SlideShare a Scribd company logo
Infrared Spectroscopy Spectroscopy  is the measurement of the absorption or emission of energy by matter (atoms or molecules) when it is subjected to electromagnetic radiation. A spectrophotometer measures the energy changes that take place within a molecule when it is irradiated and records these changes as  spectra . In  absorption spectroscopy , molecules absorb energy and undergo transitions from the ground state to  an excited state of the molecule. The type of spectroscopy involved will depend on the region of the electromagnetic spectrum that is  used as a radiation source. In  Infrared Spectroscopy , molecules absorb infrared radiation which brings about changes in stretching  and bending motions of the molecule. The radiation absorbed is in the energy range with wavelengths  (λ) between 2.5 and 17 μm (4000 cm -1  to 600 cm -1 ). In  Electronic  (UV-visible) Spectroscopy,  molecules absorb radiation in the UV-visible region (200 - 800 nm).  This brings about electronic transitions within the molecule. Since absorption of radiation is quantized ( i.e.  it is subject to certain quantum mechanical restrictions),  only the allowed frequencies of radiation appear as absorption bands in the spectrum.
Vibrational Spectroscopy All chemical bonds have a natural frequency of vibration (C-H, O-H, C=O, C-C, C=C) but the exact frequency will depend on their environment,  i.e.  on the actual structure of the molecule involved. Identification of the vibrational frequencies indicates the different bonds present in a molecule and provides structural information about that molecule. An  infrared spectrum  is a plot of  % transmittance  (y-axis) versus  energy (cm -1 )   (x-axis) in the range 4000 cm -1  to 600 cm -1 .
Infrared 10,000 cm -1  to 100 cm -1 Converted in Vibrational energy in molecules Vibrational Spectra appears as bands instead of sharp lines => as it is accompanied by a number of rotational changes Wave Number  =>    (cm -1 ) => proportional to energy ,[object Object],[object Object],[object Object],[object Object],Older system uses the wavelenght   (  m => 10 -6  m) cm -1  = 10 4  /   m 
The Units: The frequency    (s -1 ) => # vibrations per second For molecular vibrations, this number is very large (10 13  s -1 ) => inconvenient e.g.    = 3 * 10 13  s -1 = 1000 cm -1 Wave Length :   1  = More convenient :  Wavenumber   =   c ( Frequency  /  Velocity )   =    s  3 * 10 10  cm s -1 
Intensity in IR Intensity: Transmittance ( T ) or  %T Absorbance ( A )  IR  : Plot of  %IR  that passes through a sample ( transmittance )  vs  Wavelenght T  = I I 0 A  = log I I 0
Infrared ,[object Object],[object Object],Sampling  => plates, polished windows, Films … Must be transparent in IR NaCl, KCl : Cheap, easy to polish NaCl  transparent to  4000 - 650 cm -1 KCl   transparent to  4000 - 500 cm -1 KBr  transparent to  400 cm -1
Infrared: Low frequency spectra of window materials
Bond length and strength  vs  Stretching frequency
Introduction IR is one of the first technique inorganic chemists used (since 1940) Molecular Vibration Newton’s law of motion is used classically to calculate force constant r r e F F The basic picture : atoms (mass) are connected with bonding electrons. R e  is the equilibrium distance and  F : force to restore equilibrium F(x) = - k x where X is displacement from equilibrium Where  K i  is the force constant and   i   is reduce mass of a particular motion Because the energy is quantized: E =  h   i     =  1 2  √ k i  i
Introduction Displacement of atoms during vibration lead to distortion of electrival charge distribution of the molecule which can be resolve in dipole, quadrupole, octopole …. In various directions => Molecular vibration lead to oscillation of electric charge governed by vibration frequencies of the system Oscillating molecular dipole can interact directly with oscillating electric vector of electromagnetic radiation of the same frequency h    =  h  Vibrations are in the range  10 11  to 10 13  Hz  =>  30 - 3,000 cm -1
Introduction: Symmetry selection rule ,[object Object],[object Object],[object Object],There is no place here to treat fundamentals of symmetry In principle, the symmetry of a vibration need to be determined
Calculating stretching frequencies Hooke’s law : : Frequency in cm -1 c  : Velocity of light => 3 * 10 10  cm/s K  : Force constant => dynes /cm  masses of atoms in grams C —C  K = 5* 10 5  dynes/cm C =C  K = 10* 10 5  dynes/cm C  C  K = 15* 10 5  dynes/cm  = 1 2  c  K    m 1  m 2 m 1  + m 2  M 1  M 2 M 1  + M 2  (6.02 * 10 23 )  = 4.12  K 
Calculating stretching frequencies C =C  K = 10* 10 5  dynes/cm C —H  K = 5* 10 5  dynes/cm C —D  K = 5* 10 5  dynes/cm  = 4.12  K    M 1  M 2 M 1  + M 2  (12)(12) 12 + 12    = 4.12  10* 10 5  = 1682 cm -1  Experimental    1650 cm -1  = 4.12  5* 10 5  = 3032 cm -1   M 1  M 2 M 1  + M 2  (12)(1) 12 + 1    Experimental    3000 cm -1  = 4.12  5* 10 5  = 2228 cm -1   M 1  M 2 M 1  + M 2  (12)(2) 12 + 2    Experimental    2206 cm -1
Vibrations www.cem.msu.edu/~reusch/Virtual/Text/Spectrpy/InfraRed/infrared.htm Modes of vibration C —H Stretching Bending Symmetrical  2853 cm -1 Asymmetrical  2926 cm -1 Scissoring 1450 cm -1 Rocking 720 cm -1 Wagging 1350 cm -1 Twisting 1250 cm -1 Stretching frequency Bending frequency C O H
Vibrations www.cem.msu.edu/~reusch/Virtual/Text/Spectrpy/InfraRed/infrared.htm General trends: ,[object Object],[object Object],[object Object]
Structural Information from Vibration Spectra ,[object Object],[object Object],[object Object],The symmetry of a molecule determines the number of bands expected Number of bands can be used to decide on symmetry of a molecule Tha task of assignment is complicated  by presence of low intensity bands and presence of forbidden overtone and combination bands. There are different levels at which information from IR can be analyzed to allow identification of samples:
Methods of analyzing an IR spectrum The effect of  isotopic substitution  on the observed spectrum Can give valuable information about the atoms involved in a particular vibration ,[object Object],[object Object],[object Object]
Analyzing an IR spectrum In practice, there are similarities between frequencies of molecules containing similar groups. Group - frequency correlations  have been extensively developed for organic compounds and some have also been developed for inorganics
Some characteristic infrared absorption frequencies   BOND COMPOUND TYPE FREQUENCY RANGE, cm -1   C-H alkanes 2850-2960 and 1350-1470   alkenes 3020-3080 (m) and   RCH=CH2 910-920 and 990-1000   R2C=CH2 880-900   cis -RCH=CHR 675-730 (v)   trans -RCH=CHR 965-975   aromatic rings 3000-3100 (m) and   monosubst. 690-710 and 730-770   ortho -disubst. 735-770   meta -disubst.  690-710 and 750-810 (m)   para -disubst. 810-840 (m)   alkynes 3300     O-H alcohols or phenols 3200-3640 (b)     C=C alkenes 1640-1680 (v)   aromatic rings 1500 and 1600 (v)     C≡C alkynes 2100-2260 (v)     C-O primary alcohols 1050 (b)   secondary alcohols 1100 (b)   tertiary alcohols 1150 (b)   phenols 1230 (b)   alkyl ethers 1060-1150   aryl ethers 1200-1275(b) and 1020-1075 (m)   all abs. strong unless marked: m, moderate; v, variable; b, broad
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
n -pentane CH 3 CH 2 CH 2 CH 2 CH 3 3000 cm -1 1470 &1375 cm -1 2850-2960 cm -1 sat’d C-H n -pentane CH 3 CH 2 CH 2 CH 2 CH 3 3000 cm -1 1470 &1375 cm -1 2850-2960 cm -1 sat’d C-H
CH 3 CH 2 CH 2 CH 2 CH 2 CH 3 n -hexane
2-methylbutane  (isopentane)
2,3- dimethylbutane
IR of  ALKENES =C—H bond, “unsaturated”  vinyl (sp 2 ) 3020-3080 cm -1   +  675-1000 RCH=CH 2   + 910-920 & 990-1000 R 2 C=CH 2   + 880-900 cis -RCH=CHR  + 675-730 (v) trans -RCH=CHR  + 965-975 C=C bond  1640-1680 cm -1   (v)
1-decene 910-920 & 990-1000 RCH=CH 2 C=C  1640-1680 unsat’d C-H 3020-3080 cm -1
4-methyl-1-pentene 910-920 & 990-1000 RCH=CH 2
2-methyl-1-butene
IR spectra  BENZENE s =C—H bond, “unsaturated”  “aryl” (sp 2 )  3000-3100 cm -1   +  690-840 mono-substituted  + 690-710, 730-770 ortho -disubstituted +  735-770 meta -disubstituted  +  690-710, 750-810(m) para -disubstituted  +  810-840(m) C=C bond 1500, 1600 cm -1
ethylbenzene 690-710, 730-770  mono- 1500 & 1600 Benzene ring 3000-3100 cm -1 Unsat’d C-H
IR spectra  ALCOHOLS & ETHERS C—O bond 1050-1275 (b) cm -1 1 o  ROH 1050 2 o  ROH 1100 3 o  ROH 1150 ethers 1060-1150 O—H bond 3200-3640 (b)   
1-butanol CH 3 CH 2 CH 2 CH 2 -OH C-O 1 o 3200-3640 (b)   O-H
2-butanol C-O 2 o O-H
Hydrogen bond and C=O
Intensity of C=O vs C=C
Band Shape: OH vs NH2 vs CH
Free OH and Hydrogen bonded OH
Symmetrical and asymmetrical stretch  Methyl 2872 cm -1 Symmetrical Stretch Asymmetrical Stretch Anhydride 1760 cm -1 2962 cm -1 1800 cm -1 Amino Nitro 3300 cm -1 3400 cm -1 1350 cm -1 1550 cm -1 — C — H H H — C — H H H O O O O O O — N H H — N H H — N O O — N O O
General IR comments Precise treatment of vibrations in molecule is not feasible here Some information from IR is also contained in MS and NMR Certain bands occur in  narrow regions  :  OH ,  CH ,  C=O Detail of the structure is revealed by the  exact position  of the band  e.g.  Ketones 1715 cm -1 1680 cm -1 Region 4000 – 1300 : Functional group Absence of band in this region can be used to deduce absence of groups Caution: some bands can be very broad because of hydrogen bonding  e.g.  Enols v.broad OH, C=O absent!!   Weak bands in high frequency are extremely useful : S-H, C  C, C  N Lack of strong bands in 900-650 means no aromatic
Alkanes ,  Alkenes ,  Alkynes C-H :  <3000 cm -1 >3000 cm -1 3300 cm -1   sharp C-C Stretch Not useful C=C C  C 1660-1600 cm -1 conj. Moves to lower values   Symmetrical : no band 2150 cm -1   conj. Moves to lower values Weak but very useful Symmetrical no band   Bending CH 2  Rocking 720 cm -1  indicate Presence of 4-CH 2  1000-700 cm -1   Indicate substitution   pattern    C-H  ~630 cm -1   Strong and broad   Confirm triple bond
 
