SlideShare a Scribd company logo
INTRODUCTION of PARTIAL DIFFERENTIAL EQUATIONS
1. PARTIAL DIFFERENTIAL EQUATIONS
β€’ A partial differential equations (PDE) is an equation involving an unknown
function of two or more variables and certain of its partial derivatives.
β€’ Using the notation explained in Appendix A, we can write out symbolically a
typical PDE, as follows. Fix an integer π‘˜ β‰₯ 1 and let π‘ˆ denote an open subset of
ℝ 𝑛
.
DEFINITION. An expression of the form
𝐹(𝐷 π‘˜
𝑒(π‘₯), 𝐷 π‘˜βˆ’1
𝑒(π‘₯), β‹― , 𝐷𝑒(π‘₯), 𝑒(π‘₯), π‘₯) = 0 (π‘₯πœ–π‘ˆ) (1)
is called π‘Ž kth
-order partial differential equation, where
𝐹: ℝ 𝑛 π‘˜
Γ— ℝ 𝑛 π‘˜βˆ’1
Γ— β‹― ℝ 𝑛
Γ— ℝ Γ— π‘ˆ β†’ ℝ
is given, and
𝑒: π‘ˆ β†’ ℝ
is the unknown.
β€’ We solve the PDE if we find all 𝑒 verifying (1), possibly only among those
functions satisfying certain auxiliary boundary conditions on some part Ξ“of
πœ•π‘ˆ.
β€’ By finding the solutions we mean, ideally, obtaining simple, explicit solutions
or failing that, deducing the existence and other properties of solutions.
DEFINITIONS.
i. The partial differential equation (1) is called linear if it has the form
οΏ½ π‘Ž 𝛼(π‘₯)𝐷 𝛼
𝑒 = 𝑓(π‘₯)
|𝛼|β‰€π‘˜
for given functions π‘Ž 𝛼(𝛼| ≀ π‘˜), f. This linear PDE is homogeneous if 𝑓 ≑ 0.
ii. The PDE (1) is semilinear if it has the form
οΏ½ π‘Ž 𝛼(π‘₯)𝐷 𝛼
𝑒 + π‘Ž0(𝐷 π‘˜βˆ’1
𝑒, β‹― , 𝐷𝑒, 𝑒, π‘₯) = 0
|𝛼|=π‘˜
iii. The PDE (1) is quasilinear if it has the form
οΏ½ π‘Ž 𝛼(𝐷 π‘˜βˆ’1
𝑒, β‹― , 𝐷𝑒, 𝑒, π‘₯)𝐷 𝛼
𝑒 + π‘Ž0(𝐷 π‘˜βˆ’1
𝑒, β‹― , 𝐷𝑒, 𝑒, π‘₯) = 0
|𝛼|=π‘˜
Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 1
iv. The PDE (1) is fully nonlinear if it depends nonlinearly upon the higest order
derivatives.
DEFINITION. An expression of the form
𝐹(𝐷 π‘˜
𝒖(π‘₯), 𝐷 π‘˜βˆ’1
𝒖(π‘₯), β‹― , 𝐷𝒖(π‘₯), 𝒖(π‘₯), π‘₯) = 𝟎 (π‘₯πœ–π‘ˆ) (2)
is called a kth
-order system of partial differential equations, where
𝐹: ℝ π‘šπ‘› π‘˜
Γ— ℝ π‘šπ‘› π‘˜βˆ’1
Γ— β‹― ℝ π‘šπ‘›
Γ— ℝ π‘š
Γ— π‘ˆ β†’ ℝ π‘š
is given, and
𝒖: π‘ˆ β†’ ℝ π‘š
, 𝒖 = (𝑒1
, β‹― , 𝑒 π‘š)
is the unknown.
β€’ Here we are supposing that the system comprises the same number π‘š of scalar
equations as unknowns (𝑒1
, β‹― , 𝑒 π‘š).
β€’ This is the most common circumstance, although other system may have fewer or
more equations than unknowns.
2. EXAMPLES
β€’ There is no general theory known concerning the solvability of all partial
differential equations.
β€’ Such a theory is extremely unlikely to exist, given the rich variety of physical,
geometric, probabilistic phenomena which can be modeled by PDE.
β€’ Instead, research focuses on various particular partial differential equations that
important for applications within and outside of mathematics, with the hope that
insight from the origins of these PDE can give clues as to their solutions.
β€’ Following is a list of many specific partial differential equations of interest in
current research.
β€’ This listing is intended merely to familiarize the reader with the names and forms
of various famous PDE.
β€’ To display most clearly the mathematical structure of the equations, we have
mostly relevant physical constants to unity.
β€’ We will later discuss the origin and interpretation of many of these PDE.
β€’ For each π‘₯ ∈ π‘ˆ, where π‘ˆ is an open subset of ℝ 𝑛
, and 𝑑 β‰₯ 0. Also
𝐷𝑒 = 𝐷π‘₯ 𝑒 = �𝑒 π‘₯1
, 𝑒 π‘₯2
, β‹― , 𝑒 π‘₯ 𝑛
οΏ½ denotes the gradient of 𝑒 with respect to the
spatial variable π‘₯ = (π‘₯1, β‹― , π‘₯ 𝑛).
Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 2
2.1 Single partial differential equations
A. Linear equations
1. Laplace’s equation
βˆ†π‘’ = οΏ½ 𝑒 π‘₯ 𝑖 π‘₯ 𝑖
= 0
𝑛
𝑖=1
2. Helmholtz’s (or eigenvalue) equation
βˆ’βˆ†π‘’ = πœ†π‘’
3. Linear transport equation
𝑒 𝑑 + οΏ½ 𝑏 𝑖
𝑒 π‘₯ 𝑖
= 0
𝑛
𝑖=1
4. Liouville’s equation
𝑒 𝑑 βˆ’ ��𝑏 𝑖
𝑒� π‘₯ 𝑖
= 0
𝑛
𝑖=1
5. Heat (or diffusion) equation
𝑒 𝑑 βˆ’ Δ𝑒 = 0
6. Schrodinger’s equation
𝑖𝑒 𝑑 + Δ𝑒 = 0
7. Kolmogorov’s equation
𝑒 𝑑 βˆ’ οΏ½ π‘Žπ‘–π‘—
𝑒 π‘₯ 𝑖 π‘₯ 𝑗
+
𝑛
𝑖,𝑗=1
οΏ½ 𝑏 𝑖
𝑒 π‘₯ 𝑖
= 0
𝑛
𝑖=1
8. Fokker-Planck equation
𝑒 𝑑 βˆ’ οΏ½ οΏ½π‘Žπ‘–π‘—
𝑒� π‘₯ 𝑖 π‘₯ 𝑗
βˆ’
𝑛
𝑖,𝑗=1
��𝑏 𝑖
𝑒� π‘₯ 𝑖
= 0
𝑛
𝑖=1
9. Wave equation
𝑒 𝑑𝑑 βˆ’ Δ𝑒 = 0
10. Telegraph equation
𝑒 𝑑𝑑 + 𝑑𝑒 𝑑 βˆ’ 𝑒 π‘₯π‘₯ = 0
11. General wave equation
𝑒 𝑑𝑑 βˆ’ οΏ½ π‘Žπ‘–π‘—
𝑒 π‘₯ 𝑖 π‘₯ 𝑗
+
𝑛
𝑖,𝑗=1
οΏ½ 𝑏 𝑖
𝑒 π‘₯ 𝑖
= 0
𝑛
𝑖=1
12. Airy’s equation
𝑒 𝑑 + 𝑒 π‘₯π‘₯π‘₯ = 0
13. Beam equation
Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 3
𝑒 𝑑 + 𝑒 π‘₯π‘₯π‘₯π‘₯ = 0
B. Nonlinear equations
1. Eikonal equation
|𝐷𝑒| = 1
2. Nonlinear Poisson equation
βˆ’βˆ†π‘’ = 𝑓(𝑒)
3. p-Laplacian equation
𝑑𝑖𝑣(|𝐷𝑒| π‘βˆ’2
𝐷𝑒) = 0
4. Minimal surface equation
𝑑𝑖𝑣 οΏ½
𝐷𝑒
(1 + |𝐷𝑒|2)
1
2
οΏ½ = 0
5. Monge-Ampere equation
𝑑𝑒𝑑(𝐷2
𝑒) = 𝑓
6. Hamilton-Jacobi equation
𝑒 𝑑 + 𝐻(𝐷𝑒, π‘₯) = 0
7. Scalar reaction-diffusion equation
𝑒 𝑑 + 𝑑𝑖𝑣 𝐹(𝑒) = 0
8. Inviscid Burger’s equation
𝑒 𝑑 + 𝑒𝑒 π‘₯ = 0
9. Scalar reaction-diffusion equation
𝑒 𝑑 βˆ’ βˆ†π‘’ = 𝑓(𝑒)
10. Porous medium equation
𝑒 𝑑 βˆ’ βˆ†(𝑒 𝛾) = 0
11. Nonlinear wave equation
𝑒 𝑑𝑑 βˆ’ βˆ†π‘’ = 𝑓(𝑒)
𝑒 𝑑𝑑 βˆ’ 𝑑𝑖𝑣 π‘Ž(𝐷𝑒) = 0
12. Korteweg-de Vries (KdV) equation
𝑒 𝑑 + 𝑒𝑒 π‘₯ + 𝑒 π‘₯π‘₯π‘₯ = 0
2.2 System partial differential equations
A. Linear systems
1. Equilibrium equations of elasticity
πœ‡βˆ†π’– + (πœ† + πœ‡)𝐷(𝑑𝑖𝑣 𝒖) = 0
2. Evolution equations of linear elasticity
𝒖 𝑑𝑑 βˆ’ πœ‡βˆ†π’– βˆ’ (πœ† + πœ‡)𝐷(𝑑𝑖𝑣 𝒖) = 0
3. Maxwell’s equations
Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 4
οΏ½
𝑬 𝑑 = π‘π‘’π‘Ÿπ‘™ 𝑩
𝑩 𝑑 = βˆ’π‘π‘’π‘Ÿπ‘™ 𝑬
𝑑𝑖𝑣 𝑩 = 𝑑𝑖𝑣 𝑬 = 𝟎
B. Nonlinear systems
1. System of conservation laws
𝒖 𝑑 + 𝑑𝑖𝑣 𝑭(𝒖) = 𝟎
2. Reaction-diffusion system
𝒖 𝑑 βˆ’ βˆ†π’– = 𝑓(𝒖)
3. Euler’s equations for incrompessible
οΏ½
𝒖 𝑑 + 𝒖 βˆ™ 𝐷𝒖 = βˆ’π·π‘
𝑑𝑖𝑣 𝒖 = 0
4. Navier-Stokes equations for incompressible, viscous flow
οΏ½
𝒖 𝑑 + 𝒖 βˆ™ 𝐷𝒖 βˆ’ βˆ†π’– = βˆ’π·π‘
𝑑𝑖𝑣 𝒖 = 0
3. STRATEGIES FOR STUDYING PDE
β€’ Our goal is the discovery of ways to solve partial differential equations of various
sorts.
β€’ The very question of what it means to β€œsolve” a given PDE can be subtle.
3.1 Well-posed problems, classical solutions.
