SlideShare a Scribd company logo
Kaggle Lyft Motion Prediction
4th place solution
● We are #4 out of 935 teams, in competitive situation.
Competition result:
PFN!
Competition introduction
● Kaggle: Lyft Motion Prediction for Autonomous Vehicles

● l5kit Data HP: Data - Lyft

Competition/Dataset page
● Focus on “Motion Prediction” part
○ Given bird-eye-view image (No natural images)
○ Predict 3 possible trajectories with confidence.
Competition introduction
Competition Scope Image from https://self-driving.lyft.com/level5/data/
● It was focusing “Perception” part
○ https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles
○ Detect car as 3d object
Last year competition: Lyft 3D Object Detection
Image from https://self-driving.lyft.com/level5/data/ Image from https://www.kaggle.com/tarunpaparaju/lyft-competition-understanding-the-data
● Information in the bird-eye-view
○ Label of passengers (e.g. car, bicycle and pedestrian...)
○ Status of traffic light
○ Road information (e.g. pedestrian crossings and direction)
○ Location and timestamp...
Competition introduction
These information
can be gathered into
single image using
l5kit library
● Total dataset size: 1118 hours, 26344 km
● Road length: 6.8 miles
● Train (89GB), Validation (11GB), Test Dataset (3GB):
○ Big data: Approx 200M, 190K, 71K Agents to predict motion.
Lyft level5 Data description
Image from https://arxiv.org/pdf/2006.14480.pdf
“One Thousand and One Hours: Self-driving Motion Prediction Dataset”
EDA
Exploratory Data Analysis

● Route on google map
● Not so long distance, around Lyft office (Actually, CNN can “memorize” the place from image)
EDA using google earth
1.Station 2.Intersection
2.←Paper fig
2.Signals
● Many straight roads
● Some complicated intersections...
EDA using google earth
● More & more EDA, Train/Valid/Test stat is almost same!
No extrapolation found in this dataset…
○ Agent type distribution:CAR 91%, CYCLIST 2%, PEDESTRIAN 7%
○ Date :From 2019 October to 2020 March
○ Time :Daytime, From 7am to 7pm
○ Place:All road is included in train/valid/test
● Less effort is necessary “how to handle & train data”
→ Pure programming skill & ML techniques were important.
More EDA, No extrapolation found in this dataset...
Time
https://www.kaggle.com/c/lyft-motion-prediction-autonomous-vehicles/discussion/189516
Date
Technology stack
● Structured numpy array + zarr is used to save data on disk.
● structured array: https://numpy.org/doc/stable/user/basics.rec.html
Raw Data format
● zarr: https://zarr.readthedocs.io/en/stable/
○ It can save structured array on disk
● l5kit is provided as baseline: https://github.com/lyft/l5kit
○ (Complicated) data preprocessing part is already implemented
○ Rasterizer
■ Semantic → protocol buffer is used inside MapAPI to draw semantic Map
■ Satellite → Draw satellite image.
● Most kaggle competition : 0 → 1
This competition : 1 → 10
L5kit library
Rasterizer
(base implementation
provided by Lyft)
Raw data (zarr)
- World coordinate
in time
- Extent (size)
- Yaw
CNN
Predict future
coordinates
(3 trajectories)
Typical approach already supported by l5kit Image
Approach
Short Summary
● Distributed training: 8 V100 GPUs * 5 days for 1 epoch
● 1. Use train_full.zarr
● 2. l5kit==1.1.0
● 3. Set min_history=0, min_future=10 in AgentDataset
● 4. Cosine annealing for LR decrease until 0, with training 1 epoch
→ That’s enough to win the prize! (Private LB: 10.274)
● 5. Ensemble with GMM (Gaussian Mixture Models)
→ Further boosted score by 0.8 (Private LB: 9.475)
Short Summary
Solutions
● How to predict probabilistic behavior?
● Suggested Baseline kernel “Lyft: Training with multi-mode confidence”
○ Single model outputs 3 trajectories with the confidence at the same time
○ Train using competition evaluation metric loss directly
○ 1st place solution also originate from our approach (link)
Approach/Solution:
Approach/Metric:
• In this competition, model outputs 3 hypotheses (trajectories).

– ground truth:

– hypotheses:

• Assume the ground truth positions to be modeled by a mixture of Normal distributions.









• LB score is calculated by following metric and we directory used it as loss function of
CNN.

● To utilize all possible data? → Let’s use train_full.zarr without down sampling
○ But size is big!….
○ 89 GB
○ 191,177,863 record with default setting
→ Need distributed training!
※ It was important to use all the data, to get good score in the competition.
Use train_full.zarr dataset
● torch.distributedis used
○ 8 V100 GPUs * 5 days for 1 epoch
● Practically, need to modify AgentDataset to cache index arrays in disk
○ AgentDataset is copied in DataLoader when num_workers is set.
■ 8 multiprocesses * 4 num_workers = 32 copy is created
■ On-memory usage of AgentDataset is huge! Cannot fit in RAM.
● cumulative_sizesattribute was the bottleneck.
○ Cache track_id, scene_index, state_indexinto zarr to
reduce on-memory usage.
Distributed training
● Pointed out in “We did it all wrong” discussion:
○ The target_positions value need to be rotated in the same way with the image,
specified by agent’s “yaw”
Use l5kit==1.1.0
l5kit==1.0.6 target_positions l5kit==1.1.0 target_positions
● Use chopped dataset: Only use 100-th frame from each scene.
○ This is how test data is made.
○ But it discards all ground truth data,
instead, set agent_mask in AgentDataset to make validation data.
● Check validation/test dataset carefully
○ We Noticed that it contains at least 10 future frames & 0 history frames.
→ Next page
Validation strategy
● Set min_history=0, min_future=10 in AgentDataset
○ MOST IMPORTANT!
○ Public LB Score jumps to 13.059 here.
Align training dataset to validation/test dataset
● Tried several models
● Worked Well:
○ Resnet18
○ Resnet50
○ SEResNeXt50
○ ecaresnet18
● Not working well: Big, deeper models tend to have worse performance...
○ ResNet101
○ ResNet152
CNN Models
● Trained hyperparameters
○ Batch size 12 * 8 processes
○ Adam optimizer
○ Cosing annealing with 1 epoch (Better than Exponential decay)
Training with cosine annealing
● Used albumentationslibrary, tried several augmentations.
○ Tried Cutout, Blur, Downscale
○ Other augmentation used in natural image, ex flip, was not appropriate this time
● Only cutout is adopted for final model.
Augmentation: 1. Image based augmentation
Cutout Blur DownscaleOriginal image
● Modified BoxRasterizer to add augmentation
○ 1. Random Agent drop
○ 2. Agent extent size scaling
● We could not find clear improvement during our experiment.
Final model does not use this augmentation...
Augmentation: 2. Rasterizer level augmentation
Several agents
are dropped
Host car size
is different
● How to ensemble models?