Alkane
Alkene :  1-Decene To give rise to absorption of IR  =>  Oscillating Electric Dipole Symmetry Molecules with Center of symmetry Symmetric vibration => inactive Antisymmetric vibration => active
Alkene In large molecule local symmetry produce  weak or absent vibration C=C R R trans  C=C isomer -> weak in IR  Observable in Raman
Alkene: Factors influencing vibration frequency 1- Strain move peak to right (decrease  ) angle 1650 1646 1611 1566 1656 : exception 2- Substitution increase 3- conjugation decrease C=C-Ph  1625 cm -1 1566 1641 1675 1611 1650 1679 1646 1675 1681 C C C   
Alkene: Out-of-Plane bending  This region can be used to deduce substitution pattern
Alkyne:  1-Hexyne
Alkyne: Symmetry
In IR, Most important transition involve : Ground State (  i  = 0)  to  First Excited State (  i = 1) Transition   (  i  = 0)  to  (  J  = 2)  => Overtone
IR : Aromatic =C-H > 3000 cm -1 C=C 1600  and 1475 cm -1 =C-H out of plane bending: great utility to assign ring substitution overtone 2000-1667: useful to assign ring substitution e.g. Naphthalene:  Substitution pattern Isolated H 862-835 835-805 760-735 2 adjacent H 4 adjacent H out of plane bending 
Aromatic substitution: Out of plane bending
Aromatic substitution: Out of plane bending
 
Aromatic and Alkene substitution
IR: Alcohols and Phenols O-H  Free : Sharp 3650-3600 O-H  H-Bond : Broad 3400-3300 Intermolecular Hydrogen bonding Increases with concentration =>  Less “Free” OH
IR: Alcohols and Phenols C-O : 1260-1000 cm -1  (coupled to C-C => C-C-O) C-O Vibration is sensitive to substitution: Phenol 1220 3` Alcohols 1150 2` Alcohols 1100 1` Alcohols 1050 More complicated than above: shift to lower Wavenumber  With unsaturation (Table 3.2)
Alcohol C-O : 1040 cm -1  indicate primary alcohol
Benzyl Alcohol OH sp 2 sp 3 Ph overtone C-O : 1080, 1022 cm -1  : primary OH Mono Subst. Ph 735 & 697 cm -1
Phenol OH sp 2 Ph overtone C=C stretch Ph-O : 1224 cm -1 Mono Subst. Ph out-of plane 810 & 752 cm -1
Phenol
IR: Ether C-O-C => 1300-1000 cm -1 Ph-O-C  => 1250 and 1040 cm -1 Aliphatic =>  1120 cm -1 C=C in vinyl Ether  =>  1660-1610 cm -1 appear as Doublet => rotational isomers ~1620 ~1640
Ether sp 2 sp 3 Ph overtone C=C stretch Ph-O-C : 1247 cm -1  Asymmetric stretch Ph-O-C : 1040 cm -1  Symmetric stretch Mono Subst. Ph out-of plane 784, 754 & 692 cm -1
IR: Carbonyl From 1850 – 1650 cm -1 Ketone 1715 cm -1  is used as reference point for comparisons 1715   1690 1725    1700 1710   1680 1810 Anhydr Band 1800 Acid Chloride 1760 Anhydr Band 2 1735 Ester 1725 Aldehyde 1715 Ketone 1710 Acid 1690 Amide Factor influencing  C=O 1) conjugation Conjugation increase single bond character of  C=O    Lower force constant      lower frequency number C=C C O C + — C C O -
Ketone and Conjugation Conjugation: Lower 
Ketone and Ring Strain Ring Strain: Higher Factors influencing  C=O 2) Ring size 1715 cm -1 Angle ~ 120 o 1751 cm -1 < 120 o 1775 cm -1 << 120 o 
 
