SlideShare a Scribd company logo
劣モジュラ制約下の凸最適化問題の理論と応用

          数理助教会
        2011年11月24日


      東京大学 生産技術研究所
    最先端数理モデル連携研究センター

         永野 清仁
本発表の構成
劣モジュラ関数 f に付随して定義される基多面体 B(f) 上
での凸関数最小化問題に関する理論と応用のはなし

プロローグ Spanning tree のはなし

Part 1 劣モジュラ制約下の凸最適化の理論のはなし
                          Nagano (IPCO 2007) など

Part 2 劣モジュラ制約下の凸最適化の応用のはなし
              Nagano, Kawahara, Aihara, ICML 2011
グラフの spanning tree
              Spanning tree :
              グラフ G のすべての node をつなげ,
              かつサイクルなしの edge 部分集合

Spanning tree はたくさんある




                 プロローグ
最小重み spanning tree
  5        8      各 edge に重みがあるとし, 重み和
      7           最小のspanning tree を求めたい
  9        3
                            spanning tree を全列挙する必要なし
          最小重み              貪欲アルゴリズムで効率的に計算可能
          spanning tree                   Kruskal 1956




                          プロローグ
Spanning tree が作る多面体
                                  edgeの有無を1と0で表した
Spanning tree の特性ベクトル             0-1ベクトル



 a       b
     c       (1,1,1,0,0) (1,0,1,0,1) (0,1,1,1,0) (0,0,1,1,1)

 d       e

             (1,1,0,1,0) (1,1,0,0,1) (0,1,0,1,1) (1,0,0,1,1)

多面体 PG = (これらの凸包)
                                             凸包
実はこの多面体は基多面体B(f)の例になっている
                      プロローグ
Spanning tree 多面体上の最適化とその一般化

  PG = (spanning tree の特性ベクトルの凸包)

 PG 上の線形関数最小化は貪欲アルゴリズムで効率的
  に解ける (最小重み spanning tree の計算と同じ)
                     一般化

 基多面体 B(f) 上での線形関数最小化も同様の貪欲
  アルゴリズムで効率的に解ける Edmonds 1970

 基多面体 B(f) 上での(変数分離可能)凸関数最小化
  も多項式時間では解ける
        今日はこの最適化問題に対する理論と応用のはなし
                 プロローグ
本発表の構成
劣モジュラ関数 f に付随して定義される基多面体 B(f) 上
での凸関数最小化問題に関する理論と応用のはなし

プロローグ Spanning tree のはなし

Part 1 劣モジュラ制約下の凸最適化の理論のはなし
                          Nagano (IPCO 2007) など

Part 2 劣モジュラ制約下の凸最適化の応用のはなし
              Nagano, Kawahara, Aihara, ICML 2011
Part 1 劣モジュラ制約下の凸最適化の理論のはなし

          On Convex Minimization
          over Base Polytopes
                        Kiyohito Nagano

Notations:
 • V = {1, ..., n}
 • x ∈RV は v (∈V) 番目の成分が
   x(v) であるような n 次元ベクトル
 • x(S) =∑ x(v) (S⊆V)
          v∈S
Submodular Functions
V = {1, ... , n } is a finite set

Set function f : 2V→ R is
 monotone if ∀S ,T s. t. S ⊆T , f (S ) ≤ f (T )
 submodular if
                                                      V
   ∀S ,T ⊆V,                                      S
                                                          T
        f (S ) + f (T ) ≥ f (S ∪T ) + f (S ∩T )
    • Graphs, Networks
    • Game Theory, Auction Theory, Machine Learning

                           Part 1
Submodular Functions
V = {1, ... , n } is a finite set

Set function f : 2V→ R is
 monotone if ∀S ,T s. t. S ⊆T , f (S ) ≤ f (T )


   ∀S ,T s. t. S ⊆T, and ∀v ∉ T
 (equivalently) submodular if
                                                      V
                                                          v
                                                      T
                                                  S
        f (S +v ) – f (S ) ≥ f (T +v ) – f (T )
                            Diminishing reterns
    • Graphs, Networks
    • Game Theory, Auction Theory, Machine Learning

                             Part 1
An Interpretation of function f
 In this part, we assume
   f : 2V→ R is monotone & submodular, f (φ ) = 0
 Such f can be seen as a natural cost function
                            For S ⊆V, we incur cost f (S )       S

One extreme example                                  Another example
                    ∑a(v)     Monotone &             β >0
 a ∈RV
                                                       2(S ) = 0 if S =φ
       >0       v∈S           submodular
 f 1(S ) = a(S )                functions            f
                                                               β o. w.
              $5
                               Intermediate
• Customer 1 eats           functions of f 1 & f 2   The case where
• Customer 2 eats                                    we can make a
• Customer 3 eats                                    copy for free


                                   Part 1
Base Polytope B (f )
f : 2V→ R is monotone & submodular, f (φ ) = 0


   x(S) ≤ f (S ) ( φ ≠S ⊊ V ) 2n − 2 ineq
  The base polytope B(f ) ⊆RV :                   Notations:
                                                  • x = (x(v):v ∈V )∈RV

   x(V ) = f (V )             1 equality          • x(S) =∑ x(v)
                                                          v∈S

                            x(3)
f 1(S ) = a(S )                                    f 2(S ) =   0 if S =φ
                                 B(f )⊆RV   ≥0                 β o.w.


        B(f 1)                                                  B(f 2)
                                           x(1)
                                 6 inequalities
                  x(2)   n=3     1 equality

                               Part 1
Our Problem
Let g : RV → R is an n-variable, separable convex function
We mainly consider
                                                    x(3)
 minx g (x) = ∑ gv (x(v))        1-variable,
              v∈V                convex
  sub. to x(S) ≤ f (S ) ∀S
                                x ∊ B (f )
          x(V ) = f (V )                                   x(1)
                                             x(2)

Assumptions :
  f : 2V→ R is monotone & submodular, f (φ ) = 0
  f is given by a value-giving oracle
  Function gv (x(v)) is differentiable & strictly convex

                             Part 1
Outline of Part 1
 Definitions
 Examples & Our Results
 Equivalence of Problems
 Remark: Efficient algorithm

                   minx g (x ) over B (f )




                    Part 1
Examples of             minx g (x ) over B (f )

 Lexicographically optimal bases           Fujishige 80
 • weight vector w ∈ RV>0
 • For x ∊ B (f ) ,
                         x(v )     x(vn)       x(v )        x(v )
     Inc.Orderw (x) = ( 1 , ... ,
                        w(v1)     w(vn) )
                                          with w(v1 ) ≤ ≤ w(vn )
                                                   1           n
        the sequence of weighted components of x in nondecreasing order

        x = (1,3,4), w = (10,10, 20)          Inc.Orderw (x )
            x(3)
                   x(1)    1 3 4               =( 1 , 4 , 3 )
                          10 10 20                10 20 10
        x(2)

 • Lexicographically optimal base :
                                             min ∑   x(v)2 over
   lex. max Inc.Orderw(x) over B(f )                            B(f )
        x                                     x v ∈V w(v)
                                   equivalent

                               Part 1
Examples of                minx g (x ) over B (f )

