This document provides an overview of Latent Dirichlet Allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. It defines key terminology for LDA including documents, words, topics, and distributions. The document then explains LDA's graphical model and generative process, which represents documents as mixtures over latent topics and generates words probabilistically from topics. Variational inference is introduced as an approach for approximating the intractable posterior distribution over topics and learning model parameters.