Factors influencing carbonyl:  C=O   3)    substitution effect (Chlorine or other halogens)  Result in stronger bound    higher frequency 1750 cm -1 4) Hydrogen bonding  Decrease  C=O  strenght  lower frequency 1680 cm -1 — C — C — X O 
Enol
Factors influencing carbonyl:  C=O 5) Heteroatom Inductive effect Stronger bond higher frequency e.g. ester Resonance effect Weaker bond Lower frequence  e.g. amides Y C=O Cl Br OH (monomer) OR (Ester) 1815-1785 1812 1760 1705-1735 NH2 SR 1695-1650 1720-1690 inductive resonance
Ester Carbonyl Esters C=O  ~ 1750 – 1735  cm -1 O-C :  1300 – 1000 2 or more bands Conjugation => lower freq. Inductive effect with O   reinforce carbonyl =>  higher Conjugation with  CO   weaken carbonyl =>  Lower   
Ester carbonyl:  C=O
Ester carbonyl:  C=O C=O : 1765 cm -1 C-O  1215 cm -1   1193 cm -1 sp 2 C=O
Ester carbonyl:  C=O
Ester carbonyl : effect of conjugation
Lactone carbonyl:  C=O Lactones    Cyclic Ester  1735 1720 1760 1770 1750 1800
Carbonyl compounds : Acids Carboxylic acid Exist as dimer : Strong Hydrogen bond OH : Very broad    3400 – 2400 cm -1 C=O : broad    1730 – 1700 cm -1 C — O : 1320 – 1210 cm -1  Medium intensity
Carbonyl compounds : Acids C=O OH C=O :  1711 cm -1 OH : Very Broad 3300 to 2500 cm -1 C-O : 1285, 1207 cm -1
Anhydrides C=O always has 2 bands: 1830-1800  and  1775-1740 cm -1 C —O  multiple bands 1300 – 900 cm -1
Carbonyl compounds : Aldehydes Aldehydes C=O  ~ 1725 cm -1 O=C-H  :  2 weak bands 2750, 2850 cm -1 Conjugation => lower freq. C=O : 1724 cm -1 
Carbonyl compounds : Aldehydes
Aldehydes
Other carbonyl Amides Lactams Acid Chlorides C=O  ~1680-1630 cm -1  (band I) NH 2   ~ 3350 and 3180 cm -1  (stretch)  NH  ~ 3300 cm -1  (stretch)  NH  ~ 1640-1550 cm -1  (bending)  1810-1775  cm -1 C  —  Cl  730 – 550  cm -1 ~1660 ~1705 ~1745 Increase with strain R — C  —   Cl O 
Amides NH 2  : Symmetrical stretch =>3170 cm -1 asymmetrical stretch => 3352 cm -1 C=O : 1640 cm -1 NH Out of plane
Amides
Acid Chlorides
Amino acid Exist as zwitterions  C CO 2 - NH 3 + NH 3 +  :  very broad  3330-2380 (OH  +  NH 3 +   ) C O O 1600 – 1590 strong
Amino acid
Amine NH  3500 – 3300 cm -1 NH : 2 bands NH : 1 band NH  bending :  1650 – 1500 cm -1 C-N  :  1350 – 1000 cm -1 NH  out-of-plane :  ~ 800 cm -1 Amine salt NH +   3500 – 3030 cm -1   broad / strong Ammonium     primary     secomdary     right Left  
Amine Primary Amine Secondary Amine Tertiary Amine
Aromatic Amine
Other Nitrogen Compounds Nitriles Isocyanates Isothiocyanates Imines / Oximes R-C  N  :  Sharp  2250 cm -1 Conjugation moves to lower frequency R-N=C=O Broad  ~ 2270 cm -1 R-N=C=S 2 Broad peaks  ~ 2125 cm -1 R  2 C=N-R 1690 - 1640 cm -1
Nitrile
Nitrile
Nitrile and Isocyanate
Nitro Aliphatic : Asymmetric : 1600-1530 cm -1 Symmetric  : 1390-1300 cm -1 Aromatic : Asymmetric : 1550-1490 cm -1 Symmetric  : 1355-1315 cm -1 — N O O + -
Nitro
Nitro
Sulfur Mercaptans S – H  : weak  2600-2550 cm -1   Since only few absorption in that range it confirm its presence Sulfides,Disulfides : no useful information Sulfoxides: Strong ~ 1050 cm -1   Sulfones : Asymetrical ~ 1300 cm -1   Symetrical  ~ 1150 cm -1   2 bands :
Sulfur: Mercaptan R- S-H
Sulfur: Sulfonyl Chloride S=O :  Asymmetrical stretch: 1375 cm-1 Symmetrical Stretch : 1185 cm-1
Sulfur: Sulfonate S=O :  Asymmetrical stretch: 1350 cm-1 Symmetrical Stretch : 1175 cm-1 S-O :  several bands between 1000 – 750 cm -1
Sulfur: Sulfonamide S=O :  Asymmetrical stretch: 1325 cm-1 Symmetrical Stretch : 1140 cm-1 NH 2  stretch:  3350 and 3250 cm -1   NH Bend: 1550 cm -1
Halogens C —F  :  1400 – 1000 cm -1 C —Cl : strong 785 – 540 cm -1 C —Br : 650 – 510 cm -1  (out of range with NaCl plates) C —I  : 600 – 485 cm -1  (out of range)
Halogens
Phosphorus Phosphines: R-PH 2  R 2 PH P —H : Sharp 2320 – 2270 cm -1 P H 2  bending : 1090 – 1075  and 840 - 810 cm -1 P H bending  : 990 - 886 cm -1 Phosphine Oxide :  R 3  P=O P =O very strong : 1210 - 1140 cm -1 Phosphate Esters :  (OR) 3  P=O P =O very strong : 1300 - 1240 cm -1 P -O very strong : 1088 – 920 cm -1 P -O : 845 - 725 cm -1
Silicon IR-Organometallic Index Si-H : 2200 cm -1   (Stretch) 950 – 800 cm -1   (bend) Si-O-H : OH:  3700 – 3200 cm -1   (Stretch) Si-O : 830 – 1110 cm -1

More Related Content

What's hot

Chemical and electrochem method of synthesis of polyaniline and polythiophene...
Chemical and electrochem method of synthesis of polyaniline and polythiophene...Chemical and electrochem method of synthesis of polyaniline and polythiophene...
Chemical and electrochem method of synthesis of polyaniline and polythiophene...
Mugilan Narayanasamy
 
I R spectroscopy & its application
I R spectroscopy & its application I R spectroscopy & its application
I R spectroscopy & its application
Amit Agnihotri
 
BET surface area analysis
BET surface area analysisBET surface area analysis
BET surface area analysis
Mahsa Farqarazi
 
Thermal charactrization of polymer
Thermal charactrization of polymerThermal charactrization of polymer
Thermal charactrization of polymer
Sharad Ghodake
 
C 13 NMR Spectroscopy
C 13 NMR SpectroscopyC 13 NMR Spectroscopy
C 13 NMR Spectroscopy
anjalibharat19
 
Atomic emmision spectroscopy
Atomic emmision spectroscopyAtomic emmision spectroscopy
Atomic emmision spectroscopy
Ketan Patil
 
Coupling constant
Coupling constantCoupling constant
Coupling constant
LOKANATH MOHAPATRA
 
Sonochemistry
SonochemistrySonochemistry
Sonochemistry
SANEESH KUMAR N
 
FTIR spectroscopy
FTIR spectroscopyFTIR spectroscopy
FTIR spectroscopy
Preeti Choudhary
 
coulorometry
coulorometrycoulorometry
coulorometry
AkshayAkotkar
 
2D NMR Spectroscopy
2D NMR Spectroscopy2D NMR Spectroscopy
2D NMR Spectroscopy
Sai Datri Arige
 
X ray photoelectron spectroscopy
X ray photoelectron spectroscopyX ray photoelectron spectroscopy
X ray photoelectron spectroscopy
Zubair Aslam
 
IR Interpretation
IR InterpretationIR Interpretation
IR Interpretation
Mahendra G S
 