 Lexicographically optimal bases            Fujishige 80
 • weight vector w ∈ RV>0
 • Lexicographically optimal base :
                                               min ∑   x(v)2 over
   lex. max Inc.Orderw(x) over B(f )                              B(f )
        x                                       x v ∈V w(v)
                                     equivalent
Related problems:
    Generalization of lex opt flow        Megiddo 74
    Egalitarian solution in convex game         Dutta & Ray 89
    Lex opt base x*       minimum ratio problem min f (S )
                                                       X ⊆V   w(S )
    Min norm point x*     submodular function minimization (SFM)
        (w = 1)   Fujishige 84       (Now f is not necessarily monotone)
                          Size-constrained SFM (See Part 2)
                                 Part 1
Examples of            minx g (x ) over B (f )     (continued)
 Lex opt bases Fujishige 80                       2
                                        min ∑ x(v) over B(f )
   • weight vector w ∈ RV >0             x v ∈V w(v)

 Submodular utility allocation (SUA) markets Jain & Vazirani 07
  • money vector m ∈ RV >0         max ∑ m (v ) ln x(v ) over B(f )
                                         x   v ∈V
   Surprisingly, we will see
    Corollary (Our Result)
    The lex opt base problem and the SUA market problem
    have the same solution if w = m
 Subproblems in approximation algorithms
      • Facility location with submodular penalty (Chudak & Nagano, 07)
      • Submodular cost set cover problem (Iwata & Nagano, 09)


                               Part 1
Outline of Part 1
 Definitions
 Examples & Our Results
 Equivalence of Problems
 Remark: Efficient algorithm

                   minx g (x ) over B (f )




                    Part 1
α -curve C = { xα∈ RV : α ∈ J }
     Let C⊆RV be the set of optimal solutions to
             minx { Σ gv (x(v )) : x(V ) = β } ∀β > 0
                         v ∈V
                           minimization under a budget constraint

                                          β3
                    β2
β1
       β1                       β2                β3                Curve C
β1             β2
                                     β3
                                parameter
                                                               ‐1
 C = { xα   ∈ RV : α ∈ J ⊆ R }              where xα (v ) = (gv) (α ),
            α -curve                              J is an interval⊆ R
 Since gv is convex, α1 < α2 ⇒ xα1< xα2
                                                          component-wise

                                     Part 1
Examples of α - curve C
Positive vectors w, m ∈ RV >0

 gv (x(v )) = x(v )2 / w (v )         gv (x(v )) = - m (v ) ln x(v )
   Lex opt base, Fujishige 80             SUA market, Jain-Vazirani 07



                 α -curve C                                α -curve C
       w                                        m
                          half line                                      half line


 C = { 2α w : α ∈ (0, +∞) }               C = { - 1 m : α ∈(- ∞, 0) }
                                                  α
           xα                                 xα
                                  If w = m, two curves coincide

                                 Part 1
Rationality of optimal solutions

From the correctness of Decomposition Algorithm, we obtain
sufficient conditions for the rationality of optimal solutions :


 Theorem (Our Result)                                        y*
  ∀β ∈Q>0,∀U⊆V , the optimal solution y* to              β

        min U { Σ gv (y(v )) : y(U ) = β } is rational            β
        y ∈R v ∈U
 then    the optimal solution x* to
         minx g (x ) over B (f )    is rational




                                   Part 1
Equivalence of problems

Suppose that we are given
                                         α - curve C(1)
          (1)            (1)
         g (x ) = ∑     gv (x(v ))
                v ∈V
          (2)
                                         α - curve C(2)
                          (2)
         g (x ) = ∑ gv (x(v ))
                 v ∈V

Theorem    (Our Result)
                 (2)
Curves C(1) and C      coincide
    minx g(1)(x ) over B (f ) and minx g(2)(x ) over B (f )
    have the same optimal solution



                                Part 1
Equivalence of problems (examples)
Corollary
The lex opt base problem (Fujishige 80) and the SUA market
problem (Jain&Vazirani 07) have the same solution if w = m
   gv (x(v )) = x(v )2 / w (v )     gv (x(v )) = - m(v ) ln x(v )

            w          α -curve C                  m          α -curve C

                             2 curves coincide
Corollary
Suppose all functions gv are the same (gv = g0)
  x ∈ B(f ) minimizes Euclidean norm ||x|| if and only if
   x ∈ B(f ) minimizes g(x ) = ∑ g0 (x(v))
                                       v ∈V

                                  Part 1
Outline of Part 1
 Definitions
 Examples & Our Results
 Equivalence of Problems
 Remark: Efficient algorithm

                  minx g (x ) over B (f )




                   Part 1
Remark: Efficient Algorithm
In this work, we generalized the discussion of
Fleischer & Iwata 03 for lex. opt. base problem

    An efficient algorithm for minx g(x ) over B (f )
    via parametric submodular function minimization
                  The method is similar to the parametric cut
                  algorithm by Gallo, Grigoriadis & Tarjan 89

Parametric version of Orlin's algorithm (IPCO07)

     Theorem (Nagano 07, manuscript)
      minx g(x ) over B (f ) can be solved in O(n6+ n5EO) time,
     where EO is the time for one function evaluation

                            Part 1
本発表の構成
劣モジュラ関数 f に付随して定義される基多面体 B(f) 上
での凸関数最小化問題に関する理論と応用のはなし

プロローグ Spanning tree のはなし

Part 1 劣モジュラ制約下の凸最適化の理論のはなし
                          Nagano (IPCO 2007) など

Part 2 劣モジュラ制約下の凸最適化の応用のはなし
              Nagano, Kawahara, Aihara, ICML 2011
Part 2 劣モジュラ制約下の凸最適化の応用のはなし

Size-constrained Submodular Minimization
through Minimum Norm Base

                    Kiyohito Nagano
                    Yoshinobu Kawahara
                    Kazuyuki Aihara
Size-constrained Submodular Minimization
                                 through Minimum Norm Base


    Outline of Part 2
                     The densest subgraph problem
                     This problem is an important special case of
     Introduction
                     the size-constrained submodular minimization
     Size-constrained submodular minimization
     The algorithm through minimum norm base
     Concluding remarks




Part 2
Example: Finding a dense graph
                                                            1
    G = (V, E) : undirected graph                    1            2 1           1    4
             node set V = {1, ... , n}              3      2       1        3
             edge set E                              5            6
                                                            2
    Edge weights we ≥ 0(e∈E)                  S={2,3,6}
    Integer k (0≤ k ≤ n)                           I ({2,3,6}) =1+1 =2

    Densest k-subgraph problem :
     Find a k-subset S ⊆ V (|S|=k ) that maximizes I(S),
     where I(S) is sum of weights of edges within S



Part 2                    Size-constrained Submodular Minimization through Minimum Norm Base
Example: Finding a dense graph
                                                                     1 2
     Densest k-subgraph problem :                                  1     1 1 4
      maximize I(S)                                               3 2   1 3
                                                                   5   6
      subject to S⊆{1, ... , n}, |S|= k                              2
                                        If k =3, an optimal solution is {1,5,6}
          NP-hard and constant factor approx algorithms are not known
     Applications:
      Community detection problem in complex networks
      Identification of functional modules in protein-protein
        interaction networks
                                                size-constrained
                                                submodular minimization
     In this talk, we deal with
     a more general discrete optimization problem

Part 2                          Size-constrained Submodular Minimization through Minimum Norm Base
Size-constrained Submodular Minimization
                              through Minimum Norm Base



    Outline of Part 2
     Introduction
     Size-constrained submodular minimization
     The algorithm through minimum norm base
     Concluding remarks     min f (S)
                             sub. to S ⊆{1,..., n}, |S| = k
                             f : submodular
                           This problem generalizes
                             densestsize constraint
                                   a k-subgraph problem
                             size-constrained minimum
                             cut problem
                             Fundamental NP-hard problems


Part 2
Definition: Submodular function

     V ={1, ... , n } is a finite set

     A real-valued function f defined on 2V = { S : S ⊆ V } is

          submodular if                                                             V
                                                                             S        T
             ∀S, T ⊆V                                                    1
                                                                             2
                                                                                 3       4
                                                                                     7
                  f (S)+ f (T )≥ f (S ∪T)+ f (S ∩T)
                                                                             6
                                                                     5                       8



               Discrete analogue of convex function (Lovász 1983)
               This function arises in many fields, e.g.,
                 graph theory, game theory, machine learning, etc.




