SlideShare a Scribd company logo
Elementary Algebra
SHEILA MARIE C. NAVARRO
REAL NUMBERS SYSTEM
Real Number
(R)
Rationals (Q)
Integers (Z)
Negative
Integers (Z-)
Whole
Number (W)
{0}
Positive
Integers (Z+)
Prime No. (P) {1}
Composite
No. (C)
Even No. (E)
Odd No. (O)
Fractions (F)
Irrationals
(Q’)
Notes:
1. Real numbers are composed of rational
and irrational numbers.
2. Rational numbers are either terminating
or repeating decimals, otherwise it is
called irrational.
3. Zero (0) is neither positive nor negative.
4. One (1) is not a prime no.
5. If an integer is not odd, then it is even.
6. 6.4 is not an even number.
Question:
1. What is the sum of the smallest prime and largest
2-digit prime number?
a. 95
b. 98
c. 99
d. 100
ANS: C
Question:
Find the sum of all odd integers from -100 to 110?
a. 520
b. 525
c. 530
d. 540
ANS: B
-100+(-99)+…+99+100=0
101+103+105+107+109=525
SETS
Union (“or” / ∪) All elements of two
sets
𝑨 ∪ 𝑩 = {𝟏, 𝟑, 𝟒, 𝟓, 𝟕, 𝟖}
Intersection (“and” / ∩) All common elements
of two sets
𝐴 ∩ 𝐵 = {1}
Complement ( ‘/ (𝑈 − 𝐴)) Elements in 𝑈 not in 𝐴 𝐴′
= {2, 3, 6, 7, 8, 9, 10}
Difference (− / (𝐴 − 𝐵)) Elements in 𝐴 not in 𝐵 𝐴 − 𝐵 = {4, 5}
Cross Product (𝐴 × 𝐵) Ordered pairs with
domain from 𝐴 and
abscisa from 𝐵
𝐴 × 𝐵
= { 1,1 , 1, 3 , … , 5, 7 , 5,8 )
A = {1, 4, 5}
B = {1, 3, 7, 8}
U = {1, 2, …, 10}
Question:
Which of the following statement is true?
a. If 𝑄 is the universal set, then 𝐹′ = 𝑍.
b. 𝑄′ − 𝑄 = { }
c. 𝑄 ∩ 𝑍 = 𝐹
d. 𝑍 − 𝑍−
= 𝑍+
ANS: A
Question:
During a survey, the following data were gathered: 60 students like
algebra, 50 students like calculus, and 45 likes physics. Thirty students like
both algebra and calculus; 25 students like both calculus and physics; and
20 students like algebra and physics. Only 15 students like all the three
subjects. How many students were surveyed?
a. 155
b. 125
c. 115
d. 95
ANS: D
Algebra Calculus
Physics
15
5 10
15
25 10
15
25+5+15+15+10+10+15=95
SOME THEOREMS ON REAL
NUMBERS
• Theorem 1. −
𝑎
𝑏
=
−𝑎
𝑏
=
𝑎
−𝑏
.
• Theorem 2.
𝑎𝑐
𝑏𝑐
=
𝑎
𝑏
.
• Theorem 3.
𝑎
𝑐
+
𝑏
𝑐
=
𝑎+𝑏
𝑐
or
𝑎
𝑐
+
𝑏
𝑑
=
𝑎𝑑+𝑏𝑐
𝑐𝑑
.
• Theorem 4.
𝑎
𝑏
×
𝑐
𝑑
=
𝑎𝑐
𝑏𝑑
.
• Theorem 5.
𝑎
𝑏
÷
𝑐
𝑑
=
𝑎
𝑏
×
𝑑
𝑐
=
𝑎𝑑
𝑏𝑐
.
NOTE: In the following theorems, 𝑎, 𝑏, 𝑐, 𝑑 may stand for any algebraic
expression.
0
𝑎
= 0;
𝑎
0
= 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑;
𝑎
∞
= 0.
Common Mistake
•
𝑥2−3𝑥+2
𝑥2−2𝑥+1
=
(𝑥−2)(𝑥−1)
(𝑥−1)(𝑥−1)
=
𝑥−2
𝑥−1
•
𝑥−2 𝑥+1
𝑥−2 𝑥−3
=
𝑥−2 𝑥+1
𝑥−2 𝑥−3
Fundamental Operations
• Addition and Subtraction is only applicable to
similar terms.
1. 2𝑥 − 3𝑦 + (5𝑥 + 2𝑦) =
2. 2𝑥 − 3𝑦 − 5𝑥 + 2𝑦 =
• For Multiplication and Division, laws of exponents
are needed.
𝟕𝒙 − 𝒚
2𝑥 − 3𝑦 − 5𝑥 − 2𝑦 = −𝟑𝒙 − 𝟓𝒚
Laws of Exponents
1. 𝑎𝑚 ∙ 𝑎𝑛 = 𝑎𝑚+𝑛
2.
𝑎𝑚
𝑎𝑛 = 𝑎𝑚−𝑛
3. 𝑎𝑚 𝑛 = 𝑎𝑚𝑛
4. 𝑎𝑏 𝑚
= 𝑎𝑚
𝑏𝑚
5.
𝑎
𝑏
𝑚
=
𝑎𝑚
𝑏𝑚
6. 𝑎
𝑚
𝑛 =
𝑛
𝑎𝑚
7. 𝑎0 = 1 provided 𝑎 ≠ 0.
Note: 00 is indeterminate.
6. 𝑎−𝑚 =
1
𝑎𝑚
7. If 𝑎𝑚 = 𝑎𝑛, then 𝑚 = 𝑛.
Laws of Radicals
1. 𝑎
1
𝑛 = 𝑛
𝑎
2. 𝑎
𝑚
𝑛 =
𝑛
𝑎𝑚 = 𝑛
𝑎 𝑚
3. 𝑛
𝑎 𝑛 = 𝑎
4. 𝑛
𝑎 ×
𝑛
𝑏 =
𝑛
𝑎𝑏
5.
𝑛
𝑎
𝑛
𝑏
=
𝑛 𝑎
𝑏
provided that 𝑏 ≠ 0
Illustration:
1. 2𝑥 3
= 23
𝑥3
= 𝟖𝒙𝟑
2.
𝑥3
𝑦
2
=
𝑥3 2
𝑦2 =
𝒙𝟔
𝒚𝟐
3. 2𝑥𝑦3
4
= 2𝑥𝑦3
4
2
= 22
𝑥2
𝑦3 2
= 𝟒𝒙𝟐
𝒚𝟔
Question:
𝑎 + 𝑏 𝑏 ∙ 𝑎 − 𝑏 𝑏 is equivalent to?
a. 𝑎 + 𝑏 𝑏
b. 𝑎2 − 𝑏3
c. 𝑎 − 𝑏 𝑏
d. 𝑎2 − 𝑏2
ANS: B
𝑎 + 𝑏 𝑏 𝑎 − 𝑏 𝑏
𝑎2 − 𝑏2 𝑏
𝒂𝟐 − 𝒃𝟑
Question:
Simplify: 𝑎 +
1
𝑎
2
− 𝑎 −
1
𝑎
2
.
a. −4
b. 0
c. 4
d. −
2
𝑎2
ANS: C
𝑎 +
1
𝑎
+ 𝑎 −
1
𝑎
𝑎 +
1
𝑎
− 𝑎 −
1
𝑎
2𝑎
2
𝑎
𝟒
Question:
Simplify:
𝑥2𝑦3𝑧−2 −3
𝑥−3𝑦𝑧3 −
1
2
𝑥𝑦𝑧−3 −
5
2
.
a.
1
𝑥2𝑦7𝑧3
b.
1
𝑥2𝑦7𝑧5
c.
1
𝑥2𝑦5𝑧3
d.
1
𝑥5𝑦7𝑧3
ANS: A
=
𝑥−6
𝑦−9
𝑧6
𝑥
3
2𝑦−
1
2𝑧−
3
2
𝑥
−
5
2 𝑦−
5
2𝑧
15
2
=
𝑥−6𝑦−9𝑧6
𝑥−4𝑦−2𝑧9
=
𝟏
𝒙𝟐𝒚𝟕𝒛𝟑
Special Products and Factoring
𝑎𝑥 + 𝑎𝑦 = 𝑎(𝑥 + 𝑦) Multinomial Common Factor
𝑥2 − 𝑦2 = 𝑥 + 𝑦 𝑥 − 𝑦 Difference of two squares
𝑥3 ± 𝑦3 = (𝑥 ± 𝑦)(𝑥2 ∓ 𝑥𝑦 + 𝑦2) Sum/Diff. of two cubes
𝑥2
± 2𝑥𝑦 + 𝑦2
= 𝑥 ± 𝑦 2
Perfect Square Trinomials
𝑎𝑐𝑥2 + 𝑎𝑑 + 𝑏𝑐 𝑥 + 𝑏𝑑 = (𝑎𝑥 + 𝑏)(𝑐𝑥 + 𝑑) FOIL/Trial-and-Error
𝒓𝒕𝒉