○ In this competition, we train model to predict three trajectories (x1,x2,x3) and
three confidences (c1,c2,c3).

○ Simple ensemble methods such as averaging do not work.



● Consider the outputs as Gaussian mixture models

○ The outputs can be considered as confidence-weighted GMMs with
n_components=3


○ You can take the average of GMMs and the average of N GMMs takes the form
of GMM with n_components=3N
Ensemble by GMM and EM algorithm
● You can get ensembled outputs from by
following the steps below.

○ Sampling enough points (e.g. 1000N) from the distribution . 

○ Run the EM algorithm with n_components=3on the sampled points 

(We used sklearn.mixture.GaussianMixture).

○ Let be the output of the EM algorithm.

Ensemble by GMM and EM algorithm




model1:loss=67.85

model2:loss=77.60

ensemble model:loss=8.26

Ensemble by GMM and EM algorithm
sampling from GMM
 fitting by EM algorithm

● Example1: loss has reduced dramatically by taking “average trajectory”!





model1:loss=3340

model2:loss=68.99

ensemble model:loss=69.69

Ensemble by GMM and EM algorithm
sampling from GMM
 fitting by EM algorithm

● Example2: Model 1’s loss was very bad, ensembled result can get benefit
of better predictions from model 2.

● The final best submission was ensemble of 9 different models
● That’s all for our solution presentation, thank you!
Final submission
Other approach &
Future discussion
● CNN Models: Smaller model was enough
○ ResNet18 was enough to get 4th place
○ Tried bigger ResNet101, ResNet152, etc… But worse performance
● Only 1 epoch training was enough!
○ Because data is very big & almost duplicated for consecutive frames
○ Important to use Cosine annealing for learning rate schedule
● Rasterizer (drawing image) is bottleneck
○ CPU intensive task, GPU util is not 100%.
Findings
Rasterizer
(base implementation
provided by Lyft)
Raw data
- World coordinate
in time
- Extent (size)
- Yaw
CNN
Predict future
coordinates
(3 trajectories)
Typical approach
Image
● https://www.kaggle.com/c/lyft-motion-prediction-autonomous-vehicles/discussion/201493
● Optimize Rasterizer implementation
→ 8 GPU * 2 days for 1 epoch
● Hyperparameters with “heavy” training
○ Semantic + Satellite images
○ Bigger image (448 * 224) ← (224, 224)
○ num history: 30 ← 10
○ min_future: 5 ← 10
○ Modify agent filter threshold
○ batch_size: 64
etc...
● Pre-training small image 4 epoch → Fine tune big image 1 epoch
○ It was very effective
[1st place solution] : L5kit Speedup
● 10th place solution GNN based methods called VectorNet
○ Faster training & inference
■ They did not use rasterized images at all
■ 11 GPU hours for 1 epoch (Our CNN needs about 960 GPU hours)
○ Comparable performance to CNN-based methods
Other interesting approaches: VectorNet
VectorNet [Gao+, CVPR2020]
 VectorNet

CNN

CNN

(or not shared)

Appendix1
Data analysis/Error analysis

● How different is the 3 trajectory generated by CNN models?
● Case1: Different directions
○ CNN can predict different possible ways/directions that agents move in the
future.
The diversity of 3 trajectory
● How different is the 3 trajectory generated by CNN models?
● Case2: Speed or start time is different
○ Even direction is straight, CNN can predict different possible
speed/acceleration that agents move in the future.
The diversity of 3 trajectory
Appendix2
What we tried and not worked