Part 2                        Size-constrained Submodular Minimization through Minimum Norm Base
Examples of submodular functions
    Graph G = (V, E) with edge weights we ≥ 0 (e∈E)
                        V ={1, ... , n }

     Ex. 1. Intensity function I : 2V→ R                                 S
                                                                               1           2            3
                              both of two endpoints
                   Σ
                                                                                       6
         I (S) =       we :                                              4
                                                                                   5
                                                                                               7
                                                                                                        8   9
                              of e∈E are in S                                 10       11          12

          – I is submodular (i.e. I is supermodular)

     Ex. 2. Cut function C : 2V→ R                                       S
                                                                               1           2            3
                              e∈E has one endpoint in S
         C (S) =   Σ   we :
                              and one in V – S
                                                                         4

                                                                              10
                                                                                   5
                                                                                       6
                                                                                               7
                                                                                                        8   9
                                                                                       11          12

          C is submodular

Part 2                             Size-constrained Submodular Minimization through Minimum Norm Base
Submodular optimization (general form)

     min or max f (S)               • V ={1, ... , n}
                                    • submodular function f : 2V→ R
     subject to S ∈F
                                    • feasible region F ⊆2V

    We deal with minimization problems                                    solvable
                                                                          in poly time
         Unconstrained Submodular Minimization (USM)
         Size-constrained Submodular Minimization (SSM)                    NP-hard


    Assumption: Computation of each value f (S) is a basic operation
                (Given value oracle which answers value queries)




Part 2                      Size-constrained Submodular Minimization through Minimum Norm Base
Unconstrained submodular minimization (USM)

   Problem (USM)          min f (S)
                                                                          solvable in
                          s. t. S ⊆V ={1, ... , n}                        poly time

    polynomial time algorithm:
         ellipsoid method: Grotschel, Lovasz & Schrijver (1981, 1988)
         combinatorial algorithm: Schrijver (2000), Iwata+ (2001)

    ”practical” algorithm: Fujishige-Wolfe algorithm (2005)
          much faster in practice (Fujishige+ 2006)
          this algorithm computes the minimum norm base
            minimum L2-norm point in the base polyhedron B(f ) ⊆Rn

         min norm base x*∈Rn              minimizer of f ⊆{1, ... , n}

Part 2                      Size-constrained Submodular Minimization through Minimum Norm Base
Size-constrained submodular minimization (SSM)
    Problem (SSM)          min f (S)           integer k (0≤ k ≤ n)

                           s. t. S ⊆V , |S| = k
                                                      NP-hard
      There is no constant factor approximation algorithm
       that runs in polynomial time (Svitkina & Fleischer, 2008)
      special cases                                                        1 1 2 1 1 4
                                                                           3 2   1 3
         • f =–I        Densest k-subgraph problem                          5
                                                                              2 6

         • f =C         Size-constrained minimum cut problem
            Both of these are fundamental NP-hard problems
            Even for these special cases, good approx algorithms are not known
         In this work, we propose a new method for (SSM) that
             utilizes the minimum norm base
             computes ”a portion of exact optimal solutions”

Part 2                       Size-constrained Submodular Minimization through Minimum Norm Base
Example of outputs of the proposed method
   For all k =0, ... , n, consider the densest k-subgraph problems
                                            max I (S) s. t. S ⊆V, |S| = k

                          proposed
          1 1 2 1 1 4      method            1         2             4
         3 2 1 3                                              3
          5 2 6                               5        6

                   k=0      yes          Outputs: {},{1,5,6},{1,2,5,6},
                   k=1      no                    {1,2,3,4,5,6}
                   k=2       no
                   k=3      yes                   Our method gives optimal
                   k=4      yes                   solutions for k = 0, 3, 4, 6
                   k=5       no
                                                           a portion of exact
                   k=6      yes
                                                           optimal solutions
Part 2                      Size-constrained Submodular Minimization through Minimum Norm Base
Problem (SSM) in ML                                 min f(S) s. t. S⊆V, |S|= k


         Densest k-subgraph problem (f = – I)
           This problem naturally formulates a community
           detection problem in complex networks
          The identification of functional modules in protein-
          protein interaction networks is known as an important
          application (Dittrich et al., 2008)

         Size-constrained minimum cut problem (f = C)
          This problem deals with an explicit size constraint
          Contrastingly, spectral clustering, which is one of the
          most popular clustering algorithms, can deal with a
          minimum cut problem with an implicit size constraint


Part 2                        Size-constrained Submodular Minimization through Minimum Norm Base
Size-constrained Submodular Minimization
                                through Minimum Norm Base


    Outline of Part 2
     Introduction
     Size-constrained submodular minimization
     The algorithm through minimum norm base
     Concluding remarks
           Our algorithm uses the basic polyhedral theory
           associated with submodular functions x3    B( f )
               f : 2V→ R             B(f ) ⊆ Rn                     x1
             submodular func     base polyhedron      x2



Part 2
Base polyhedron
   For a submodular function f : 2V→ R with f ({}) =0,
   the base polyhedron B(f ) ⊆ Rn is given by

            B(f ) = {x∊Rn : Σ xi ≤ f (S) (∀S ⊆ V),                   Σ xi = f (V)}
                                   i∈S                              i∈V
                    B(f ) is determined by 2n – 2 inequalities and 1 equality

         If n = 3, B(f) is determined by                                          x3
                                                                                       B( f )
          x1 ≤ f ({1}) , x1 + x2 ≤ f ({1, 2})
          x2 ≤ f ({2}) , x1 + x3 ≤ f ({1, 3})     23 – 2 ineq                                   x1
          x3 ≤ f ({3}) , x2 + x3 ≤ f ({2, 3})
                                                                     x2
              x1 + x2 + x3 = f ({1, 2, 3})        1 equality



Part 2                                Size-constrained Submodular Minimization through Minimum Norm Base
Minimum norm base and algorithms
     The minimum norm base x*∈ Rn is an optimal solution to
                          min   Σ i∈V xi2      s. t. x∊B(f )

          x* can be computed efficiently       (Fleischer & Iwata, 2003; Nagano, 2007)
         Fujishige-Wolfe algorithm (2005) finds x* much faster in practice