𝒕𝒆𝒓𝒎 =
𝒏!
𝒏 − 𝒓 + 𝟏 ! 𝒓 − 𝟏 !
𝒂𝒏−𝒓+𝟏
𝒃𝒓−𝟏
Where 𝑟 is the unknown terms and 𝑛 is the total number of
unknown terms
If 𝑏2
− 4𝑎𝑐 is a perfect square the quadratic trinomial is
factorable.
Horizontal Multiplication
We can always multiply polynomials by polynomials
using the distribution methods.
Multiply (2𝑥2
− 3𝑥𝑦 + 𝑦2
)(−3𝑥2
+ 2𝑥𝑦 − 3𝑦2
).
−3𝑥2 2𝑥2 − 3𝑥𝑦 + 𝑦2 + 2𝑥𝑦 2𝑥2 − 3𝑥𝑦 + 𝑦2 − 3y2(2𝑥2 − 3𝑥𝑦 + 𝑦2)
−6𝑥4
+ 9𝑥3
𝑦 − 3𝑥2
𝑦2
+ 4𝑥3
𝑦 − 6𝑥2
𝑦2
+ 2𝑥𝑦3
− 6𝑥2
𝑦2
+ 9𝑥𝑦3
− 3𝑦4
−𝟔𝒙𝟒
+ 𝟏𝟑𝒙𝟑
𝒚 − 𝟏𝟓𝒙𝟐
𝒚𝟐
+ 𝟏𝟏𝒙𝒚𝟑
− 𝟑𝒚𝟒
Division of Polynomials
• Divide 𝑥4
− 18𝑥2
+ 32 by 𝑥 − 4
𝑥3
+ 4𝑥2
− 2𝑥 − 8
𝑥 − 4 𝑥4 + 0𝑥3 − 18𝑥2 + 0𝑥 + 32
𝑥4 − 4𝑥3
4𝑥3 − 18𝑥2
4𝑥3
− 16𝑥2
−2𝑥2
+ 0𝑥
−2𝑥2 + 8𝑥
−8𝑥 + 32
−8𝑥 + 32
0
1 0 -18 0 32 |4
4 16 -8 -32
1 4 -2 -8 0
Long Division Synthetic Division
Factor and Remainder theorem
Given a function 𝑓(𝑥) and a binomial 𝑥 − 𝑐 where c is
constant.
FACTOR. If 𝑓 𝑐 = 0, then 𝑥 − 𝑐 is a factor of 𝑓(𝑥).
Example: f x = 2𝑥3 + 5𝑥2 − 𝑥 − 6 and 𝑥 + 2.
𝑓 −2 = 2 −2 3
+ 5 −22
− −2 − 6 = 0
REMAINDER. If 𝑓 𝑐 = 𝑧 where 𝑧 ≠ 0, then 𝑧 is the
exponent whenever 𝑓(𝑥) is divided by 𝑥 − 𝑐.
Example: 𝑓 2 = 2 23
+ 5 22
− 2 − 6 = 28
Sum of Coefficient of Variables
Substitute 1 to each variables in the polynomials
then simplify the expression to get the sum of its
coefficients.
Example: Find the coefficients of the variables in the
expansion 2𝑥 + 3𝑦 − 1 4.
2 1 + 3 1 − 1 4 = 44 = 256
Question:
If 𝑥2
+ 𝑦2
= 22 and 𝑥𝑦 = 9, find the value of 𝑥 − 𝑦 2
?
a. 4
b. 13
c. 31
d. 40
ANS: A
𝑥 − 𝑦 2
= 𝑥2
− 2𝑥𝑦 + 𝑦2
= 22 − 2 9
= 4
Question:
Factor 𝑎4
− 𝑏2
+ 𝑏 − 𝑎2
as completely as possible.
a. 𝑎2
+ 𝑏 𝑎2
+ 𝑏 − 1
b. 𝑎2
+ 𝑏 𝑎2
− 𝑏 − 1
c. 𝑎2 − 𝑏 𝑎2 + 𝑏 − 1
d. 𝑎2
− 𝑏 𝑎2
− 𝑏 − 1
ANS: C
= 𝑎4 − 𝑏2 − 𝑎2 − 𝑏
= 𝑎2
+ 𝑏 𝑎2
− 𝑏 − 𝑎2
− 𝑏
= (𝒂𝟐 − 𝒃)(𝒂𝟐 + 𝒃 − 𝟏)
Question:
Which of the following are the correct factors of
6𝑥2
+ 23𝑥 − 4?
a. 6𝑥 − 1 𝑥 + 4
b. 6𝑥 + 1 𝑥 − 4
c. 3𝑥 + 4 2𝑥 − 1
d. (3𝑥 − 4)(2𝑥 + 1)
ANS: A
𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 6: 3, 2, 1, 6
𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 − 4: 1, −4, 2, −2
6𝑥 𝑥
(𝟔𝒙 − 𝟏)(𝒙 + 𝟒)
Question:
Factor the expression 𝑥6
− 1 as completely as
possible.
a. 𝑥 + 1 𝑥 − 1 𝑥4
+ 𝑥2
− 1
b. 𝑥 + 1 𝑥 − 1 𝑥4 + 2𝑥2 + 1
c. 𝑥 + 1 𝑥 − 1 𝑥4
− 𝑥2
+ 1
d. (𝑥 + 1)(𝑥 − 1)(𝑥4 + 𝑥2 + 1)
ANS: D
𝑥2
− 1 𝑥4
+ 𝑥2
+ 1
(𝑥 + 1)(𝑥 − 1)(𝑥4 + 𝑥2 + 1)
Question:
Give a 3rd term so that 4𝑥4
+ 9𝑦2
becomes a perfect
square trinomial.
a. 6𝑥2
𝑦
b. 12𝑥2𝑦2
c. 12𝑥2
𝑦
d. 36𝑥2𝑦
ANS: C
4𝑥4
+ 9𝑦2
1st = 2𝑥2
2nd = 3𝑦
3rd = 2*1st *2nd
= 2 2𝑥2
3𝑦
= 𝟏𝟐𝒙𝟐
𝒚
Question:
Simplify:
5𝑥
2𝑥2+7𝑥+3
−
𝑥+3
2𝑥2−3𝑥−2
+
2𝑥+1
𝑥2+𝑥−6
.
a.
2
𝑥−3
b.
𝑥−3
5
c.
𝑥+3
𝑥−1
d.
4
𝑥+3
ANS: D
=
5𝑥
2𝑥 + 1 𝑥 + 3
−
𝑥 + 3
2𝑥 + 1 𝑥 − 2
+
2𝑥 + 1
𝑥 + 3 𝑥 − 2
=
5𝑥 𝑥 − 2 − 𝑥 + 3 𝑥 + 3 + 2𝑥 + 1 2𝑥 + 1
2𝑥 + 1 𝑥 + 3 𝑥 − 2
=
5𝑥2 − 10𝑥 − 𝑥2 − 6𝑥 − 9 + 4𝑥2 + 4𝑥 + 1
2𝑥 + 1 𝑥 + 3 𝑥 − 2
=
8𝑥2 − 12𝑥 − 8
2𝑥 + 1 𝑥 + 3 𝑥 − 2
=
4 2𝑥 + 1 𝑥 − 2
2𝑥 + 1 𝑥 + 3 𝑥 − 2
=
𝟒
𝒙 + 𝟑
Question:
Simplify:
𝑚3−8
2𝑚−1
∙
2𝑚2+3𝑚−2
𝑚2−4
.
a. 𝑚2 + 2𝑚 + 4
b. 𝑚2 + 2𝑚 − 4
c. 𝑚2 − 2𝑚 + 4
d. 𝑚2 − 2𝑚 − 4
ANS: A
=
𝑚 − 2 𝑚2
+ 2𝑚 + 4
2𝑚 − 1
∙
2𝑚 − 1 𝑚 + 2
𝑚 + 2 𝑚 − 2
= 𝒎𝟐
+ 𝟐𝒎 + 𝟒
Question:
What is the remainder if 2𝑥3
− 3𝑥2
+ 5𝑥 − 4 is divided
by 𝑥 − 1?
a. 0
b. -8
c. -4
d. 6
ANS: A
𝑥 − 𝑐 = 𝑥 − 1 𝑠𝑜 𝑐 = 1
= 2 1 3 − 3 1 2 + 5 1 − 4
= 𝟎
Question:
Given: 𝑓 𝑥 = 𝑥 − 3 𝑥 + 4 + 4 when divided by (𝑥 − 𝑘),
the remainder is 𝑘. Find 𝑘.
a. 2
b. 3
c. 4
d. -3
ANS: C
𝑓 𝑥 = 𝑥2
+ 𝑥 − 8
𝑓 𝑘 = 𝑘
𝑘 = 𝑘2
+ 𝑘 − 8
0 = 𝑘2 − 8
𝒌 = ±𝟒
Question:
Find the sum of the coefficients of all terms in
5𝑥2
− 3𝑦2 8
?
a. 186
b. 256
c. 512
d. 542
ANS: B
Substitute 1 to all variables
= 5 1 2
− 3 1 2 8
= 28 or 256
Linear Equations in One Unknown
• The ultimate goal is to transform the equation into
𝑥 =
𝑎
𝑏
, which specifies the value of x. This is called
the solution or roots.
No Solution Unique Solution Infinitely Many Solution
Solve
𝑥+5
𝑥−5
= 1; 𝑥 ≠ 5.
𝑥 − 5
𝑥 + 5
𝑥 − 5
= 1 𝑥 − 5
𝑥 + 5 = 𝑥 − 5
5 = −5
False Statement
Solve
𝑥
𝑥−1
+
4