● raster_size (Image size)
○ Tried 224x224 & 128x128.
○ Default 224x224 was better
● pixel_size
○ Tried 0.5, 0.25, 0.15.
○ Default 0.5 was better.
● num_history specific model
○ Short history model:
■ Tried to train 0 history model
→ the performance was not better than original model
○ Long history model
■ Tried 10, 14, 20
■ Default 10 was better in our experiment
(But 1st place solution used num_history=30)
Hyperparamter change
● Added velocity arrow to the BoxRasterizer
Custom Rasterizer: 1. VelocityBoxRasterizer
● Original SemanticRasterizer: Semantic image is drawn as RGB image
Custom Rasterizer: 2. ChannelSemanticRasterizer
● ChannelSemanticRasterizer:
○ Separated road, lane, green/yellow/red signal & crosswalk
Somehow, the training performance was worse than original SemanticRasterizer...
● We thought that the red signal length is important to predict when the stopping
agent starts moving in the future.
● This Semantic Rasterizer changes its value by looking how long the single continued
in the history.
Custom Rasterizer: 3. TLSemanticRasterizer
● Draw each agent type in different color/channel
○ CAR = Blue
○ CYCLIST = Yellow
○ PEDESTRIAN = Red
○ UNKNOWN = Gray
● Unknown type agent is also drawn
Custom Rasterizer: 4. AgentTypeBoxRasterizer
● Predict all agent’s future coords at once, from 1 image.
● Using semantic segmentation models (segmentation-models-pytorch)
● Stopped investigation because agent sometimes exists very far from host car.
Multi-agent prediction model
https://self-driving.lyft.com/level5/data/
● What kind of data makes the serious big error?
● When the “yaw” annotation is wrong, prediction & actual direction becomes different!
● Fix data’s yaw field contributes total score improvement?
○ YES! for validation dataset (see below).
○ NO!! for test dataset, yaw annotation seems wrong for only stopped cars.
● In the application, I guess this is very important problem to be considered...
Yaw correction
Loss=43988 Loss=30962 Loss=10818
● Kaggle page: Lyft Motion Prediction for Autonomous Vehicles
● Data HP: https://self-driving.lyft.com/level5/data/
● Solution Discussion: Lyft Motion Prediction for Autonomous Vehicles
● Solution Code: https://github.com/pfnet-research/kaggle-lyft-motion-prediction-4th-place-solution
References
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th Place Solution

More Related Content

What's hot

Mask-RCNN for Instance Segmentation
Mask-RCNN for Instance SegmentationMask-RCNN for Instance Segmentation
Mask-RCNN for Instance Segmentation
Dat Nguyen
 
Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...
Universitat Politècnica de Catalunya
 
Data Augmentation
Data AugmentationData Augmentation
Data Augmentation
Md Tajul Islam
 
Intro to Object Detection with SSD
Intro to Object Detection with SSDIntro to Object Detection with SSD
Intro to Object Detection with SSD
Thomas Delteil
 
PR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox DetectorPR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox Detector
Jinwon Lee
 
CNN Machine learning DeepLearning
CNN Machine learning DeepLearningCNN Machine learning DeepLearning
CNN Machine learning DeepLearning
Abhishek Sharma
 
Policy gradient
Policy gradientPolicy gradient
Policy gradient
Jie-Han Chen
 
Object Detection Using R-CNN Deep Learning Framework
Object Detection Using R-CNN Deep Learning FrameworkObject Detection Using R-CNN Deep Learning Framework
Object Detection Using R-CNN Deep Learning Framework
Nader Karimi
 
#10 pydata warsaw object detection with dn ns
#10   pydata warsaw object detection with dn ns#10   pydata warsaw object detection with dn ns
#10 pydata warsaw object detection with dn ns
Andrew Brozek
 
An introduction to reinforcement learning
An introduction to reinforcement learningAn introduction to reinforcement learning
An introduction to reinforcement learning
Subrat Panda, PhD
 
fusion of Camera and lidar for autonomous driving I
fusion of Camera and lidar for autonomous driving Ifusion of Camera and lidar for autonomous driving I
fusion of Camera and lidar for autonomous driving I
Yu Huang
 
Comparing Incremental Learning Strategies for Convolutional Neural Networks
Comparing Incremental Learning Strategies for Convolutional Neural NetworksComparing Incremental Learning Strategies for Convolutional Neural Networks
Comparing Incremental Learning Strategies for Convolutional Neural Networks
Vincenzo Lomonaco
 
Object Detection using Deep Neural Networks
Object Detection using Deep Neural NetworksObject Detection using Deep Neural Networks
Object Detection using Deep Neural Networks
Usman Qayyum
 
Tutorial on Object Detection (Faster R-CNN)
Tutorial on Object Detection (Faster R-CNN)Tutorial on Object Detection (Faster R-CNN)
Tutorial on Object Detection (Faster R-CNN)
Hwa Pyung Kim
 
Proximal Policy Optimization (Reinforcement Learning)
Proximal Policy Optimization (Reinforcement Learning)Proximal Policy Optimization (Reinforcement Learning)
Proximal Policy Optimization (Reinforcement Learning)
Thom Lane
 
画像認識と深層学習
画像認識と深層学習画像認識と深層学習
画像認識と深層学習
Yusuke Uchida
 
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
Ono Shigeru
 
Image segmentation with deep learning
Image segmentation with deep learningImage segmentation with deep learning
Image segmentation with deep learning
Antonio Rueda-Toicen
 
Object tracking presentation
Object tracking  presentationObject tracking  presentation
Object tracking presentation
MrsShwetaBanait1
 
YOLOv4: optimal speed and accuracy of object detection review
YOLOv4: optimal speed and accuracy of object detection reviewYOLOv4: optimal speed and accuracy of object detection review
YOLOv4: optimal speed and accuracy of object detection review
LEE HOSEONG
 

What's hot (20)

Mask-RCNN for Instance Segmentation
Mask-RCNN for Instance SegmentationMask-RCNN for Instance Segmentation
Mask-RCNN for Instance Segmentation
 
Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...Faster R-CNN: Towards real-time object detection with region proposal network...
Faster R-CNN: Towards real-time object detection with region proposal network...
 