CHEMICAL SHIFT
CHEMICAL SHIFTCHEMICAL SHIFT
CHEMICAL SHIFT
aishuanju
 
Raman Spectroscopy - Principle, Criteria, Instrumentation and Applications
Raman Spectroscopy - Principle, Criteria, Instrumentation and ApplicationsRaman Spectroscopy - Principle, Criteria, Instrumentation and Applications
Raman Spectroscopy - Principle, Criteria, Instrumentation and Applications
Prabha Nagarajan
 
Vibrational Spectrroscopy
Vibrational SpectrroscopyVibrational Spectrroscopy
Vibrational Spectrroscopy
cdtpv
 
Fluorimetry phosphorimetry
Fluorimetry phosphorimetryFluorimetry phosphorimetry
Fluorimetry phosphorimetry
Enosh Gummadi
 
Fragmentation Pattern of Mass Spectrometry
Fragmentation Pattern of Mass SpectrometryFragmentation Pattern of Mass Spectrometry
Fragmentation Pattern of Mass Spectrometry
Ashwani Dhingra
 

What's hot (20)

Chemical and electrochem method of synthesis of polyaniline and polythiophene...
Chemical and electrochem method of synthesis of polyaniline and polythiophene...Chemical and electrochem method of synthesis of polyaniline and polythiophene...
Chemical and electrochem method of synthesis of polyaniline and polythiophene...
 
I R spectroscopy & its application
I R spectroscopy & its application I R spectroscopy & its application
I R spectroscopy & its application
 
BET surface area analysis
BET surface area analysisBET surface area analysis
BET surface area analysis
 
Thermal charactrization of polymer
Thermal charactrization of polymerThermal charactrization of polymer
Thermal charactrization of polymer
 
C 13 NMR Spectroscopy
C 13 NMR SpectroscopyC 13 NMR Spectroscopy
C 13 NMR Spectroscopy
 
Atomic emmision spectroscopy
Atomic emmision spectroscopyAtomic emmision spectroscopy
Atomic emmision spectroscopy
 
Coupling constant
Coupling constantCoupling constant
Coupling constant
 
Sonochemistry
SonochemistrySonochemistry
Sonochemistry
 
FTIR spectroscopy
FTIR spectroscopyFTIR spectroscopy
FTIR spectroscopy
 
coulorometry
coulorometrycoulorometry
coulorometry
 
Nuclear overhauser effect
Nuclear overhauser effectNuclear overhauser effect
Nuclear overhauser effect
 
2D NMR Spectroscopy
2D NMR Spectroscopy2D NMR Spectroscopy
2D NMR Spectroscopy
 
X ray photoelectron spectroscopy
X ray photoelectron spectroscopyX ray photoelectron spectroscopy
X ray photoelectron spectroscopy
 
Electron spectroscopy
Electron spectroscopyElectron spectroscopy
Electron spectroscopy
 
IR Interpretation
IR InterpretationIR Interpretation
IR Interpretation
 
CHEMICAL SHIFT
CHEMICAL SHIFTCHEMICAL SHIFT
CHEMICAL SHIFT
 
Raman Spectroscopy - Principle, Criteria, Instrumentation and Applications
Raman Spectroscopy - Principle, Criteria, Instrumentation and ApplicationsRaman Spectroscopy - Principle, Criteria, Instrumentation and Applications
Raman Spectroscopy - Principle, Criteria, Instrumentation and Applications
 
Vibrational Spectrroscopy
Vibrational SpectrroscopyVibrational Spectrroscopy
Vibrational Spectrroscopy
 
Fluorimetry phosphorimetry
Fluorimetry phosphorimetryFluorimetry phosphorimetry
Fluorimetry phosphorimetry
 
Fragmentation Pattern of Mass Spectrometry
Fragmentation Pattern of Mass SpectrometryFragmentation Pattern of Mass Spectrometry
Fragmentation Pattern of Mass Spectrometry
 

Similar to Infrared presentation

Infrared.ppt mass NMR mass and it spectroscopy
Infrared.ppt mass NMR mass and it spectroscopyInfrared.ppt mass NMR mass and it spectroscopy
Infrared.ppt mass NMR mass and it spectroscopy
ShaikhSalman43
 
Fundamentals of spectroscopy
Fundamentals of spectroscopyFundamentals of spectroscopy
Fundamentals of spectroscopy
debasishsarmah2
 
IR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdf
IR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdfIR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdf
IR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdf
Dr. Sudheer Kumar Kamarapu
 
Electromagnetic Radiations (EMR)
Electromagnetic Radiations (EMR)Electromagnetic Radiations (EMR)
Electromagnetic Radiations (EMR)
Protik Biswas
 
06. UV Spectroscopy of Organic Compounds.pdf
06. UV Spectroscopy of Organic Compounds.pdf06. UV Spectroscopy of Organic Compounds.pdf
06. UV Spectroscopy of Organic Compounds.pdf
sdmitragotri
 
Espectrometría en el infrarrojo (IR) - Clase 2
Espectrometría en el infrarrojo (IR) - Clase 2Espectrometría en el infrarrojo (IR) - Clase 2
Espectrometría en el infrarrojo (IR) - Clase 2
José Luis Castro Soto
 
ELECTROMAGNETIC RADIATION(EMR)
ELECTROMAGNETIC RADIATION(EMR)ELECTROMAGNETIC RADIATION(EMR)
ELECTROMAGNETIC RADIATION(EMR)
AJAYKUMAR4872
 
Elecromagnetic Radiations.pdf
Elecromagnetic Radiations.pdfElecromagnetic Radiations.pdf
Elecromagnetic Radiations.pdf
sktpharma
 
Vijay seminor ..analysis
Vijay seminor ..analysisVijay seminor ..analysis
Vijay seminor ..analysis
Vijaykumar Kv Vishwakarma
 
Ir spectroscopy slide
Ir spectroscopy slideIr spectroscopy slide
Ir spectroscopy slide
ShuvodipMondal1
 
IR spectroscopy- Infra Red spectroscopy in details
IR spectroscopy- Infra Red spectroscopy in detailsIR spectroscopy- Infra Red spectroscopy in details
IR spectroscopy- Infra Red spectroscopy in details
Bioline Education
 
Ir spectroscopy slide
Ir spectroscopy slideIr spectroscopy slide
Ir spectroscopy slide
ShuvodipMondal1
 
Basic Concepts of UV & IR Spectroscopy
Basic Concepts of UV & IR SpectroscopyBasic Concepts of UV & IR Spectroscopy
Basic Concepts of UV & IR Spectroscopy
DrBasavarajaiahSm
 
Spectroscopy Org12
Spectroscopy Org12Spectroscopy Org12
Spectroscopy Org12
Gita_Sathianathan
 
6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx
Williamkambi
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiation
Tahirah Sanderson
 
Spectrometry
SpectrometrySpectrometry
Spectrometry
Ahmed Ragab
 
IR Spectroscopy with detailed introduction
IR Spectroscopy  with detailed introductionIR Spectroscopy  with detailed introduction
IR Spectroscopy with detailed introduction
nivedithag131
 
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusUltraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Monika Singh
 
Ir spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P KhobragadeIr spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P Khobragade
BhavanaKhobragade
 

Similar to Infrared presentation (20)

Infrared.ppt mass NMR mass and it spectroscopy
Infrared.ppt mass NMR mass and it spectroscopyInfrared.ppt mass NMR mass and it spectroscopy
Infrared.ppt mass NMR mass and it spectroscopy
 
Fundamentals of spectroscopy
Fundamentals of spectroscopyFundamentals of spectroscopy
Fundamentals of spectroscopy
 
IR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdf
IR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdfIR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdf
IR Spectroscopy - Sudheerkumar Kamarapu, M. Pharmacy Lecture pdf
 