15
=
4
5𝑥−5
+
3
5
(3) 5 𝑥 + 𝑥– 1 4 = 3 4 +
3(𝑥– 1)(3)
15𝑥 + 4𝑥– 4 = 12 + 9𝑥– 9
19𝑥 – 4 = 9𝑥 + 3
19𝑥 – 9𝑥 = 3 + 4
𝑥 =
7
10
Solve 5 2𝑥 − 1 = 2 8𝑥 − 7 −
3 2𝑥 − 3
10𝑥 − 5 = 16𝑥 − 14 − 6𝑥 + 9
10𝑥 − 5 = 10𝑥 − 5
0 = 0
True Statement
Solving Linear Equation w/ Two
Unknown
• Graphical Method
Unique Solution Infinitely Many No Solution
Solving Linear Equation w/ Two
Unknown
SUBSTITUTION ELIMINATION DETERMINANTS
Solve:
2𝑥 − 𝑦 = 3
2𝑥 + 3𝑦 = 7
EQN 1: 𝑦 = 2𝑥 − 3
EQN 2:
2𝑥 + 3 2𝑥 − 3 = 7
2𝑥 + 6𝑥 − 9 = 7
8𝑥 = 16
𝑥 = 2
EQN 1: 𝑦 = 2 2 − 3 = 1
Solve:
2𝑥 − 𝑦 = 3
2𝑥 + 3𝑦 = 7
2𝑥 − 𝑦 = 3
−(2𝑥 + 3𝑦 = 7)
−4𝑦 = −4
𝑦 = 1
EQN 1: 2𝑥 − 1 = 3
𝑥 = 2
Solve:
2𝑥 − 𝑦 = 3
2𝑥 + 3𝑦 = 7
𝑥 =
3 −1
7 3
2 −1
2 3
=
3 3 − 7 −1
2 3 − 2 −1
=
16
8
= 2
𝑦 =
2 3
2 7
2 −1
2 3
=
2 7 − 2 3
2 3 − 2 −1
=
8
8
= 1
Question:
Find the value of 𝑥 and 𝑦 that satisfies the system of
equations: 3𝑥 − 𝑦 = 6 and 9𝑥 − 𝑦 = 12.
a. 𝑥 = 3; 𝑦 = 1
b. 𝑥 = 1; y = −3
c. 𝑥 = 2; 𝑦 = 2
d. 𝑥 = 4; 𝑦 = 2
ANS: B
3𝑥 − 𝑦 = 6
− 9𝑥 − 𝑦 = 12
−6𝑥 = −6
Implies 𝒙 = 𝟏.
3 1 − 𝑦 = 6
𝒚 = −𝟑
Question:
If 𝑓 𝑥 = 2𝑥2
− 𝑥 + 1, what is the value of 𝑓 𝑥 − 𝑓(𝑥 + 1)?
a. 4x-1
b. -4x-1
c. 4x+1
d. 1-4x
ANS: B
= 2𝑥2 − 𝑥 + 1 − 2 𝑥 + 1 2 − 𝑥 + 1 + 1
= 2𝑥2
− 𝑥 + 1 − 2𝑥2
− 4𝑥 − 2 + 𝑥 + 1 − 1
= −𝟒𝒙 − 𝟏
Solving Quadratic Equation
FACTORING QUADRATIC FORMULA ROOTS
- The goal is to factor the equation
completely. Make sure the factors
are on left-hand side and zero (0) on
right-hand side.
For quadratic eqn 𝑎𝑥2 + 𝑏𝑥 + 𝑐; 𝒙 =
−𝒃± 𝒃𝟐−𝟒𝒂𝒄
𝟐𝒂
Sum : 𝒓𝟏 + 𝒓𝟐 = −
𝒃
𝒂
Product: 𝒓𝟏 ∙ 𝒓𝟐 =
𝒄
𝒂
Solve: 3𝑥2 − 5𝑥 − 2 = 0
3𝑥 + 1 𝑥 − 2 = 0
3𝑥 + 1 = 0 | 𝑥 − 2 = 0
𝑥 = −
1
3
or 𝑥 = 2
Solve: 3𝑥2 − 5𝑥 − 2 = 0
𝑥 =
− −5 ± −5 2 − 4 3 −2
2 3
𝑥 =
5 ± 49
6
𝑥 = −
1
3
or 𝑥 = 2
One root of the eqn 3𝑥2 −
5𝑥 + 𝑐 = 0 is 2. Find the other
root and the value of 𝑐.
Sum: 𝑟 + 2 =
5
3
→ 𝑟 = −1/3
Product: 2 −
1
3
=
𝑐
3
→ 𝑐 = −2
Remarks:
1. 𝑏2
− 4𝑎𝑐 is called the discriminant of the quadratic equation.
2. If 𝑏2
− 4𝑎𝑐 = 0, then the roots are real and both are equal to −
𝑏
2𝑎
3. If 𝑏2 − 4𝑎𝑐 > 0, then the roots are real and unequal.
4. If 𝑏2
− 4𝑎𝑐 < 0, then the roots are imaginary numbers.
Question:
The values of 𝑥 in the equation 𝑥
2
5 − 𝑥
1
5 − 2 = 0 are:
a. 1 & -2
b. -1 & 2
c. -1 & 32
d. 1 & -32
ANS: C
𝑥
1
5
2
− 𝑥
1
5 − 2 = 0
By factoring,
𝑥
1
5 − 2 𝑥
1
5 + 1 = 0
𝑥
1
5 − 2 = 0 or 𝑥
1
5 + 1 = 0
𝒙 = 𝟐𝟓
= 𝟑𝟐 or 𝒙 = −𝟏 𝟓
= −𝟏
Question:
Give the sum of the roots of 2𝑥2
− 8𝑥 + 1 = 0.
a. 4
b. -5
c. -2
d. 2
ANS: A
𝑟1 + 𝑟2 = −
−8
2
= 𝟒
Question:
Find 𝑘 in the equation 4𝑥2
+ 𝑘𝑥 + 9 = 0 so that it will
only have one real root.
a. 10
b. 11
c. 12
d. 13
ANS: C
Real and unique roots if 𝑏2
− 4𝑎𝑐 = 0
𝑘2
− 4 4 9 = 0
𝑘2 = 144
𝒌 = ±𝟏𝟐
Question:
Find the roots of 𝑥2 − 4 + 4𝑥 = 0.
a. 2
b. 2 and -2
c. 0
d. no root
ANS: D
𝑥2 − 4 = − 4𝑥
𝑥2
− 4 = 4𝑥
𝑥2
− 4𝑥 − 4 = 0
𝑥 − 2 2
= 0
𝑥 = 2
Checking: 0 + 16 ≠ 0.
False statement → No roots
Partial Fractions
Illustrations:
•
3
𝑥−1 𝑥+2
=
𝐴
𝑥−1
+
𝐵
𝑥+2
•
3𝑥2+2𝑥+1
𝑥−1 3 =
𝐴
𝑥−1
+
𝐵
𝑥−1 2 +
𝐶
𝑥−1 3
•
3𝑥−5
𝑥−1 𝑥2+𝑥+1 2 =
𝐴
𝑥−1
+
𝐵𝑥+𝐶
𝑥2+𝑥+1
+
𝐷𝑥+𝐸
𝑥2+𝑥+1 2
•
3𝑥−2
𝑥−1 2 𝑥2+𝑥+1
=
𝐴
𝑥−1
+
𝐵
𝑥−1 2 +
𝐶𝑥+𝐷
𝑥2+𝑥+1
Question:
Find A and B such that
𝑥+10
𝑥2−4
=
𝐴
𝑥−2
+
𝐵
𝑥+2
.
a. A= -3; B= 2
b. A= -3; B= -2
c. A= 3; B= -2
d. A= 3; B= 2
ANS: C
𝑥 + 10 = 𝐴 𝑥 + 2 + 𝐵 𝑥 − 2
𝑥 + 10 = 𝐴 + 𝐵 𝑥 + 2𝐴 − 2𝐵
This implies
𝐴 + 𝐵 = 1 and 2𝐴 − 2𝐵 = 10
Then, 2 1 − 𝐵 − 2𝐵 = 10
−4𝐵 = 8
𝑩 = −𝟐
From 𝐴 + 𝐵 = 1
𝑨 = 𝟑
Question:
Find the value of A:
𝑥2 + 4𝑥 + 10
𝑥3 + 2𝑥2 + 5𝑥
=
𝐴
𝑥
+
𝐵 2𝑥 + 2
𝑥2 + 2𝑥 + 5
+
𝐶
𝑥2 + 2𝑥 + 5
a. 2
b. -2
c. ½
d. -1/2
ANS: A
𝑥2 + 4𝑥 + 10 = 𝐴 𝑥2 + 2𝑥 + 5 + 𝐵𝑥 2𝑥 + 2 + 𝐶𝑥
𝑥2
+ 4𝑥 + 10 = 𝐴 + 2𝐵 𝑥2
+ 2𝐴 + 2𝐵 + 𝐶 𝑥 + 5𝐴
5𝐴 = 10
𝑨 = 𝟐
Progression
DESCRIPTION LAST TERM SUM MEAN
Arithmetic
Progression
Sequence of number with a
fixed common difference
i.e., 1, 3, 5, 7, 9
𝐿 = 𝑎 + 𝑛 − 1 𝑑
𝑆 =
𝑛
2
(𝑎 + 𝐿) 𝑏 =
𝑎 + 𝑐
2
Geometric
Progression
Sequence of number with a
fixed common ratio
i.e., 1, 3, 9, 27
𝐿 = 𝑎𝑟𝑛−1
𝑆 =
𝑎 1 − 𝑟𝑛
1 − 𝑟
𝑏 = ± 𝑎𝑐
Harmonic
