From Unconventional to Extreme
to Functional Materials
September 28, 2015
Nader Engheta
University of Pennsylvania
Philadelphia, PA, USA
17 Equations that Changed the World
Ian Stewart, “In Pursuit of the Unknown, 17 Equations that Changed the World”, 2012
17 Equations that Changed the World
Ian Stewart, “In Pursuit of the Unknown, 17 Equations that Changed the World”, 2012
Pythagoras’s Theorem a2
+b2
= c2
Pythagoras 530 BC
Logarithms log(xy) = log(x)+log(y) Neper, 1610
Calculus
df
dt
= lim
f (t + h)− f (t)
h
|h→0
Newton, 1668
Law of Gravity F = G
m1
m2
r2
Newton, 1687
Wave Equation
∂2
u
∂t2
= v2 ∂2
u
∂x2
D’Alambert, 1746
17 Equations that Changed the World
Ian Stewart, “In Pursuit of the Unknown, 17 Equations that Changed the World”, 2012
Euler’s Formula for
Polyhedra
V − E + F = 2 Euler 1751
Normal Distributions Φ(x) =
1
2πσ
e
−
(x−µ)2
2σ 2
Gauss 1810
Fourier Transform F(ω) = f (x)e−2πixω
dx
−∞
+∞
∫ Fourier 1822
Navier-Stokes Eq Navier & Stokes, 1845ρ
∂v
∂t
+ v⋅∇v
$
%
&
'
(
) = −∇p+ ∇⋅T + f
Square Root of -1 Euler, 1750i2
= −1
17 Equations that Changed the World
Ian Stewart, “In Pursuit of the Unknown, 17 Equations that Changed the World”, 2012
Maxwell Equations
∇⋅ D = ρ ∇⋅ B = 0
∇× E = −
∂B
∂t
∇× H = J +
∂D
∂t
Maxwell 1865
2nd law of thermodynamic dS ≥ 0 Boltzmann 1874
Relativity E = mc2 Einstein, 1905
Schrodinger’s Eq. i
∂Ψ
∂t
= HΨ Schrodinger 1927
Information Theory Shannon, 1949H = −∑ p(x)log p(x)
17 Equations that Changed the World
Ian Stewart, “In Pursuit of the Unknown, 17 Equations that Changed the World”, 2012
Chaos Theory xt+1
= kxt
(1− xt
) R. May 1975
Black-Scholes Eq.
1
2
σ 2
S2 ∂2
V
∂S2
+ rS
∂V
∂S
+
∂V
∂t
− rV = 0 Black + Scholes 1990
James Clerk Maxwell’s Manuscript
Display in Royal Society, London, UK
James Clerk Maxwell’s Manuscript
Display in Royal Society, London, UK
James Clerk Maxwell’s Manuscript
Display in Royal Society, London, UK
Light-Matter Interaction
ε
µ
(2)
,....χ (3)
χ
ξ

σ
“Natural” Materials
“Artificially” Engineered Materials
● Particulate Composite Materials
, ,h h r h rn ε µ=
, ,c c r c rn ε µ=
● Composition
● Alignment
● Arrangement
● Density
● Host Medium
● Geometry/Shape
Metamaterials Samples (2000-2015)
Smith, Schultz group (2000)
Boeing group
Capasso group (2011)
Wegener group (2009)
Zhang group (2008)
Atwater group (2007)
Engheta group (2012)Giessen group (2008)
Metamaterial Applications (2000-2015)
Cloaking
Superlens &
Hyperlens
Ultrathin Cavities
ES
AntennasTransformation Optics
ENZ & MNZ
Metasurfaces Metatronics
Going to the “Extreme” in Metamaterials
“Extreme” in Dimensionality
From 3D Metamaterials to
2D Metasurfaces
Shalaev & Boltasseva
groups (2012)Capasso group (2011) Alu group (2012)
Brongersma & Hasman groups (2014) Maci group (2014) Brenner group (2014)
Ultimate Metasurface
Thinnest Metamaterials
http://math.ucr.edu/home/baez/graphene.jpg
A. Vakil and N. Engheta, Science, 2011
One-Atom-Thick Optical Devices
,Region 1: 0g iσ >
,Region 2: 0g iσ <
150c meVµ =
65c meVµ = mc =0.15eV
mc =0.065eV
A. Vakil and N. Engheta, Science, 2011
Experimental Verification of Mid IR
Surface Wave on Graphene
Basov group, Nature (2012) Koppens, Hillenbrand and
Garcia de Abajo, Nature (2012)
Graphene-coated dielectric waveguide:
Hybrid Graphene-Dielectric Systems
A. Davoyan and N. Engheta, submitted under review
2D
3D
“Meta-Tube”
Squeezing THz energy into Nanoscale WG
Ez
2D taper 3D taper
A. Davoyan and N. Engheta, submitted under review
Information Processing at the Extreme
“Modular Blocks” in electronics
L
C
R
“Building Blocks” in Optics?
