1
How to Leverage Artificial Intelligence
to Accelerate Data Collection and
Analysis of Diffusion Multiples
Ji-Cheng (JC) Zhao
The Ohio State University
NIST Workshop on Artificial Intelligence for Materials Science (AIMS)
August 8, 2018
2
• An example of alloy design using
CALPHAD & regression analysis
• Diffusion multiples for phase diagram
mapping
• Precipitation kinetics & microstructure
• Property mapping
• Summary
Outline
3
• An example of alloy design using
CALPHAD & regression analysis
• Diffusion multiples for phase diagram
mapping
• Precipitation kinetics & microstructure
• Property mapping
• Summary
Outline
4
900
1000
1100
1200
1300
1400
Measured γ’ Solvus (°C)
Calculatedγ’Solvus(°C)
Caron & Khan
Dharwadkar
Henry
Sponseller
900 1000 1100 1200 1300 1400
Al,Ti,Ta,Nb,...
TCP phases
(σ, µ, P, Laves)
Ni
Mo, W, Re, Cr, Co...
γ’
γ
Al,Ti,Ta,Nb,...
TCP phases
(σ, µ, P, Laves)
Ni
Mo, W, Re, Cr, Co...
γ’γ’
γ
CALPHAD Benchmark for Multicomponent Alloys
Zhao & Henry: Adv. Eng. Mater., 4, 501, 2002.
5
0.1
1
10
100
0.1 1 10 100
PredictedTimetoFail(h)
Measured Time to Fail (h)
Regression done using
only alloy chemistry 0.1
1
10
100
0.1 1 10 100
PredictedTimetoFail(h)
Measured Time to Fail (h)
Regression done using
alloy chemistry and
predicted γ' volume fraction
γ’ volume fraction included
 Computational thermodynamics for composition optimization
 Regression-based prediction of creep strength in Ni-base superalloys
γ’ volume fraction not included
Crude machine learning of legacy data with model input
Zhao & Henry: Adv. Eng. Mater., 4, 501, 2002.
760 ºC rupture life 760 ºC rupture life
6The National Academies Press, Washington, D.C., 2012
GTD222 GTD262
4 years from concept to production
• 2X creep strength ↑
• Ta replacement by Nb: cost ↓
• Computational design: validated with only one set of 4 alloys.
Now widely
used in GE
gas turbines
A Successful Example of Accelerated Alloy Design: GTD262
“The rapid development of GTD262 is the first
successful landmark that has helped establish
within GE the credibility of computational alloy
design and its associated methodologies,
models, and databases”
Inventors:
L. Jiang
J.-C. Zhao
G. Feng
7
• An example of alloy design using
CALPHAD & regression analysis
• Diffusion multiples for phase diagram
mapping
• Precipitation kinetics & microstructure
• Property mapping
• Summary
Outline
8
• Local equilibrium at phase
interfaces defines the tie-lines
• Interdiffusion creates all
single-phase compositions
0
10
20
30
40
50
60
70
80
90
100
0 100 200 300 400 500 600
Distance, microns
Composition,at.%
Co, at.%
Cr, at.%
fcc
σ
bcc
Co Cr
fcc σ bcc
Co Cr
100 µm1100°C, 1000h
Diffusion-Multiple Approach: the idea
9
Mo Mo
Mo
Cr
FeCr
FeCo
Co
Ni
Ni
Diffusion-Multiple Approach: diffusion multiple preparation
Cao & Zhao: J. Phase Equili. Diff., 37, 25, 2016.