Progression
The sequence of numbers formed by the reciprocals of the terms of an arithmetic
progression (i.e., 1,
1
3
,
1
5
,
1
7
,
1
9
).
Question:
What is the 30th element of the arithmetic sequence
for which the first element is 5 and the third is 13?
a. 237
b. 125
c. 121
d. 150
ANS: C
Given:
𝑎 = 5; 𝑎3 = 13; 𝑛 = 30
𝑎2 =
5 + 13
2
= 9
𝑑 = 4
𝑎30 = 5 + 30 − 1 4
𝒂𝟑𝟎 = 𝟏𝟐𝟏
Question:
Find the 12th term of the series 6, 3, 2.
a. ½
b. ¼
c. 1/8
d. 1/12
ANS: A
𝑁𝑜𝑡𝑒:
1
6
,
1
3
,
1
2
is an arithmetic seq.
Given:
𝑎1 =
1
6
; 𝑑 =
1
6
; 𝑛 = 12
𝑎12 =
1
6
+ 12 − 1
1
6
𝑎12 =
12
6
𝑜𝑟 2
Thus, the 12th term is
𝟏
𝟐
.
Question:
The 1st term of a geometric progression is 64, the
last term is -2 and the sum of the terms is 42. How
many terms are there?
a. 12
b. 10
c. 8
d. 6
ANS: D
42 =
64 1−𝑟𝑛
1−𝑟
−2 = 64𝑟𝑛−1
42 − 42𝑟 = 64 − 64𝑟𝑛
−
2𝑟
64
= 𝑟𝑛
42 − 42𝑟 = 64 − 64 −
2𝑟
64
42 − 42𝑟 = 64 + 2𝑟 −
1
32
= −
1
2
𝑛−1
44𝑟 = −22 −
1
2
5
= −
1
2
𝑛−1
𝑟 = −
1
2
𝑛 − 1 = 5 𝑜𝑟 𝑛 = 6
Problem Solving
Step 1. Identify the given and unknowns
Step 2. Translate word phrases into algebraic symbols
Step 3. Perform the operations and solve for the
unknowns
Step 4. Verify your answer.
Question:
One pipe can fill a tank in 45 minutes and another
pipe can fill it in 30 minutes. If these two pipes are
open while a 3rd pipe is drawing water from the
tank, it takes 27 minutes to fill the tank. How long
will it take the 3rd pipe alone to empty a full tank?
a. 48 min
b. 20 min
c. 54 min
d. 60 min
ANS: C
TIME RATE
Pipe 1 45min 1/45
Pipe 2 30min 1/30
Pipe 3 X min 1/x
1
45
+
1
30
−
1
𝑥
=
1
27
𝑥 = 54 𝑚𝑖𝑛
Question:
A student in a chemistry laboratory wants to form a
32 ml mixture of 2 solutions to contain 30% acid.
Solution A contains 42% acid and solution B
contains18% acid. How many ml of each solution
must be used?
a. A=16; B=16
b. A=14; B=18
c. A=10; B=22
d. A=15; B=17
ANS: A
mL %
Soln 1 X 42%
Soln 2 y 18%
𝑥 + 𝑦 = 32
0.42𝑥 + 0.18𝑦 = 32 0.3
0.42 32 − 𝑦 + 0.18𝑦 = 9.6
13.44 − 0.24𝑦 = 9.6
𝑦 = 16
𝑥 = 16
Question:
Mary was four times as old as Ann four years ago
and if Mary will be twice as old as Ann four years
hence. How old is Ann?
a. 14
b. 12
c. 10
d. 8
ANS: D
-4 Present +4
Mary 4(x-4) 4x-8
Ann X-4 x X+4
2 𝑥 + 4 = 4𝑥 − 8
2𝑥 = 16
𝑥 = 8
Question:
The number of centimeters in the perimeter of a
certain square is equal to the number of square
centimeter in its area. Find the length of the sides of
the square.
a. 5 cm
b. 2 cm
c. 4 cm
d. 6 cm
ANS: C
4𝑠 = 𝑠2
𝑠2
− 4𝑠 = 0
𝑠 𝑠 − 4 = 0
𝑠 = 0 𝑜𝑟 𝒔 = 𝟒
Question:
Find two consecutive even integers such that the
square of larger is 44 greater than the square of the
smaller integer.
a. 10 & 12
b. 12 & 14
c. 8 & 10
d. 14 & 16
ANS: A
Let 𝑥 and 𝑥 + 2 be the two even integers
𝑥 + 2 2 = 𝑥2 + 44
𝑥2 + 4𝑥 + 4 = 𝑥2 + 44
4𝑥 = 40
𝒙 = 𝟏𝟎
𝒙 + 𝟐 = 𝟏𝟐
Question:
A boat travels at the rate of 28 kph in still water. It
took the boat 2.75 hrs to travel downstream and 4.25
hrs to cover the same distance upstream. Find the
rate of the water current.
a. 5 kph
b. 6 kph
c. 7 kph
d. 8 kph
ANS: B
𝐷 = 𝑅𝑇
2.75 𝑥 + 28 = 4.25 28 − 𝑥
2.75𝑥 + 77 = −4.25𝑥 + 119
7𝑥 = 42
𝑥 = 6
Question:
The unit digits of a 2-digit no. exceeds the tens digit
by 3. If the digits are reversed and divided by the
original, the quotient is 2 and remainder is 2. Find
the number.
a. 25
b. 36
c. 14
d. 22
ANS: A
𝑑𝑖𝑔𝑖𝑡 = 10𝑥 + 𝑥 + 3
Reverse = 10 𝑥 + 3 + 𝑥
10 𝑥 + 3 + 𝑥
10𝑥 + 𝑥 + 3
= 2 +
2
10𝑥 + 𝑥 + 3
11𝑥 + 30
11𝑥 + 3
=
22𝑥 + 8
11𝑥 + 3
11𝑥 + 30 = 22𝑥 + 8
11𝑥 = 22
𝑥 = 2
Digit = 20 + 2 + 3 = 25
Complex Number:
Complex numbers are written in the form 𝑎 + 𝑏𝑖,
where 𝑎 is the real part and 𝑏𝑖 is the imaginary part.
When dealing with imaginary number always
remember that 𝑖2 = −1.
Example: 𝑖15
= 𝑖14
𝑖 = 𝑖2 7
𝑖 = −1 7
𝑖 = −𝑖
Question:
(3 – 2i)(4 + 2i) is equal to ________.
a. 12 – 4i
b. 8 – 2i
c. 16 – 2i
d. 8 + 2i
ANS: C
= 12 − 8𝑖 + 6𝑖 − 4𝑖2
= 12 − 2𝑖 − 4 −1
= 16 − 2𝑖