     Algorithms through minimum norm base x*∈ Rn
         The Fujishige-Wolfe algorithm for (USM) min f(S) s. t. S⊆V
         S*={i ∊ V : x*< 0} minimizes f
                      i                           The problem can be solved
               In FW algorithm, we use partial information about x*

         The proposed algorithm for (SSM) min f(S) s. t. S⊆V, |S|= k
               In our algorithm, we use full information about x*

Part 2                          Size-constrained Submodular Minimization through Minimum Norm Base
min f(S) s. t. S⊆V, |S|= k
   Algorithm for (SSM)
   Consider the following algorithm:                      surprisingly simple!
    Algorithm SSM
    Step1: Compute the minimum norm base x*∈B(f )⊆ Rn
    Step2: Let ξ1 < ξ2 < ⋯ < ξ d be distinct values of x*
           Return T0 :={} and Tj := {i ∊ V : xi * ξ j }, ∀j = 1,..., d
                                                 ≤

    Example                                        1 2
                                                1      1 1 4
    The densest k-subgraph problems on          3 2 1 3                 B(–I ) ⊆ R6
                                                 5
                                                   2 6
                                            7                     7     7
    The minimum norm base is x* = (– , –2, –1, –1, – , – ) ∈B(–I )
                                            3                     3     3
                          7
    Thus we have ξ1 =– , ξ2 =–2, ξ3 =–1,
                      3
                 T0={} , T1={1,5,6}, T2={1,2,5,6}, T3={1,2,3,4,5,6}
                           optimal solutions for some of size constraints

Part 2                        Size-constrained Submodular Minimization through Minimum Norm Base
min f(S) s. t. S⊆V, |S|= k
   Algorithm for (SSM)
   Consider the following algorithm:                            surprisingly simple!
    Algorithm SSM
    Step1: Compute the minimum norm base x*∈B(f )⊆ Rn
    Step2: Let ξ1 < ξ2 < ⋯ < ξ d be distinct values of x*
           Return T0 :={} and Tj := {i ∊ V : xi * ξ j }, ∀j = 1,..., d
                                                 ≤

    Theorem [This work] For each j ∈{0, 1,... , d}, Tj ⊆ V is
    an optimal solution to Problem (SSM) w. r. t. k = |Tj |.

         Algorithm SSM computes ”a portion of exact optimal solutions”
         Running time = computation of the minimum norm base
         E.g., an implementation of the Fujishige-Wolfe algorithm can be found in
         a toolbox for submodular function optimization by Krause (2010, JMLR)


Part 2                              Size-constrained Submodular Minimization through Minimum Norm Base
Proof of the validity of the algorithm SSM (sketch)
                                                                 h(λ)
     Define a function h : R → R as
                                                                                           λ
         h(λ)= min{f (S)–|S|λ : S ⊆ V} (λ ∊ R)                        0
                              linear function in λ
              h is the minimum of 2n linear functions
     h(λ)                   λ
                                        Each Sj is an exact optimal
          0                             solution to problem (SSM)
         S0   S1 S                      w.r.t. some size constraint
                   2   S3

         Furthermore, with the aid of the result of Fujishige
         (1980), we can show that Sj=Tj for all j, where each
         Tj is the subset returned by the algorithm SSM

Part 2                          Size-constrained Submodular Minimization through Minimum Norm Base
Application to artificial data
         Networks are randomly generated from the GENRMF generator
         For each randomly generated network, we considered
            the size-constrained minimum cut problem
            the size-constrained minimum s-t cut problem
            the densest k-subgraph problem

    The number of subsets (= d) found by the algorithm SSM:

            dataset 1 (Genrmf-long)               dataset 2 (Genrmf-wide)




Part 2                         Size-constrained Submodular Minimization through Minimum Norm Base
Application to real data
    We applied the algorithm SSM to the densest k-
    subgraph problems on the network with 5,000
    nodes and 31,664 edges (n = 5000)
                     This is a sub-network of social network data cnr-2000
                     (http://law.dsi.unimi.it/webdata/cnr-2000)

                                          X 104          Intensity

                                          3
    The algorithm provides
    optimal solutions for 57       I(S)   2
    out of 5000 size levels
                                          1


                                          0
                                              0   1000   2000       3000   4000   5000
                                                                k
Part 2                    Size-constrained Submodular Minimization through Minimum Norm Base
Size-constrained Submodular Minimization
                              through Minimum Norm Base


    Outline of Part 2
     Introduction
     Size-constrained submodular minimization
     The algorithm through minimum norm base
     Concluding remarks




Part 2
Concluding remarks
         To the size-constrained submodular minimization
         problem, we have proposed a new method that
         computes a portion of exact optimal solutions

         This result contrasts sharply with the NP-hardness of SSM
         (see also the result of Nagano, Kawahara & Iwata, NIPS 2010)

         Our method is simple. We just utilize the minimum
         norm base to the fullest extent.
         The Fujishige-Wolfe algorithm does not have worst
         time complexity bounds, so its complexity analysis
         should be given in future works.




Part 2                       Size-constrained Submodular Minimization through Minimum Norm Base

More Related Content

What's hot

Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)
Matthew Leingang
 
Euler lagrange equation
Euler lagrange equationEuler lagrange equation
Euler lagrange equationmufti195
 
Generalization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsGeneralization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsKohei Hayashi
 
computational stochastic phase-field
computational stochastic phase-fieldcomputational stochastic phase-field
computational stochastic phase-fieldcerniagigante
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxoptcerezaso
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problemsDelta Pi Systems
 
tensor-decomposition
tensor-decompositiontensor-decomposition
tensor-decompositionKenta Oono
 
Visualizing the Fourier Transform
Visualizing the Fourier TransformVisualizing the Fourier Transform
Visualizing the Fourier Transform
Chebyshev
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
Tapio Salminen
 
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
The Statistical and Applied Mathematical Sciences Institute
 
The wild McKay correspondence
The wild McKay correspondenceThe wild McKay correspondence
The wild McKay correspondence
Takehiko Yasuda
 
On the Application of a Classical Fixed Point Method in the Optimization of a...
On the Application of a Classical Fixed Point Method in the Optimization of a...On the Application of a Classical Fixed Point Method in the Optimization of a...
On the Application of a Classical Fixed Point Method in the Optimization of a...
BRNSS Publication Hub
 
Coincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionCoincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contraction
Alexander Decker
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuSEENET-MTP
 

What's hot (20)

Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)Lesson 10: The Chain Rule (slides)
Lesson 10: The Chain Rule (slides)
 
Euler lagrange equation
Euler lagrange equationEuler lagrange equation
Euler lagrange equation
 
Generalization of Tensor Factorization and Applications
Generalization of Tensor Factorization and ApplicationsGeneralization of Tensor Factorization and Applications
Generalization of Tensor Factorization and Applications
 
computational stochastic phase-field
computational stochastic phase-fieldcomputational stochastic phase-field
computational stochastic phase-field
 
senior seminar
senior seminarsenior seminar
senior seminar
 
Chapter 3 (maths 3)
Chapter 3 (maths 3)Chapter 3 (maths 3)
Chapter 3 (maths 3)
 
Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxopt
 
Fourier series 2
Fourier series 2Fourier series 2
Fourier series 2
 
Introduction to inverse problems
Introduction to inverse problemsIntroduction to inverse problems
Introduction to inverse problems
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Computing F-blowups
Computing F-blowupsComputing F-blowups
Computing F-blowups
 
tensor-decomposition
tensor-decompositiontensor-decomposition
tensor-decomposition
 
Visualizing the Fourier Transform
Visualizing the Fourier TransformVisualizing the Fourier Transform
Visualizing the Fourier Transform
 
Monopole zurich
Monopole zurichMonopole zurich
Monopole zurich
 
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
MUMS Opening Workshop - Panel Discussion: Facts About Some Statisitcal Models...
 