Optics
Waveguide
Lens
Mirror
from: D. Prather's group
“Lumped” Circuit
Elements in Nanophotonics?
L C R
Nano-Optics
? ? ? ? ?
Radio Frequency (RF) electronics
Optical Metatronics:
Materials Become Circuits
Engheta, Physics Worlds, 23(9), 31 (2010)
Engheta, Science, 317, 1698 (2007)
Engheta, Salandrino, Alu, Phys. Rev. Lett, (2005)
Sun, Edwards, Alu, Engheta, Nature Materials (2012)
Electronics
a λ<<
( )Re 0ε >
C
( )Re 0ε <
E
H L
( )Im 0ε ≠
E
H
E
H
Metatronics
R
Optical Metatronics
for Information Processing?
f x, y,z;t( )
Metastructures
g x, y,z;t( )
Analogy between
Electronics and Photonics
Input(y)
Output(y)
R
R
C
C CL
L
L
C
Input (t)
Output (t)
Equivalent C and L
60 nm
CSiO2 18
2 10C F−
≈ ×
633 nmλ =
( )Re 0ε <
L
Ag 15
7 10L H−
≈ ×
First Metatronic Circuit in mid IR
Y. Sun, B. Edwards, A. Alu, and N. Engheta, Nature Materials, March 2012
“empty circle”: Experimental data
“Thick line”: Circuit theory
“Thin line” : Full wave simulation
Magenta: w ~ 75 nm, g ~ 75 nm
Royal blue: w ~ 125 nm, g ~ 75 nm
Red: w ~ 225 nm, g ~ 75 nm
800 1000 1200
30
40
50
60
70
80
90
14 13 12 11 10 9 8
Transmittance(%)
800 1000 1200
30
40
50
60
70
80
90
14 13 12 11 10 9 8
800 1000 1200
14 13 12 11 10 9 8
λ ( µm )
ν ( cm
-1
)
800 1000 1200
14 13 12 11 10 9 8
λ ( µm )
ν ( cm
-1
)
800 1000 1200
30
40
50
60
70
80
90
14 13 12 11 10 9 8
800 1000 1200
30
40
50
60
70
80
90
14 13 12 11 10 9 8
Transmittance(%)
ParallelSeries
325nm250nm175nm
TCO NIR Metatronic Circuits
Experimental Results
Caglayan, Hong, Edwards, Kagan, Engheta, Phys. Rev. Lett. 111, 073904 (2013)
“Stereo-Circuits”
Different “Circuits” for Different “Views”
Alu and Engheta, New Journal of Physics, 2009
EH
L
C
E
H
L
C
Salandrino, Alu, Engheta, JOSA B, Part 1, 2007
Alu, Salandrino, Engheta, JOSA B, Part 2, 2007
Integrated Metatronic Circuits (IMC)
Inspired by the work of Jack Kilby (1959)
Integrated Metatronic Circuits
F. Abbasi and N. Engheta, Optics Express, 2014
http://www.cedmagic.com/history/integrated-circuit-1958.html
Metatronic Filter Design
Y. Li, I. Liberal and N. Engheta, work in progress
F. Abbasi and N. Engheta, Optics Express, 2014
Thinnest Possible Circuits?