More Related Content

What's hot

System of linear inequalities
System of linear inequalitiesSystem of linear inequalities
System of linear inequalitiesmstf mstf
 
Lesson 13: Exponential and Logarithmic Functions (slides)
Lesson 13: Exponential and Logarithmic Functions (slides)Lesson 13: Exponential and Logarithmic Functions (slides)
Lesson 13: Exponential and Logarithmic Functions (slides)
Matthew Leingang
 
Evaluating algebraic expression
Evaluating algebraic expressionEvaluating algebraic expression
Evaluating algebraic expression
Marites Ablay
 
Circular Functions
Circular FunctionsCircular Functions
Circular Functions
Jonalyn Asi
 
quadratic equations-1
quadratic equations-1quadratic equations-1
quadratic equations-1
Yaganti Rao
 
Weighted Mean - Class Average
Weighted Mean - Class AverageWeighted Mean - Class Average
Weighted Mean - Class Average
ccooking
 
Quadratic Inequalities
Quadratic InequalitiesQuadratic Inequalities
Quadratic Inequalities
quartz4
 
Graph of linear equations
Graph of linear equationsGraph of linear equations
Graph of linear equations
anettebasco
 
Long and synthetic division
Long and synthetic divisionLong and synthetic division
Long and synthetic divisionJessica Garcia
 
1.1.4 Distance Formula
1.1.4 Distance Formula1.1.4 Distance Formula
1.1.4 Distance Formula
smiller5
 
Presentation (distance formula)
Presentation (distance formula)Presentation (distance formula)
Presentation (distance formula)jennytuazon01630
 
Solving inequalities
Solving inequalitiesSolving inequalities
Solving inequalities
Ita Rodriguez
 
CMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical InductionCMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical Induction
allyn joy calcaben
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equations
Hazel Joy Chong
 
Polynomial and thier graphs
Polynomial and thier graphsPolynomial and thier graphs
Polynomial and thier graphsJessica Garcia
 
Integers and Operation of Integers
Integers and Operation of IntegersIntegers and Operation of Integers
Integers and Operation of Integers
Maria Theresa Bicar - Edar
 
Polynomial functionsandgraphs
Polynomial functionsandgraphsPolynomial functionsandgraphs
Polynomial functionsandgraphsJerlyn Fernandez
 
Properties of Real Numbers
Properties of Real NumbersProperties of Real Numbers
Properties of Real Numbers
rfant
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
Kum Visal
 

What's hot (20)

System of linear inequalities
System of linear inequalitiesSystem of linear inequalities
System of linear inequalities
 
Lesson 13: Exponential and Logarithmic Functions (slides)
Lesson 13: Exponential and Logarithmic Functions (slides)Lesson 13: Exponential and Logarithmic Functions (slides)
Lesson 13: Exponential and Logarithmic Functions (slides)
 
Evaluating algebraic expression
Evaluating algebraic expressionEvaluating algebraic expression
Evaluating algebraic expression
 
Circular Functions
Circular FunctionsCircular Functions
Circular Functions
 
quadratic equations-1
quadratic equations-1quadratic equations-1
quadratic equations-1
 
Weighted Mean - Class Average
Weighted Mean - Class AverageWeighted Mean - Class Average
Weighted Mean - Class Average
 
Quadratic Inequalities
Quadratic InequalitiesQuadratic Inequalities
Quadratic Inequalities
 
Graph of linear equations
Graph of linear equationsGraph of linear equations
Graph of linear equations
 
Long and synthetic division
Long and synthetic divisionLong and synthetic division
Long and synthetic division
 
1.1.4 Distance Formula
1.1.4 Distance Formula1.1.4 Distance Formula
1.1.4 Distance Formula
 
Presentation (distance formula)
Presentation (distance formula)Presentation (distance formula)
Presentation (distance formula)
 
Solving inequalities
Solving inequalitiesSolving inequalities
Solving inequalities
 
CMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical InductionCMSC 56 | Lecture 11: Mathematical Induction
CMSC 56 | Lecture 11: Mathematical Induction
 
Lecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equationsLecture 11 systems of nonlinear equations
Lecture 11 systems of nonlinear equations
 
Polynomial and thier graphs
Polynomial and thier graphsPolynomial and thier graphs
Polynomial and thier graphs
 
Integers and Operation of Integers
Integers and Operation of IntegersIntegers and Operation of Integers
Integers and Operation of Integers
 
Polynomial functionsandgraphs
Polynomial functionsandgraphsPolynomial functionsandgraphs
Polynomial functionsandgraphs
 
Properties of Real Numbers
Properties of Real NumbersProperties of Real Numbers
Properties of Real Numbers
 
Matrices and determinants
Matrices and determinantsMatrices and determinants
Matrices and determinants
 
Graphing polynomials
Graphing polynomialsGraphing polynomials
Graphing polynomials
 

Similar to elemetary algebra review.pdf

Quadratic Equations in One Variables.pptx
Quadratic Equations in One Variables.pptxQuadratic Equations in One Variables.pptx
Quadratic Equations in One Variables.pptx
pandavlogsbyJM
 
GCSE-CompletingTheSquare.pptx
GCSE-CompletingTheSquare.pptxGCSE-CompletingTheSquare.pptx
GCSE-CompletingTheSquare.pptx
MitaDurenSawit
 