Electromagnetic Radiations (EMR)
Electromagnetic Radiations (EMR)Electromagnetic Radiations (EMR)
Electromagnetic Radiations (EMR)
 
06. UV Spectroscopy of Organic Compounds.pdf
06. UV Spectroscopy of Organic Compounds.pdf06. UV Spectroscopy of Organic Compounds.pdf
06. UV Spectroscopy of Organic Compounds.pdf
 
Espectrometría en el infrarrojo (IR) - Clase 2
Espectrometría en el infrarrojo (IR) - Clase 2Espectrometría en el infrarrojo (IR) - Clase 2
Espectrometría en el infrarrojo (IR) - Clase 2
 
ELECTROMAGNETIC RADIATION(EMR)
ELECTROMAGNETIC RADIATION(EMR)ELECTROMAGNETIC RADIATION(EMR)
ELECTROMAGNETIC RADIATION(EMR)
 
Elecromagnetic Radiations.pdf
Elecromagnetic Radiations.pdfElecromagnetic Radiations.pdf
Elecromagnetic Radiations.pdf
 
Vijay seminor ..analysis
Vijay seminor ..analysisVijay seminor ..analysis
Vijay seminor ..analysis
 
Ir spectroscopy slide
Ir spectroscopy slideIr spectroscopy slide
Ir spectroscopy slide
 
IR spectroscopy- Infra Red spectroscopy in details
IR spectroscopy- Infra Red spectroscopy in detailsIR spectroscopy- Infra Red spectroscopy in details
IR spectroscopy- Infra Red spectroscopy in details
 
Ir spectroscopy slide
Ir spectroscopy slideIr spectroscopy slide
Ir spectroscopy slide
 
Basic Concepts of UV & IR Spectroscopy
Basic Concepts of UV & IR SpectroscopyBasic Concepts of UV & IR Spectroscopy
Basic Concepts of UV & IR Spectroscopy
 
Spectroscopy Org12
Spectroscopy Org12Spectroscopy Org12
Spectroscopy Org12
 
6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx6. IR Spectroscopy 2022.pptx
6. IR Spectroscopy 2022.pptx
 
Electromagnetic radiation
Electromagnetic radiationElectromagnetic radiation
Electromagnetic radiation
 
Spectrometry
SpectrometrySpectrometry
Spectrometry
 
IR Spectroscopy with detailed introduction
IR Spectroscopy  with detailed introductionIR Spectroscopy  with detailed introduction
IR Spectroscopy with detailed introduction
 
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabusUltraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
Ultraviolet spetroscopy by Dr. Monika Singh part-1 as per PCI syllabus
 
Ir spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P KhobragadeIr spectroscopy by Bhavana P Khobragade
Ir spectroscopy by Bhavana P Khobragade
 

Recently uploaded

ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptxANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
Swetaba Besh
 
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTSARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
Dr. Vinay Pareek
 
Role of Mukta Pishti in the Management of Hyperthyroidism
Role of Mukta Pishti in the Management of HyperthyroidismRole of Mukta Pishti in the Management of Hyperthyroidism
Role of Mukta Pishti in the Management of Hyperthyroidism
Dr. Jyothirmai Paindla
 
Physiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of TastePhysiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of Taste
MedicoseAcademics
 
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidadeNovas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Prof. Marcus Renato de Carvalho
 
Cardiac Assessment for B.sc Nursing Student.pdf
Cardiac Assessment for B.sc Nursing Student.pdfCardiac Assessment for B.sc Nursing Student.pdf
Cardiac Assessment for B.sc Nursing Student.pdf
shivalingatalekar1
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Saeid Safari
 
Ear and its clinical correlations By Dr. Rabia Inam Gandapore.pptx
Ear and its clinical correlations By Dr. Rabia Inam Gandapore.pptxEar and its clinical correlations By Dr. Rabia Inam Gandapore.pptx
Ear and its clinical correlations By Dr. Rabia Inam Gandapore.pptx
Dr. Rabia Inam Gandapore
 
Dehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in Dehradun
Dehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in DehradunDehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in Dehradun
Dehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in Dehradun
chandankumarsmartiso
 
Journal Article Review on Rasamanikya
Journal Article Review on RasamanikyaJournal Article Review on Rasamanikya
Journal Article Review on Rasamanikya
Dr. Jyothirmai Paindla
 
Knee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdfKnee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdf
vimalpl1234
 
DISSERTATION on NEW DRUG DISCOVERY AND DEVELOPMENT STAGES OF DRUG DISCOVERY
DISSERTATION on NEW DRUG DISCOVERY AND DEVELOPMENT STAGES OF DRUG DISCOVERYDISSERTATION on NEW DRUG DISCOVERY AND DEVELOPMENT STAGES OF DRUG DISCOVERY
DISSERTATION on NEW DRUG DISCOVERY AND DEVELOPMENT STAGES OF DRUG DISCOVERY
NEHA GUPTA
 
ABDOMINAL TRAUMA in pediatrics part one.
ABDOMINAL TRAUMA in pediatrics part one.ABDOMINAL TRAUMA in pediatrics part one.
ABDOMINAL TRAUMA in pediatrics part one.
drhasanrajab
 
micro teaching on communication m.sc nursing.pdf
micro teaching on communication m.sc nursing.pdfmicro teaching on communication m.sc nursing.pdf
micro teaching on communication m.sc nursing.pdf
Anurag Sharma
 
The Electrocardiogram - Physiologic Principles
The Electrocardiogram - Physiologic PrinciplesThe Electrocardiogram - Physiologic Principles
The Electrocardiogram - Physiologic Principles
MedicoseAcademics
 
Top-Vitamin-Supplement-Brands-in-India List
Top-Vitamin-Supplement-Brands-in-India ListTop-Vitamin-Supplement-Brands-in-India List
Top-Vitamin-Supplement-Brands-in-India List
SwisschemDerma
 
Identification and nursing management of congenital malformations .pptx
Identification and nursing management of congenital malformations .pptxIdentification and nursing management of congenital malformations .pptx
Identification and nursing management of congenital malformations .pptx
MGM SCHOOL/COLLEGE OF NURSING
 
Chapter 11 Nutrition and Chronic Diseases.pptx
Chapter 11 Nutrition and Chronic Diseases.pptxChapter 11 Nutrition and Chronic Diseases.pptx
Chapter 11 Nutrition and Chronic Diseases.pptx
Earlene McNair
 
The Best Ayurvedic Antacid Tablets in India
The Best Ayurvedic Antacid Tablets in IndiaThe Best Ayurvedic Antacid Tablets in India
The Best Ayurvedic Antacid Tablets in India
Swastik Ayurveda
 
Netter's Atlas of Human Anatomy 7.ed.pdf
Netter's Atlas of Human Anatomy 7.ed.pdfNetter's Atlas of Human Anatomy 7.ed.pdf
Netter's Atlas of Human Anatomy 7.ed.pdf
BrissaOrtiz3
 

Recently uploaded (20)

ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptxANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
ANATOMY AND PHYSIOLOGY OF URINARY SYSTEM.pptx
 
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTSARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
ARTHROLOGY PPT NCISM SYLLABUS AYURVEDA STUDENTS
 
Role of Mukta Pishti in the Management of Hyperthyroidism
Role of Mukta Pishti in the Management of HyperthyroidismRole of Mukta Pishti in the Management of Hyperthyroidism
Role of Mukta Pishti in the Management of Hyperthyroidism
 
Physiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of TastePhysiology of Special Chemical Sensation of Taste
Physiology of Special Chemical Sensation of Taste
 
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidadeNovas diretrizes da OMS para os cuidados perinatais de mais qualidade
Novas diretrizes da OMS para os cuidados perinatais de mais qualidade
 