0iIf σ > Inductor L
0iIf σ < Capacitor C
A. Vakil and N. Engheta
Metamaterial Processors
L
C
R
Tr
a λ<<
( )Re 0ε >
( )Re 0ε <
( )Im 0ε ≠
Metatronics
R
R
C
C CL
L
L
C
Electronic Processor
Metamaterials that Do Math
A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
Input OutputGRIN(+)
n1
metasurface Δ
GRIN(+)
w/2-w/2
n1
w/2-w/2
d
Metamaterials that Do Math
A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
F. Monticone, N. Mohammadi Estakhri, A. Alù, PRL (2013)
Metamaterial as Differentiator
0
1
-­‐5λ Width 5λ
Re(Sim.)(x1.4)
Im(Sim.)(x1.4)
1
0
-1
-5λ
5λ
Derivative (MS)
A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
Metamaterial as 2nd Differentiator
-­‐0.5
0.0
0.5
-­‐5λ Width 5λ
Re(Sim.)(x3.8)
Im(Sim.)(x3.8)
1
0
-1
-5λ
5λ
Derivative (MS)
εms
y( )/εo
= µms
y( )/ µo
= i2 λo
/ 2πΔ( )"
#
$
%ln −iW / 2y( )( )
A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
Metamaterial as Integrator
-­‐4
-­‐2
0
-­‐5λ Width 5λ
Re(Sim.)(x8.5)
Im(Sim.)(x8.5)
1
0
-1
-5λ
5λ
Derivative (MS)
εms
y( )/εo
= µms
y( )/ µo
= i λo
/ 2πΔ( )"
#
$
%ln iy / d( )
εms
y( )/εo
= µms
y( )/ µo
= − λo
/ 4Δ( )#
$
%
&sign y / d( )
A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
Metamaterial as Convolver
-­‐3
0
3
-­‐5λ Width 5λ
Re(Sim.)(x14)
Im(Sim.)(x14)
1
0
-1
-5λ
5λ
Derivative (MS)
εms
y( )/εo
= µms
y( )/ µo
= i λo
/ 2πΔ( )"
#
$
%ln i / sinc Wk
y / 2s2
( )( )"
#&
$
%'
A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
Engineering Kernels Using MTM
g(y) = f (y')G(y − y')dy'∫
A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
Metamaterial as “Edge Detector”
A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
Photo: Tod Grubbs
Metamaterial “Eq. Solvers”?
Metamaterial
Eq. Solver
Metamaterial as a “solving” machine?
( )
( )
df x
af x
dx
=
( ) ( ) ( )k u x f u du af x− =∫
Informatic
Metamaterials( )f x
( )df x
dx
“Extreme” Parameters and
“Extreme” in Cavity Resonators
ωn ω'n ≠ωn
Conventional High-Q Cavity
Which Material?
?
Epsilon-and-Mu-Near-Zero (EMNZ)
Materials
How do we make such EMNZ structures?
ENZ Structures
( )Re 0ε ≅
ITO
kz
=ω µ0
ε0
εr
−
1
ω2
µo
εo
π
a
!
"
#
$
%
&
2
a
z
x
y
Bi1.5Sb0.5Te1.8Se1.2
Zheludev Group
How do we make an EMNZ structure?
M. Silveirinha and N. Engheta Physical Review B, 75, 075119 (2007)
ENZ
εi
>1
µeff
=
µo
Acell
Ah,cell
+ 2πR2
J1
ki
R( )
ki
RJ0
ki
R( )
!
"
#
#
$
%
&
&
A. Mahmoud and N. Engheta, Nature Communications, Dec 2014
CT Chan’s group Nature Materials,
10, 582-585 (2011)
2D EMNZ Cavity
I. Liberal, A. Mahmoud and N. Engheta, Manuscript submitted, under review
2D EMNZ Cavity
I. Liberal, A. Mahmoud and N. Engheta, Manuscript submitted, under review
3D EMNZ Cavity
εp
PEC
ENZ
H Field
E Field
I. Liberal, A. Mahmoud and N. Engheta, Manuscript submitted, under review
3D EMNZ Cavity
(A) (B) (C)
ωres
/ωp
I. Liberal, A. Mahmoud and N. Engheta, Manuscript submitted, under review
EMNZ in Quantum Electrodynamics
Superradiance?
Subradiance?
Long-Range Collective States of Multi-emitters?
Long-Range Entanglement?
Cavity QED?
Summary
Metamaterials can perform processing, functionality at the
compact scale
Metamaterials can play important roles in quantum electrodynamics
Sculpting waves using extreme scenarios can play interesting roles
Metatronic Processing Quantum MTM
One-Atom-Thick
Optical Devices
!