β€’ The problem in fact has a solution;
β€’ This solution is unique;
β€’ The solution depends continuously on the data given in the problem.
3.2 Weak solutions and regularity.
β€’ Can we achieve this?
β€’ The answer is that certain specific partial differential equations (ex. Laplace’s
equation) can be solved in the classical sense, but many others, cannot. Consider
for instance the scalar conservation law 𝑒 𝑑 + 𝐹(𝑒) π‘₯ = 0.
β€’ In general, as we shall see, the conservation law has no classical solutions, but is
well-posed if we allow for properly defined generalized or weak solutions.
β€’ The idea is to define for a given PDE a reasonable wide notion of a weak solution,
with the expectation that since we are not asking too much by way of smoothness
of this weak solution.
β€’ For other equations we can hope that our weak solution.
β€’ This leads to the question of regularity of weak solutions.
β€’ As we will see, it is often the case that the existence of weak solutions depends
upon rather simple estimates plus ideas of functional analysis.
β€’ Whereas the regularity of weak solutions, when true, usually rest upon many
intricate calculus estimates.
3.3 Typical difficulties
Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 5
1) Nonlinear equations are more difficult than linear equations, and indeed, the more
the nonlinearity affects the higher derivatives, the more difficult the PDE is.
2) Higher-order PDE are more difficult than lower-order PDE.
3) System are harder than single equations.
4) Partial differential equations entailing many independent variables are harder than
entailing few independent variables.
5) For most partial differential equations it is not possible to write out explicit
formulas for solutions.
4. OVERVIEW
This textbook is divided into three major Parts
PART I: Representation Formulas for Solutions
β€’ Identify those important PDE for which in certain circumstances explicit or more-
or-less explicit formulas can be had for solutions.
β€’ Chapter 2 is a detailed study of four exactly solvable PDE: the linear transport
equation, Laplace’s equation, the heat equation, and the wave equation.
β€’ Chapter 3 continues the theme of searching for explicit formulas, now for general
first-order nonlinear PDE.
β€’ We stipulate that once the problem becomes β€œonly” the equation of integrating a
system of ODE.
β€’ We introduce also the Hopf-Lax formula for Hamilton-Jacobi equations and the
Lax-Oleinik formula for scalar conservation laws.
β€’ Chapter 4 is a grab bag of techniques for explicitly solving various linear and
nonlinear PDE.
PART II: Teori PDE Linear
β€’ We abandon the search for explicit formulas and instead rely on functional
analysis and relatively easy β€œenergy” estimates to prove existence of weak
solutions to various linear PDE.
β€’ Chapter 5 is an introduction to Sobolev spaces, the proper setting for the study of
many linear and nonlinear PDE via energy methods.
β€’ This is hard chapter, the real worth of which is only later revealed, and requires
some basic knowledge of Lebesgue measure theory.
Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 6
β€’ Chapter 6: we vastly generalize our knowledge of Laplace’s equation to other
second-order elliptic equations.
β€’ Chapter 7 expands the energy methods to a variety of linear PDE characterizing
evolutions in time.
PART III: Theory for Nonlinear PDE
β€’ This section parallels for nonlinear PDE the development in Part II, but is far less
unified in its approach, as the various types of nonlinearity must be treated in
quite different ways.
β€’ Chapter 8 commences the general study of nonlinear PDE with an extensive
discussion of the calculus of variations.
β€’ Chapter 9, a gathering of assorted other techniques of use for nonlinear elliptic
and parabolic PDE.
β€’ Chapter 10 is an introduction to the modern theory of Hamilton-Jacobi PDE, and
particular to the notion of β€œviscosity solutions”.
β€’ We encounter also the connections with optimal control of ODE, through
dynamic programming.
β€’ Chapter 11 is the discussion of conservation laws, now systems of conservation
laws.
5. PROBLEMS
1) Classify each of PDE in [2] as follows:
a) Is the PDE linear, semilinear, quassilinear, or fully nonlinear?
b) What is the order of the PDE?
2) Prove the Multinomial Theorem
(π‘₯1 + π‘₯2 + β‹― + π‘₯ 𝑛) 𝑁
= οΏ½ οΏ½
|𝛼|
𝛼
οΏ½ π‘₯ 𝛼
|𝛼|=𝑁
Where οΏ½|𝛼|
𝛼
οΏ½ =
|𝛼|!
𝛼!
, 𝛼! = 𝛼1! 𝛼2! β‹― 𝛼 𝑛!, and π‘₯ 𝛼
= π‘₯1
𝛼1
β‹― π‘₯ 𝑛
𝛼 𝑛
. The sum is taken over all
multiindecs 𝛼 = (𝛼1, 𝛼2, β‹― , 𝛼 𝑛) with |𝛼| = 𝑁.
Multinomial Theorem is a natural extension of binomial theorem and proof gives a
good exercise for using the Principle of Mathematical Induction.
Theorem: Let P(n) be the proposition:
(π‘₯1 + π‘₯2 + β‹― + π‘₯ 𝑛) 𝑁
= οΏ½ οΏ½
|𝛼|
𝛼
οΏ½ π‘₯ 𝛼
|𝛼|=𝑁
Where οΏ½|𝛼|
𝛼
οΏ½ =
|𝛼|!
𝛼!
, 𝛼! = 𝛼1! 𝛼2! β‹― 𝛼 𝑛!, and π‘₯ 𝛼
= π‘₯1
𝛼1
β‹― π‘₯ 𝑛
𝛼 𝑛
. The sum is taken over all
multiindecs 𝛼 = (𝛼1, 𝛼2, β‹― , 𝛼 𝑛) with |𝛼| = 𝑁. In another form
Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 7
(π‘₯1 + π‘₯2 + β‹― + π‘₯ 𝑛) 𝑁
= βˆ‘ οΏ½
𝑁!
𝛼1!𝛼2!⋯𝛼 𝑛!
π‘₯1
𝛼1
β‹― π‘₯ 𝑛
𝛼 𝑛
�𝛼1,𝛼2,β‹―,𝛼 𝑛β‰₯0
𝛼1+𝛼2+β‹―+𝛼 𝑛=𝑁
,where 𝑛, 𝑁 ∈ β„•
Proof:
β€’ 𝑃(1) β†’ (π‘₯1) 𝑁
= βˆ‘ οΏ½
𝑁!
𝛼1!
π‘₯1
𝛼1
�𝛼1β‰₯0
𝛼1=𝑁
= βˆ‘ οΏ½
𝑁!
𝑁!
π‘₯1
𝑁
οΏ½ =𝛼1β‰₯0
𝛼1=𝑁
βˆ‘ [π‘₯1
𝑁] = π‘₯1
𝑁
𝛼1β‰₯0
𝛼1=𝑁
∴ 𝑃(1)𝑖𝑠 π‘‘π‘Ÿπ‘’π‘’
β€’ 𝑃(2) β†’ (π‘₯1 + π‘₯2) 𝑁
= βˆ‘ οΏ½
𝑁!
𝛼1!𝛼2!
π‘₯1
𝛼1
π‘₯2
𝛼2
�𝛼1,𝛼2β‰₯0
𝛼1+𝛼2=𝑁
, By Binomial Theorem:
(π‘₯1 + π‘₯2) 𝑁
= οΏ½ πΆπ‘Ÿ
𝑁
π‘₯1
π‘βˆ’π‘Ÿ
π‘₯2
π‘Ÿ
𝑁
π‘Ÿ=0
= οΏ½
𝑁!
(𝑁 βˆ’ π‘Ÿ)! π‘Ÿ!
π‘₯1
π‘βˆ’π‘Ÿ
π‘₯2
π‘Ÿ
𝑁
π‘Ÿ=0
= βˆ‘
𝑁!
𝛼1!𝛼2!
π‘₯1
𝛼1
π‘₯2
𝛼2𝑁
𝛼2=0 , where 𝛼1 = 𝑁 βˆ’ π‘Ÿ, 𝛼2 = π‘Ÿ.
= βˆ‘
𝑁!
𝛼1!𝛼2!
π‘₯1
𝛼1
π‘₯2
𝛼2𝑁
𝛼1,𝛼2β‰₯0
𝛼1+𝛼2=𝑁
∴ 𝑃(2)𝑖𝑠 π‘‘π‘Ÿπ‘’π‘’
Assume 𝑃(π‘˜) is true for some π‘˜ ∈ β„•, that is:
(π‘₯1 + π‘₯2 + β‹― + π‘₯ π‘˜) 𝑁
= οΏ½ οΏ½
𝑁!
𝛼1! 𝛼2! β‹― 𝛼 π‘˜!
π‘₯1
𝛼1
β‹― π‘₯ π‘˜
𝛼 π‘˜
οΏ½
𝛼1,𝛼2,β‹―,𝛼 π‘˜β‰₯0
𝛼1+𝛼2+β‹―+𝛼 π‘˜=𝑁
β‹― (1)
for 𝑃(π‘˜ + 1),