Semana 12 ecuaciones polinomiales i álgebra-uni ccesa007
Semana 12   ecuaciones polinomiales i  álgebra-uni ccesa007Semana 12   ecuaciones polinomiales i  álgebra-uni ccesa007
Semana 12 ecuaciones polinomiales i álgebra-uni ccesa007
Demetrio Ccesa Rayme
 
05. s3 ecuaciones polinómicas
05. s3 ecuaciones polinómicas05. s3 ecuaciones polinómicas
05. s3 ecuaciones polinómicas
Carlos Sánchez Chuchón
 
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
Demetrio Ccesa Rayme
 
Ch 1 Final 10Math.pdf
Ch 1 Final 10Math.pdfCh 1 Final 10Math.pdf
Ch 1 Final 10Math.pdf
HabibDawar3
 
Calculus revision card
Calculus  revision cardCalculus  revision card
Calculus revision card
Puna Ripiye
 
Calculus revision card
Calculus  revision cardCalculus  revision card
Calculus revision card
Puna Ripiye
 
Solving Quadratic Equations
Solving Quadratic EquationsSolving Quadratic Equations
Solving Quadratic Equations
Cipriano De Leon
 
Semana 14 ecuacion cuadratica álgebra-uni ccesa007
Semana 14   ecuacion cuadratica  álgebra-uni ccesa007Semana 14   ecuacion cuadratica  álgebra-uni ccesa007
Semana 14 ecuacion cuadratica álgebra-uni ccesa007
Demetrio Ccesa Rayme
 
Quarter 1 - Illustrating and solving quadratic equations
Quarter 1 - Illustrating and solving quadratic equationsQuarter 1 - Illustrating and solving quadratic equations
Quarter 1 - Illustrating and solving quadratic equations
Reynz Anario
 
Equations.pptx
Equations.pptxEquations.pptx
Equations.pptx
JeralynAlabanzas2
 
IGCSEFM-FactorTheorem.pptx
IGCSEFM-FactorTheorem.pptxIGCSEFM-FactorTheorem.pptx
IGCSEFM-FactorTheorem.pptx
AngieMichailidou
 
Quadratic Functions.pptx
Quadratic Functions.pptxQuadratic Functions.pptx
Quadratic Functions.pptx
gcasaclang18
 
Week_3-Circle.pptx
Week_3-Circle.pptxWeek_3-Circle.pptx
Week_3-Circle.pptx
AndreaDaraug2
 
23NCBSE09MAT02TP103V01L1_Polynomials_Factorisation_of_Polynomials.pdf
23NCBSE09MAT02TP103V01L1_Polynomials_Factorisation_of_Polynomials.pdf23NCBSE09MAT02TP103V01L1_Polynomials_Factorisation_of_Polynomials.pdf
23NCBSE09MAT02TP103V01L1_Polynomials_Factorisation_of_Polynomials.pdf
fatimashifali
 
Surds revision card
Surds  revision cardSurds  revision card
Surds revision card
Puna Ripiye
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
tinardo
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx
massm99m
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
HebaEng
 

Similar to elemetary algebra review.pdf (20)

Quadratic Equations in One Variables.pptx
Quadratic Equations in One Variables.pptxQuadratic Equations in One Variables.pptx
Quadratic Equations in One Variables.pptx
 
GCSE-CompletingTheSquare.pptx
GCSE-CompletingTheSquare.pptxGCSE-CompletingTheSquare.pptx
GCSE-CompletingTheSquare.pptx
 
Semana 12 ecuaciones polinomiales i álgebra-uni ccesa007
Semana 12   ecuaciones polinomiales i  álgebra-uni ccesa007Semana 12   ecuaciones polinomiales i  álgebra-uni ccesa007
Semana 12 ecuaciones polinomiales i álgebra-uni ccesa007
 
05. s3 ecuaciones polinómicas
05. s3 ecuaciones polinómicas05. s3 ecuaciones polinómicas
05. s3 ecuaciones polinómicas
 
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007Semana 13   ecuaciones polinomiales ii  álgebra-uni ccesa007
Semana 13 ecuaciones polinomiales ii álgebra-uni ccesa007
 
Ch 1 Final 10Math.pdf
Ch 1 Final 10Math.pdfCh 1 Final 10Math.pdf
Ch 1 Final 10Math.pdf
 
Calculus revision card
Calculus  revision cardCalculus  revision card
Calculus revision card
 
Calculus revision card
Calculus  revision cardCalculus  revision card
Calculus revision card
 
Solving Quadratic Equations
Solving Quadratic EquationsSolving Quadratic Equations
Solving Quadratic Equations
 
Semana 14 ecuacion cuadratica álgebra-uni ccesa007
Semana 14   ecuacion cuadratica  álgebra-uni ccesa007Semana 14   ecuacion cuadratica  álgebra-uni ccesa007
Semana 14 ecuacion cuadratica álgebra-uni ccesa007
 
Quarter 1 - Illustrating and solving quadratic equations
Quarter 1 - Illustrating and solving quadratic equationsQuarter 1 - Illustrating and solving quadratic equations
Quarter 1 - Illustrating and solving quadratic equations
 
Equations.pptx
Equations.pptxEquations.pptx
Equations.pptx
 
IGCSEFM-FactorTheorem.pptx
IGCSEFM-FactorTheorem.pptxIGCSEFM-FactorTheorem.pptx
IGCSEFM-FactorTheorem.pptx
 
Quadratic Functions.pptx
Quadratic Functions.pptxQuadratic Functions.pptx
Quadratic Functions.pptx
 
Week_3-Circle.pptx
Week_3-Circle.pptxWeek_3-Circle.pptx
Week_3-Circle.pptx
 
23NCBSE09MAT02TP103V01L1_Polynomials_Factorisation_of_Polynomials.pdf
23NCBSE09MAT02TP103V01L1_Polynomials_Factorisation_of_Polynomials.pdf23NCBSE09MAT02TP103V01L1_Polynomials_Factorisation_of_Polynomials.pdf
23NCBSE09MAT02TP103V01L1_Polynomials_Factorisation_of_Polynomials.pdf
 
Surds revision card
Surds  revision cardSurds  revision card
Surds revision card
 
Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1Ejercicios resueltos de analisis matematico 1
Ejercicios resueltos de analisis matematico 1
 
MATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptxMATRICES AND CALCULUS.pptx
MATRICES AND CALCULUS.pptx
 
math1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdfmath1مرحلة اولى -compressed.pdf
math1مرحلة اولى -compressed.pdf
 

Recently uploaded

The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
Celine George
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
MysoreMuleSoftMeetup
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
AzmatAli747758
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
Celine George
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
GeoBlogs
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
beazzy04
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
Nguyen Thanh Tu Collection
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
MIRIAMSALINAS13
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
Atul Kumar Singh
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
PedroFerreira53928
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 

Recently uploaded (20)

The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
Mule 4.6 & Java 17 Upgrade | MuleSoft Mysore Meetup #46
 
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...Cambridge International AS  A Level Biology Coursebook - EBook (MaryFosbery J...
Cambridge International AS A Level Biology Coursebook - EBook (MaryFosbery J...
 
Model Attribute Check Company Auto Property
Model Attribute  Check Company Auto PropertyModel Attribute  Check Company Auto Property
Model Attribute Check Company Auto Property
 
Fish and Chips - have they had their chips
Fish and Chips - have they had their chipsFish and Chips - have they had their chips
Fish and Chips - have they had their chips
 
Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345Sha'Carri Richardson Presentation 202345
Sha'Carri Richardson Presentation 202345
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
 
Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......Ethnobotany and Ethnopharmacology ......
Ethnobotany and Ethnopharmacology ......
 