Thank you very much
From unconventional to extreme to functional materials.

From unconventional to extreme to functional materials.

  • 1.
    From Unconventional toExtreme to Functional Materials September 28, 2015 Nader Engheta University of Pennsylvania Philadelphia, PA, USA
  • 2.
    17 Equations thatChanged the World Ian Stewart, “In Pursuit of the Unknown, 17 Equations that Changed the World”, 2012
  • 3.
    17 Equations thatChanged the World Ian Stewart, “In Pursuit of the Unknown, 17 Equations that Changed the World”, 2012 Pythagoras’s Theorem a2 +b2 = c2 Pythagoras 530 BC Logarithms log(xy) = log(x)+log(y) Neper, 1610 Calculus df dt = lim f (t + h)− f (t) h |h→0 Newton, 1668 Law of Gravity F = G m1 m2 r2 Newton, 1687 Wave Equation ∂2 u ∂t2 = v2 ∂2 u ∂x2 D’Alambert, 1746
  • 4.
    17 Equations thatChanged the World Ian Stewart, “In Pursuit of the Unknown, 17 Equations that Changed the World”, 2012 Euler’s Formula for Polyhedra V − E + F = 2 Euler 1751 Normal Distributions Φ(x) = 1 2πσ e − (x−µ)2 2σ 2 Gauss 1810 Fourier Transform F(ω) = f (x)e−2πixω dx −∞ +∞ ∫ Fourier 1822 Navier-Stokes Eq Navier & Stokes, 1845ρ ∂v ∂t + v⋅∇v $ % & ' ( ) = −∇p+ ∇⋅T + f Square Root of -1 Euler, 1750i2 = −1
  • 5.
    17 Equations thatChanged the World Ian Stewart, “In Pursuit of the Unknown, 17 Equations that Changed the World”, 2012 Maxwell Equations ∇⋅ D = ρ ∇⋅ B = 0 ∇× E = − ∂B ∂t ∇× H = J + ∂D ∂t Maxwell 1865 2nd law of thermodynamic dS ≥ 0 Boltzmann 1874 Relativity E = mc2 Einstein, 1905 Schrodinger’s Eq. i ∂Ψ ∂t = HΨ Schrodinger 1927 Information Theory Shannon, 1949H = −∑ p(x)log p(x)
  • 6.
    17 Equations thatChanged the World Ian Stewart, “In Pursuit of the Unknown, 17 Equations that Changed the World”, 2012 Chaos Theory xt+1 = kxt (1− xt ) R. May 1975 Black-Scholes Eq. 1 2 σ 2 S2 ∂2 V ∂S2 + rS ∂V ∂S + ∂V ∂t − rV = 0 Black + Scholes 1990
  • 7.
    James Clerk Maxwell’sManuscript Display in Royal Society, London, UK
  • 8.
    James Clerk Maxwell’sManuscript Display in Royal Society, London, UK
  • 9.
    James Clerk Maxwell’sManuscript Display in Royal Society, London, UK
  • 10.
  • 11.
  • 12.
    “Artificially” Engineered Materials ●Particulate Composite Materials , ,h h r h rn ε µ= , ,c c r c rn ε µ= ● Composition ● Alignment ● Arrangement ● Density ● Host Medium ● Geometry/Shape
  • 13.
    Metamaterials Samples (2000-2015) Smith,Schultz group (2000) Boeing group Capasso group (2011) Wegener group (2009) Zhang group (2008) Atwater group (2007) Engheta group (2012)Giessen group (2008)
  • 14.
    Metamaterial Applications (2000-2015) Cloaking Superlens& Hyperlens Ultrathin Cavities ES AntennasTransformation Optics ENZ & MNZ Metasurfaces Metatronics
  • 15.
    Going to the“Extreme” in Metamaterials
  • 16.
  • 17.
    From 3D Metamaterialsto 2D Metasurfaces Shalaev & Boltasseva groups (2012)Capasso group (2011) Alu group (2012) Brongersma & Hasman groups (2014) Maci group (2014) Brenner group (2014)
  • 18.
  • 19.
    One-Atom-Thick Optical Devices ,Region1: 0g iσ > ,Region 2: 0g iσ < 150c meVµ = 65c meVµ = mc =0.15eV mc =0.065eV A. Vakil and N. Engheta, Science, 2011
  • 20.