Cardiac Assessment for B.sc Nursing Student.pdf
Cardiac Assessment for B.sc Nursing Student.pdfCardiac Assessment for B.sc Nursing Student.pdf
Cardiac Assessment for B.sc Nursing Student.pdf
 
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists  Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
Ozempic: Preoperative Management of Patients on GLP-1 Receptor Agonists
 
Ear and its clinical correlations By Dr. Rabia Inam Gandapore.pptx
Ear and its clinical correlations By Dr. Rabia Inam Gandapore.pptxEar and its clinical correlations By Dr. Rabia Inam Gandapore.pptx
Ear and its clinical correlations By Dr. Rabia Inam Gandapore.pptx
 
Dehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in Dehradun
Dehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in DehradunDehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in Dehradun
Dehradun #ℂall #gIRLS Oyo Hotel 8107221448 #ℂall #gIRL in Dehradun
 
Journal Article Review on Rasamanikya
Journal Article Review on RasamanikyaJournal Article Review on Rasamanikya
Journal Article Review on Rasamanikya
 
Knee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdfKnee anatomy and clinical tests 2024.pdf
Knee anatomy and clinical tests 2024.pdf
 
DISSERTATION on NEW DRUG DISCOVERY AND DEVELOPMENT STAGES OF DRUG DISCOVERY
DISSERTATION on NEW DRUG DISCOVERY AND DEVELOPMENT STAGES OF DRUG DISCOVERYDISSERTATION on NEW DRUG DISCOVERY AND DEVELOPMENT STAGES OF DRUG DISCOVERY
DISSERTATION on NEW DRUG DISCOVERY AND DEVELOPMENT STAGES OF DRUG DISCOVERY
 
ABDOMINAL TRAUMA in pediatrics part one.
ABDOMINAL TRAUMA in pediatrics part one.ABDOMINAL TRAUMA in pediatrics part one.
ABDOMINAL TRAUMA in pediatrics part one.
 
micro teaching on communication m.sc nursing.pdf
micro teaching on communication m.sc nursing.pdfmicro teaching on communication m.sc nursing.pdf
micro teaching on communication m.sc nursing.pdf
 
The Electrocardiogram - Physiologic Principles
The Electrocardiogram - Physiologic PrinciplesThe Electrocardiogram - Physiologic Principles
The Electrocardiogram - Physiologic Principles
 
Top-Vitamin-Supplement-Brands-in-India List
Top-Vitamin-Supplement-Brands-in-India ListTop-Vitamin-Supplement-Brands-in-India List
Top-Vitamin-Supplement-Brands-in-India List
 
Identification and nursing management of congenital malformations .pptx
Identification and nursing management of congenital malformations .pptxIdentification and nursing management of congenital malformations .pptx
Identification and nursing management of congenital malformations .pptx
 
Chapter 11 Nutrition and Chronic Diseases.pptx
Chapter 11 Nutrition and Chronic Diseases.pptxChapter 11 Nutrition and Chronic Diseases.pptx
Chapter 11 Nutrition and Chronic Diseases.pptx
 
The Best Ayurvedic Antacid Tablets in India
The Best Ayurvedic Antacid Tablets in IndiaThe Best Ayurvedic Antacid Tablets in India
The Best Ayurvedic Antacid Tablets in India
 
Netter's Atlas of Human Anatomy 7.ed.pdf
Netter's Atlas of Human Anatomy 7.ed.pdfNetter's Atlas of Human Anatomy 7.ed.pdf
Netter's Atlas of Human Anatomy 7.ed.pdf
 