Legendre
LegendreLegendre
Legendre
 
The wild McKay correspondence
The wild McKay correspondenceThe wild McKay correspondence
The wild McKay correspondence
 
On the Application of a Classical Fixed Point Method in the Optimization of a...
On the Application of a Classical Fixed Point Method in the Optimization of a...On the Application of a Classical Fixed Point Method in the Optimization of a...
On the Application of a Classical Fixed Point Method in the Optimization of a...
 
Coincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contractionCoincidence points for mappings under generalized contraction
Coincidence points for mappings under generalized contraction
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion Cotaescu
 

Similar to Jokyokai20111124

03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
Sufyan Sahoo
 
Duality.pdf
Duality.pdfDuality.pdf
Duality.pdf
ssuser8547f2
 
Matrix calculus
Matrix calculusMatrix calculus
Matrix calculus
Sungbin Lim
 
subdiff_prox.pdf
subdiff_prox.pdfsubdiff_prox.pdf
subdiff_prox.pdf
diehardgamer1
 
Ball Packings and Fat Voronoi Diagrams
Ball Packings and Fat Voronoi DiagramsBall Packings and Fat Voronoi Diagrams
Ball Packings and Fat Voronoi Diagrams
Don Sheehy
 
Ism et chapter_3
Ism et chapter_3Ism et chapter_3
Ism et chapter_3
Drradz Maths
 
Ism et chapter_3
Ism et chapter_3Ism et chapter_3
Ism et chapter_3
Drradz Maths
 
Optimization introduction
Optimization introductionOptimization introduction
Optimization introduction
helalmohammad2
 
1 - Linear Regression
1 - Linear Regression1 - Linear Regression
1 - Linear Regression
Nikita Zhiltsov
 
Inverse functions
Inverse functionsInverse functions
Inverse functionsgregcross22
 
Fourier 3
Fourier 3Fourier 3
Fourier 3
nugon
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
BenoitValea
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
BenoitValea
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integralsUrbanX4
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
Charles Deledalle
 
Maximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer LatticeMaximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer Lattice
Tasuku Soma
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integralsTarun Gehlot
 

Similar to Jokyokai20111124 (20)

03 convexfunctions
03 convexfunctions03 convexfunctions
03 convexfunctions
 
Duality.pdf
Duality.pdfDuality.pdf
Duality.pdf
 
Matrix calculus
Matrix calculusMatrix calculus
Matrix calculus
 
subdiff_prox.pdf
subdiff_prox.pdfsubdiff_prox.pdf
subdiff_prox.pdf
 
Ball Packings and Fat Voronoi Diagrams
Ball Packings and Fat Voronoi DiagramsBall Packings and Fat Voronoi Diagrams
Ball Packings and Fat Voronoi Diagrams
 
Ism et chapter_3
Ism et chapter_3Ism et chapter_3
Ism et chapter_3
 
Ism et chapter_3
Ism et chapter_3Ism et chapter_3
Ism et chapter_3
 
Ism et chapter_3
Ism et chapter_3Ism et chapter_3
Ism et chapter_3
 
Optimization introduction
Optimization introductionOptimization introduction
Optimization introduction
 
1 - Linear Regression
1 - Linear Regression1 - Linear Regression
1 - Linear Regression
 
Inverse functions
Inverse functionsInverse functions
Inverse functions
 
Fourier 3
Fourier 3Fourier 3
Fourier 3
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
Calculus cheat sheet_integrals
Calculus cheat sheet_integralsCalculus cheat sheet_integrals
Calculus cheat sheet_integrals
 
Lecture 1
Lecture 1Lecture 1
Lecture 1
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
Maximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer LatticeMaximizing Submodular Function over the Integer Lattice
Maximizing Submodular Function over the Integer Lattice
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 

Recently uploaded

Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
BookNet Canada
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
g2nightmarescribd
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
ControlCase
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Product School
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Ramesh Iyer
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
Guy Korland
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
Prayukth K V
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
Cheryl Hung
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
Ana-Maria Mihalceanu
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
Alison B. Lowndes
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
Dorra BARTAGUIZ
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
Product School
 

Recently uploaded (20)

Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...Transcript: Selling digital books in 2024: Insights from industry leaders - T...
Transcript: Selling digital books in 2024: Insights from industry leaders - T...
 
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdfFIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
FIDO Alliance Osaka Seminar: Passkeys and the Road Ahead.pdf
 
Generating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using SmithyGenerating a custom Ruby SDK for your web service or Rails API using Smithy
Generating a custom Ruby SDK for your web service or Rails API using Smithy
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
PCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase TeamPCI PIN Basics Webinar from the Controlcase Team
PCI PIN Basics Webinar from the Controlcase Team
 
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
Unsubscribed: Combat Subscription Fatigue With a Membership Mentality by Head...
 
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
Builder.ai Founder Sachin Dev Duggal's Strategic Approach to Create an Innova...
 
GraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge GraphGraphRAG is All You need? LLM & Knowledge Graph
GraphRAG is All You need? LLM & Knowledge Graph
 
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 previewState of ICS and IoT Cyber Threat Landscape Report 2024 preview
State of ICS and IoT Cyber Threat Landscape Report 2024 preview
 
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdfFIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
FIDO Alliance Osaka Seminar: The WebAuthn API and Discoverable Credentials.pdf
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
Key Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdfKey Trends Shaping the Future of Infrastructure.pdf
Key Trends Shaping the Future of Infrastructure.pdf
 
Monitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR EventsMonitoring Java Application Security with JDK Tools and JFR Events
Monitoring Java Application Security with JDK Tools and JFR Events
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........Bits & Pixels using AI for Good.........
Bits & Pixels using AI for Good.........
 
Elevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object CalisthenicsElevating Tactical DDD Patterns Through Object Calisthenics
Elevating Tactical DDD Patterns Through Object Calisthenics
 
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
AI for Every Business: Unlocking Your Product's Universal Potential by VP of ...
 

