This document discusses using random forest machine learning algorithms to detect credit card fraud. It begins with an abstract that outlines using random forest classification on transaction data to improve fraud detection accuracy. The introduction then provides background on credit card fraud and how machine learning has been used for detection. It describes random forest as an advanced decision tree algorithm that can improve efficiency and accuracy over other methods. The paper proposes building a fraud detection model using random forest classification to analyze a transaction dataset and optimize result accuracy. Key performance metrics like accuracy, sensitivity and precision are evaluated.