Data Augmentation
Data AugmentationData Augmentation
Data Augmentation
 
Intro to Object Detection with SSD
Intro to Object Detection with SSDIntro to Object Detection with SSD
Intro to Object Detection with SSD
 
PR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox DetectorPR-132: SSD: Single Shot MultiBox Detector
PR-132: SSD: Single Shot MultiBox Detector
 
CNN Machine learning DeepLearning
CNN Machine learning DeepLearningCNN Machine learning DeepLearning
CNN Machine learning DeepLearning
 
Policy gradient
Policy gradientPolicy gradient
Policy gradient
 
Object Detection Using R-CNN Deep Learning Framework
Object Detection Using R-CNN Deep Learning FrameworkObject Detection Using R-CNN Deep Learning Framework
Object Detection Using R-CNN Deep Learning Framework
 
#10 pydata warsaw object detection with dn ns
#10   pydata warsaw object detection with dn ns#10   pydata warsaw object detection with dn ns
#10 pydata warsaw object detection with dn ns
 
An introduction to reinforcement learning
An introduction to reinforcement learningAn introduction to reinforcement learning
An introduction to reinforcement learning
 
fusion of Camera and lidar for autonomous driving I
fusion of Camera and lidar for autonomous driving Ifusion of Camera and lidar for autonomous driving I
fusion of Camera and lidar for autonomous driving I
 
Comparing Incremental Learning Strategies for Convolutional Neural Networks
Comparing Incremental Learning Strategies for Convolutional Neural NetworksComparing Incremental Learning Strategies for Convolutional Neural Networks
Comparing Incremental Learning Strategies for Convolutional Neural Networks
 
Object Detection using Deep Neural Networks
Object Detection using Deep Neural NetworksObject Detection using Deep Neural Networks
Object Detection using Deep Neural Networks
 
Tutorial on Object Detection (Faster R-CNN)
Tutorial on Object Detection (Faster R-CNN)Tutorial on Object Detection (Faster R-CNN)
Tutorial on Object Detection (Faster R-CNN)
 
Proximal Policy Optimization (Reinforcement Learning)
Proximal Policy Optimization (Reinforcement Learning)Proximal Policy Optimization (Reinforcement Learning)
Proximal Policy Optimization (Reinforcement Learning)
 
画像認識と深層学習
画像認識と深層学習画像認識と深層学習
画像認識と深層学習
 
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
Goodfellow, Bengio, Couville (2016) "Deep Learning", Chap. 7
 
Image segmentation with deep learning
Image segmentation with deep learningImage segmentation with deep learning
Image segmentation with deep learning
 
Object tracking presentation
Object tracking  presentationObject tracking  presentation
Object tracking presentation
 
YOLOv4: optimal speed and accuracy of object detection review
YOLOv4: optimal speed and accuracy of object detection reviewYOLOv4: optimal speed and accuracy of object detection review
YOLOv4: optimal speed and accuracy of object detection review
 

Similar to Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th Place Solution

Copy of CRICKET MATCH WIN PREDICTOR USING LOGISTIC ...
Copy of CRICKET MATCH WIN PREDICTOR USING LOGISTIC                           ...Copy of CRICKET MATCH WIN PREDICTOR USING LOGISTIC                           ...
Copy of CRICKET MATCH WIN PREDICTOR USING LOGISTIC ...
PATHALAMRAJESH
 
51st solution of Avito demand prediction competition on Kaggle
51st solution of Avito demand prediction competition on Kaggle51st solution of Avito demand prediction competition on Kaggle
51st solution of Avito demand prediction competition on Kaggle
Nasuka Sumino
 
Web Traffic Time Series Forecasting
Web Traffic  Time Series ForecastingWeb Traffic  Time Series Forecasting
Web Traffic Time Series Forecasting
BillTubbs
 
Introduction to Machine Learning with Spark
Introduction to Machine Learning with SparkIntroduction to Machine Learning with Spark
Introduction to Machine Learning with Spark
datamantra
 
Training at AI Frontiers 2018 - LaiOffer Data Session: How Spark Speedup AI
Training at AI Frontiers 2018 - LaiOffer Data Session: How Spark Speedup AI Training at AI Frontiers 2018 - LaiOffer Data Session: How Spark Speedup AI
Training at AI Frontiers 2018 - LaiOffer Data Session: How Spark Speedup AI
AI Frontiers
 
Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Se...
Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Se...Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Se...
Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Se...
郁凱 黃
 
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
GeeksLab Odessa
 
Reinforcement Learning for Self Driving Cars
Reinforcement Learning for Self Driving CarsReinforcement Learning for Self Driving Cars
Reinforcement Learning for Self Driving Cars
Sneha Ravikumar
 
Distributed implementation of a lstm on spark and tensorflow
Distributed implementation of a lstm on spark and tensorflowDistributed implementation of a lstm on spark and tensorflow
Distributed implementation of a lstm on spark and tensorflow
Emanuel Di Nardo
 
DA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle Contest
DA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle ContestDA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle Contest
DA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle Contest
Berker Kozan
 
Scaling TensorFlow Models for Training using multi-GPUs & Google Cloud ML
Scaling TensorFlow Models for Training using multi-GPUs & Google Cloud MLScaling TensorFlow Models for Training using multi-GPUs & Google Cloud ML
Scaling TensorFlow Models for Training using multi-GPUs & Google Cloud ML
Seldon
 
Big data 2.0, deep learning and financial Usecases
Big data 2.0, deep learning and financial UsecasesBig data 2.0, deep learning and financial Usecases
Big data 2.0, deep learning and financial Usecases
Arvind Rapaka
 
Druid
DruidDruid
spaGO: A self-contained ML & NLP library in GO
spaGO: A self-contained ML & NLP library in GOspaGO: A self-contained ML & NLP library in GO
spaGO: A self-contained ML & NLP library in GO
Matteo Grella
 
Deep presentation.pptx
Deep presentation.pptxDeep presentation.pptx
Deep presentation.pptx
Priyanshu351704
 
Outbrain Click Prediction
Outbrain Click PredictionOutbrain Click Prediction
Outbrain Click Prediction
Alexey Grigorev
 
Accelerated Logistic Regression on GPU(s)
Accelerated Logistic Regression on GPU(s)Accelerated Logistic Regression on GPU(s)
Accelerated Logistic Regression on GPU(s)
RAHUL BHOJWANI
 
Bimbo Final Project Presentation
Bimbo Final Project PresentationBimbo Final Project Presentation
Bimbo Final Project PresentationCan Köklü
 
R programming for data science
R programming for data scienceR programming for data science
R programming for data science
Sovello Hildebrand
 

Similar to Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th Place Solution (20)

Copy of CRICKET MATCH WIN PREDICTOR USING LOGISTIC ...
Copy of CRICKET MATCH WIN PREDICTOR USING LOGISTIC                           ...Copy of CRICKET MATCH WIN PREDICTOR USING LOGISTIC                           ...
Copy of CRICKET MATCH WIN PREDICTOR USING LOGISTIC ...
 