(π‘₯1 + π‘₯2 + β‹― + π‘₯ π‘˜ + π‘₯ π‘˜+1) 𝑁
= [(π‘₯1 + π‘₯2 + β‹― + π‘₯ π‘˜) + π‘₯ π‘˜+1] 𝑁
= οΏ½ πΆπ‘Ÿ
𝑁( π‘₯1 + π‘₯2 + β‹― + π‘₯ π‘˜) π‘βˆ’π‘Ÿ
π‘₯ π‘˜+1
π‘Ÿ
𝑁
π‘Ÿ=0
= οΏ½ πΆπ‘Ÿ
𝑁
οΏ½ οΏ½
(𝑁 βˆ’ π‘Ÿ)!
𝛼1! 𝛼2! β‹― 𝛼 π‘˜!
π‘₯1
𝛼1
β‹― π‘₯ π‘˜
𝛼 π‘˜
οΏ½
𝛼1,𝛼2,β‹―,𝛼 π‘˜β‰₯0
𝛼1+𝛼2+β‹―+𝛼 π‘˜=π‘βˆ’π‘Ÿ
π‘₯ π‘˜+1
π‘Ÿ
𝑁
π‘Ÿ=0
= οΏ½ οΏ½ οΏ½
𝑁!
(𝑁 βˆ’ π‘Ÿ)! π‘Ÿ!
(𝑁 βˆ’ π‘Ÿ)!
𝛼1! 𝛼2! β‹― 𝛼 π‘˜!
π‘₯1
𝛼1
β‹― π‘₯ π‘˜
𝛼 π‘˜
π‘₯ π‘˜+1
π‘Ÿ
οΏ½
𝛼1,𝛼2,β‹―,𝛼 π‘˜β‰₯0
𝛼1+𝛼2+β‹―+𝛼 π‘˜=π‘βˆ’π‘Ÿ
𝑁
π‘Ÿ=0
= βˆ‘ βˆ‘ οΏ½
𝑁!
𝛼1!𝛼2!⋯𝛼 π‘˜!𝛼 π‘˜+1!
π‘₯1
𝛼1
β‹― π‘₯ π‘˜
𝛼 π‘˜
π‘₯ π‘˜+1
π‘Ÿ
�𝛼1,𝛼2,β‹―,𝛼 π‘˜β‰₯0
𝛼1+𝛼2+β‹―+𝛼 π‘˜=π‘βˆ’π›Ό π‘˜+1
𝑁
π‘Ÿ=0 where 𝛼 π‘˜+1 = π‘Ÿ.
= οΏ½ οΏ½ οΏ½
𝑁!
𝛼1! 𝛼2! β‹― 𝛼 π‘˜! 𝛼 π‘˜+1!
π‘₯1
𝛼1
β‹― π‘₯ π‘˜
𝛼 π‘˜
π‘₯ π‘˜+1
π‘Ÿ
οΏ½
𝛼1,𝛼2,β‹―,𝛼 π‘˜,𝛼 π‘˜+1β‰₯0
𝛼1+𝛼2+β‹―+𝛼 π‘˜+𝛼 π‘˜+1=𝑁
𝑁
π‘Ÿ=0
∴ 𝑃(π‘˜ + 1)𝑖𝑠 π‘‘π‘Ÿπ‘’π‘’
By the Principle of Mathematical Induction 𝑃(𝑛) is true βˆ€π‘› ∈ β„•.
Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 8
3) Prove Leibniz’ formula
𝐷 𝛼(𝑒𝑣) = βˆ‘ οΏ½ 𝛼
𝛽
�𝛽≀𝛼 𝐷 𝛽
𝑒𝐷 π›Όβˆ’π›½
𝑣,
Where 𝑒, 𝑣: ℝ 𝑛
β†’ ℝ are smooth, οΏ½ 𝛼
𝛽
οΏ½ =
𝛼!
(π›Όβˆ’π›½)!𝛽!
, and 𝛽 ≀ 𝛼means 𝛽𝑖 ≀ 𝛼𝑖, (𝑖 = 1,2, … , 𝑛)
Proof:
𝐷 𝛼(𝑒𝑣) =
𝑑 𝛼
𝑑π‘₯ 𝛼
(𝑒𝑣) = οΏ½ οΏ½
𝛼
𝛽
οΏ½
𝛼
𝛽=0
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π›Όβˆ’π›½
𝑑π‘₯ π›Όβˆ’π›½
𝑣, 𝛼 ∈ β„€+
By the Principle of Mathematical Induction on 𝛼. Recall
𝑑 𝛼
𝑑π‘₯ 𝛼
denotes the 𝛼 π‘‘β„Ž
derivative. The
product rule say that
𝑑(𝑒𝑣)
𝑑π‘₯
= 𝑒
𝑑𝑣
𝑑π‘₯
+ 𝑣
𝑑𝑒
𝑑π‘₯
β€’ 𝑃(1) β†’
𝑑(𝑒𝑣)
𝑑π‘₯
= βˆ‘ οΏ½1
𝛽
οΏ½1
𝛽=0
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑1βˆ’π›½
𝑑π‘₯1βˆ’π›½
𝑣 = οΏ½1
0
οΏ½
𝑑0
𝑑π‘₯0
𝑒
𝑑1βˆ’0
𝑑π‘₯1βˆ’0
𝑣 + οΏ½1
1
οΏ½
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑1βˆ’1
𝑑π‘₯1βˆ’1
𝑣 = 𝑒
𝑑𝑣
𝑑π‘₯
+ 𝑣
𝑑𝑒
𝑑π‘₯
β€’ Assume 𝑃(π‘˜) is true for some π‘˜ ∈ β„€+
, that is:
𝑑 π‘˜
𝑑π‘₯ π‘˜
(𝑒𝑣) = οΏ½ οΏ½
π‘˜
𝛽
οΏ½
π‘˜
𝛽=0
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜βˆ’π›½
𝑑π‘₯ π‘˜βˆ’π›½
𝑣, π‘˜ ∈ β„€+
β€’ We want to prove the formula:
𝑑 π‘˜+1
𝑑π‘₯ π‘˜+1
(𝑒𝑣) = οΏ½ οΏ½
π‘˜ + 1
𝛽
οΏ½
π‘˜+1
𝛽=0
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜+1βˆ’π›½
𝑑π‘₯ π‘˜+1βˆ’π›½
𝑣, π‘˜ ∈ β„€+
First we compute:
𝑑 π‘˜+1
𝑑π‘₯ π‘˜+1
(𝑒𝑣) =
𝑑
𝑑π‘₯
οΏ½
𝑑 π‘˜
𝑑π‘₯ π‘˜
(𝑒𝑣)οΏ½
=
𝑑
𝑑π‘₯
οΏ½οΏ½ οΏ½
π‘˜
𝛽
οΏ½
π‘˜
𝛽=0
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜βˆ’π›½
𝑑π‘₯ π‘˜βˆ’π›½
𝑣�
= οΏ½ οΏ½
π‘˜
𝛽
οΏ½
π‘˜
𝛽=0
𝑑
𝑑π‘₯
οΏ½
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜βˆ’π›½
𝑑π‘₯ π‘˜βˆ’π›½
𝑣�
= οΏ½ οΏ½
π‘˜
𝛽
οΏ½
π‘˜
𝛽=0
οΏ½
𝑑 𝛽+1
𝑑π‘₯ 𝛽+1
𝑒
𝑑 π‘˜βˆ’π›½
𝑑π‘₯ π‘˜βˆ’π›½
𝑣 +
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜+1βˆ’π›½
𝑑π‘₯ π‘˜+1βˆ’π›½
𝑣�
Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 9
= οΏ½ οΏ½
π‘˜
𝛽
οΏ½
π‘˜
𝛽=0
𝑑 𝛽+1
𝑑π‘₯ 𝛽+1
𝑒
𝑑 π‘˜βˆ’π›½
𝑑π‘₯ π‘˜βˆ’π›½
𝑣 + οΏ½ οΏ½
π‘˜
𝛽
οΏ½
π‘˜
𝛽=0
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜+1βˆ’π›½
𝑑π‘₯ π‘˜+1βˆ’π›½
𝑣
π‘Ÿπ‘’π‘π‘™π‘Žπ‘π‘’ π‘Ÿ + 1 𝑏𝑦 π‘Ÿ π‘Žπ‘›π‘‘ π‘ π‘œ π‘Ÿ = π‘Ÿ βˆ’ 1, π‘Žπ‘›π‘‘ π‘ π‘’π‘š π‘“π‘Ÿπ‘œπ‘š 1 π‘‘π‘œ π‘˜
οΏ½ οΏ½
π‘˜
𝛽
οΏ½
π‘˜
𝛽=0
𝑑 𝛽+1
𝑑π‘₯ 𝛽+1
𝑒
𝑑 π‘˜βˆ’π›½
𝑑π‘₯ π‘˜βˆ’π›½
𝑣 = οΏ½ οΏ½
π‘˜ + 1
𝛽 βˆ’ 1
οΏ½
π‘˜+1
𝛽=1
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜+1βˆ’π›½
𝑑π‘₯ π‘˜+1βˆ’π›½
𝑣
We get
𝑑 π‘˜+1
𝑑π‘₯ π‘˜+1
(𝑒𝑣) = οΏ½ οΏ½
π‘˜ + 1
𝛽 βˆ’ 1
οΏ½
π‘˜+1
𝛽=1
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜+1βˆ’π›½
𝑑π‘₯ π‘˜+1βˆ’π›½
𝑣 + οΏ½ οΏ½
π‘˜
𝛽
οΏ½
π‘˜
𝛽=0
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜+1βˆ’π›½
𝑑π‘₯ π‘˜+1βˆ’π›½
𝑣
= οΏ½ οΏ½οΏ½
π‘˜ + 1
𝛽 βˆ’ 1
οΏ½ + οΏ½
π‘˜
𝛽
οΏ½οΏ½
π‘˜
𝛽=1
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜+1βˆ’π›½
𝑑π‘₯ π‘˜+1βˆ’π›½
𝑣 + οΏ½
π‘˜
π‘˜
οΏ½
𝑑 π‘˜+1
𝑑π‘₯ π‘˜+1
𝑒 + οΏ½
π‘˜
0
οΏ½
𝑑 π‘˜+1
𝑑π‘₯ π‘˜+1
𝑣
Since οΏ½ π‘˜+1
π›½βˆ’1
οΏ½ + οΏ½ π‘˜
𝛽
οΏ½ = οΏ½ π‘˜+1
𝛽
οΏ½ and since οΏ½ π‘˜
π‘˜
οΏ½ = οΏ½ π‘˜+1
π‘˜+1
οΏ½, and οΏ½ π‘˜
0
οΏ½ = οΏ½ π‘˜+1
0
οΏ½
We get:
𝑑 π‘˜+1
𝑑π‘₯ π‘˜+1
(𝑒𝑣) = οΏ½ οΏ½
π‘˜ + 1
𝛽
οΏ½
π‘˜
𝛽=1
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜+1βˆ’π›½
𝑑π‘₯ π‘˜+1βˆ’π›½
𝑣 + οΏ½
π‘˜ + 1
π‘˜ + 1
οΏ½
𝑑 π‘˜+1
𝑑π‘₯ π‘˜+1
𝑒 + οΏ½
π‘˜ + 1
0
οΏ½
𝑑 π‘˜+1
𝑑π‘₯ π‘˜+1
𝑣
= οΏ½ οΏ½
π‘˜ + 1
𝛽
οΏ½
π‘˜
𝛽=1
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜+1βˆ’π›½
𝑑π‘₯ π‘˜+1βˆ’π›½
𝑣 + οΏ½ οΏ½
π‘˜ + 1
π‘˜ + 1
οΏ½
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜+1βˆ’π›½
𝑑π‘₯ π‘˜+1βˆ’π›½
𝑣
π‘˜+1
𝛽=π‘˜+1
+ οΏ½ οΏ½
π‘˜ + 1
0
οΏ½
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜+1βˆ’π›½
𝑑π‘₯ π‘˜+1βˆ’π›½
𝑣
0
𝛽=0
= οΏ½ οΏ½
π‘˜ + 1
𝛽
οΏ½
π‘˜+1
𝛽=0
𝑑 𝛽
𝑑π‘₯ 𝛽
𝑒
𝑑 π‘˜+1βˆ’π›½
𝑑π‘₯ π‘˜+1βˆ’π›½
𝑣
∴ 𝑃(π‘˜ + 1)𝑖𝑠 π‘‘π‘Ÿπ‘’π‘’
By the Principle of Mathematical Induction 𝑃(𝛼) is true βˆ€π›Ό ∈ β„€+
.
4) Assume that 𝑓: ℝ 𝑛
β†’ ℝ is smooth. Proof
𝑓(π‘₯) = οΏ½
1
𝛼!
|𝛼|β‰€π‘˜
𝐷 𝛼
𝑓(0)π‘₯ 𝛼
+ 𝑂(|π‘₯| π‘˜+1) π‘Žπ‘  π‘₯ β†’ 0
For each π‘˜ = 1,2, β‹―.
𝛼 = (𝛼1, 𝛼2, β‹― , 𝛼 𝑛), 𝛼1, 𝛼2, β‹― , 𝛼 𝑛 β‰₯ 0
π‘₯ = (π‘₯1, π‘₯2, β‹― , π‘₯ 𝑛),
|𝛼| = 𝛼1 + 𝛼2 + β‹― + 𝛼 𝑛,
Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 10
𝛼! = 𝛼1! 𝛼2! β‹― 𝛼 𝑛!,
𝐷 𝛼
=
πœ•|𝛼|
πœ• π‘₯1
𝛼1β‹―πœ• π‘₯ 𝑛
𝛼 𝑛,
|π‘₯| = (π‘₯1
2
+ π‘₯2
2
+ β‹― + π‘₯ 𝑛
2)
1
2,
π‘₯ 𝛼
= π‘₯1
𝛼1
β‹― π‘₯ 𝑛
𝛼 𝑛
.
This is Taylor’s Formula in multiindex notation. (Hint: fix π‘₯ ∈ ℝ 𝑛
and consider the
function of one variable 𝑔(𝑑) = 𝑓(𝑑π‘₯).)
Proof: from 1D Taylor’s formula we have:
𝑔(𝑑) = 𝑔(0) + 𝑔′(0)𝑑 +
1
2
𝑔′′(0)𝑑2
+ β‹― +
1
π‘˜!
𝑔 𝑛(0)𝑑 π‘˜
+
1
(π‘˜ + 1)!
𝑔 𝑛+1(πœ€)𝑑 π‘˜+1
Here (πœ€) lies between 0 and 𝑑.
Now as 𝑔(𝑑) = 𝑓(𝑑π‘₯). All we need to do is to write the derivatives of 𝑔 using derivatives
of 𝑓. We compute:
𝑔 π‘˜(𝑠) = οΏ½
𝑑 π‘˜
𝑑𝑑 π‘˜
𝑓(𝑑π‘₯)οΏ½οΏ½
𝑑=𝑠
= ( π‘₯1 πœ•1 + π‘₯2 πœ•2 + β‹― + π‘₯ 𝑛 πœ• 𝑛) π‘˜
𝑓(𝑑π‘₯)οΏ½ 𝑑=𝑠
By multinomial theorem, we get:
𝑔 π‘˜(𝑠) = οΏ½ οΏ½οΏ½
π‘˜!
𝛼1! 𝛼2! β‹― 𝛼 𝑛!
οΏ½ οΏ½π‘₯1
𝛼1
β‹― π‘₯ 𝑛
𝛼 𝑛
οΏ½ οΏ½
πœ• 𝛼1+𝛼2+β‹―+𝛼 𝑛
πœ• π‘₯1
𝛼1
β‹― πœ• π‘₯ 𝑛
𝛼 𝑛
οΏ½ 𝑓(𝑠π‘₯)οΏ½
𝛼1,𝛼2,β‹―,𝛼 𝑛β‰₯0
𝛼1+𝛼2+β‹―+𝛼 𝑛=π‘˜
= οΏ½ οΏ½οΏ½
π‘˜!
𝛼1! 𝛼2! β‹― 𝛼 𝑛!
οΏ½ (π‘₯ 𝛼) οΏ½
πœ•|𝛼|
πœ• π‘₯1
𝛼1
β‹― πœ• π‘₯ 𝑛
𝛼 𝑛
οΏ½ 𝑓(𝑠π‘₯)οΏ½
𝛼1,𝛼2,β‹―,𝛼 𝑛β‰₯0
𝛼1+𝛼2+β‹―+𝛼 𝑛=π‘˜
= οΏ½ οΏ½οΏ½
π‘˜!
𝛼!
οΏ½ (π‘₯ 𝛼)(𝐷 𝛼)𝑓(𝑠π‘₯)οΏ½
|𝛼|=π‘˜
Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 11