    Experimental Verification ofMid IR Surface Wave on Graphene Basov group, Nature (2012) Koppens, Hillenbrand and Garcia de Abajo, Nature (2012)
  • 21.
    Graphene-coated dielectric waveguide: HybridGraphene-Dielectric Systems A. Davoyan and N. Engheta, submitted under review 2D 3D “Meta-Tube”
  • 22.
    Squeezing THz energyinto Nanoscale WG Ez 2D taper 3D taper A. Davoyan and N. Engheta, submitted under review
  • 23.
  • 24.
    “Modular Blocks” inelectronics L C R
  • 25.
    “Building Blocks” inOptics? Optics Waveguide Lens Mirror from: D. Prather's group
  • 26.
    “Lumped” Circuit Elements inNanophotonics? L C R Nano-Optics ? ? ? ? ? Radio Frequency (RF) electronics
  • 27.
    Optical Metatronics: Materials BecomeCircuits Engheta, Physics Worlds, 23(9), 31 (2010) Engheta, Science, 317, 1698 (2007) Engheta, Salandrino, Alu, Phys. Rev. Lett, (2005) Sun, Edwards, Alu, Engheta, Nature Materials (2012) Electronics a λ<< ( )Re 0ε > C ( )Re 0ε < E H L ( )Im 0ε ≠ E H E H Metatronics R
  • 28.
    Optical Metatronics for InformationProcessing? f x, y,z;t( ) Metastructures g x, y,z;t( )
  • 29.
    Analogy between Electronics andPhotonics Input(y) Output(y) R R C C CL L L C Input (t) Output (t)
  • 30.
    Equivalent C andL 60 nm CSiO2 18 2 10C F− ≈ × 633 nmλ = ( )Re 0ε < L Ag 15 7 10L H− ≈ ×
  • 31.
    First Metatronic Circuitin mid IR Y. Sun, B. Edwards, A. Alu, and N. Engheta, Nature Materials, March 2012 “empty circle”: Experimental data “Thick line”: Circuit theory “Thin line” : Full wave simulation Magenta: w ~ 75 nm, g ~ 75 nm Royal blue: w ~ 125 nm, g ~ 75 nm Red: w ~ 225 nm, g ~ 75 nm 800 1000 1200 30 40 50 60 70 80 90 14 13 12 11 10 9 8 Transmittance(%) 800 1000 1200 30 40 50 60 70 80 90 14 13 12 11 10 9 8 800 1000 1200 14 13 12 11 10 9 8 λ ( µm ) ν ( cm -1 ) 800 1000 1200 14 13 12 11 10 9 8 λ ( µm ) ν ( cm -1 ) 800 1000 1200 30 40 50 60 70 80 90 14 13 12 11 10 9 8 800 1000 1200 30 40 50 60 70 80 90 14 13 12 11 10 9 8 Transmittance(%) ParallelSeries 325nm250nm175nm
  • 32.
    TCO NIR MetatronicCircuits Experimental Results Caglayan, Hong, Edwards, Kagan, Engheta, Phys. Rev. Lett. 111, 073904 (2013)
  • 33.
    “Stereo-Circuits” Different “Circuits” forDifferent “Views” Alu and Engheta, New Journal of Physics, 2009 EH L C E H L C Salandrino, Alu, Engheta, JOSA B, Part 1, 2007 Alu, Salandrino, Engheta, JOSA B, Part 2, 2007
  • 34.
    Integrated Metatronic Circuits(IMC) Inspired by the work of Jack Kilby (1959) Integrated Metatronic Circuits F. Abbasi and N. Engheta, Optics Express, 2014 http://www.cedmagic.com/history/integrated-circuit-1958.html
  • 35.
    Metatronic Filter Design Y.Li, I. Liberal and N. Engheta, work in progress F. Abbasi and N. Engheta, Optics Express, 2014
  • 36.
    Thinnest Possible Circuits? 0iIfσ > Inductor L 0iIf σ < Capacitor C A. Vakil and N. Engheta
  • 37.
    Metamaterial Processors L C R Tr a λ<< ()Re 0ε > ( )Re 0ε < ( )Im 0ε ≠ Metatronics R R C C CL L L C Electronic Processor
  • 38.