51st solution of Avito demand prediction competition on Kaggle
51st solution of Avito demand prediction competition on Kaggle51st solution of Avito demand prediction competition on Kaggle
51st solution of Avito demand prediction competition on Kaggle
 
Web Traffic Time Series Forecasting
Web Traffic  Time Series ForecastingWeb Traffic  Time Series Forecasting
Web Traffic Time Series Forecasting
 
Introduction to Machine Learning with Spark
Introduction to Machine Learning with SparkIntroduction to Machine Learning with Spark
Introduction to Machine Learning with Spark
 
Training at AI Frontiers 2018 - LaiOffer Data Session: How Spark Speedup AI
Training at AI Frontiers 2018 - LaiOffer Data Session: How Spark Speedup AI Training at AI Frontiers 2018 - LaiOffer Data Session: How Spark Speedup AI
Training at AI Frontiers 2018 - LaiOffer Data Session: How Spark Speedup AI
 
Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Se...
Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Se...Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Se...
Deep Learning for Real-Time Atari Game Play Using Offline Monte-Carlo Tree Se...
 
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
DataScienceLab2017_Оптимизация гиперпараметров машинного обучения при помощи ...
 
Reinforcement Learning for Self Driving Cars
Reinforcement Learning for Self Driving CarsReinforcement Learning for Self Driving Cars
Reinforcement Learning for Self Driving Cars
 
Distributed implementation of a lstm on spark and tensorflow
Distributed implementation of a lstm on spark and tensorflowDistributed implementation of a lstm on spark and tensorflow
Distributed implementation of a lstm on spark and tensorflow
 
DA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle Contest
DA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle ContestDA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle Contest
DA 592 - Term Project Presentation - Berker Kozan Can Koklu - Kaggle Contest
 
Scaling TensorFlow Models for Training using multi-GPUs & Google Cloud ML
Scaling TensorFlow Models for Training using multi-GPUs & Google Cloud MLScaling TensorFlow Models for Training using multi-GPUs & Google Cloud ML
Scaling TensorFlow Models for Training using multi-GPUs & Google Cloud ML
 
Big data 2.0, deep learning and financial Usecases
Big data 2.0, deep learning and financial UsecasesBig data 2.0, deep learning and financial Usecases
Big data 2.0, deep learning and financial Usecases
 
Druid
DruidDruid
Druid
 
spaGO: A self-contained ML & NLP library in GO
spaGO: A self-contained ML & NLP library in GOspaGO: A self-contained ML & NLP library in GO
spaGO: A self-contained ML & NLP library in GO
 
Fianl_Paper
Fianl_PaperFianl_Paper
Fianl_Paper
 
Deep presentation.pptx
Deep presentation.pptxDeep presentation.pptx
Deep presentation.pptx
 
Outbrain Click Prediction
Outbrain Click PredictionOutbrain Click Prediction
Outbrain Click Prediction
 
Accelerated Logistic Regression on GPU(s)
Accelerated Logistic Regression on GPU(s)Accelerated Logistic Regression on GPU(s)
Accelerated Logistic Regression on GPU(s)
 
Bimbo Final Project Presentation
Bimbo Final Project PresentationBimbo Final Project Presentation
Bimbo Final Project Presentation
 
R programming for data science
R programming for data scienceR programming for data science
R programming for data science
 

More from Preferred Networks

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
Preferred Networks
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Preferred Networks
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Preferred Networks
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
Preferred Networks
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Preferred Networks
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Preferred Networks
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
Preferred Networks
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Preferred Networks
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
Preferred Networks
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
Preferred Networks
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Preferred Networks
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Preferred Networks
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
Preferred Networks
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
Preferred Networks
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
Preferred Networks
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
Preferred Networks
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
Preferred Networks
 

More from Preferred Networks (20)

PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
PodSecurityPolicy からGatekeeper に移行しました / Kubernetes Meetup Tokyo #57
 
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
Optunaを使ったHuman-in-the-loop最適化の紹介 - 2023/04/27 W&B 東京ミートアップ #3
 
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
Kubernetes + containerd で cgroup v2 に移行したら "failed to create fsnotify watcher...
 
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
深層学習の新しい応用と、 それを支える計算機の進化 - Preferred Networks CEO 西川徹 (SEMICON Japan 2022 Ke...
 
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
Kubernetes ControllerをScale-Outさせる方法 / Kubernetes Meetup Tokyo #55
 
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
Kaggle Happywhaleコンペ優勝解法でのOptuna使用事例 - 2022/12/10 Optuna Meetup #2
 
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
最新リリース:Optuna V3の全て - 2022/12/10 Optuna Meetup #2
 
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
Optuna Dashboardの紹介と設計解説 - 2022/12/10 Optuna Meetup #2
 
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
スタートアップが提案する2030年の材料開発 - 2022/11/11 QPARC講演
 
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
Deep Learningのための専用プロセッサ「MN-Core」の開発と活用(2022/10/19東大大学院「 融合情報学特別講義Ⅲ」)
 
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
PFNにおける研究開発(2022/10/19 東大大学院「融合情報学特別講義Ⅲ」)
 
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
自然言語処理を 役立てるのはなぜ難しいのか(2022/10/25東大大学院「自然言語処理応用」)
 
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語るKubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
Kubernetes にこれから入るかもしれない注目機能!(2022年11月版) / TechFeed Experts Night #7 〜 コンテナ技術を語る
 
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
Matlantis™のニューラルネットワークポテンシャルPFPの適用範囲拡張
 
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
PFNのオンプレ計算機クラスタの取り組み_第55回情報科学若手の会
 
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
続・PFN のオンプレML基盤の取り組み / オンプレML基盤 on Kubernetes 〜PFN、ヤフー〜 #2
 
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
Kubernetes Service Account As Multi-Cloud Identity / Cloud Native Security Co...
 