More Related Content

What's hot

First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equationNofal Umair
Β 
Separation of variables
Separation of variablesSeparation of variables
Separation of variables
Juan Apolinario Reyes
Β 
Partial differential equation & its application.
Partial differential equation & its application.Partial differential equation & its application.
Partial differential equation & its application.
isratzerin6
Β 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
JUGAL BORAH
Β 
Numerical analysis ppt
Numerical analysis pptNumerical analysis ppt
Numerical analysis ppt
MalathiNagarajan20
Β 
Differential equations
Differential equationsDifferential equations
Differential equations
Muhammad Ali Bhalli Zada
Β 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Matthew Leingang
Β 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
muhammadabullah
Β 
Differential equations
Differential equationsDifferential equations
Differential equations
Seyid Kadher
Β 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
Abdul Hannan
Β 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
Dr. Nirav Vyas
Β 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations
University of Windsor
Β 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
Β 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
Nisarg Amin
Β 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
Emdadul Haque Milon
Β 
Partial Differentiation & Application
Partial Differentiation & Application Partial Differentiation & Application
Partial Differentiation & Application
Yana Qlah
Β 
Differential Equations
Differential EquationsDifferential Equations
Differential Equations
KrupaSuthar3
Β 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method
Bhavik Vashi
Β 
Euler and runge kutta method
Euler and runge kutta methodEuler and runge kutta method
Euler and runge kutta method
ch macharaverriyya naidu
Β 
Lecture3
Lecture3Lecture3
Lecture3
Ahmed Al-abdaly
Β 

What's hot (20)

First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
Β 
Separation of variables
Separation of variablesSeparation of variables
Separation of variables
Β 
Partial differential equation & its application.
Partial differential equation & its application.Partial differential equation & its application.
Partial differential equation & its application.
Β 
Ordinary differential equation
Ordinary differential equationOrdinary differential equation
Ordinary differential equation
Β 
Numerical analysis ppt
Numerical analysis pptNumerical analysis ppt
Numerical analysis ppt
Β 
Differential equations
Differential equationsDifferential equations
Differential equations
Β 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Β 
Partial differential equations
Partial differential equationsPartial differential equations
Partial differential equations
Β 
Differential equations
Differential equationsDifferential equations
Differential equations
Β 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
Β 
Partial Differential Equation - Notes
Partial Differential Equation - NotesPartial Differential Equation - Notes
Partial Differential Equation - Notes
Β 
Series solution to ordinary differential equations
Series solution to ordinary differential equations Series solution to ordinary differential equations
Series solution to ordinary differential equations
Β 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
Β 
1st order differential equations
1st order differential equations1st order differential equations
1st order differential equations
Β 
introduction to differential equations
introduction to differential equationsintroduction to differential equations
introduction to differential equations
Β 
Partial Differentiation & Application
Partial Differentiation & Application Partial Differentiation & Application
Partial Differentiation & Application
Β 
Differential Equations
Differential EquationsDifferential Equations
Differential Equations
Β 
Runge Kutta Method
Runge Kutta Method Runge Kutta Method
Runge Kutta Method
Β 
Euler and runge kutta method
Euler and runge kutta methodEuler and runge kutta method
Euler and runge kutta method
Β 
Lecture3
Lecture3Lecture3
Lecture3
Β 

Similar to Introduction of Partial Differential Equations

Numerical_PDE_Paper
Numerical_PDE_PaperNumerical_PDE_Paper
Numerical_PDE_PaperWilliam Ruys
Β 
Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2
SamsonAjibola
Β 
MSME_ ch 5.pptx
MSME_ ch 5.pptxMSME_ ch 5.pptx
MSME_ ch 5.pptx
Er. Rahul Jarariya
Β 
download-1679883048969u.pptx
download-1679883048969u.pptxdownload-1679883048969u.pptx
download-1679883048969u.pptx
Ahmedalmahdi16
Β 
He laplace method for special nonlinear partial differential equations
He laplace method for special nonlinear partial differential equationsHe laplace method for special nonlinear partial differential equations
He laplace method for special nonlinear partial differential equations
Alexander Decker
Β 
Heteroscedasticity Remedial Measures.pptx
Heteroscedasticity Remedial Measures.pptxHeteroscedasticity Remedial Measures.pptx
Heteroscedasticity Remedial Measures.pptx
PatilDevendra5
Β 
Heteroscedasticity Remedial Measures.pptx
Heteroscedasticity Remedial Measures.pptxHeteroscedasticity Remedial Measures.pptx
Heteroscedasticity Remedial Measures.pptx
DevendraRavindraPati
Β 
MetiTarski: An Automatic Prover for Real-Valued Special Functions
MetiTarski: An Automatic Prover for Real-Valued Special FunctionsMetiTarski: An Automatic Prover for Real-Valued Special Functions
MetiTarski: An Automatic Prover for Real-Valued Special FunctionsLawrence Paulson
Β 
Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential Equation
Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential  EquationHopf-Bifurcation Ina Two Dimensional Nonlinear Differential  Equation
Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential Equation
IJMER
Β 
FDMFVMandFEMNotes.pdf
FDMFVMandFEMNotes.pdfFDMFVMandFEMNotes.pdf
FDMFVMandFEMNotes.pdf
HanumanJadhav
Β 
Neural ODE
Neural ODENeural ODE
Neural ODE
Natan Katz
Β 
Document (28).docx
Document (28).docxDocument (28).docx
Document (28).docx
RajeshGHOSH61
Β 
Accuracy Study On Numerical Solutions Of Initial Value Problems (IVP) In Ordi...
Accuracy Study On Numerical Solutions Of Initial Value Problems (IVP) In Ordi...Accuracy Study On Numerical Solutions Of Initial Value Problems (IVP) In Ordi...
Accuracy Study On Numerical Solutions Of Initial Value Problems (IVP) In Ordi...
Sheila Sinclair
Β 
Dynamical Systems Methods in Early-Universe Cosmologies
Dynamical Systems Methods in Early-Universe CosmologiesDynamical Systems Methods in Early-Universe Cosmologies
Dynamical Systems Methods in Early-Universe Cosmologies
Ikjyot Singh Kohli
Β 
Dada la ecuacion de la conica -6x_1^2 + 20 x_1 x_2 + 8x_2^2 + 30 x_1.pdf
Dada la ecuacion de la conica  -6x_1^2 + 20 x_1 x_2 + 8x_2^2 + 30 x_1.pdfDada la ecuacion de la conica  -6x_1^2 + 20 x_1 x_2 + 8x_2^2 + 30 x_1.pdf
Dada la ecuacion de la conica -6x_1^2 + 20 x_1 x_2 + 8x_2^2 + 30 x_1.pdf
nishadvtky
Β 
Introduction to finite element method
Introduction to finite element methodIntroduction to finite element method
Introduction to finite element method
shahzaib601980
Β 
L25052056
L25052056L25052056
L25052056
IJERA Editor
Β 
L25052056
L25052056L25052056
L25052056
IJERA Editor
Β 
Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1
Kiran Padhy
Β 
Multiple scales
Multiple scalesMultiple scales
Multiple scales
AhmadKattan8
Β 