    Metamaterials that DoMath A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
  • 39.
    Input OutputGRIN(+) n1 metasurface Δ GRIN(+) w/2-w/2 n1 w/2-w/2 d Metamaterialsthat Do Math A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014 F. Monticone, N. Mohammadi Estakhri, A. Alù, PRL (2013)
  • 40.
    Metamaterial as Differentiator 0 1 -­‐5λWidth 5λ Re(Sim.)(x1.4) Im(Sim.)(x1.4) 1 0 -1 -5λ 5λ Derivative (MS) A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
  • 41.
    Metamaterial as 2ndDifferentiator -­‐0.5 0.0 0.5 -­‐5λ Width 5λ Re(Sim.)(x3.8) Im(Sim.)(x3.8) 1 0 -1 -5λ 5λ Derivative (MS) εms y( )/εo = µms y( )/ µo = i2 λo / 2πΔ( )" # $ %ln −iW / 2y( )( ) A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
  • 42.
    Metamaterial as Integrator -­‐4 -­‐2 0 -­‐5λWidth 5λ Re(Sim.)(x8.5) Im(Sim.)(x8.5) 1 0 -1 -5λ 5λ Derivative (MS) εms y( )/εo = µms y( )/ µo = i λo / 2πΔ( )" # $ %ln iy / d( ) εms y( )/εo = µms y( )/ µo = − λo / 4Δ( )# $ % &sign y / d( ) A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
  • 43.
    Metamaterial as Convolver -­‐3 0 3 -­‐5λWidth 5λ Re(Sim.)(x14) Im(Sim.)(x14) 1 0 -1 -5λ 5λ Derivative (MS) εms y( )/εo = µms y( )/ µo = i λo / 2πΔ( )" # $ %ln i / sinc Wk y / 2s2 ( )( )" #& $ %' A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
  • 44.
    Engineering Kernels UsingMTM g(y) = f (y')G(y − y')dy'∫ A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014
  • 45.
    Metamaterial as “EdgeDetector” A. Silva, F. Monticone, G. Castaldi, V. Galdi, A. Alu, N. Engheta, Science, 343, Jan 2014 Photo: Tod Grubbs
  • 46.
    Metamaterial “Eq. Solvers”? Metamaterial Eq.Solver Metamaterial as a “solving” machine? ( ) ( ) df x af x dx = ( ) ( ) ( )k u x f u du af x− =∫ Informatic Metamaterials( )f x ( )df x dx
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
    How do wemake such EMNZ structures?
  • 52.
    ENZ Structures ( )Re0ε ≅ ITO kz =ω µ0 ε0 εr − 1 ω2 µo εo π a ! " # $ % & 2 a z x y Bi1.5Sb0.5Te1.8Se1.2 Zheludev Group
  • 53.
    How do wemake an EMNZ structure? M. Silveirinha and N. Engheta Physical Review B, 75, 075119 (2007) ENZ εi >1 µeff = µo Acell Ah,cell + 2πR2 J1 ki R( ) ki RJ0 ki R( ) ! " # # $ % & & A. Mahmoud and N. Engheta, Nature Communications, Dec 2014 CT Chan’s group Nature Materials, 10, 582-585 (2011)
  • 54.
    2D EMNZ Cavity I.Liberal, A. Mahmoud and N. Engheta, Manuscript submitted, under review
  • 55.
    2D EMNZ Cavity I.Liberal, A. Mahmoud and N. Engheta, Manuscript submitted, under review
  • 56.
    3D EMNZ Cavity εp PEC ENZ HField E Field I. Liberal, A. Mahmoud and N. Engheta, Manuscript submitted, under review
  • 57.
    3D EMNZ Cavity (A)(B) (C) ωres /ωp I. Liberal, A. Mahmoud and N. Engheta, Manuscript submitted, under review
  • 58.
    EMNZ in QuantumElectrodynamics Superradiance? Subradiance? Long-Range Collective States of Multi-emitters? Long-Range Entanglement? Cavity QED?
  • 59.
    Summary Metamaterials can performprocessing, functionality at the compact scale Metamaterials can play important roles in quantum electrodynamics Sculpting waves using extreme scenarios can play interesting roles Metatronic Processing Quantum MTM One-Atom-Thick Optical Devices !
  • 60.