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
KubeCon + CloudNativeCon Europe 2022 Recap / Kubernetes Meetup Tokyo #51 / #k...
 
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
KubeCon + CloudNativeCon Europe 2022 Recap - Batch/HPCの潮流とScheduler拡張事例 / Kub...
 
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
独断と偏見で選んだ Kubernetes 1.24 の注目機能と今後! / Kubernetes Meetup Tokyo 50
 

Recently uploaded

To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
Paul Groth
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
DianaGray10
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
Sri Ambati
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
ThousandEyes
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
Alan Dix
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
DanBrown980551
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Jeffrey Haguewood
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
Elena Simperl
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Albert Hoitingh
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
Frank van Harmelen
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
Laura Byrne
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
Product School
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
Product School
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
KatiaHIMEUR1
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Inflectra
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
Kari Kakkonen
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
91mobiles
 

Recently uploaded (20)

To Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMsTo Graph or Not to Graph Knowledge Graph Architectures and LLMs
To Graph or Not to Graph Knowledge Graph Architectures and LLMs
 
FIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdfFIDO Alliance Osaka Seminar: Overview.pdf
FIDO Alliance Osaka Seminar: Overview.pdf
 
Connector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a buttonConnector Corner: Automate dynamic content and events by pushing a button
Connector Corner: Automate dynamic content and events by pushing a button
 
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
GenAISummit 2024 May 28 Sri Ambati Keynote: AGI Belongs to The Community in O...
 
Assuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyesAssuring Contact Center Experiences for Your Customers With ThousandEyes
Assuring Contact Center Experiences for Your Customers With ThousandEyes
 
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdfFIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
FIDO Alliance Osaka Seminar: Passkeys at Amazon.pdf
 
Epistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI supportEpistemic Interaction - tuning interfaces to provide information for AI support
Epistemic Interaction - tuning interfaces to provide information for AI support
 
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
LF Energy Webinar: Electrical Grid Modelling and Simulation Through PowSyBl -...
 
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
Slack (or Teams) Automation for Bonterra Impact Management (fka Social Soluti...
 
When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...When stars align: studies in data quality, knowledge graphs, and machine lear...
When stars align: studies in data quality, knowledge graphs, and machine lear...
 
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdfFIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
FIDO Alliance Osaka Seminar: FIDO Security Aspects.pdf
 
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
Encryption in Microsoft 365 - ExpertsLive Netherlands 2024
 
Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*Neuro-symbolic is not enough, we need neuro-*semantic*
Neuro-symbolic is not enough, we need neuro-*semantic*
 
The Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and SalesThe Art of the Pitch: WordPress Relationships and Sales
The Art of the Pitch: WordPress Relationships and Sales
 
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
De-mystifying Zero to One: Design Informed Techniques for Greenfield Innovati...
 
How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...How world-class product teams are winning in the AI era by CEO and Founder, P...
How world-class product teams are winning in the AI era by CEO and Founder, P...
 
Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !Securing your Kubernetes cluster_ a step-by-step guide to success !
Securing your Kubernetes cluster_ a step-by-step guide to success !
 
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered QualitySoftware Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
Software Delivery At the Speed of AI: Inflectra Invests In AI-Powered Quality
 
DevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA ConnectDevOps and Testing slides at DASA Connect
DevOps and Testing slides at DASA Connect
 
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdfSmart TV Buyer Insights Survey 2024 by 91mobiles.pdf
Smart TV Buyer Insights Survey 2024 by 91mobiles.pdf
 

Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th Place Solution

  • 1. Kaggle Lyft Motion Prediction 4th place solution
  • 2. ● We are #4 out of 935 teams, in competitive situation. Competition result: PFN!
  • 4. ● Kaggle: Lyft Motion Prediction for Autonomous Vehicles
 ● l5kit Data HP: Data - Lyft
 Competition/Dataset page
  • 5. ● Focus on “Motion Prediction” part ○ Given bird-eye-view image (No natural images) ○ Predict 3 possible trajectories with confidence. Competition introduction Competition Scope Image from https://self-driving.lyft.com/level5/data/
  • 6. ● It was focusing “Perception” part ○ https://www.kaggle.com/c/3d-object-detection-for-autonomous-vehicles ○ Detect car as 3d object Last year competition: Lyft 3D Object Detection Image from https://self-driving.lyft.com/level5/data/ Image from https://www.kaggle.com/tarunpaparaju/lyft-competition-understanding-the-data
  • 7. ● Information in the bird-eye-view ○ Label of passengers (e.g. car, bicycle and pedestrian...) ○ Status of traffic light ○ Road information (e.g. pedestrian crossings and direction) ○ Location and timestamp... Competition introduction These information can be gathered into single image using l5kit library
  • 8. ● Total dataset size: 1118 hours, 26344 km ● Road length: 6.8 miles ● Train (89GB), Validation (11GB), Test Dataset (3GB): ○ Big data: Approx 200M, 190K, 71K Agents to predict motion. Lyft level5 Data description Image from https://arxiv.org/pdf/2006.14480.pdf “One Thousand and One Hours: Self-driving Motion Prediction Dataset”
  • 10. ● Route on google map ● Not so long distance, around Lyft office (Actually, CNN can “memorize” the place from image) EDA using google earth 1.Station 2.Intersection 2.←Paper fig 2.Signals
  • 11. ● Many straight roads ● Some complicated intersections... EDA using google earth
  • 12. ● More & more EDA, Train/Valid/Test stat is almost same! No extrapolation found in this dataset… ○ Agent type distribution:CAR 91%, CYCLIST 2%, PEDESTRIAN 7% ○ Date :From 2019 October to 2020 March ○ Time :Daytime, From 7am to 7pm ○ Place:All road is included in train/valid/test ● Less effort is necessary “how to handle & train data” → Pure programming skill & ML techniques were important. More EDA, No extrapolation found in this dataset... Time https://www.kaggle.com/c/lyft-motion-prediction-autonomous-vehicles/discussion/189516 Date
  • 14. ● Structured numpy array + zarr is used to save data on disk. ● structured array: https://numpy.org/doc/stable/user/basics.rec.html Raw Data format ● zarr: https://zarr.readthedocs.io/en/stable/ ○ It can save structured array on disk
  • 15. ● l5kit is provided as baseline: https://github.com/lyft/l5kit ○ (Complicated) data preprocessing part is already implemented ○ Rasterizer ■ Semantic → protocol buffer is used inside MapAPI to draw semantic Map ■ Satellite → Draw satellite image. ● Most kaggle competition : 0 → 1 This competition : 1 → 10 L5kit library Rasterizer (base implementation provided by Lyft) Raw data (zarr) - World coordinate in time - Extent (size) - Yaw CNN Predict future coordinates (3 trajectories) Typical approach already supported by l5kit Image
  • 17. Short Summary ● Distributed training: 8 V100 GPUs * 5 days for 1 epoch
  • 18. ● 1. Use train_full.zarr ● 2. l5kit==1.1.0 ● 3. Set min_history=0, min_future=10 in AgentDataset ● 4. Cosine annealing for LR decrease until 0, with training 1 epoch → That’s enough to win the prize! (Private LB: 10.274) ● 5. Ensemble with GMM (Gaussian Mixture Models) → Further boosted score by 0.8 (Private LB: 9.475) Short Summary
  • 20. ● How to predict probabilistic behavior? ● Suggested Baseline kernel “Lyft: Training with multi-mode confidence” ○ Single model outputs 3 trajectories with the confidence at the same time ○ Train using competition evaluation metric loss directly ○ 1st place solution also originate from our approach (link) Approach/Solution:
  • 21. Approach/Metric: • In this competition, model outputs 3 hypotheses (trajectories).
 – ground truth:
 – hypotheses:
 • Assume the ground truth positions to be modeled by a mixture of Normal distributions.
 
 
 
 
 • LB score is calculated by following metric and we directory used it as loss function of CNN.

  • 22. ● To utilize all possible data? → Let’s use train_full.zarr without down sampling ○ But size is big!…. ○ 89 GB ○ 191,177,863 record with default setting → Need distributed training! ※ It was important to use all the data, to get good score in the competition. Use train_full.zarr dataset
  • 23. ● torch.distributedis used ○ 8 V100 GPUs * 5 days for 1 epoch ● Practically, need to modify AgentDataset to cache index arrays in disk ○ AgentDataset is copied in DataLoader when num_workers is set. ■ 8 multiprocesses * 4 num_workers = 32 copy is created ■ On-memory usage of AgentDataset is huge! Cannot fit in RAM. ● cumulative_sizesattribute was the bottleneck. ○ Cache track_id, scene_index, state_indexinto zarr to reduce on-memory usage. Distributed training
  • 24. ● Pointed out in “We did it all wrong” discussion: ○ The target_positions value need to be rotated in the same way with the image, specified by agent’s “yaw” Use l5kit==1.1.0 l5kit==1.0.6 target_positions l5kit==1.1.0 target_positions
  • 25. ● Use chopped dataset: Only use 100-th frame from each scene. ○ This is how test data is made. ○ But it discards all ground truth data, instead, set agent_mask in AgentDataset to make validation data. ● Check validation/test dataset carefully ○ We Noticed that it contains at least 10 future frames & 0 history frames. → Next page Validation strategy
  • 26. ● Set min_history=0, min_future=10 in AgentDataset ○ MOST IMPORTANT! ○ Public LB Score jumps to 13.059 here. Align training dataset to validation/test dataset
  • 27. ● Tried several models ● Worked Well: ○ Resnet18 ○ Resnet50 ○ SEResNeXt50 ○ ecaresnet18 ● Not working well: Big, deeper models tend to have worse performance... ○ ResNet101 ○ ResNet152 CNN Models
  • 28. ● Trained hyperparameters ○ Batch size 12 * 8 processes ○ Adam optimizer ○ Cosing annealing with 1 epoch (Better than Exponential decay) Training with cosine annealing
  • 29. ● Used albumentationslibrary, tried several augmentations. ○ Tried Cutout, Blur, Downscale ○ Other augmentation used in natural image, ex flip, was not appropriate this time ● Only cutout is adopted for final model. Augmentation: 1. Image based augmentation Cutout Blur DownscaleOriginal image
  • 30. ● Modified BoxRasterizer to add augmentation ○ 1. Random Agent drop ○ 2. Agent extent size scaling ● We could not find clear improvement during our experiment. Final model does not use this augmentation... Augmentation: 2. Rasterizer level augmentation Several agents are dropped Host car size is different
  • 31. ● How to ensemble models?
 ○ In this competition, we train model to predict three trajectories (x1,x2,x3) and three confidences (c1,c2,c3).
 ○ Simple ensemble methods such as averaging do not work.
 