Jokyokai20111124

  • 1. 劣モジュラ制約下の凸最適化問題の理論と応用 数理助教会 2011年11月24日 東京大学 生産技術研究所 最先端数理モデル連携研究センター 永野 清仁
  • 2. 本発表の構成 劣モジュラ関数 f に付随して定義される基多面体 B(f) 上 での凸関数最小化問題に関する理論と応用のはなし プロローグ Spanning tree のはなし Part 1 劣モジュラ制約下の凸最適化の理論のはなし Nagano (IPCO 2007) など Part 2 劣モジュラ制約下の凸最適化の応用のはなし Nagano, Kawahara, Aihara, ICML 2011
  • 3. グラフの spanning tree Spanning tree : グラフ G のすべての node をつなげ, かつサイクルなしの edge 部分集合 Spanning tree はたくさんある プロローグ
  • 4. 最小重み spanning tree 5 8 各 edge に重みがあるとし, 重み和 7 最小のspanning tree を求めたい 9 3 spanning tree を全列挙する必要なし 最小重み 貪欲アルゴリズムで効率的に計算可能 spanning tree Kruskal 1956 プロローグ
  • 5. Spanning tree が作る多面体 edgeの有無を1と0で表した Spanning tree の特性ベクトル 0-1ベクトル a b c (1,1,1,0,0) (1,0,1,0,1) (0,1,1,1,0) (0,0,1,1,1) d e (1,1,0,1,0) (1,1,0,0,1) (0,1,0,1,1) (1,0,0,1,1) 多面体 PG = (これらの凸包) 凸包 実はこの多面体は基多面体B(f)の例になっている プロローグ
  • 6. Spanning tree 多面体上の最適化とその一般化 PG = (spanning tree の特性ベクトルの凸包)  PG 上の線形関数最小化は貪欲アルゴリズムで効率的 に解ける (最小重み spanning tree の計算と同じ) 一般化  基多面体 B(f) 上での線形関数最小化も同様の貪欲 アルゴリズムで効率的に解ける Edmonds 1970  基多面体 B(f) 上での(変数分離可能)凸関数最小化 も多項式時間では解ける 今日はこの最適化問題に対する理論と応用のはなし プロローグ
  • 7. 本発表の構成 劣モジュラ関数 f に付随して定義される基多面体 B(f) 上 での凸関数最小化問題に関する理論と応用のはなし プロローグ Spanning tree のはなし Part 1 劣モジュラ制約下の凸最適化の理論のはなし Nagano (IPCO 2007) など Part 2 劣モジュラ制約下の凸最適化の応用のはなし Nagano, Kawahara, Aihara, ICML 2011
  • 8. Part 1 劣モジュラ制約下の凸最適化の理論のはなし On Convex Minimization over Base Polytopes Kiyohito Nagano Notations: • V = {1, ..., n} • x ∈RV は v (∈V) 番目の成分が x(v) であるような n 次元ベクトル • x(S) =∑ x(v) (S⊆V) v∈S
  • 9. Submodular Functions V = {1, ... , n } is a finite set Set function f : 2V→ R is  monotone if ∀S ,T s. t. S ⊆T , f (S ) ≤ f (T )  submodular if V ∀S ,T ⊆V, S T f (S ) + f (T ) ≥ f (S ∪T ) + f (S ∩T ) • Graphs, Networks • Game Theory, Auction Theory, Machine Learning Part 1
  • 10. Submodular Functions V = {1, ... , n } is a finite set Set function f : 2V→ R is  monotone if ∀S ,T s. t. S ⊆T , f (S ) ≤ f (T ) ∀S ,T s. t. S ⊆T, and ∀v ∉ T  (equivalently) submodular if V v T S f (S +v ) – f (S ) ≥ f (T +v ) – f (T ) Diminishing reterns • Graphs, Networks • Game Theory, Auction Theory, Machine Learning Part 1
  • 11. An Interpretation of function f In this part, we assume f : 2V→ R is monotone & submodular, f (φ ) = 0 Such f can be seen as a natural cost function For S ⊆V, we incur cost f (S ) S One extreme example Another example ∑a(v) Monotone & β >0 a ∈RV 2(S ) = 0 if S =φ >0 v∈S submodular f 1(S ) = a(S ) functions f β o. w. $5 Intermediate • Customer 1 eats functions of f 1 & f 2 The case where • Customer 2 eats we can make a • Customer 3 eats copy for free Part 1
  • 12. Base Polytope B (f ) f : 2V→ R is monotone & submodular, f (φ ) = 0 x(S) ≤ f (S ) ( φ ≠S ⊊ V ) 2n − 2 ineq The base polytope B(f ) ⊆RV : Notations: • x = (x(v):v ∈V )∈RV x(V ) = f (V ) 1 equality • x(S) =∑ x(v) v∈S x(3) f 1(S ) = a(S ) f 2(S ) = 0 if S =φ B(f )⊆RV ≥0 β o.w. B(f 1) B(f 2) x(1) 6 inequalities x(2) n=3 1 equality Part 1
  • 13. Our Problem Let g : RV → R is an n-variable, separable convex function We mainly consider x(3) minx g (x) = ∑ gv (x(v)) 1-variable, v∈V convex sub. to x(S) ≤ f (S ) ∀S x ∊ B (f ) x(V ) = f (V ) x(1) x(2) Assumptions :  f : 2V→ R is monotone & submodular, f (φ ) = 0  f is given by a value-giving oracle  Function gv (x(v)) is differentiable & strictly convex Part 1
  • 14. Outline of Part 1  Definitions  Examples & Our Results  Equivalence of Problems  Remark: Efficient algorithm minx g (x ) over B (f ) Part 1
  • 15. Examples of minx g (x ) over B (f )  Lexicographically optimal bases Fujishige 80 • weight vector w ∈ RV>0 • For x ∊ B (f ) , x(v ) x(vn) x(v ) x(v ) Inc.Orderw (x) = ( 1 , ... , w(v1) w(vn) ) with w(v1 ) ≤ ≤ w(vn ) 1 n the sequence of weighted components of x in nondecreasing order x = (1,3,4), w = (10,10, 20) Inc.Orderw (x ) x(3) x(1) 1 3 4 =( 1 , 4 , 3 ) 10 10 20 10 20 10 x(2) • Lexicographically optimal base : min ∑ x(v)2 over lex. max Inc.Orderw(x) over B(f ) B(f ) x x v ∈V w(v) equivalent Part 1
  • 16. Examples of minx g (x ) over B (f )  Lexicographically optimal bases Fujishige 80 • weight vector w ∈ RV>0 • Lexicographically optimal base : min ∑ x(v)2 over lex. max Inc.Orderw(x) over B(f ) B(f ) x x v ∈V w(v) equivalent Related problems: Generalization of lex opt flow Megiddo 74 Egalitarian solution in convex game Dutta & Ray 89 Lex opt base x* minimum ratio problem min f (S ) X ⊆V w(S ) Min norm point x* submodular function minimization (SFM) (w = 1) Fujishige 84 (Now f is not necessarily monotone) Size-constrained SFM (See Part 2) Part 1
  • 17. Examples of minx g (x ) over B (f ) (continued)  Lex opt bases Fujishige 80 2 min ∑ x(v) over B(f ) • weight vector w ∈ RV >0 x v ∈V w(v)  Submodular utility allocation (SUA) markets Jain & Vazirani 07 • money vector m ∈ RV >0 max ∑ m (v ) ln x(v ) over B(f ) x v ∈V Surprisingly, we will see Corollary (Our Result) The lex opt base problem and the SUA market problem have the same solution if w = m  Subproblems in approximation algorithms • Facility location with submodular penalty (Chudak & Nagano, 07) • Submodular cost set cover problem (Iwata & Nagano, 09) Part 1
  • 18. Outline of Part 1  Definitions  Examples & Our Results  Equivalence of Problems  Remark: Efficient algorithm minx g (x ) over B (f ) Part 1
  • 19. α -curve C = { xα∈ RV : α ∈ J } Let C⊆RV be the set of optimal solutions to minx { Σ gv (x(v )) : x(V ) = β } ∀β > 0 v ∈V minimization under a budget constraint β3 β2 β1 β1 β2 β3 Curve C β1 β2 β3 parameter ‐1 C = { xα ∈ RV : α ∈ J ⊆ R } where xα (v ) = (gv) (α ), α -curve J is an interval⊆ R Since gv is convex, α1 < α2 ⇒ xα1< xα2 component-wise Part 1
  • 20. Examples of α - curve C Positive vectors w, m ∈ RV >0  gv (x(v )) = x(v )2 / w (v )  gv (x(v )) = - m (v ) ln x(v ) Lex opt base, Fujishige 80 SUA market, Jain-Vazirani 07 α -curve C α -curve C w m half line half line C = { 2α w : α ∈ (0, +∞) } C = { - 1 m : α ∈(- ∞, 0) } α xα xα If w = m, two curves coincide Part 1
  • 21. Rationality of optimal solutions From the correctness of Decomposition Algorithm, we obtain sufficient conditions for the rationality of optimal solutions : Theorem (Our Result) y* ∀β ∈Q>0,∀U⊆V , the optimal solution y* to β min U { Σ gv (y(v )) : y(U ) = β } is rational β y ∈R v ∈U then the optimal solution x* to minx g (x ) over B (f ) is rational Part 1