Similar to Introduction of Partial Differential Equations (20)

Numerical_PDE_Paper
Numerical_PDE_PaperNumerical_PDE_Paper
Numerical_PDE_Paper
Β 
Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2
Β 
MSME_ ch 5.pptx
MSME_ ch 5.pptxMSME_ ch 5.pptx
MSME_ ch 5.pptx
Β 
download-1679883048969u.pptx
download-1679883048969u.pptxdownload-1679883048969u.pptx
download-1679883048969u.pptx
Β 
He laplace method for special nonlinear partial differential equations
He laplace method for special nonlinear partial differential equationsHe laplace method for special nonlinear partial differential equations
He laplace method for special nonlinear partial differential equations
Β 
Heteroscedasticity Remedial Measures.pptx
Heteroscedasticity Remedial Measures.pptxHeteroscedasticity Remedial Measures.pptx
Heteroscedasticity Remedial Measures.pptx
Β 
Heteroscedasticity Remedial Measures.pptx
Heteroscedasticity Remedial Measures.pptxHeteroscedasticity Remedial Measures.pptx
Heteroscedasticity Remedial Measures.pptx
Β 
MetiTarski: An Automatic Prover for Real-Valued Special Functions
MetiTarski: An Automatic Prover for Real-Valued Special FunctionsMetiTarski: An Automatic Prover for Real-Valued Special Functions
MetiTarski: An Automatic Prover for Real-Valued Special Functions
Β 
Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential Equation
Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential  EquationHopf-Bifurcation Ina Two Dimensional Nonlinear Differential  Equation
Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential Equation
Β 
FDMFVMandFEMNotes.pdf
FDMFVMandFEMNotes.pdfFDMFVMandFEMNotes.pdf
FDMFVMandFEMNotes.pdf
Β 
Neural ODE
Neural ODENeural ODE
Neural ODE
Β 
Document (28).docx
Document (28).docxDocument (28).docx
Document (28).docx
Β 
Accuracy Study On Numerical Solutions Of Initial Value Problems (IVP) In Ordi...
Accuracy Study On Numerical Solutions Of Initial Value Problems (IVP) In Ordi...Accuracy Study On Numerical Solutions Of Initial Value Problems (IVP) In Ordi...
Accuracy Study On Numerical Solutions Of Initial Value Problems (IVP) In Ordi...
Β 
Dynamical Systems Methods in Early-Universe Cosmologies
Dynamical Systems Methods in Early-Universe CosmologiesDynamical Systems Methods in Early-Universe Cosmologies
Dynamical Systems Methods in Early-Universe Cosmologies
Β 
Dada la ecuacion de la conica -6x_1^2 + 20 x_1 x_2 + 8x_2^2 + 30 x_1.pdf
Dada la ecuacion de la conica  -6x_1^2 + 20 x_1 x_2 + 8x_2^2 + 30 x_1.pdfDada la ecuacion de la conica  -6x_1^2 + 20 x_1 x_2 + 8x_2^2 + 30 x_1.pdf
Dada la ecuacion de la conica -6x_1^2 + 20 x_1 x_2 + 8x_2^2 + 30 x_1.pdf
Β 
Introduction to finite element method
Introduction to finite element methodIntroduction to finite element method
Introduction to finite element method
Β 
L25052056
L25052056L25052056
L25052056
Β 
L25052056
L25052056L25052056
L25052056
Β 
Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1Introduction to perturbation theory, part-1
Introduction to perturbation theory, part-1
Β 
Multiple scales
Multiple scalesMultiple scales
Multiple scales
Β 

Recently uploaded

filosofia boliviana introducciΓ³n jsjdjd.pptx
filosofia boliviana introducciΓ³n jsjdjd.pptxfilosofia boliviana introducciΓ³n jsjdjd.pptx
filosofia boliviana introducciΓ³n jsjdjd.pptx
IvanMallco1
Β 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
Health Advances
Β 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
Β 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
ChetanK57
Β 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
Β 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
SΓ©rgio Sacani
Β 
insect morphology and physiology of insect
insect morphology and physiology of insectinsect morphology and physiology of insect
insect morphology and physiology of insect
anitaento25
Β 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
muralinath2
Β 
plant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptxplant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptx
yusufzako14
Β 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
muralinath2
Β 
justice-and-fairness-ethics with example
justice-and-fairness-ethics with examplejustice-and-fairness-ethics with example
justice-and-fairness-ethics with example
azzyixes
Β 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
anitaento25
Β 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
AADYARAJPANDEY1
Β 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
Β 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
Β 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
muralinath2
Β 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
silvermistyshot
Β 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Areesha Ahmad
Β 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
Β 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
Β 

Recently uploaded (20)

filosofia boliviana introducciΓ³n jsjdjd.pptx
filosofia boliviana introducciΓ³n jsjdjd.pptxfilosofia boliviana introducciΓ³n jsjdjd.pptx
filosofia boliviana introducciΓ³n jsjdjd.pptx
Β 
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...The ASGCT Annual Meeting was packed with exciting progress in the field advan...
The ASGCT Annual Meeting was packed with exciting progress in the field advan...
Β 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
Β 
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATIONPRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
PRESENTATION ABOUT PRINCIPLE OF COSMATIC EVALUATION
Β 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
Β 
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
THE IMPORTANCE OF MARTIAN ATMOSPHERE SAMPLE RETURN.
Β 
insect morphology and physiology of insect
insect morphology and physiology of insectinsect morphology and physiology of insect
insect morphology and physiology of insect
Β 
Anemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditionsAnemia_ different types_causes_ conditions
Anemia_ different types_causes_ conditions
Β 
plant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptxplant biotechnology Lecture note ppt.pptx
plant biotechnology Lecture note ppt.pptx
Β 
ESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptxESR_factors_affect-clinic significance-Pathysiology.pptx
ESR_factors_affect-clinic significance-Pathysiology.pptx
Β 
justice-and-fairness-ethics with example
justice-and-fairness-ethics with examplejustice-and-fairness-ethics with example
justice-and-fairness-ethics with example
Β 
insect taxonomy importance systematics and classification
insect taxonomy importance systematics and classificationinsect taxonomy importance systematics and classification
insect taxonomy importance systematics and classification
Β 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
Β 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
Β 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Β 
platelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptxplatelets- lifespan -Clot retraction-disorders.pptx
platelets- lifespan -Clot retraction-disorders.pptx
Β 
Lateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensiveLateral Ventricles.pdf very easy good diagrams comprehensive
Lateral Ventricles.pdf very easy good diagrams comprehensive
Β 
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of LipidsGBSN - Biochemistry (Unit 5) Chemistry of Lipids
GBSN - Biochemistry (Unit 5) Chemistry of Lipids
Β 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
Β 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
Β 