10
Mo Fe
Ni
0
5 12
14
100 µm
Ni
Mo Fe
δ γ
P
αFe
1 2
3
4
5
0
6 7 8 9 10 11 12
13
14
µ
15
16
1100°C
1500 hrs
Mo
FeNi
γ
αFe
µ
δ
P
0
1
2
3
4
5
6
7
8
9
10
11
121314
15
16
1100 °C
Diffusion-Multiple Approach: phase diagram mapping
Mo Mo
Mo
Cr
FeCr
FeCo
Co
Ni
Ni
11
Ni Co
Mo
1100°C
fcc
µ
Co9Mo2
δ
Cr
Ni
Co
Nb
Mo
CALPHAD Assessments
High-fidelity thermodynamic databases
Co Cr
Mo
Co9Mo2
bccfcc
µ
R
σ
1100°C
At.%
Co Cr
Mo
Co9Mo2
bccfcc
µ
R
σ
1100°C
At.%
Diffusion-Multiple Approach: phase diagram mapping
12
Diffusion-Multiple Approach: phase diagram mapping
?
2 diffusion multiples
?
Zhu et al.: Intermetallics, 93, 20, 2018.
13
Diffusion-Multiple Approach: phase diagram mapping
Diffusion multiple
Zhu et al.: J. Alloys Comp., 691, 110, 2017.
14
Zhao: in Methods
for Phase Diagram
Determination,
Elsevier, 2007.
15
16
17
Snoeyenbos, Wark, Zhao: Microsc. Microanal. 14 (Suppl. 2), 2176, 2008
18
• An example of alloy design using
CALPHAD & regression analysis
• Diffusion multiples for phase diagram
mapping
• Precipitation kinetics & microstructure
• Property mapping
• Summary
Outline
19
1200°C single-anneal Fe-Cr-Mo
Mo
Cr
Fe
Mo
Mo
Mo
Cr
FeCr
FeCo
Co
Ni
Ni
500μm
Phase Precipitation
High-Throughput Study of Precipitation
Cao & Zhao: J. Phase
Equili. Diff., 37, 25, 2016.
20
1200°C + 900°C
dual-anneal
Mo
Cr
Fe
σ
Chi
500μm
Mo Cr
Fe
μ
bcc solubility
at 1200 °C
bcc solubility
at 900 °C
21
Fe-Cr-Mo:
1200°C for 500h & 900°C for 500 h
λ
R
Solubility
limit
a
bc
d
e
f
R
Cao & Zhao: J. Phase Equili. Diff., 37, 25, 2016.
22
1200°C / 500 h + 800°C / 1000h
23
• An example of alloy design using
CALPHAD & regression analysis
• Diffusion multiples for phase diagram
mapping
• Precipitation kinetics & microstructure
• Property mapping
• Summary
Outline
24
Huxtable, Cahill, Fauconnier, White, Zhao: Nature Mater., 3,298 (2004).
Accepted Λ (W m-1 K-1)
1 10 100
MeasuredΛ(Wm-1K-1) 1
10
100
Au
Al
W
Ru
Mo
Co
CrNi
Pd
TaNb
VTi
Zr
SiO2
8wt% YSZ
Ni(80)Cr(20)
Pt
(f = 200 Hz)
(f = 10 MHz)
d
Al (80nm)
h, ΛAl, CAl
G
Sample
Λ, C
w0 = 4 µm
Probe laser
Pump laser
(f = 10 MHz)
d
Al (80nm)
h, ΛAl, CAl
G
Sample
Λ, C
w0 = 4 µm
Micron-scale thermal conductivity mapping
High-Throughput Property Mapping: thermal conductivity
2-4 µm resolution
±8% accuracy
25
Ni Ni-54.5at%Al
Wmol-1K-1
T[C]
X[AL]
400
600
800
1000
1200
1400
1600
1800
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ALNI
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
400
600
800
1000
1200
1400
1600
1800
X[AL]
T[C]T[C]
X[AL]
400
600
800
1000
1200
1400
1600
1800
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
ALNI
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
400
600
800
1000
1200
1400
1600
1800
X[AL]
T[C]
Zhao, Zheng, Cahill, Scripta Mater., 66, 935-938 (2012).