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXXPhrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
Phrasal Verbs.XXXXXXXXXXXXXXXXXXXXXXXXXX
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
Language Across the Curriculm LAC B.Ed.
Language Across the  Curriculm LAC B.Ed.Language Across the  Curriculm LAC B.Ed.
Language Across the Curriculm LAC B.Ed.
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 

elemetary algebra review.pdf

  • 2. REAL NUMBERS SYSTEM Real Number (R) Rationals (Q) Integers (Z) Negative Integers (Z-) Whole Number (W) {0} Positive Integers (Z+) Prime No. (P) {1} Composite No. (C) Even No. (E) Odd No. (O) Fractions (F) Irrationals (Q’) Notes: 1. Real numbers are composed of rational and irrational numbers. 2. Rational numbers are either terminating or repeating decimals, otherwise it is called irrational. 3. Zero (0) is neither positive nor negative. 4. One (1) is not a prime no. 5. If an integer is not odd, then it is even. 6. 6.4 is not an even number.
  • 3. Question: 1. What is the sum of the smallest prime and largest 2-digit prime number? a. 95 b. 98 c. 99 d. 100 ANS: C
  • 4. Question: Find the sum of all odd integers from -100 to 110? a. 520 b. 525 c. 530 d. 540 ANS: B -100+(-99)+…+99+100=0 101+103+105+107+109=525
  • 5. SETS Union (“or” / ∪) All elements of two sets 𝑨 ∪ 𝑩 = {𝟏, 𝟑, 𝟒, 𝟓, 𝟕, 𝟖} Intersection (“and” / ∩) All common elements of two sets 𝐴 ∩ 𝐵 = {1} Complement ( ‘/ (𝑈 − 𝐴)) Elements in 𝑈 not in 𝐴 𝐴′ = {2, 3, 6, 7, 8, 9, 10} Difference (− / (𝐴 − 𝐵)) Elements in 𝐴 not in 𝐵 𝐴 − 𝐵 = {4, 5} Cross Product (𝐴 × 𝐵) Ordered pairs with domain from 𝐴 and abscisa from 𝐵 𝐴 × 𝐵 = { 1,1 , 1, 3 , … , 5, 7 , 5,8 ) A = {1, 4, 5} B = {1, 3, 7, 8} U = {1, 2, …, 10}
  • 6. Question: Which of the following statement is true? a. If 𝑄 is the universal set, then 𝐹′ = 𝑍. b. 𝑄′ − 𝑄 = { } c. 𝑄 ∩ 𝑍 = 𝐹 d. 𝑍 − 𝑍− = 𝑍+ ANS: A
  • 7. Question: During a survey, the following data were gathered: 60 students like algebra, 50 students like calculus, and 45 likes physics. Thirty students like both algebra and calculus; 25 students like both calculus and physics; and 20 students like algebra and physics. Only 15 students like all the three subjects. How many students were surveyed? a. 155 b. 125 c. 115 d. 95 ANS: D Algebra Calculus Physics 15 5 10 15 25 10 15 25+5+15+15+10+10+15=95
  • 8. SOME THEOREMS ON REAL NUMBERS • Theorem 1. − 𝑎 𝑏 = −𝑎 𝑏 = 𝑎 −𝑏 . • Theorem 2. 𝑎𝑐 𝑏𝑐 = 𝑎 𝑏 . • Theorem 3. 𝑎 𝑐 + 𝑏 𝑐 = 𝑎+𝑏 𝑐 or 𝑎 𝑐 + 𝑏 𝑑 = 𝑎𝑑+𝑏𝑐 𝑐𝑑 . • Theorem 4. 𝑎 𝑏 × 𝑐 𝑑 = 𝑎𝑐 𝑏𝑑 . • Theorem 5. 𝑎 𝑏 ÷ 𝑐 𝑑 = 𝑎 𝑏 × 𝑑 𝑐 = 𝑎𝑑 𝑏𝑐 . NOTE: In the following theorems, 𝑎, 𝑏, 𝑐, 𝑑 may stand for any algebraic expression. 0 𝑎 = 0; 𝑎 0 = 𝑢𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑; 𝑎 ∞ = 0. Common Mistake • 𝑥2−3𝑥+2 𝑥2−2𝑥+1 = (𝑥−2)(𝑥−1) (𝑥−1)(𝑥−1) = 𝑥−2 𝑥−1 • 𝑥−2 𝑥+1 𝑥−2 𝑥−3 = 𝑥−2 𝑥+1 𝑥−2 𝑥−3
  • 9. Fundamental Operations • Addition and Subtraction is only applicable to similar terms. 1. 2𝑥 − 3𝑦 + (5𝑥 + 2𝑦) = 2. 2𝑥 − 3𝑦 − 5𝑥 + 2𝑦 = • For Multiplication and Division, laws of exponents are needed. 𝟕𝒙 − 𝒚 2𝑥 − 3𝑦 − 5𝑥 − 2𝑦 = −𝟑𝒙 − 𝟓𝒚
  • 10. Laws of Exponents 1. 𝑎𝑚 ∙ 𝑎𝑛 = 𝑎𝑚+𝑛 2. 𝑎𝑚 𝑎𝑛 = 𝑎𝑚−𝑛 3. 𝑎𝑚 𝑛 = 𝑎𝑚𝑛 4. 𝑎𝑏 𝑚 = 𝑎𝑚 𝑏𝑚 5. 𝑎 𝑏 𝑚 = 𝑎𝑚 𝑏𝑚 6. 𝑎 𝑚 𝑛 = 𝑛 𝑎𝑚 7. 𝑎0 = 1 provided 𝑎 ≠ 0. Note: 00 is indeterminate. 6. 𝑎−𝑚 = 1 𝑎𝑚 7. If 𝑎𝑚 = 𝑎𝑛, then 𝑚 = 𝑛.
  • 11. Laws of Radicals 1. 𝑎 1 𝑛 = 𝑛 𝑎 2. 𝑎 𝑚 𝑛 = 𝑛 𝑎𝑚 = 𝑛 𝑎 𝑚 3. 𝑛 𝑎 𝑛 = 𝑎 4. 𝑛 𝑎 × 𝑛 𝑏 = 𝑛 𝑎𝑏 5. 𝑛 𝑎 𝑛 𝑏 = 𝑛 𝑎 𝑏 provided that 𝑏 ≠ 0 Illustration: 1. 2𝑥 3 = 23 𝑥3 = 𝟖𝒙𝟑 2. 𝑥3 𝑦 2 = 𝑥3 2 𝑦2 = 𝒙𝟔 𝒚𝟐 3. 2𝑥𝑦3 4 = 2𝑥𝑦3 4 2 = 22 𝑥2 𝑦3 2 = 𝟒𝒙𝟐 𝒚𝟔