Infrared presentation

  • 1. Infrared Spectroscopy Spectroscopy is the measurement of the absorption or emission of energy by matter (atoms or molecules) when it is subjected to electromagnetic radiation. A spectrophotometer measures the energy changes that take place within a molecule when it is irradiated and records these changes as spectra . In absorption spectroscopy , molecules absorb energy and undergo transitions from the ground state to an excited state of the molecule. The type of spectroscopy involved will depend on the region of the electromagnetic spectrum that is used as a radiation source. In Infrared Spectroscopy , molecules absorb infrared radiation which brings about changes in stretching and bending motions of the molecule. The radiation absorbed is in the energy range with wavelengths (λ) between 2.5 and 17 μm (4000 cm -1 to 600 cm -1 ). In Electronic (UV-visible) Spectroscopy, molecules absorb radiation in the UV-visible region (200 - 800 nm). This brings about electronic transitions within the molecule. Since absorption of radiation is quantized ( i.e. it is subject to certain quantum mechanical restrictions), only the allowed frequencies of radiation appear as absorption bands in the spectrum.
  • 2. Vibrational Spectroscopy All chemical bonds have a natural frequency of vibration (C-H, O-H, C=O, C-C, C=C) but the exact frequency will depend on their environment, i.e. on the actual structure of the molecule involved. Identification of the vibrational frequencies indicates the different bonds present in a molecule and provides structural information about that molecule. An infrared spectrum is a plot of % transmittance (y-axis) versus energy (cm -1 ) (x-axis) in the range 4000 cm -1 to 600 cm -1 .
  • 3.
  • 4. The Units: The frequency  (s -1 ) => # vibrations per second For molecular vibrations, this number is very large (10 13 s -1 ) => inconvenient e.g.  = 3 * 10 13 s -1 = 1000 cm -1 Wave Length :  1  = More convenient : Wavenumber   =  c ( Frequency / Velocity )   =   s  3 * 10 10 cm s -1 
  • 5. Intensity in IR Intensity: Transmittance ( T ) or %T Absorbance ( A ) IR : Plot of %IR that passes through a sample ( transmittance ) vs Wavelenght T = I I 0 A = log I I 0
  • 6.
  • 7. Infrared: Low frequency spectra of window materials
  • 8. Bond length and strength vs Stretching frequency
  • 9. Introduction IR is one of the first technique inorganic chemists used (since 1940) Molecular Vibration Newton’s law of motion is used classically to calculate force constant r r e F F The basic picture : atoms (mass) are connected with bonding electrons. R e is the equilibrium distance and F : force to restore equilibrium F(x) = - k x where X is displacement from equilibrium Where K i is the force constant and  i is reduce mass of a particular motion Because the energy is quantized: E = h  i   = 1 2  √ k i  i
  • 10. Introduction Displacement of atoms during vibration lead to distortion of electrival charge distribution of the molecule which can be resolve in dipole, quadrupole, octopole …. In various directions => Molecular vibration lead to oscillation of electric charge governed by vibration frequencies of the system Oscillating molecular dipole can interact directly with oscillating electric vector of electromagnetic radiation of the same frequency h  = h  Vibrations are in the range 10 11 to 10 13 Hz => 30 - 3,000 cm -1
  • 11.
  • 12. Calculating stretching frequencies Hooke’s law : : Frequency in cm -1 c : Velocity of light => 3 * 10 10 cm/s K : Force constant => dynes /cm  masses of atoms in grams C —C K = 5* 10 5 dynes/cm C =C K = 10* 10 5 dynes/cm C  C K = 15* 10 5 dynes/cm  = 1 2  c  K    m 1 m 2 m 1 + m 2  M 1 M 2 M 1 + M 2 (6.02 * 10 23 )  = 4.12  K 
  • 13. Calculating stretching frequencies C =C K = 10* 10 5 dynes/cm C —H K = 5* 10 5 dynes/cm C —D K = 5* 10 5 dynes/cm  = 4.12  K    M 1 M 2 M 1 + M 2  (12)(12) 12 + 12    = 4.12  10* 10 5  = 1682 cm -1  Experimental  1650 cm -1  = 4.12  5* 10 5  = 3032 cm -1   M 1 M 2 M 1 + M 2  (12)(1) 12 + 1    Experimental  3000 cm -1  = 4.12  5* 10 5  = 2228 cm -1   M 1 M 2 M 1 + M 2  (12)(2) 12 + 2    Experimental  2206 cm -1
  • 14. Vibrations www.cem.msu.edu/~reusch/Virtual/Text/Spectrpy/InfraRed/infrared.htm Modes of vibration C —H Stretching Bending Symmetrical 2853 cm -1 Asymmetrical 2926 cm -1 Scissoring 1450 cm -1 Rocking 720 cm -1 Wagging 1350 cm -1 Twisting 1250 cm -1 Stretching frequency Bending frequency C O H
  • 15.
  • 16.
  • 17.
  • 18. Analyzing an IR spectrum In practice, there are similarities between frequencies of molecules containing similar groups. Group - frequency correlations have been extensively developed for organic compounds and some have also been developed for inorganics
  • 19. Some characteristic infrared absorption frequencies   BOND COMPOUND TYPE FREQUENCY RANGE, cm -1   C-H alkanes 2850-2960 and 1350-1470   alkenes 3020-3080 (m) and   RCH=CH2 910-920 and 990-1000   R2C=CH2 880-900   cis -RCH=CHR 675-730 (v)   trans -RCH=CHR 965-975   aromatic rings 3000-3100 (m) and   monosubst. 690-710 and 730-770   ortho -disubst. 735-770   meta -disubst. 690-710 and 750-810 (m)   para -disubst. 810-840 (m)   alkynes 3300     O-H alcohols or phenols 3200-3640 (b)     C=C alkenes 1640-1680 (v)   aromatic rings 1500 and 1600 (v)     C≡C alkynes 2100-2260 (v)     C-O primary alcohols 1050 (b)   secondary alcohols 1100 (b)   tertiary alcohols 1150 (b)   phenols 1230 (b)   alkyl ethers 1060-1150   aryl ethers 1200-1275(b) and 1020-1075 (m)   all abs. strong unless marked: m, moderate; v, variable; b, broad
  • 20.
  • 21. n -pentane CH 3 CH 2 CH 2 CH 2 CH 3 3000 cm -1 1470 &1375 cm -1 2850-2960 cm -1 sat’d C-H n -pentane CH 3 CH 2 CH 2 CH 2 CH 3 3000 cm -1 1470 &1375 cm -1 2850-2960 cm -1 sat’d C-H
  • 22. CH 3 CH 2 CH 2 CH 2 CH 2 CH 3 n -hexane
  • 25. IR of ALKENES =C—H bond, “unsaturated” vinyl (sp 2 ) 3020-3080 cm -1 + 675-1000 RCH=CH 2 + 910-920 & 990-1000 R 2 C=CH 2 + 880-900 cis -RCH=CHR + 675-730 (v) trans -RCH=CHR + 965-975 C=C bond 1640-1680 cm -1 (v)
  • 26. 1-decene 910-920 & 990-1000 RCH=CH 2 C=C 1640-1680 unsat’d C-H 3020-3080 cm -1
  • 27. 4-methyl-1-pentene 910-920 & 990-1000 RCH=CH 2
  • 29. IR spectra BENZENE s =C—H bond, “unsaturated” “aryl” (sp 2 ) 3000-3100 cm -1 + 690-840 mono-substituted + 690-710, 730-770 ortho -disubstituted + 735-770 meta -disubstituted + 690-710, 750-810(m) para -disubstituted + 810-840(m) C=C bond 1500, 1600 cm -1
  • 30. ethylbenzene 690-710, 730-770 mono- 1500 & 1600 Benzene ring 3000-3100 cm -1 Unsat’d C-H
  • 31. IR spectra ALCOHOLS & ETHERS C—O bond 1050-1275 (b) cm -1 1 o ROH 1050 2 o ROH 1100 3 o ROH 1150 ethers 1060-1150 O—H bond 3200-3640 (b) 
  • 32. 1-butanol CH 3 CH 2 CH 2 CH 2 -OH C-O 1 o 3200-3640 (b) O-H
  • 36. Band Shape: OH vs NH2 vs CH
  • 37. Free OH and Hydrogen bonded OH
  • 38. Symmetrical and asymmetrical stretch Methyl 2872 cm -1 Symmetrical Stretch Asymmetrical Stretch Anhydride 1760 cm -1 2962 cm -1 1800 cm -1 Amino Nitro 3300 cm -1 3400 cm -1 1350 cm -1 1550 cm -1 — C — H H H — C — H H H O O O O O O — N H H — N H H — N O O — N O O
  • 39. General IR comments Precise treatment of vibrations in molecule is not feasible here Some information from IR is also contained in MS and NMR Certain bands occur in narrow regions : OH , CH , C=O Detail of the structure is revealed by the exact position of the band e.g. Ketones 1715 cm -1 1680 cm -1 Region 4000 – 1300 : Functional group Absence of band in this region can be used to deduce absence of groups Caution: some bands can be very broad because of hydrogen bonding e.g. Enols v.broad OH, C=O absent!! Weak bands in high frequency are extremely useful : S-H, C  C, C  N Lack of strong bands in 900-650 means no aromatic