 ● Consider the outputs as Gaussian mixture models
 ○ The outputs can be considered as confidence-weighted GMMs with n_components=3 
 ○ You can take the average of GMMs and the average of N GMMs takes the form of GMM with n_components=3N Ensemble by GMM and EM algorithm
  • 32. ● You can get ensembled outputs from by following the steps below.
 ○ Sampling enough points (e.g. 1000N) from the distribution . 
 ○ Run the EM algorithm with n_components=3on the sampled points 
 (We used sklearn.mixture.GaussianMixture).
 ○ Let be the output of the EM algorithm.
 Ensemble by GMM and EM algorithm
  • 33. 
 
 model1:loss=67.85
 model2:loss=77.60
 ensemble model:loss=8.26
 Ensemble by GMM and EM algorithm sampling from GMM
 fitting by EM algorithm
 ● Example1: loss has reduced dramatically by taking “average trajectory”!

  • 34. 
 
 model1:loss=3340
 model2:loss=68.99
 ensemble model:loss=69.69
 Ensemble by GMM and EM algorithm sampling from GMM
 fitting by EM algorithm
 ● Example2: Model 1’s loss was very bad, ensembled result can get benefit of better predictions from model 2.

  • 35. ● The final best submission was ensemble of 9 different models ● That’s all for our solution presentation, thank you! Final submission
  • 37. ● CNN Models: Smaller model was enough ○ ResNet18 was enough to get 4th place ○ Tried bigger ResNet101, ResNet152, etc… But worse performance ● Only 1 epoch training was enough! ○ Because data is very big & almost duplicated for consecutive frames ○ Important to use Cosine annealing for learning rate schedule ● Rasterizer (drawing image) is bottleneck ○ CPU intensive task, GPU util is not 100%. Findings Rasterizer (base implementation provided by Lyft) Raw data - World coordinate in time - Extent (size) - Yaw CNN Predict future coordinates (3 trajectories) Typical approach Image
  • 38. ● https://www.kaggle.com/c/lyft-motion-prediction-autonomous-vehicles/discussion/201493 ● Optimize Rasterizer implementation → 8 GPU * 2 days for 1 epoch ● Hyperparameters with “heavy” training ○ Semantic + Satellite images ○ Bigger image (448 * 224) ← (224, 224) ○ num history: 30 ← 10 ○ min_future: 5 ← 10 ○ Modify agent filter threshold ○ batch_size: 64 etc... ● Pre-training small image 4 epoch → Fine tune big image 1 epoch ○ It was very effective [1st place solution] : L5kit Speedup
  • 39. ● 10th place solution GNN based methods called VectorNet ○ Faster training & inference ■ They did not use rasterized images at all ■ 11 GPU hours for 1 epoch (Our CNN needs about 960 GPU hours) ○ Comparable performance to CNN-based methods Other interesting approaches: VectorNet VectorNet [Gao+, CVPR2020]
 VectorNet
 CNN
 CNN
 (or not shared)

  • 41. ● How different is the 3 trajectory generated by CNN models? ● Case1: Different directions ○ CNN can predict different possible ways/directions that agents move in the future. The diversity of 3 trajectory
  • 42. ● How different is the 3 trajectory generated by CNN models? ● Case2: Speed or start time is different ○ Even direction is straight, CNN can predict different possible speed/acceleration that agents move in the future. The diversity of 3 trajectory
  • 43. Appendix2 What we tried and not worked

  • 44. ● raster_size (Image size) ○ Tried 224x224 & 128x128. ○ Default 224x224 was better ● pixel_size ○ Tried 0.5, 0.25, 0.15. ○ Default 0.5 was better. ● num_history specific model ○ Short history model: ■ Tried to train 0 history model → the performance was not better than original model ○ Long history model ■ Tried 10, 14, 20 ■ Default 10 was better in our experiment (But 1st place solution used num_history=30) Hyperparamter change
  • 45. ● Added velocity arrow to the BoxRasterizer Custom Rasterizer: 1. VelocityBoxRasterizer
  • 46. ● Original SemanticRasterizer: Semantic image is drawn as RGB image Custom Rasterizer: 2. ChannelSemanticRasterizer ● ChannelSemanticRasterizer: ○ Separated road, lane, green/yellow/red signal & crosswalk Somehow, the training performance was worse than original SemanticRasterizer...
  • 47. ● We thought that the red signal length is important to predict when the stopping agent starts moving in the future. ● This Semantic Rasterizer changes its value by looking how long the single continued in the history. Custom Rasterizer: 3. TLSemanticRasterizer
  • 48. ● Draw each agent type in different color/channel ○ CAR = Blue ○ CYCLIST = Yellow ○ PEDESTRIAN = Red ○ UNKNOWN = Gray ● Unknown type agent is also drawn Custom Rasterizer: 4. AgentTypeBoxRasterizer
  • 49. ● Predict all agent’s future coords at once, from 1 image. ● Using semantic segmentation models (segmentation-models-pytorch) ● Stopped investigation because agent sometimes exists very far from host car. Multi-agent prediction model https://self-driving.lyft.com/level5/data/
  • 50. ● What kind of data makes the serious big error? ● When the “yaw” annotation is wrong, prediction & actual direction becomes different! ● Fix data’s yaw field contributes total score improvement? ○ YES! for validation dataset (see below). ○ NO!! for test dataset, yaw annotation seems wrong for only stopped cars. ● In the application, I guess this is very important problem to be considered... Yaw correction Loss=43988 Loss=30962 Loss=10818
  • 51. ● Kaggle page: Lyft Motion Prediction for Autonomous Vehicles ● Data HP: https://self-driving.lyft.com/level5/data/ ● Solution Discussion: Lyft Motion Prediction for Autonomous Vehicles ● Solution Code: https://github.com/pfnet-research/kaggle-lyft-motion-prediction-4th-place-solution References