High-Throughput Property Mapping: thermal conductivity
26
High-Throughput Property Mapping: thermal conductivity
A general model for thermal and electrical conductivity
Wei, Antolin, Restrepo, Windl, Zhao: Acta Mater., 126 (2017) 272
Now thermal & electrical resistivity can be incorporated into CALPHAD
27
Wei, Zheng, Cahill, Zhao:
Rev. Sci. Instr. 2013
Pump
( f = 10 MHz )
Probe
Sample (Λ, C)
Al
8 µm
d ≈ 600 nm
fC
d
π2
Λ
=
Pump
( f = 100 KHz )
Probe
Sample (Λ, C)
Al
8 µm
d ≈ 6 µm
t (ns)
0 1 2 3 4
-Vin/Vout
0
5
10
15
Ni
Gd
MgO Si
f = 9.8 MHz
t (ns)
0.0 0.2 0.4 0.6 0.8 1.0
-Vin/Vout
0
5
10
15
Si
Ni
MgO
Gd
f = 123 KHz
0
20
40
60
80
100
120
140
0 20 40 60 80 100 120 140
Accepted CP J mol-1 K-1
MeasuredCPJmol-1K-1
B Si
MgAl2O4
Al2O3
Gd
MgO
Pd
Ni
Pt
Heat Capacity
Wei, Zheng, Cahill, Zhao, Rev. Sci. Instr. 84 (2013) 071301.
High-Throughput Property Mapping: heat capacity
28
∆θ
Probe
Photodiode
pair
Sample
Al (100 nm)
Lock-in
amplifier
Pump
(f ≈ 10 MHz)
Zheng, Cahill, Weaver, Zhao: J. Appl. Phys., 104, 073509 (2008).
Micron-scale measurement of CTE
High-Throughput Property Mapping: thermal expansion
29
High-Throughput Property Mapping: elastic constants
Du & Zhao: npj Comput. Mater., 3 (2017) 17.
Single-crystal elastic constants from polycrystalline samples
PDMS film
Si mold
Expt. Model
Substrate
700nm350nm
Sample
Only 1% of ~160,000 solid compounds has experimentally measured elastic constants
30
• An example of alloy design using
CALPHAD & regression analysis
• Diffusion multiples for phase diagram
mapping
• Precipitation kinetics & microstructure
• Property mapping
• Summary
Outline
31
Accelerated Design of Structural & Multifunctional Materials
Hardness
Thermodynamic
modeling
Solution / precipitation
strengthening
Kinetic
modeling
Modulus
Rh
Pt
Pd
Hardness(GPa)
1.90
3.05
4.20
5.35
6.50
4.9
4.2
2.6
5.7
3.4
0
10
20
30
40
50
60
70
80
90
100
0 20 40 60 80 100 120 140 160 180 200
Distance, micron
at.%
Pd
Pt
Diffusion
coefficients
u
Rh
Cr Ru
fcc
hcp
bcc
A15
Phase diagrams
Thermal
conductivity
Ordering
Substitution
Site occupancy
Point defects
ElasticModulus(GPa)
Rh
Pt
Pd
134
183
231
279
327
167199231263
295
ElasticModulus(GPa)
Rh
Pt
Pd
134
183
231
279
327
167199231263
295
ElasticModulus(GPa)
Rh
Pt
Pd
134
183
231
279
327
167199231263
295
ElasticModulus(GPa)
Rh
Pt
Pd
134
183
231
279
327
167199231263
295
Diffusion multiple
Materials Property Microscopy Tools for Localized Measurement / Mapping
Heat capacity
Expansion
coefficient
Elastic
constants
Physical & other properties
Summary
Modified from Zhao: Annu. Rev. Mater. Res., 35, 51, 2005.
32
Artificial Intelligence & automation are desperately need for acceleration
Mo Mo
Mo
Cr
FeCr
FeCo
Co
Ni
Ni
Summary
• Enormous amounts of data can be extracted from
diffusion multiples
• Active learning & autonomy/automation are the future
• Interactive use of computed & prior data/knowledge
• Data fusion & autonomous fault detection
33
Thank you !