  • 40. Alkanes , Alkenes , Alkynes C-H : <3000 cm -1 >3000 cm -1 3300 cm -1 sharp C-C Stretch Not useful C=C C  C 1660-1600 cm -1 conj. Moves to lower values Symmetrical : no band 2150 cm -1 conj. Moves to lower values Weak but very useful Symmetrical no band Bending CH 2 Rocking 720 cm -1 indicate Presence of 4-CH 2 1000-700 cm -1 Indicate substitution pattern  C-H ~630 cm -1 Strong and broad Confirm triple bond
  • 41.  
  • 43. Alkene : 1-Decene To give rise to absorption of IR => Oscillating Electric Dipole Symmetry Molecules with Center of symmetry Symmetric vibration => inactive Antisymmetric vibration => active
  • 44. Alkene In large molecule local symmetry produce weak or absent vibration C=C R R trans C=C isomer -> weak in IR Observable in Raman
  • 45. Alkene: Factors influencing vibration frequency 1- Strain move peak to right (decrease ) angle 1650 1646 1611 1566 1656 : exception 2- Substitution increase 3- conjugation decrease C=C-Ph 1625 cm -1 1566 1641 1675 1611 1650 1679 1646 1675 1681 C C C   
  • 46. Alkene: Out-of-Plane bending This region can be used to deduce substitution pattern
  • 49. In IR, Most important transition involve : Ground State (  i = 0) to First Excited State (  i = 1) Transition (  i = 0) to (  J = 2) => Overtone
  • 50. IR : Aromatic =C-H > 3000 cm -1 C=C 1600 and 1475 cm -1 =C-H out of plane bending: great utility to assign ring substitution overtone 2000-1667: useful to assign ring substitution e.g. Naphthalene: Substitution pattern Isolated H 862-835 835-805 760-735 2 adjacent H 4 adjacent H out of plane bending 
  • 51. Aromatic substitution: Out of plane bending
  • 52. Aromatic substitution: Out of plane bending
  • 53.  
  • 54. Aromatic and Alkene substitution
  • 55. IR: Alcohols and Phenols O-H Free : Sharp 3650-3600 O-H H-Bond : Broad 3400-3300 Intermolecular Hydrogen bonding Increases with concentration => Less “Free” OH
  • 56. IR: Alcohols and Phenols C-O : 1260-1000 cm -1 (coupled to C-C => C-C-O) C-O Vibration is sensitive to substitution: Phenol 1220 3` Alcohols 1150 2` Alcohols 1100 1` Alcohols 1050 More complicated than above: shift to lower Wavenumber With unsaturation (Table 3.2)
  • 57. Alcohol C-O : 1040 cm -1 indicate primary alcohol
  • 58. Benzyl Alcohol OH sp 2 sp 3 Ph overtone C-O : 1080, 1022 cm -1 : primary OH Mono Subst. Ph 735 & 697 cm -1
  • 59. Phenol OH sp 2 Ph overtone C=C stretch Ph-O : 1224 cm -1 Mono Subst. Ph out-of plane 810 & 752 cm -1
  • 61. IR: Ether C-O-C => 1300-1000 cm -1 Ph-O-C => 1250 and 1040 cm -1 Aliphatic => 1120 cm -1 C=C in vinyl Ether => 1660-1610 cm -1 appear as Doublet => rotational isomers ~1620 ~1640
  • 62. Ether sp 2 sp 3 Ph overtone C=C stretch Ph-O-C : 1247 cm -1 Asymmetric stretch Ph-O-C : 1040 cm -1 Symmetric stretch Mono Subst. Ph out-of plane 784, 754 & 692 cm -1
  • 63. IR: Carbonyl From 1850 – 1650 cm -1 Ketone 1715 cm -1 is used as reference point for comparisons 1715  1690 1725  1700 1710  1680 1810 Anhydr Band 1800 Acid Chloride 1760 Anhydr Band 2 1735 Ester 1725 Aldehyde 1715 Ketone 1710 Acid 1690 Amide Factor influencing C=O 1) conjugation Conjugation increase single bond character of C=O  Lower force constant  lower frequency number C=C C O C + — C C O -
  • 64. Ketone and Conjugation Conjugation: Lower 
  • 65. Ketone and Ring Strain Ring Strain: Higher Factors influencing C=O 2) Ring size 1715 cm -1 Angle ~ 120 o 1751 cm -1 < 120 o 1775 cm -1 << 120 o 
  • 66.  
  • 67. Factors influencing carbonyl: C=O 3)  substitution effect (Chlorine or other halogens) Result in stronger bound  higher frequency 1750 cm -1 4) Hydrogen bonding Decrease C=O strenght  lower frequency 1680 cm -1 — C — C — X O 
  • 68. Enol
  • 69. Factors influencing carbonyl: C=O 5) Heteroatom Inductive effect Stronger bond higher frequency e.g. ester Resonance effect Weaker bond Lower frequence e.g. amides Y C=O Cl Br OH (monomer) OR (Ester) 1815-1785 1812 1760 1705-1735 NH2 SR 1695-1650 1720-1690 inductive resonance
  • 70. Ester Carbonyl Esters C=O ~ 1750 – 1735 cm -1 O-C : 1300 – 1000 2 or more bands Conjugation => lower freq. Inductive effect with O reinforce carbonyl => higher Conjugation with CO weaken carbonyl => Lower   
  • 72. Ester carbonyl: C=O C=O : 1765 cm -1 C-O 1215 cm -1 1193 cm -1 sp 2 C=O
  • 74. Ester carbonyl : effect of conjugation
  • 75. Lactone carbonyl: C=O Lactones  Cyclic Ester 1735 1720 1760 1770 1750 1800
  • 76. Carbonyl compounds : Acids Carboxylic acid Exist as dimer : Strong Hydrogen bond OH : Very broad  3400 – 2400 cm -1 C=O : broad  1730 – 1700 cm -1 C — O : 1320 – 1210 cm -1 Medium intensity
  • 77. Carbonyl compounds : Acids C=O OH C=O : 1711 cm -1 OH : Very Broad 3300 to 2500 cm -1 C-O : 1285, 1207 cm -1
  • 78. Anhydrides C=O always has 2 bands: 1830-1800 and 1775-1740 cm -1 C —O multiple bands 1300 – 900 cm -1
  • 79. Carbonyl compounds : Aldehydes Aldehydes C=O ~ 1725 cm -1 O=C-H : 2 weak bands 2750, 2850 cm -1 Conjugation => lower freq. C=O : 1724 cm -1 
  • 80. Carbonyl compounds : Aldehydes
  • 82. Other carbonyl Amides Lactams Acid Chlorides C=O ~1680-1630 cm -1 (band I) NH 2 ~ 3350 and 3180 cm -1 (stretch) NH ~ 3300 cm -1 (stretch) NH ~ 1640-1550 cm -1 (bending) 1810-1775 cm -1 C — Cl 730 – 550 cm -1 ~1660 ~1705 ~1745 Increase with strain R — C — Cl O 
  • 83. Amides NH 2 : Symmetrical stretch =>3170 cm -1 asymmetrical stretch => 3352 cm -1 C=O : 1640 cm -1 NH Out of plane
  • 86. Amino acid Exist as zwitterions C CO 2 - NH 3 + NH 3 + : very broad 3330-2380 (OH + NH 3 + ) C O O 1600 – 1590 strong
  • 88. Amine NH 3500 – 3300 cm -1 NH : 2 bands NH : 1 band NH bending : 1650 – 1500 cm -1 C-N : 1350 – 1000 cm -1 NH out-of-plane : ~ 800 cm -1 Amine salt NH + 3500 – 3030 cm -1 broad / strong Ammonium  primary  secomdary  right Left  
  • 89. Amine Primary Amine Secondary Amine Tertiary Amine
  • 91. Other Nitrogen Compounds Nitriles Isocyanates Isothiocyanates Imines / Oximes R-C  N : Sharp 2250 cm -1 Conjugation moves to lower frequency R-N=C=O Broad ~ 2270 cm -1 R-N=C=S 2 Broad peaks ~ 2125 cm -1 R 2 C=N-R 1690 - 1640 cm -1
  • 95. Nitro Aliphatic : Asymmetric : 1600-1530 cm -1 Symmetric : 1390-1300 cm -1 Aromatic : Asymmetric : 1550-1490 cm -1 Symmetric : 1355-1315 cm -1 — N O O + -
  • 96. Nitro
  • 97. Nitro
  • 98. Sulfur Mercaptans S – H : weak 2600-2550 cm -1 Since only few absorption in that range it confirm its presence Sulfides,Disulfides : no useful information Sulfoxides: Strong ~ 1050 cm -1 Sulfones : Asymetrical ~ 1300 cm -1 Symetrical ~ 1150 cm -1 2 bands :
  • 100. Sulfur: Sulfonyl Chloride S=O : Asymmetrical stretch: 1375 cm-1 Symmetrical Stretch : 1185 cm-1
  • 101. Sulfur: Sulfonate S=O : Asymmetrical stretch: 1350 cm-1 Symmetrical Stretch : 1175 cm-1 S-O : several bands between 1000 – 750 cm -1
  • 102. Sulfur: Sulfonamide S=O : Asymmetrical stretch: 1325 cm-1 Symmetrical Stretch : 1140 cm-1 NH 2 stretch: 3350 and 3250 cm -1 NH Bend: 1550 cm -1
  • 103. Halogens C —F : 1400 – 1000 cm -1 C —Cl : strong 785 – 540 cm -1 C —Br : 650 – 510 cm -1 (out of range with NaCl plates) C —I : 600 – 485 cm -1 (out of range)
  • 105. Phosphorus Phosphines: R-PH 2 R 2 PH P —H : Sharp 2320 – 2270 cm -1 P H 2 bending : 1090 – 1075 and 840 - 810 cm -1 P H bending : 990 - 886 cm -1 Phosphine Oxide : R 3 P=O P =O very strong : 1210 - 1140 cm -1 Phosphate Esters : (OR) 3 P=O P =O very strong : 1300 - 1240 cm -1 P -O very strong : 1088 – 920 cm -1 P -O : 845 - 725 cm -1
  • 106. Silicon IR-Organometallic Index Si-H : 2200 cm -1 (Stretch) 950 – 800 cm -1 (bend) Si-O-H : OH: 3700 – 3200 cm -1 (Stretch) Si-O : 830 – 1110 cm -1