A≤σ≤B A/c ≤ µ ≤ B/c B B/c B A p(σ)dσ = p(σ)dσ = A/c A p( 1 σ) 1 dσ c c A B → p(σ) = p( 1 σ) 1 c c 1 p(σ) ∝ σ ? ? f (x) = 1/x x = 10 f (10/2) × 2 = f (5) × 1 = 0.2 × 1 2 1 2 = 0.1 = f (10) 1/x (id:syou6162) PRML 2.4
  • 31.
    µ σ N(x|µ, σ2 ) ∝ σ−1 exp{−( x/σ)2 } ˆ x= x−µ ˆ λ = 1/σ2 p(σ) ∝ 1/σ p(λ) ∝ 1/λ 3 3 p(λ) = p(σ) × | dσ | = p(σ) × | − λ− 2 /2| ∝ 1/σ × λ− 2 = dλ 1/2 −3 2 = 1/λ λ ×λ √ σ = 1/λ 3 dσ/dλ = −λ− 2 /2 λ (2.146) Gam(λ|a0 , b0 ) (id:syou6162) PRML 2.4
  • 32.
    Figure: (2.146) Gam(λ|a, b) a b a=b=0 (id:syou6162) PRML 2.4
  • 33.
    a0 = 0b0 = 0 a N = a0 + N2 N bN = 1 n=1 (xn − µ)2 = b0 + N σ2 2 2 ML a0 = 0 b0 = 0 (id:syou6162) PRML 2.4