J.-C. Zhao
zhao.199@osu.edu

How to Leverage Artificial Intelligence to Accelerate Data Collection and Analysis of Diffusion Multiples

  • 1.
    1 How to LeverageArtificial Intelligence to Accelerate Data Collection and Analysis of Diffusion Multiples Ji-Cheng (JC) Zhao The Ohio State University NIST Workshop on Artificial Intelligence for Materials Science (AIMS) August 8, 2018
  • 2.
    2 • An exampleof alloy design using CALPHAD & regression analysis • Diffusion multiples for phase diagram mapping • Precipitation kinetics & microstructure • Property mapping • Summary Outline
  • 3.
    3 • An exampleof alloy design using CALPHAD & regression analysis • Diffusion multiples for phase diagram mapping • Precipitation kinetics & microstructure • Property mapping • Summary Outline
  • 4.
    4 900 1000 1100 1200 1300 1400 Measured γ’ Solvus(°C) Calculatedγ’Solvus(°C) Caron & Khan Dharwadkar Henry Sponseller 900 1000 1100 1200 1300 1400 Al,Ti,Ta,Nb,... TCP phases (σ, µ, P, Laves) Ni Mo, W, Re, Cr, Co... γ’ γ Al,Ti,Ta,Nb,... TCP phases (σ, µ, P, Laves) Ni Mo, W, Re, Cr, Co... γ’γ’ γ CALPHAD Benchmark for Multicomponent Alloys Zhao & Henry: Adv. Eng. Mater., 4, 501, 2002.
  • 5.
    5 0.1 1 10 100 0.1 1 10100 PredictedTimetoFail(h) Measured Time to Fail (h) Regression done using only alloy chemistry 0.1 1 10 100 0.1 1 10 100 PredictedTimetoFail(h) Measured Time to Fail (h) Regression done using alloy chemistry and predicted γ' volume fraction γ’ volume fraction included  Computational thermodynamics for composition optimization  Regression-based prediction of creep strength in Ni-base superalloys γ’ volume fraction not included Crude machine learning of legacy data with model input Zhao & Henry: Adv. Eng. Mater., 4, 501, 2002. 760 ºC rupture life 760 ºC rupture life
  • 6.
    6The National AcademiesPress, Washington, D.C., 2012 GTD222 GTD262 4 years from concept to production • 2X creep strength ↑ • Ta replacement by Nb: cost ↓ • Computational design: validated with only one set of 4 alloys. Now widely used in GE gas turbines A Successful Example of Accelerated Alloy Design: GTD262 “The rapid development of GTD262 is the first successful landmark that has helped establish within GE the credibility of computational alloy design and its associated methodologies, models, and databases” Inventors: L. Jiang J.-C. Zhao G. Feng
  • 7.
    7 • An exampleof alloy design using CALPHAD & regression analysis • Diffusion multiples for phase diagram mapping • Precipitation kinetics & microstructure • Property mapping • Summary Outline
  • 8.
    8 • Local equilibriumat phase interfaces defines the tie-lines • Interdiffusion creates all single-phase compositions 0 10 20 30 40 50 60 70 80 90 100 0 100 200 300 400 500 600 Distance, microns Composition,at.% Co, at.% Cr, at.% fcc σ bcc Co Cr fcc σ bcc Co Cr 100 µm1100°C, 1000h Diffusion-Multiple Approach: the idea
  • 9.
    9 Mo Mo Mo Cr FeCr FeCo Co Ni Ni Diffusion-Multiple Approach:diffusion multiple preparation Cao & Zhao: J. Phase Equili. Diff., 37, 25, 2016.
  • 10.