Introduction of Partial Differential Equations

  • 1. INTRODUCTION of PARTIAL DIFFERENTIAL EQUATIONS 1. PARTIAL DIFFERENTIAL EQUATIONS β€’ A partial differential equations (PDE) is an equation involving an unknown function of two or more variables and certain of its partial derivatives. β€’ Using the notation explained in Appendix A, we can write out symbolically a typical PDE, as follows. Fix an integer π‘˜ β‰₯ 1 and let π‘ˆ denote an open subset of ℝ 𝑛 . DEFINITION. An expression of the form 𝐹(𝐷 π‘˜ 𝑒(π‘₯), 𝐷 π‘˜βˆ’1 𝑒(π‘₯), β‹― , 𝐷𝑒(π‘₯), 𝑒(π‘₯), π‘₯) = 0 (π‘₯πœ–π‘ˆ) (1) is called π‘Ž kth -order partial differential equation, where 𝐹: ℝ 𝑛 π‘˜ Γ— ℝ 𝑛 π‘˜βˆ’1 Γ— β‹― ℝ 𝑛 Γ— ℝ Γ— π‘ˆ β†’ ℝ is given, and 𝑒: π‘ˆ β†’ ℝ is the unknown. β€’ We solve the PDE if we find all 𝑒 verifying (1), possibly only among those functions satisfying certain auxiliary boundary conditions on some part Ξ“of πœ•π‘ˆ. β€’ By finding the solutions we mean, ideally, obtaining simple, explicit solutions or failing that, deducing the existence and other properties of solutions. DEFINITIONS. i. The partial differential equation (1) is called linear if it has the form οΏ½ π‘Ž 𝛼(π‘₯)𝐷 𝛼 𝑒 = 𝑓(π‘₯) |𝛼|β‰€π‘˜ for given functions π‘Ž 𝛼(𝛼| ≀ π‘˜), f. This linear PDE is homogeneous if 𝑓 ≑ 0. ii. The PDE (1) is semilinear if it has the form οΏ½ π‘Ž 𝛼(π‘₯)𝐷 𝛼 𝑒 + π‘Ž0(𝐷 π‘˜βˆ’1 𝑒, β‹― , 𝐷𝑒, 𝑒, π‘₯) = 0 |𝛼|=π‘˜ iii. The PDE (1) is quasilinear if it has the form οΏ½ π‘Ž 𝛼(𝐷 π‘˜βˆ’1 𝑒, β‹― , 𝐷𝑒, 𝑒, π‘₯)𝐷 𝛼 𝑒 + π‘Ž0(𝐷 π‘˜βˆ’1 𝑒, β‹― , 𝐷𝑒, 𝑒, π‘₯) = 0 |𝛼|=π‘˜ Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 1
  • 2. iv. The PDE (1) is fully nonlinear if it depends nonlinearly upon the higest order derivatives. DEFINITION. An expression of the form 𝐹(𝐷 π‘˜ 𝒖(π‘₯), 𝐷 π‘˜βˆ’1 𝒖(π‘₯), β‹― , 𝐷𝒖(π‘₯), 𝒖(π‘₯), π‘₯) = 𝟎 (π‘₯πœ–π‘ˆ) (2) is called a kth -order system of partial differential equations, where 𝐹: ℝ π‘šπ‘› π‘˜ Γ— ℝ π‘šπ‘› π‘˜βˆ’1 Γ— β‹― ℝ π‘šπ‘› Γ— ℝ π‘š Γ— π‘ˆ β†’ ℝ π‘š is given, and 𝒖: π‘ˆ β†’ ℝ π‘š , 𝒖 = (𝑒1 , β‹― , 𝑒 π‘š) is the unknown. β€’ Here we are supposing that the system comprises the same number π‘š of scalar equations as unknowns (𝑒1 , β‹― , 𝑒 π‘š). β€’ This is the most common circumstance, although other system may have fewer or more equations than unknowns. 2. EXAMPLES β€’ There is no general theory known concerning the solvability of all partial differential equations. β€’ Such a theory is extremely unlikely to exist, given the rich variety of physical, geometric, probabilistic phenomena which can be modeled by PDE. β€’ Instead, research focuses on various particular partial differential equations that important for applications within and outside of mathematics, with the hope that insight from the origins of these PDE can give clues as to their solutions. β€’ Following is a list of many specific partial differential equations of interest in current research. β€’ This listing is intended merely to familiarize the reader with the names and forms of various famous PDE. β€’ To display most clearly the mathematical structure of the equations, we have mostly relevant physical constants to unity. β€’ We will later discuss the origin and interpretation of many of these PDE. β€’ For each π‘₯ ∈ π‘ˆ, where π‘ˆ is an open subset of ℝ 𝑛 , and 𝑑 β‰₯ 0. Also 𝐷𝑒 = 𝐷π‘₯ 𝑒 = �𝑒 π‘₯1 , 𝑒 π‘₯2 , β‹― , 𝑒 π‘₯ 𝑛 οΏ½ denotes the gradient of 𝑒 with respect to the spatial variable π‘₯ = (π‘₯1, β‹― , π‘₯ 𝑛). Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 2
  • 3. 2.1 Single partial differential equations A. Linear equations 1. Laplace’s equation βˆ†π‘’ = οΏ½ 𝑒 π‘₯ 𝑖 π‘₯ 𝑖 = 0 𝑛 𝑖=1 2. Helmholtz’s (or eigenvalue) equation βˆ’βˆ†π‘’ = πœ†π‘’ 3. Linear transport equation 𝑒 𝑑 + οΏ½ 𝑏 𝑖 𝑒 π‘₯ 𝑖 = 0 𝑛 𝑖=1 4. Liouville’s equation 𝑒 𝑑 βˆ’ ��𝑏 𝑖 𝑒� π‘₯ 𝑖 = 0 𝑛 𝑖=1 5. Heat (or diffusion) equation 𝑒 𝑑 βˆ’ Δ𝑒 = 0 6. Schrodinger’s equation 𝑖𝑒 𝑑 + Δ𝑒 = 0 7. Kolmogorov’s equation 𝑒 𝑑 βˆ’ οΏ½ π‘Žπ‘–π‘— 𝑒 π‘₯ 𝑖 π‘₯ 𝑗 + 𝑛 𝑖,𝑗=1 οΏ½ 𝑏 𝑖 𝑒 π‘₯ 𝑖 = 0 𝑛 𝑖=1 8. Fokker-Planck equation 𝑒 𝑑 βˆ’ οΏ½ οΏ½π‘Žπ‘–π‘— 𝑒� π‘₯ 𝑖 π‘₯ 𝑗 βˆ’ 𝑛 𝑖,𝑗=1 ��𝑏 𝑖 𝑒� π‘₯ 𝑖 = 0 𝑛 𝑖=1 9. Wave equation 𝑒 𝑑𝑑 βˆ’ Δ𝑒 = 0 10. Telegraph equation 𝑒 𝑑𝑑 + 𝑑𝑒 𝑑 βˆ’ 𝑒 π‘₯π‘₯ = 0 11. General wave equation 𝑒 𝑑𝑑 βˆ’ οΏ½ π‘Žπ‘–π‘— 𝑒 π‘₯ 𝑖 π‘₯ 𝑗 + 𝑛 𝑖,𝑗=1 οΏ½ 𝑏 𝑖 𝑒 π‘₯ 𝑖 = 0 𝑛 𝑖=1 12. Airy’s equation 𝑒 𝑑 + 𝑒 π‘₯π‘₯π‘₯ = 0 13. Beam equation Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 3
  • 4. 𝑒 𝑑 + 𝑒 π‘₯π‘₯π‘₯π‘₯ = 0 B. Nonlinear equations 1. Eikonal equation |𝐷𝑒| = 1 2. Nonlinear Poisson equation βˆ’βˆ†π‘’ = 𝑓(𝑒) 3. p-Laplacian equation 𝑑𝑖𝑣(|𝐷𝑒| π‘βˆ’2 𝐷𝑒) = 0 4. Minimal surface equation 𝑑𝑖𝑣 οΏ½ 𝐷𝑒 (1 + |𝐷𝑒|2) 1 2 οΏ½ = 0 5. Monge-Ampere equation 𝑑𝑒𝑑(𝐷2 𝑒) = 𝑓 6. Hamilton-Jacobi equation 𝑒 𝑑 + 𝐻(𝐷𝑒, π‘₯) = 0 7. Scalar reaction-diffusion equation 𝑒 𝑑 + 𝑑𝑖𝑣 𝐹(𝑒) = 0 8. Inviscid Burger’s equation 𝑒 𝑑 + 𝑒𝑒 π‘₯ = 0 9. Scalar reaction-diffusion equation 𝑒 𝑑 βˆ’ βˆ†π‘’ = 𝑓(𝑒) 10. Porous medium equation 𝑒 𝑑 βˆ’ βˆ†(𝑒 𝛾) = 0 11. Nonlinear wave equation 𝑒 𝑑𝑑 βˆ’ βˆ†π‘’ = 𝑓(𝑒) 𝑒 𝑑𝑑 βˆ’ 𝑑𝑖𝑣 π‘Ž(𝐷𝑒) = 0 12. Korteweg-de Vries (KdV) equation 𝑒 𝑑 + 𝑒𝑒 π‘₯ + 𝑒 π‘₯π‘₯π‘₯ = 0 2.2 System partial differential equations A. Linear systems 1. Equilibrium equations of elasticity πœ‡βˆ†π’– + (πœ† + πœ‡)𝐷(𝑑𝑖𝑣 𝒖) = 0 2. Evolution equations of linear elasticity 𝒖 𝑑𝑑 βˆ’ πœ‡βˆ†π’– βˆ’ (πœ† + πœ‡)𝐷(𝑑𝑖𝑣 𝒖) = 0 3. Maxwell’s equations Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 4
