How much is the distance between
flower and the butterfly ?
x- axis
-5
-4

-3

-2

-1

0

1

2

3

4

5

6
2
3
Y- axis
1
0
-1

-1

-2

-2

-3

-3

Origin
0
1
(0,0)

-4

x- axis
-5
-4

2

3

4

5

6
3

-1

0

-1

-2

-2

-3

-3

-4

-4

-5

0

1

2

1st quadrant

1

2

3

4

5

6
3

1st quadrant

-1

0

-1

-2

-2

-3

-3

-4

-4

-5

0

1

2

2nd quadrant

1

2

3

4

5

6
3

1st quadrant

-3

-2

-1

0

1

2

3

4

5

6

-3

3rd quadrant

-2

-1

-4

-4

-5

0

1

2

2nd quadrant

4th quadrant
3
1

2

To mark a point on a plane (3, 0)

-1

0

-1

-2

-2

-3

-3

-4

-4

-5

0

(3, 0)
1

2

3

4

5

6
3
2
1

To mark a point on a plane (-5, 0)

0

0

-1

-1

-2

-2

-3

-3

-4

(-5, 0)
-5
-4

1

2

3

4

5

6
3

-4

-3

-2

-1

0

1

-1

-5

0

1

2

( 0,3)

-4

-3

-2

To mark a point on a plane ( 0,3)

2

3

4

5

6
3

-1

0

-1

-2

-2

-3

-3

-4

-4

-5

0

1

2

To mark a point on a plane ( 0,-1)

1
( 0,-1)

2

3

4

5

6
3
2
1

A

What are the co-ordinates of A ?
0

0

-1

-1

-2

-2

-3

-3

-4

-4

-5

1

2

3

4

5

6
3

To mark a point on a plane (4, 2 )

-4

-3

-2

-1

0

-1

-5

0

1

2

(4, 2)

1

2

3

-4

-3

-2

4 is x coordinate or abscissa
2 is y coordinate or ordinate.

4

5

6
2

3

(3,3)

-1

0

-1

-2

-2

-3

-3

-4

-4

-5

0

1

To mark a point on a plane (3,3 )

1

2

3

4

5

6
3

(3,3)

1

2

1st quadrant

0

0

-1

-1

-2

-2

-3

-3

-4

-4

-5

1

2

3

4

5

6
3
1

2

(-3,3)

0

To mark a point on a plane (-3,3 )
-1

0
-1

-2

-2

-3

-3

-4

-4

-5

1

2

3

4

5

6
3

-1

0

-1

-2

-2

-3

-3

-4

-4

-5

0

1

2

2nd quadrant (-3,3)

1

2

3

4

5

6
-2

-1

0

-1

-3

-2

(-4,-2)

-3

-4

-4

-5

0

1

2

3

To mark a point on a plane (-4,-2)

1

2

3

4

5

6
3
2
1

-2

-1

0

-3

0

-1

-4

-3

-2

(-4,-2)
3rd quadrant

-4

-5

1

2

3

4

5

6
-1

0

1

2

3

4

-1

-2

-2

-3

-3

-4

-4

-5

0

1

2

3

To mark a point on a plane (3,-2)

(3,-2)

5

6
3
2
1
0

-1

0

1

2

3

4

5

6

-1

-2

-2

-3

-3

-4

-4

-5

4th quadrant
(3,-2)
3

(-3,-1)

-1

0

-1

-2

-2

-3

-3

-4

-4

-5

0

1

2

What is the coordinates of shown point?

1

2

3

4

5

6
3

-1

0

-1

-2

-2

-3

-3

-4

-4

-5

0

1

2

What is the coordinates of shown point?

1

2

3

4

5

6
3

-1

0

-1

-2

-2

-3

-3

-4

-4

-5

0

1

2

What is the coordinates of shown point?

1

2

3

4

5

6
2

3

A

1

-3

-2

-1

0

-4

0

1

2

3

4

5

6

-3

-2

-1

What are the coordinates of vertices of the tria

-4

-5

C

B
3
2
1

-2

-1

0

-3

0

1

2

3

4

5

6

-1

-4

-3

-2

What are the coordinates of vertices of the star

-4

-5
3

(3,3)

2

To mark a point on a plane (3,3 )

-1

0 (0,0)1

-1

-2

-2

-3

-3

-4

-4

-5

0

1

Let there is a flower at this point.

2

3

4

5

6
(3,3)

Let there is a butterfly at (1,1)
(1,1)
(0,0)
How much is the distance between
flower and the butterfly ?
(1,1)

(3,3)
B
(3,3)

A (1,1)
O
Let A is the position of the Butterfly.A has co-ordinates (1,1).
B is the position of the flower.B has the coordinate ( 3, 3).
B
(3,3)

C

A (1,1)
O

P

Q

Let us draw the perpendiculars AP on X axis ,BQ on Y axis.
AC on BQ to complete a right triangle ABC.
In Triangle ABC ,
the length of AC = PQ
PQ = OQ – OP =3 – 1 =2
the length of BC =BQ - CQ
=3 – 1 =2
(1,1)
A
In Right Triangle ABC ,
O
P
2
2
2

AC = AB + BC

AC = AB 2 + BC 2
AC = 2 + 2 = 4 + 4 = 8 = 2 2
2

2

B
(3,3)

C
Q
B (x , y )
2
2

A

( x1 , y1 )

O

How much is the distance between
the points A and B ?
B
( x2 , y 2 )

( x1 , y1 )

A

O

P

C
Q

Perpendiculars AP and BQ on X axis are drawn..
AC on BQ are drawn to complete a right triangle ABC.
B
( x2 , y 2 )

OP = x1

OQ = x2

y2 − y1

PQ = x2 - x1
AC = x2 - x1
BQ = y2
OQ = y1

BC = y2 - y1

y2

A
(x , y )
1

O

1

x1 P

x2 − x1

x2

x2 − x1

C
y1

Q
B
( x2 , y 2 )

.