    10 Mo Fe Ni 0 5 12 14 100µm Ni Mo Fe δ γ P αFe 1 2 3 4 5 0 6 7 8 9 10 11 12 13 14 µ 15 16 1100°C 1500 hrs Mo FeNi γ αFe µ δ P 0 1 2 3 4 5 6 7 8 9 10 11 121314 15 16 1100 °C Diffusion-Multiple Approach: phase diagram mapping Mo Mo Mo Cr FeCr FeCo Co Ni Ni
  • 11.
    11 Ni Co Mo 1100°C fcc µ Co9Mo2 δ Cr Ni Co Nb Mo CALPHAD Assessments High-fidelitythermodynamic databases Co Cr Mo Co9Mo2 bccfcc µ R σ 1100°C At.% Co Cr Mo Co9Mo2 bccfcc µ R σ 1100°C At.% Diffusion-Multiple Approach: phase diagram mapping
  • 12.
    12 Diffusion-Multiple Approach: phasediagram mapping ? 2 diffusion multiples ? Zhu et al.: Intermetallics, 93, 20, 2018.
  • 13.
    13 Diffusion-Multiple Approach: phasediagram mapping Diffusion multiple Zhu et al.: J. Alloys Comp., 691, 110, 2017.
  • 14.
    14 Zhao: in Methods forPhase Diagram Determination, Elsevier, 2007.
  • 15.
  • 16.
  • 17.
    17 Snoeyenbos, Wark, Zhao:Microsc. Microanal. 14 (Suppl. 2), 2176, 2008
  • 18.
    18 • An exampleof alloy design using CALPHAD & regression analysis • Diffusion multiples for phase diagram mapping • Precipitation kinetics & microstructure • Property mapping • Summary Outline
  • 19.
    19 1200°C single-anneal Fe-Cr-Mo Mo Cr Fe Mo Mo Mo Cr FeCr FeCo Co Ni Ni 500μm PhasePrecipitation High-Throughput Study of Precipitation Cao & Zhao: J. Phase Equili. Diff., 37, 25, 2016.
  • 20.
    20 1200°C + 900°C dual-anneal Mo Cr Fe σ Chi 500μm MoCr Fe μ bcc solubility at 1200 °C bcc solubility at 900 °C
  • 21.
    21 Fe-Cr-Mo: 1200°C for 500h& 900°C for 500 h λ R Solubility limit a bc d e f R Cao & Zhao: J. Phase Equili. Diff., 37, 25, 2016.
  • 22.
    22 1200°C / 500h + 800°C / 1000h
  • 23.
    23 • An exampleof alloy design using CALPHAD & regression analysis • Diffusion multiples for phase diagram mapping • Precipitation kinetics & microstructure • Property mapping • Summary Outline
  • 24.
    24 Huxtable, Cahill, Fauconnier,White, Zhao: Nature Mater., 3,298 (2004). Accepted Λ (W m-1 K-1) 1 10 100 MeasuredΛ(Wm-1K-1) 1 10 100 Au Al W Ru Mo Co CrNi Pd TaNb VTi Zr SiO2 8wt% YSZ Ni(80)Cr(20) Pt (f = 200 Hz) (f = 10 MHz) d Al (80nm) h, ΛAl, CAl G Sample Λ, C w0 = 4 µm Probe laser Pump laser (f = 10 MHz) d Al (80nm) h, ΛAl, CAl G Sample Λ, C w0 = 4 µm Micron-scale thermal conductivity mapping High-Throughput Property Mapping: thermal conductivity 2-4 µm resolution ±8% accuracy
  • 25.
    25 Ni Ni-54.5at%Al Wmol-1K-1 T[C] X[AL] 400 600 800 1000 1200 1400 1600 1800 0.0 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ALNI 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 400 600 800 1000 1200 1400 1600 1800 X[AL] T[C]T[C] X[AL] 400 600 800 1000 1200 1400 1600 1800 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 ALNI 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 400 600 800 1000 1200 1400 1600 1800 X[AL] T[C] Zhao, Zheng, Cahill, Scripta Mater., 66, 935-938 (2012). High-Throughput Property Mapping: thermal conductivity
  • 26.