  • 5. οΏ½ 𝑬 𝑑 = π‘π‘’π‘Ÿπ‘™ 𝑩 𝑩 𝑑 = βˆ’π‘π‘’π‘Ÿπ‘™ 𝑬 𝑑𝑖𝑣 𝑩 = 𝑑𝑖𝑣 𝑬 = 𝟎 B. Nonlinear systems 1. System of conservation laws 𝒖 𝑑 + 𝑑𝑖𝑣 𝑭(𝒖) = 𝟎 2. Reaction-diffusion system 𝒖 𝑑 βˆ’ βˆ†π’– = 𝑓(𝒖) 3. Euler’s equations for incrompessible οΏ½ 𝒖 𝑑 + 𝒖 βˆ™ 𝐷𝒖 = βˆ’π·π‘ 𝑑𝑖𝑣 𝒖 = 0 4. Navier-Stokes equations for incompressible, viscous flow οΏ½ 𝒖 𝑑 + 𝒖 βˆ™ 𝐷𝒖 βˆ’ βˆ†π’– = βˆ’π·π‘ 𝑑𝑖𝑣 𝒖 = 0 3. STRATEGIES FOR STUDYING PDE β€’ Our goal is the discovery of ways to solve partial differential equations of various sorts. β€’ The very question of what it means to β€œsolve” a given PDE can be subtle. 3.1 Well-posed problems, classical solutions. β€’ The problem in fact has a solution; β€’ This solution is unique; β€’ The solution depends continuously on the data given in the problem. 3.2 Weak solutions and regularity. β€’ Can we achieve this? β€’ The answer is that certain specific partial differential equations (ex. Laplace’s equation) can be solved in the classical sense, but many others, cannot. Consider for instance the scalar conservation law 𝑒 𝑑 + 𝐹(𝑒) π‘₯ = 0. β€’ In general, as we shall see, the conservation law has no classical solutions, but is well-posed if we allow for properly defined generalized or weak solutions. β€’ The idea is to define for a given PDE a reasonable wide notion of a weak solution, with the expectation that since we are not asking too much by way of smoothness of this weak solution. β€’ For other equations we can hope that our weak solution. β€’ This leads to the question of regularity of weak solutions. β€’ As we will see, it is often the case that the existence of weak solutions depends upon rather simple estimates plus ideas of functional analysis. β€’ Whereas the regularity of weak solutions, when true, usually rest upon many intricate calculus estimates. 3.3 Typical difficulties Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 5
  • 6. 1) Nonlinear equations are more difficult than linear equations, and indeed, the more the nonlinearity affects the higher derivatives, the more difficult the PDE is. 2) Higher-order PDE are more difficult than lower-order PDE. 3) System are harder than single equations. 4) Partial differential equations entailing many independent variables are harder than entailing few independent variables. 5) For most partial differential equations it is not possible to write out explicit formulas for solutions. 4. OVERVIEW This textbook is divided into three major Parts PART I: Representation Formulas for Solutions β€’ Identify those important PDE for which in certain circumstances explicit or more- or-less explicit formulas can be had for solutions. β€’ Chapter 2 is a detailed study of four exactly solvable PDE: the linear transport equation, Laplace’s equation, the heat equation, and the wave equation. β€’ Chapter 3 continues the theme of searching for explicit formulas, now for general first-order nonlinear PDE. β€’ We stipulate that once the problem becomes β€œonly” the equation of integrating a system of ODE. β€’ We introduce also the Hopf-Lax formula for Hamilton-Jacobi equations and the Lax-Oleinik formula for scalar conservation laws. β€’ Chapter 4 is a grab bag of techniques for explicitly solving various linear and nonlinear PDE. PART II: Teori PDE Linear β€’ We abandon the search for explicit formulas and instead rely on functional analysis and relatively easy β€œenergy” estimates to prove existence of weak solutions to various linear PDE. β€’ Chapter 5 is an introduction to Sobolev spaces, the proper setting for the study of many linear and nonlinear PDE via energy methods. β€’ This is hard chapter, the real worth of which is only later revealed, and requires some basic knowledge of Lebesgue measure theory. Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 6
  • 7. β€’ Chapter 6: we vastly generalize our knowledge of Laplace’s equation to other second-order elliptic equations. β€’ Chapter 7 expands the energy methods to a variety of linear PDE characterizing evolutions in time. PART III: Theory for Nonlinear PDE β€’ This section parallels for nonlinear PDE the development in Part II, but is far less unified in its approach, as the various types of nonlinearity must be treated in quite different ways. β€’ Chapter 8 commences the general study of nonlinear PDE with an extensive discussion of the calculus of variations. β€’ Chapter 9, a gathering of assorted other techniques of use for nonlinear elliptic and parabolic PDE. β€’ Chapter 10 is an introduction to the modern theory of Hamilton-Jacobi PDE, and particular to the notion of β€œviscosity solutions”. β€’ We encounter also the connections with optimal control of ODE, through dynamic programming. β€’ Chapter 11 is the discussion of conservation laws, now systems of conservation laws. 5. PROBLEMS 1) Classify each of PDE in [2] as follows: a) Is the PDE linear, semilinear, quassilinear, or fully nonlinear? b) What is the order of the PDE? 2) Prove the Multinomial Theorem (π‘₯1 + π‘₯2 + β‹― + π‘₯ 𝑛) 𝑁 = οΏ½ οΏ½ |𝛼| 𝛼 οΏ½ π‘₯ 𝛼 |𝛼|=𝑁 Where οΏ½|𝛼| 𝛼 οΏ½ = |𝛼|! 𝛼! , 𝛼! = 𝛼1! 𝛼2! β‹― 𝛼 𝑛!, and π‘₯ 𝛼 = π‘₯1 𝛼1 β‹― π‘₯ 𝑛 𝛼 𝑛 . The sum is taken over all multiindecs 𝛼 = (𝛼1, 𝛼2, β‹― , 𝛼 𝑛) with |𝛼| = 𝑁. Multinomial Theorem is a natural extension of binomial theorem and proof gives a good exercise for using the Principle of Mathematical Induction. Theorem: Let P(n) be the proposition: (π‘₯1 + π‘₯2 + β‹― + π‘₯ 𝑛) 𝑁 = οΏ½ οΏ½ |𝛼| 𝛼 οΏ½ π‘₯ 𝛼 |𝛼|=𝑁 Where οΏ½|𝛼| 𝛼 οΏ½ = |𝛼|! 𝛼! , 𝛼! = 𝛼1! 𝛼2! β‹― 𝛼 𝑛!, and π‘₯ 𝛼 = π‘₯1 𝛼1 β‹― π‘₯ 𝑛 𝛼 𝑛 . The sum is taken over all multiindecs 𝛼 = (𝛼1, 𝛼2, β‹― , 𝛼 𝑛) with |𝛼| = 𝑁. In another form Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 7