  • 22. Equivalence of problems Suppose that we are given α - curve C(1) (1) (1) g (x ) = ∑ gv (x(v )) v ∈V (2) α - curve C(2) (2) g (x ) = ∑ gv (x(v )) v ∈V Theorem (Our Result) (2) Curves C(1) and C coincide minx g(1)(x ) over B (f ) and minx g(2)(x ) over B (f ) have the same optimal solution Part 1
  • 23. Equivalence of problems (examples) Corollary The lex opt base problem (Fujishige 80) and the SUA market problem (Jain&Vazirani 07) have the same solution if w = m gv (x(v )) = x(v )2 / w (v ) gv (x(v )) = - m(v ) ln x(v ) w α -curve C m α -curve C 2 curves coincide Corollary Suppose all functions gv are the same (gv = g0) x ∈ B(f ) minimizes Euclidean norm ||x|| if and only if x ∈ B(f ) minimizes g(x ) = ∑ g0 (x(v)) v ∈V Part 1
  • 24. Outline of Part 1  Definitions  Examples & Our Results  Equivalence of Problems  Remark: Efficient algorithm minx g (x ) over B (f ) Part 1
  • 25. Remark: Efficient Algorithm In this work, we generalized the discussion of Fleischer & Iwata 03 for lex. opt. base problem An efficient algorithm for minx g(x ) over B (f ) via parametric submodular function minimization The method is similar to the parametric cut algorithm by Gallo, Grigoriadis & Tarjan 89 Parametric version of Orlin's algorithm (IPCO07) Theorem (Nagano 07, manuscript) minx g(x ) over B (f ) can be solved in O(n6+ n5EO) time, where EO is the time for one function evaluation Part 1
  • 26. 本発表の構成 劣モジュラ関数 f に付随して定義される基多面体 B(f) 上 での凸関数最小化問題に関する理論と応用のはなし プロローグ Spanning tree のはなし Part 1 劣モジュラ制約下の凸最適化の理論のはなし Nagano (IPCO 2007) など Part 2 劣モジュラ制約下の凸最適化の応用のはなし Nagano, Kawahara, Aihara, ICML 2011
  • 27. Part 2 劣モジュラ制約下の凸最適化の応用のはなし Size-constrained Submodular Minimization through Minimum Norm Base Kiyohito Nagano Yoshinobu Kawahara Kazuyuki Aihara
  • 28. Size-constrained Submodular Minimization through Minimum Norm Base Outline of Part 2 The densest subgraph problem This problem is an important special case of  Introduction the size-constrained submodular minimization  Size-constrained submodular minimization  The algorithm through minimum norm base  Concluding remarks Part 2
  • 29. Example: Finding a dense graph 1 G = (V, E) : undirected graph 1 2 1 1 4 node set V = {1, ... , n} 3 2 1 3 edge set E 5 6 2 Edge weights we ≥ 0(e∈E) S={2,3,6} Integer k (0≤ k ≤ n) I ({2,3,6}) =1+1 =2 Densest k-subgraph problem : Find a k-subset S ⊆ V (|S|=k ) that maximizes I(S), where I(S) is sum of weights of edges within S Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 30. Example: Finding a dense graph 1 2 Densest k-subgraph problem : 1 1 1 4 maximize I(S) 3 2 1 3 5 6 subject to S⊆{1, ... , n}, |S|= k 2 If k =3, an optimal solution is {1,5,6}  NP-hard and constant factor approx algorithms are not known Applications:  Community detection problem in complex networks  Identification of functional modules in protein-protein interaction networks size-constrained submodular minimization In this talk, we deal with a more general discrete optimization problem Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 31. Size-constrained Submodular Minimization through Minimum Norm Base Outline of Part 2  Introduction  Size-constrained submodular minimization  The algorithm through minimum norm base  Concluding remarks min f (S) sub. to S ⊆{1,..., n}, |S| = k f : submodular This problem generalizes densestsize constraint a k-subgraph problem size-constrained minimum cut problem Fundamental NP-hard problems Part 2
  • 32. Definition: Submodular function V ={1, ... , n } is a finite set A real-valued function f defined on 2V = { S : S ⊆ V } is  submodular if V S T ∀S, T ⊆V 1 2 3 4 7 f (S)+ f (T )≥ f (S ∪T)+ f (S ∩T) 6 5 8 Discrete analogue of convex function (Lovász 1983) This function arises in many fields, e.g., graph theory, game theory, machine learning, etc. Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 33. Examples of submodular functions Graph G = (V, E) with edge weights we ≥ 0 (e∈E) V ={1, ... , n }  Ex. 1. Intensity function I : 2V→ R S 1 2 3 both of two endpoints Σ 6 I (S) = we : 4 5 7 8 9 of e∈E are in S 10 11 12 – I is submodular (i.e. I is supermodular)  Ex. 2. Cut function C : 2V→ R S 1 2 3 e∈E has one endpoint in S C (S) = Σ we : and one in V – S 4 10 5 6 7 8 9 11 12 C is submodular Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 34. Submodular optimization (general form) min or max f (S) • V ={1, ... , n} • submodular function f : 2V→ R subject to S ∈F • feasible region F ⊆2V We deal with minimization problems solvable in poly time Unconstrained Submodular Minimization (USM) Size-constrained Submodular Minimization (SSM) NP-hard Assumption: Computation of each value f (S) is a basic operation (Given value oracle which answers value queries) Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 35. Unconstrained submodular minimization (USM) Problem (USM) min f (S) solvable in s. t. S ⊆V ={1, ... , n} poly time  polynomial time algorithm: ellipsoid method: Grotschel, Lovasz & Schrijver (1981, 1988) combinatorial algorithm: Schrijver (2000), Iwata+ (2001)  ”practical” algorithm: Fujishige-Wolfe algorithm (2005) much faster in practice (Fujishige+ 2006) this algorithm computes the minimum norm base minimum L2-norm point in the base polyhedron B(f ) ⊆Rn min norm base x*∈Rn minimizer of f ⊆{1, ... , n} Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 36. Size-constrained submodular minimization (SSM) Problem (SSM) min f (S) integer k (0≤ k ≤ n) s. t. S ⊆V , |S| = k NP-hard  There is no constant factor approximation algorithm that runs in polynomial time (Svitkina & Fleischer, 2008)  special cases 1 1 2 1 1 4 3 2 1 3 • f =–I Densest k-subgraph problem 5 2 6 • f =C Size-constrained minimum cut problem Both of these are fundamental NP-hard problems Even for these special cases, good approx algorithms are not known In this work, we propose a new method for (SSM) that utilizes the minimum norm base computes ”a portion of exact optimal