AC = x2 − x1
BC= y2 − y1

y2 − y1

A

( x1 , y1 )

O

x1 P

x2 − x1

x2

x2 − x1

C
Q
B
( x2 , y 2 )

AC = x2 − x1
BC= y2 − y1

AC = AB + BC
2

2

2

AC = AB2 + BC 2
AC = (x 2 − x1 ) 2 + (y 2 − y1 ) 2
d = (x 2 − x1 ) 2 + (y 2 − y1 ) 2

y2 − y1

( x1 , y1 )

A

O

P
x1

x2 − x1

C

x2 − x1

Q

x2
B (x , y )
2
2

It is called distance formula.

A

( x1 , y1 )

O

The distance between the points A ( x1 , y1 )
and B ( x2 , y2 )
d = ( x2 − x1 ) + ( y2 − y1 )
2

2
B (x , y )
2
2

C is a point on the line joining
A and B in ratio

m:n
A

( x1 , y1 )

O
m:n

C ( x, y )

m

A and B in ratio

n

C is a point on the line joining

B (x , y )
2
2

A

( x1 , y1 )

What will be co-ordinates of C?
n

( x2 , y2 )B
y2 − y

x2 − x

S

m

( x, y ) C
( x1 , y1 ) A

O

x1

x − x1

Q

R

N

M

x

y − y1

P

x2

Perpendiculars AM,CN , BP AR CS Are drawn.

y2 − y1
n

( x2 , y2 )B

m

Triangle ACQ and
BCS are similar.
( x1 , y1 ) A

AC AQ
=
BC CS
O

x1

y2 − y

x2 − x

S

( x, y ) C

x − x1

x2

Q

y2 − y1

R

N

M

x

y − y1

P

m x − x1
⇒ =
⇒ mx2 − mx = nx − nx1
n x2 − x
⇒ mx + nx = nx1 + mx2 ⇒ x(m + n) = nx1 + mx2

nx1 + mx2
⇒x=
( m + n)
n

( x2 , y2 )B

m

Triangle ACQ and
BCS are similar.
( x1 , y1 ) A

AC AQ
=
BC CS
O

x1

y2 − y

x2 − x

S

( x, y ) C

x − x1

Q

y2 − y1

R

N

M

x

y − y1

P

x2

m y − y1
⇒ =
⇒ my2 − my = ny − ny1
n y2 − y
⇒ my + ny = ny1 + my2 ⇒ y (m + n) = ny1 + my2

ny1 + my2
⇒y=
( m + n)
This is called section formula B
C ( x, y )

m:n
A

m

A and B in ratio

n

C is a point on the line joining

( x2 , y 2 )

( x1 , y1 )

The co-ordinates of C are :
nx1 + mx2
x=
( m + n)

ny1 + my2
y=
( m + n)
in ratio

n

C is an exterior point point on
the line joining A and B

B (x , y )
2
2

m:n
A

C ( x, y )

m

( x1 , y1 )

The co-ordinates of C are :
nx1 − mx2
x=
( m − n)

ny1 − my2
y=
( m − n)
Co-ordinates of circumcentre OF A TRIANGLE
WHEN VERTICES ARE GIVEN
B( x2 , y2 )

0
A
( x1 , y1 )

C

x1 + x2 + x3
x=
3

( x2 , y 2 )

y1 + y2 + y3
y=
3
Co-ordinates of in -centre OF A
TRIANGLE WHEN VERTICES ARE GIVEN
B( x2 , y2 )

c

a

0
A
( x1 , y1 )

b

C

( x2 , y 2 )

ax1 + bx2 + cx3 ay1 + by2 + cy3
x=
y=
3
3
ASSIGNMENT
Q1.Which point on x axis is equidistant from
(5,9) and (-4,6)?
Q2. Which point on y axis is
equidistant from (2,3) and (-4,1)?
ASSIGNMENT
Q3.Prove that (2a,4a),(2a,6a)and (2a+√3a) are vertices of an
equilateral triangle.
Q4.In what ratio the x-axis divide the line segment joining
the points (2,-3) and (5,6)?
ASSIGNMENT
Q5. For what value of x will the points (x,1),(2,1) and (4,5)
lie on a line?

Q6. Determine the ratio in which the line 3x+y-9=0 divides
the segment joining the points (1,3) and (2,7)?
ASSIGNMENT
Q7If the points (-2,-1), (1,0),(x,3) and ( 1,y) form a
parallelogram, find the value of x and y.
Q8.Find the coordinates of (i) centroid ii)incentre
(iii)circumcentre of of the triangle whose
vertices are (0,6),(8,12) and ( 8,0)
Thank You
Developed by Pratima Nayak,
Kendriya Vidyalaya,Fort Willia,Kolkata

Introduction to coordinate geometry by pratima nayak