  • 8. (π‘₯1 + π‘₯2 + β‹― + π‘₯ 𝑛) 𝑁 = βˆ‘ οΏ½ 𝑁! 𝛼1!𝛼2!⋯𝛼 𝑛! π‘₯1 𝛼1 β‹― π‘₯ 𝑛 𝛼 𝑛 �𝛼1,𝛼2,β‹―,𝛼 𝑛β‰₯0 𝛼1+𝛼2+β‹―+𝛼 𝑛=𝑁 ,where 𝑛, 𝑁 ∈ β„• Proof: β€’ 𝑃(1) β†’ (π‘₯1) 𝑁 = βˆ‘ οΏ½ 𝑁! 𝛼1! π‘₯1 𝛼1 �𝛼1β‰₯0 𝛼1=𝑁 = βˆ‘ οΏ½ 𝑁! 𝑁! π‘₯1 𝑁 οΏ½ =𝛼1β‰₯0 𝛼1=𝑁 βˆ‘ [π‘₯1 𝑁] = π‘₯1 𝑁 𝛼1β‰₯0 𝛼1=𝑁 ∴ 𝑃(1)𝑖𝑠 π‘‘π‘Ÿπ‘’π‘’ β€’ 𝑃(2) β†’ (π‘₯1 + π‘₯2) 𝑁 = βˆ‘ οΏ½ 𝑁! 𝛼1!𝛼2! π‘₯1 𝛼1 π‘₯2 𝛼2 �𝛼1,𝛼2β‰₯0 𝛼1+𝛼2=𝑁 , By Binomial Theorem: (π‘₯1 + π‘₯2) 𝑁 = οΏ½ πΆπ‘Ÿ 𝑁 π‘₯1 π‘βˆ’π‘Ÿ π‘₯2 π‘Ÿ 𝑁 π‘Ÿ=0 = οΏ½ 𝑁! (𝑁 βˆ’ π‘Ÿ)! π‘Ÿ! π‘₯1 π‘βˆ’π‘Ÿ π‘₯2 π‘Ÿ 𝑁 π‘Ÿ=0 = βˆ‘ 𝑁! 𝛼1!𝛼2! π‘₯1 𝛼1 π‘₯2 𝛼2𝑁 𝛼2=0 , where 𝛼1 = 𝑁 βˆ’ π‘Ÿ, 𝛼2 = π‘Ÿ. = βˆ‘ 𝑁! 𝛼1!𝛼2! π‘₯1 𝛼1 π‘₯2 𝛼2𝑁 𝛼1,𝛼2β‰₯0 𝛼1+𝛼2=𝑁 ∴ 𝑃(2)𝑖𝑠 π‘‘π‘Ÿπ‘’π‘’ Assume 𝑃(π‘˜) is true for some π‘˜ ∈ β„•, that is: (π‘₯1 + π‘₯2 + β‹― + π‘₯ π‘˜) 𝑁 = οΏ½ οΏ½ 𝑁! 𝛼1! 𝛼2! β‹― 𝛼 π‘˜! π‘₯1 𝛼1 β‹― π‘₯ π‘˜ 𝛼 π‘˜ οΏ½ 𝛼1,𝛼2,β‹―,𝛼 π‘˜β‰₯0 𝛼1+𝛼2+β‹―+𝛼 π‘˜=𝑁 β‹― (1) for 𝑃(π‘˜ + 1), (π‘₯1 + π‘₯2 + β‹― + π‘₯ π‘˜ + π‘₯ π‘˜+1) 𝑁 = [(π‘₯1 + π‘₯2 + β‹― + π‘₯ π‘˜) + π‘₯ π‘˜+1] 𝑁 = οΏ½ πΆπ‘Ÿ 𝑁( π‘₯1 + π‘₯2 + β‹― + π‘₯ π‘˜) π‘βˆ’π‘Ÿ π‘₯ π‘˜+1 π‘Ÿ 𝑁 π‘Ÿ=0 = οΏ½ πΆπ‘Ÿ 𝑁 οΏ½ οΏ½ (𝑁 βˆ’ π‘Ÿ)! 𝛼1! 𝛼2! β‹― 𝛼 π‘˜! π‘₯1 𝛼1 β‹― π‘₯ π‘˜ 𝛼 π‘˜ οΏ½ 𝛼1,𝛼2,β‹―,𝛼 π‘˜β‰₯0 𝛼1+𝛼2+β‹―+𝛼 π‘˜=π‘βˆ’π‘Ÿ π‘₯ π‘˜+1 π‘Ÿ 𝑁 π‘Ÿ=0 = οΏ½ οΏ½ οΏ½ 𝑁! (𝑁 βˆ’ π‘Ÿ)! π‘Ÿ! (𝑁 βˆ’ π‘Ÿ)! 𝛼1! 𝛼2! β‹― 𝛼 π‘˜! π‘₯1 𝛼1 β‹― π‘₯ π‘˜ 𝛼 π‘˜ π‘₯ π‘˜+1 π‘Ÿ οΏ½ 𝛼1,𝛼2,β‹―,𝛼 π‘˜β‰₯0 𝛼1+𝛼2+β‹―+𝛼 π‘˜=π‘βˆ’π‘Ÿ 𝑁 π‘Ÿ=0 = βˆ‘ βˆ‘ οΏ½ 𝑁! 𝛼1!𝛼2!⋯𝛼 π‘˜!𝛼 π‘˜+1! π‘₯1 𝛼1 β‹― π‘₯ π‘˜ 𝛼 π‘˜ π‘₯ π‘˜+1 π‘Ÿ �𝛼1,𝛼2,β‹―,𝛼 π‘˜β‰₯0 𝛼1+𝛼2+β‹―+𝛼 π‘˜=π‘βˆ’π›Ό π‘˜+1 𝑁 π‘Ÿ=0 where 𝛼 π‘˜+1 = π‘Ÿ. = οΏ½ οΏ½ οΏ½ 𝑁! 𝛼1! 𝛼2! β‹― 𝛼 π‘˜! 𝛼 π‘˜+1! π‘₯1 𝛼1 β‹― π‘₯ π‘˜ 𝛼 π‘˜ π‘₯ π‘˜+1 π‘Ÿ οΏ½ 𝛼1,𝛼2,β‹―,𝛼 π‘˜,𝛼 π‘˜+1β‰₯0 𝛼1+𝛼2+β‹―+𝛼 π‘˜+𝛼 π‘˜+1=𝑁 𝑁 π‘Ÿ=0 ∴ 𝑃(π‘˜ + 1)𝑖𝑠 π‘‘π‘Ÿπ‘’π‘’ By the Principle of Mathematical Induction 𝑃(𝑛) is true βˆ€π‘› ∈ β„•. Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 8
  • 9. 3) Prove Leibniz’ formula 𝐷 𝛼(𝑒𝑣) = βˆ‘ οΏ½ 𝛼 𝛽 �𝛽≀𝛼 𝐷 𝛽 𝑒𝐷 π›Όβˆ’π›½ 𝑣, Where 𝑒, 𝑣: ℝ 𝑛 β†’ ℝ are smooth, οΏ½ 𝛼 𝛽 οΏ½ = 𝛼! (π›Όβˆ’π›½)!𝛽! , and 𝛽 ≀ 𝛼means 𝛽𝑖 ≀ 𝛼𝑖, (𝑖 = 1,2, … , 𝑛) Proof: 𝐷 𝛼(𝑒𝑣) = 𝑑 𝛼 𝑑π‘₯ 𝛼 (𝑒𝑣) = οΏ½ οΏ½ 𝛼 𝛽 οΏ½ 𝛼 𝛽=0 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π›Όβˆ’π›½ 𝑑π‘₯ π›Όβˆ’π›½ 𝑣, 𝛼 ∈ β„€+ By the Principle of Mathematical Induction on 𝛼. Recall 𝑑 𝛼 𝑑π‘₯ 𝛼 denotes the 𝛼 π‘‘β„Ž derivative. The product rule say that 𝑑(𝑒𝑣) 𝑑π‘₯ = 𝑒 𝑑𝑣 𝑑π‘₯ + 𝑣 𝑑𝑒 𝑑π‘₯ β€’ 𝑃(1) β†’ 𝑑(𝑒𝑣) 𝑑π‘₯ = βˆ‘ οΏ½1 𝛽 οΏ½1 𝛽=0 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑1βˆ’π›½ 𝑑π‘₯1βˆ’π›½ 𝑣 = οΏ½1 0 οΏ½ 𝑑0 𝑑π‘₯0 𝑒 𝑑1βˆ’0 𝑑π‘₯1βˆ’0 𝑣 + οΏ½1 1 οΏ½ 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑1βˆ’1 𝑑π‘₯1βˆ’1 𝑣 = 𝑒 𝑑𝑣 𝑑π‘₯ + 𝑣 𝑑𝑒 𝑑π‘₯ β€’ Assume 𝑃(π‘˜) is true for some π‘˜ ∈ β„€+ , that is: 𝑑 π‘˜ 𝑑π‘₯ π‘˜ (𝑒𝑣) = οΏ½ οΏ½ π‘˜ 𝛽 οΏ½ π‘˜ 𝛽=0 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜βˆ’π›½ 𝑑π‘₯ π‘˜βˆ’π›½ 𝑣, π‘˜ ∈ β„€+ β€’ We want to prove the formula: 𝑑 π‘˜+1 𝑑π‘₯ π‘˜+1 (𝑒𝑣) = οΏ½ οΏ½ π‘˜ + 1 𝛽 οΏ½ π‘˜+1 𝛽=0 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜+1βˆ’π›½ 𝑑π‘₯ π‘˜+1βˆ’π›½ 𝑣, π‘˜ ∈ β„€+ First we compute: 𝑑 π‘˜+1 𝑑π‘₯ π‘˜+1 (𝑒𝑣) = 𝑑 𝑑π‘₯ οΏ½ 𝑑 π‘˜ 𝑑π‘₯ π‘˜ (𝑒𝑣)οΏ½ = 𝑑 𝑑π‘₯ οΏ½οΏ½ οΏ½ π‘˜ 𝛽 οΏ½ π‘˜ 𝛽=0 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜βˆ’π›½ 𝑑π‘₯ π‘˜βˆ’π›½ 𝑣� = οΏ½ οΏ½ π‘˜ 𝛽 οΏ½ π‘˜ 𝛽=0 𝑑 𝑑π‘₯ οΏ½ 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜βˆ’π›½ 𝑑π‘₯ π‘˜βˆ’π›½ 𝑣� = οΏ½ οΏ½ π‘˜ 𝛽 οΏ½ π‘˜ 𝛽=0 οΏ½ 𝑑 𝛽+1 𝑑π‘₯ 𝛽+1 𝑒 𝑑 π‘˜βˆ’π›½ 𝑑π‘₯ π‘˜βˆ’π›½ 𝑣 + 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜+1βˆ’π›½ 𝑑π‘₯ π‘˜+1βˆ’π›½ 𝑣� Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 9
  • 10. = οΏ½ οΏ½ π‘˜ 𝛽 οΏ½ π‘˜ 𝛽=0 𝑑 𝛽+1 𝑑π‘₯ 𝛽+1 𝑒 𝑑 π‘˜βˆ’π›½ 𝑑π‘₯ π‘˜βˆ’π›½ 𝑣 + οΏ½ οΏ½ π‘˜ 𝛽 οΏ½ π‘˜ 𝛽=0 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜+1βˆ’π›½ 𝑑π‘₯ π‘˜+1βˆ’π›½ 𝑣 π‘Ÿπ‘’π‘π‘™π‘Žπ‘π‘’ π‘Ÿ + 1 𝑏𝑦 π‘Ÿ π‘Žπ‘›π‘‘ π‘ π‘œ π‘Ÿ = π‘Ÿ βˆ’ 1, π‘Žπ‘›π‘‘ π‘ π‘’π‘š π‘“π‘Ÿπ‘œπ‘š 1 π‘‘π‘œ π‘˜ οΏ½ οΏ½ π‘˜ 𝛽 οΏ½ π‘˜ 𝛽=0 𝑑 𝛽+1 𝑑π‘₯ 𝛽+1 𝑒 𝑑 π‘˜βˆ’π›½ 𝑑π‘₯ π‘˜βˆ’π›½ 𝑣 = οΏ½ οΏ½ π‘˜ + 1 𝛽 βˆ’ 1 οΏ½ π‘˜+1 𝛽=1 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜+1βˆ’π›½ 𝑑π‘₯ π‘˜+1βˆ’π›½ 𝑣 We get 𝑑 π‘˜+1 𝑑π‘₯ π‘˜+1 (𝑒𝑣) = οΏ½ οΏ½ π‘˜ + 1 𝛽 βˆ’ 1 οΏ½ π‘˜+1 𝛽=1 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜+1βˆ’π›½ 𝑑π‘₯ π‘˜+1βˆ’π›½ 𝑣 + οΏ½ οΏ½ π‘˜ 𝛽 οΏ½ π‘˜ 𝛽=0 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜+1βˆ’π›½ 𝑑π‘₯ π‘˜+1βˆ’π›½ 𝑣 = οΏ½ οΏ½οΏ½ π‘˜ + 1 𝛽 βˆ’ 1 οΏ½ + οΏ½ π‘˜ 𝛽 οΏ½οΏ½ π‘˜ 𝛽=1 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜+1βˆ’π›½ 𝑑π‘₯ π‘˜+1βˆ’π›½ 𝑣 + οΏ½ π‘˜ π‘˜ οΏ½ 𝑑 π‘˜+1 𝑑π‘₯ π‘˜+1 𝑒 + οΏ½ π‘˜ 0 οΏ½ 𝑑 π‘˜+1 𝑑π‘₯ π‘˜+1 𝑣 Since οΏ½ π‘˜+1 π›½βˆ’1 οΏ½ + οΏ½ π‘˜ 𝛽 οΏ½ = οΏ½ π‘˜+1 𝛽 οΏ½ and since οΏ½ π‘˜ π‘˜ οΏ½ = οΏ½ π‘˜+1 π‘˜+1 οΏ½, and οΏ½ π‘˜ 0 οΏ½ = οΏ½ π‘˜+1 0 οΏ½ We get: 𝑑 π‘˜+1 𝑑π‘₯ π‘˜+1 (𝑒𝑣) = οΏ½ οΏ½ π‘˜ + 1 𝛽 οΏ½ π‘˜ 𝛽=1 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜+1βˆ’π›½ 𝑑π‘₯ π‘˜+1βˆ’π›½ 𝑣 + οΏ½ π‘˜ + 1 π‘˜ + 1 οΏ½ 𝑑 π‘˜+1 𝑑π‘₯ π‘˜+1 𝑒 + οΏ½ π‘˜ + 1 0 οΏ½ 𝑑 π‘˜+1 𝑑π‘₯ π‘˜+1 𝑣 = οΏ½ οΏ½ π‘˜ + 1 𝛽 οΏ½ π‘˜ 𝛽=1 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜+1βˆ’π›½ 𝑑π‘₯ π‘˜+1βˆ’π›½ 𝑣 + οΏ½ οΏ½ π‘˜ + 1 π‘˜ + 1 οΏ½ 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜+1βˆ’π›½ 𝑑π‘₯ π‘˜+1βˆ’π›½ 𝑣 π‘˜+1 𝛽=π‘˜+1 + οΏ½ οΏ½ π‘˜ + 1 0 οΏ½ 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜+1βˆ’π›½ 𝑑π‘₯ π‘˜+1βˆ’π›½ 𝑣 0 𝛽=0 = οΏ½ οΏ½ π‘˜ + 1 𝛽 οΏ½ π‘˜+1 𝛽=0 𝑑 𝛽 𝑑π‘₯ 𝛽 𝑒 𝑑 π‘˜+1βˆ’π›½ 𝑑π‘₯ π‘˜+1βˆ’π›½ 𝑣 ∴ 𝑃(π‘˜ + 1)𝑖𝑠 π‘‘π‘Ÿπ‘’π‘’ By the Principle of Mathematical Induction 𝑃(𝛼) is true βˆ€π›Ό ∈ β„€+ . 4) Assume that 𝑓: ℝ 𝑛 β†’ ℝ is smooth. Proof 𝑓(π‘₯) = οΏ½ 1 𝛼! |𝛼|β‰€π‘˜ 𝐷 𝛼 𝑓(0)π‘₯ 𝛼 + 𝑂(|π‘₯| π‘˜+1) π‘Žπ‘  π‘₯ β†’ 0 For each π‘˜ = 1,2, β‹―. 𝛼 = (𝛼1, 𝛼2, β‹― , 𝛼 𝑛), 𝛼1, 𝛼2, β‹― , 𝛼 𝑛 β‰₯ 0 π‘₯ = (π‘₯1, π‘₯2, β‹― , π‘₯ 𝑛), |𝛼| = 𝛼1 + 𝛼2 + β‹― + 𝛼 𝑛, Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 10
  • 11. 𝛼! = 𝛼1! 𝛼2! β‹― 𝛼 𝑛!, 𝐷 𝛼 = πœ•|𝛼| πœ• π‘₯1 𝛼1β‹―πœ• π‘₯ 𝑛 𝛼 𝑛, |π‘₯| = (π‘₯1 2 + π‘₯2 2 + β‹― + π‘₯ 𝑛 2) 1 2, π‘₯ 𝛼 = π‘₯1 𝛼1 β‹― π‘₯ 𝑛 𝛼 𝑛 . This is Taylor’s Formula in multiindex notation. (Hint: fix π‘₯ ∈ ℝ 𝑛 and consider the function of one variable 𝑔(𝑑) = 𝑓(𝑑π‘₯).) Proof: from 1D Taylor’s formula we have: 𝑔(𝑑) = 𝑔(0) + 𝑔′(0)𝑑 + 1 2 𝑔′′(0)𝑑2 + β‹― + 1 π‘˜! 𝑔 𝑛(0)𝑑 π‘˜ + 1 (π‘˜ + 1)! 𝑔 𝑛+1(πœ€)𝑑 π‘˜+1 Here (πœ€) lies between 0 and 𝑑. Now as 𝑔(𝑑) = 𝑓(𝑑π‘₯). All we need to do is to write the derivatives of 𝑔 using derivatives of 𝑓. We compute: 𝑔 π‘˜(𝑠) = οΏ½ 𝑑 π‘˜ 𝑑𝑑 π‘˜ 𝑓(𝑑π‘₯)οΏ½οΏ½ 𝑑=𝑠 = ( π‘₯1 πœ•1 + π‘₯2 πœ•2 + β‹― + π‘₯ 𝑛 πœ• 𝑛) π‘˜ 𝑓(𝑑π‘₯)οΏ½ 𝑑=𝑠 By multinomial theorem, we get: 𝑔 π‘˜(𝑠) = οΏ½ οΏ½οΏ½ π‘˜! 𝛼1! 𝛼2! β‹― 𝛼 𝑛! οΏ½ οΏ½π‘₯1 𝛼1 β‹― π‘₯ 𝑛 𝛼 𝑛 οΏ½ οΏ½ πœ• 𝛼1+𝛼2+β‹―+𝛼 𝑛 πœ• π‘₯1 𝛼1 β‹― πœ• π‘₯ 𝑛 𝛼 𝑛 οΏ½ 𝑓(𝑠π‘₯)οΏ½ 𝛼1,𝛼2,β‹―,𝛼 𝑛β‰₯0 𝛼1+𝛼2+β‹―+𝛼 𝑛=π‘˜ = οΏ½ οΏ½οΏ½ π‘˜! 𝛼1! 𝛼2! β‹― 𝛼 𝑛! οΏ½ (π‘₯ 𝛼) οΏ½ πœ•|𝛼| πœ• π‘₯1 𝛼1 β‹― πœ• π‘₯ 𝑛 𝛼 𝑛 οΏ½ 𝑓(𝑠π‘₯)οΏ½ 𝛼1,𝛼2,β‹―,𝛼 𝑛β‰₯0 𝛼1+𝛼2+β‹―+𝛼 𝑛=π‘˜ = οΏ½ οΏ½οΏ½ π‘˜! 𝛼! οΏ½ (π‘₯ 𝛼)(𝐷 𝛼)𝑓(𝑠π‘₯)οΏ½ |𝛼|=π‘˜ Mohamad Tafrikan (moh.tafrikan@gmail.com) Page 11