solutions” Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 37. Example of outputs of the proposed method For all k =0, ... , n, consider the densest k-subgraph problems max I (S) s. t. S ⊆V, |S| = k proposed 1 1 2 1 1 4 method 1 2 4 3 2 1 3 3 5 2 6 5 6 k=0 yes Outputs: {},{1,5,6},{1,2,5,6}, k=1 no {1,2,3,4,5,6} k=2 no k=3 yes Our method gives optimal k=4 yes solutions for k = 0, 3, 4, 6 k=5 no a portion of exact k=6 yes optimal solutions Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 38. Problem (SSM) in ML min f(S) s. t. S⊆V, |S|= k Densest k-subgraph problem (f = – I) This problem naturally formulates a community detection problem in complex networks The identification of functional modules in protein- protein interaction networks is known as an important application (Dittrich et al., 2008) Size-constrained minimum cut problem (f = C) This problem deals with an explicit size constraint Contrastingly, spectral clustering, which is one of the most popular clustering algorithms, can deal with a minimum cut problem with an implicit size constraint Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 39. Size-constrained Submodular Minimization through Minimum Norm Base Outline of Part 2  Introduction  Size-constrained submodular minimization  The algorithm through minimum norm base  Concluding remarks Our algorithm uses the basic polyhedral theory associated with submodular functions x3 B( f ) f : 2V→ R B(f ) ⊆ Rn x1 submodular func base polyhedron x2 Part 2
  • 40. Base polyhedron For a submodular function f : 2V→ R with f ({}) =0, the base polyhedron B(f ) ⊆ Rn is given by B(f ) = {x∊Rn : Σ xi ≤ f (S) (∀S ⊆ V), Σ xi = f (V)} i∈S i∈V B(f ) is determined by 2n – 2 inequalities and 1 equality If n = 3, B(f) is determined by x3 B( f ) x1 ≤ f ({1}) , x1 + x2 ≤ f ({1, 2}) x2 ≤ f ({2}) , x1 + x3 ≤ f ({1, 3}) 23 – 2 ineq x1 x3 ≤ f ({3}) , x2 + x3 ≤ f ({2, 3}) x2 x1 + x2 + x3 = f ({1, 2, 3}) 1 equality Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 41. Minimum norm base and algorithms The minimum norm base x*∈ Rn is an optimal solution to min Σ i∈V xi2 s. t. x∊B(f ) x* can be computed efficiently (Fleischer & Iwata, 2003; Nagano, 2007) Fujishige-Wolfe algorithm (2005) finds x* much faster in practice Algorithms through minimum norm base x*∈ Rn The Fujishige-Wolfe algorithm for (USM) min f(S) s. t. S⊆V S*={i ∊ V : x*< 0} minimizes f i The problem can be solved In FW algorithm, we use partial information about x* The proposed algorithm for (SSM) min f(S) s. t. S⊆V, |S|= k In our algorithm, we use full information about x* Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 42. min f(S) s. t. S⊆V, |S|= k Algorithm for (SSM) Consider the following algorithm: surprisingly simple! Algorithm SSM Step1: Compute the minimum norm base x*∈B(f )⊆ Rn Step2: Let ξ1 < ξ2 < ⋯ < ξ d be distinct values of x* Return T0 :={} and Tj := {i ∊ V : xi * ξ j }, ∀j = 1,..., d ≤ Example 1 2 1 1 1 4 The densest k-subgraph problems on 3 2 1 3 B(–I ) ⊆ R6 5 2 6 7 7 7 The minimum norm base is x* = (– , –2, –1, –1, – , – ) ∈B(–I ) 3 3 3 7 Thus we have ξ1 =– , ξ2 =–2, ξ3 =–1, 3 T0={} , T1={1,5,6}, T2={1,2,5,6}, T3={1,2,3,4,5,6} optimal solutions for some of size constraints Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 43. min f(S) s. t. S⊆V, |S|= k Algorithm for (SSM) Consider the following algorithm: surprisingly simple! Algorithm SSM Step1: Compute the minimum norm base x*∈B(f )⊆ Rn Step2: Let ξ1 < ξ2 < ⋯ < ξ d be distinct values of x* Return T0 :={} and Tj := {i ∊ V : xi * ξ j }, ∀j = 1,..., d ≤ Theorem [This work] For each j ∈{0, 1,... , d}, Tj ⊆ V is an optimal solution to Problem (SSM) w. r. t. k = |Tj |. Algorithm SSM computes ”a portion of exact optimal solutions” Running time = computation of the minimum norm base E.g., an implementation of the Fujishige-Wolfe algorithm can be found in a toolbox for submodular function optimization by Krause (2010, JMLR) Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 44. Proof of the validity of the algorithm SSM (sketch) h(λ) Define a function h : R → R as λ h(λ)= min{f (S)–|S|λ : S ⊆ V} (λ ∊ R) 0 linear function in λ h is the minimum of 2n linear functions h(λ) λ Each Sj is an exact optimal 0 solution to problem (SSM) S0 S1 S w.r.t. some size constraint 2 S3 Furthermore, with the aid of the result of Fujishige (1980), we can show that Sj=Tj for all j, where each Tj is the subset returned by the algorithm SSM Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 45. Application to artificial data Networks are randomly generated from the GENRMF generator For each randomly generated network, we considered  the size-constrained minimum cut problem  the size-constrained minimum s-t cut problem  the densest k-subgraph problem The number of subsets (= d) found by the algorithm SSM: dataset 1 (Genrmf-long) dataset 2 (Genrmf-wide) Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 46. Application to real data We applied the algorithm SSM to the densest k- subgraph problems on the network with 5,000 nodes and 31,664 edges (n = 5000) This is a sub-network of social network data cnr-2000 (http://law.dsi.unimi.it/webdata/cnr-2000) X 104 Intensity 3 The algorithm provides optimal solutions for 57 I(S) 2 out of 5000 size levels 1 0 0 1000 2000 3000 4000 5000 k Part 2 Size-constrained Submodular Minimization through Minimum Norm Base
  • 47. Size-constrained Submodular Minimization through Minimum Norm Base Outline of Part 2  Introduction  Size-constrained submodular minimization  The algorithm through minimum norm base  Concluding remarks Part 2
  • 48. Concluding remarks To the size-constrained submodular minimization problem, we have proposed a new method that computes a portion of exact optimal solutions This result contrasts sharply with the NP-hardness of SSM (see also the result of Nagano, Kawahara & Iwata, NIPS 2010) Our method is simple. We just utilize the minimum norm base to the fullest extent. The Fujishige-Wolfe algorithm does not have worst time complexity bounds, so its complexity analysis should be given in future works. Part 2 Size-constrained Submodular Minimization through Minimum Norm Base