    26 High-Throughput Property Mapping:thermal conductivity A general model for thermal and electrical conductivity Wei, Antolin, Restrepo, Windl, Zhao: Acta Mater., 126 (2017) 272 Now thermal & electrical resistivity can be incorporated into CALPHAD
  • 27.
    27 Wei, Zheng, Cahill,Zhao: Rev. Sci. Instr. 2013 Pump ( f = 10 MHz ) Probe Sample (Λ, C) Al 8 µm d ≈ 600 nm fC d π2 Λ = Pump ( f = 100 KHz ) Probe Sample (Λ, C) Al 8 µm d ≈ 6 µm t (ns) 0 1 2 3 4 -Vin/Vout 0 5 10 15 Ni Gd MgO Si f = 9.8 MHz t (ns) 0.0 0.2 0.4 0.6 0.8 1.0 -Vin/Vout 0 5 10 15 Si Ni MgO Gd f = 123 KHz 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 Accepted CP J mol-1 K-1 MeasuredCPJmol-1K-1 B Si MgAl2O4 Al2O3 Gd MgO Pd Ni Pt Heat Capacity Wei, Zheng, Cahill, Zhao, Rev. Sci. Instr. 84 (2013) 071301. High-Throughput Property Mapping: heat capacity
  • 28.
    28 ∆θ Probe Photodiode pair Sample Al (100 nm) Lock-in amplifier Pump (f≈ 10 MHz) Zheng, Cahill, Weaver, Zhao: J. Appl. Phys., 104, 073509 (2008). Micron-scale measurement of CTE High-Throughput Property Mapping: thermal expansion
  • 29.
    29 High-Throughput Property Mapping:elastic constants Du & Zhao: npj Comput. Mater., 3 (2017) 17. Single-crystal elastic constants from polycrystalline samples PDMS film Si mold Expt. Model Substrate 700nm350nm Sample Only 1% of ~160,000 solid compounds has experimentally measured elastic constants
  • 30.
    30 • An exampleof alloy design using CALPHAD & regression analysis • Diffusion multiples for phase diagram mapping • Precipitation kinetics & microstructure • Property mapping • Summary Outline
  • 31.
    31 Accelerated Design ofStructural & Multifunctional Materials Hardness Thermodynamic modeling Solution / precipitation strengthening Kinetic modeling Modulus Rh Pt Pd Hardness(GPa) 1.90 3.05 4.20 5.35 6.50 4.9 4.2 2.6 5.7 3.4 0 10 20 30 40 50 60 70 80 90 100 0 20 40 60 80 100 120 140 160 180 200 Distance, micron at.% Pd Pt Diffusion coefficients u Rh Cr Ru fcc hcp bcc A15 Phase diagrams Thermal conductivity Ordering Substitution Site occupancy Point defects ElasticModulus(GPa) Rh Pt Pd 134 183 231 279 327 167199231263 295 ElasticModulus(GPa) Rh Pt Pd 134 183 231 279 327 167199231263 295 ElasticModulus(GPa) Rh Pt Pd 134 183 231 279 327 167199231263 295 ElasticModulus(GPa) Rh Pt Pd 134 183 231 279 327 167199231263 295 Diffusion multiple Materials Property Microscopy Tools for Localized Measurement / Mapping Heat capacity Expansion coefficient Elastic constants Physical & other properties Summary Modified from Zhao: Annu. Rev. Mater. Res., 35, 51, 2005.
  • 32.
    32 Artificial Intelligence &automation are desperately need for acceleration Mo Mo Mo Cr FeCr FeCo Co Ni Ni Summary • Enormous amounts of data can be extracted from diffusion multiples • Active learning & autonomy/automation are the future • Interactive use of computed & prior data/knowledge • Data fusion & autonomous fault detection
  • 33.
    33 Thank you ! J.-C.Zhao zhao.199@osu.edu