  • 12. Question: 𝑎 + 𝑏 𝑏 ∙ 𝑎 − 𝑏 𝑏 is equivalent to? a. 𝑎 + 𝑏 𝑏 b. 𝑎2 − 𝑏3 c. 𝑎 − 𝑏 𝑏 d. 𝑎2 − 𝑏2 ANS: B 𝑎 + 𝑏 𝑏 𝑎 − 𝑏 𝑏 𝑎2 − 𝑏2 𝑏 𝒂𝟐 − 𝒃𝟑
  • 13. Question: Simplify: 𝑎 + 1 𝑎 2 − 𝑎 − 1 𝑎 2 . a. −4 b. 0 c. 4 d. − 2 𝑎2 ANS: C 𝑎 + 1 𝑎 + 𝑎 − 1 𝑎 𝑎 + 1 𝑎 − 𝑎 − 1 𝑎 2𝑎 2 𝑎 𝟒
  • 14. Question: Simplify: 𝑥2𝑦3𝑧−2 −3 𝑥−3𝑦𝑧3 − 1 2 𝑥𝑦𝑧−3 − 5 2 . a. 1 𝑥2𝑦7𝑧3 b. 1 𝑥2𝑦7𝑧5 c. 1 𝑥2𝑦5𝑧3 d. 1 𝑥5𝑦7𝑧3 ANS: A = 𝑥−6 𝑦−9 𝑧6 𝑥 3 2𝑦− 1 2𝑧− 3 2 𝑥 − 5 2 𝑦− 5 2𝑧 15 2 = 𝑥−6𝑦−9𝑧6 𝑥−4𝑦−2𝑧9 = 𝟏 𝒙𝟐𝒚𝟕𝒛𝟑
  • 15. Special Products and Factoring 𝑎𝑥 + 𝑎𝑦 = 𝑎(𝑥 + 𝑦) Multinomial Common Factor 𝑥2 − 𝑦2 = 𝑥 + 𝑦 𝑥 − 𝑦 Difference of two squares 𝑥3 ± 𝑦3 = (𝑥 ± 𝑦)(𝑥2 ∓ 𝑥𝑦 + 𝑦2) Sum/Diff. of two cubes 𝑥2 ± 2𝑥𝑦 + 𝑦2 = 𝑥 ± 𝑦 2 Perfect Square Trinomials 𝑎𝑐𝑥2 + 𝑎𝑑 + 𝑏𝑐 𝑥 + 𝑏𝑑 = (𝑎𝑥 + 𝑏)(𝑐𝑥 + 𝑑) FOIL/Trial-and-Error 𝒓𝒕𝒉 𝒕𝒆𝒓𝒎 = 𝒏! 𝒏 − 𝒓 + 𝟏 ! 𝒓 − 𝟏 ! 𝒂𝒏−𝒓+𝟏 𝒃𝒓−𝟏 Where 𝑟 is the unknown terms and 𝑛 is the total number of unknown terms If 𝑏2 − 4𝑎𝑐 is a perfect square the quadratic trinomial is factorable.
  • 16. Horizontal Multiplication We can always multiply polynomials by polynomials using the distribution methods. Multiply (2𝑥2 − 3𝑥𝑦 + 𝑦2 )(−3𝑥2 + 2𝑥𝑦 − 3𝑦2 ). −3𝑥2 2𝑥2 − 3𝑥𝑦 + 𝑦2 + 2𝑥𝑦 2𝑥2 − 3𝑥𝑦 + 𝑦2 − 3y2(2𝑥2 − 3𝑥𝑦 + 𝑦2) −6𝑥4 + 9𝑥3 𝑦 − 3𝑥2 𝑦2 + 4𝑥3 𝑦 − 6𝑥2 𝑦2 + 2𝑥𝑦3 − 6𝑥2 𝑦2 + 9𝑥𝑦3 − 3𝑦4 −𝟔𝒙𝟒 + 𝟏𝟑𝒙𝟑 𝒚 − 𝟏𝟓𝒙𝟐 𝒚𝟐 + 𝟏𝟏𝒙𝒚𝟑 − 𝟑𝒚𝟒
  • 17. Division of Polynomials • Divide 𝑥4 − 18𝑥2 + 32 by 𝑥 − 4 𝑥3 + 4𝑥2 − 2𝑥 − 8 𝑥 − 4 𝑥4 + 0𝑥3 − 18𝑥2 + 0𝑥 + 32 𝑥4 − 4𝑥3 4𝑥3 − 18𝑥2 4𝑥3 − 16𝑥2 −2𝑥2 + 0𝑥 −2𝑥2 + 8𝑥 −8𝑥 + 32 −8𝑥 + 32 0 1 0 -18 0 32 |4 4 16 -8 -32 1 4 -2 -8 0 Long Division Synthetic Division
  • 18. Factor and Remainder theorem Given a function 𝑓(𝑥) and a binomial 𝑥 − 𝑐 where c is constant. FACTOR. If 𝑓 𝑐 = 0, then 𝑥 − 𝑐 is a factor of 𝑓(𝑥). Example: f x = 2𝑥3 + 5𝑥2 − 𝑥 − 6 and 𝑥 + 2. 𝑓 −2 = 2 −2 3 + 5 −22 − −2 − 6 = 0 REMAINDER. If 𝑓 𝑐 = 𝑧 where 𝑧 ≠ 0, then 𝑧 is the exponent whenever 𝑓(𝑥) is divided by 𝑥 − 𝑐. Example: 𝑓 2 = 2 23 + 5 22 − 2 − 6 = 28
  • 19. Sum of Coefficient of Variables Substitute 1 to each variables in the polynomials then simplify the expression to get the sum of its coefficients. Example: Find the coefficients of the variables in the expansion 2𝑥 + 3𝑦 − 1 4. 2 1 + 3 1 − 1 4 = 44 = 256
  • 20. Question: If 𝑥2 + 𝑦2 = 22 and 𝑥𝑦 = 9, find the value of 𝑥 − 𝑦 2 ? a. 4 b. 13 c. 31 d. 40 ANS: A 𝑥 − 𝑦 2 = 𝑥2 − 2𝑥𝑦 + 𝑦2 = 22 − 2 9 = 4
  • 21. Question: Factor 𝑎4 − 𝑏2 + 𝑏 − 𝑎2 as completely as possible. a. 𝑎2 + 𝑏 𝑎2 + 𝑏 − 1 b. 𝑎2 + 𝑏 𝑎2 − 𝑏 − 1 c. 𝑎2 − 𝑏 𝑎2 + 𝑏 − 1 d. 𝑎2 − 𝑏 𝑎2 − 𝑏 − 1 ANS: C = 𝑎4 − 𝑏2 − 𝑎2 − 𝑏 = 𝑎2 + 𝑏 𝑎2 − 𝑏 − 𝑎2 − 𝑏 = (𝒂𝟐 − 𝒃)(𝒂𝟐 + 𝒃 − 𝟏)
  • 22. Question: Which of the following are the correct factors of 6𝑥2 + 23𝑥 − 4? a. 6𝑥 − 1 𝑥 + 4 b. 6𝑥 + 1 𝑥 − 4 c. 3𝑥 + 4 2𝑥 − 1 d. (3𝑥 − 4)(2𝑥 + 1) ANS: A 𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 6: 3, 2, 1, 6 𝐹𝑎𝑐𝑡𝑜𝑟 𝑜𝑓 − 4: 1, −4, 2, −2 6𝑥 𝑥 (𝟔𝒙 − 𝟏)(𝒙 + 𝟒)
  • 23. Question: Factor the expression 𝑥6 − 1 as completely as possible. a. 𝑥 + 1 𝑥 − 1 𝑥4 + 𝑥2 − 1 b. 𝑥 + 1 𝑥 − 1 𝑥4 + 2𝑥2 + 1 c. 𝑥 + 1 𝑥 − 1 𝑥4 − 𝑥2 + 1 d. (𝑥 + 1)(𝑥 − 1)(𝑥4 + 𝑥2 + 1) ANS: D 𝑥2 − 1 𝑥4 + 𝑥2 + 1 (𝑥 + 1)(𝑥 − 1)(𝑥4 + 𝑥2 + 1)
  • 24. Question: Give a 3rd term so that 4𝑥4 + 9𝑦2 becomes a perfect square trinomial. a. 6𝑥2 𝑦 b. 12𝑥2𝑦2 c. 12𝑥2 𝑦 d. 36𝑥2𝑦 ANS: C 4𝑥4 + 9𝑦2 1st = 2𝑥2 2nd = 3𝑦 3rd = 2*1st *2nd = 2 2𝑥2 3𝑦 = 𝟏𝟐𝒙𝟐 𝒚
  • 25. Question: Simplify: 5𝑥 2𝑥2+7𝑥+3 − 𝑥+3 2𝑥2−3𝑥−2 + 2𝑥+1 𝑥2+𝑥−6 . a. 2 𝑥−3 b. 𝑥−3 5 c. 𝑥+3 𝑥−1 d. 4 𝑥+3 ANS: D = 5𝑥 2𝑥 + 1 𝑥 + 3 − 𝑥 + 3 2𝑥 + 1 𝑥 − 2 + 2𝑥 + 1 𝑥 + 3 𝑥 − 2 = 5𝑥 𝑥 − 2 − 𝑥 + 3 𝑥 + 3 + 2𝑥 + 1 2𝑥 + 1 2𝑥 + 1 𝑥 + 3 𝑥 − 2 = 5𝑥2 − 10𝑥 − 𝑥2 − 6𝑥 − 9 + 4𝑥2 + 4𝑥 + 1 2𝑥 + 1 𝑥 + 3 𝑥 − 2 = 8𝑥2 − 12𝑥 − 8 2𝑥 + 1 𝑥 + 3 𝑥 − 2 = 4 2𝑥 + 1 𝑥 − 2 2𝑥 + 1 𝑥 + 3 𝑥 − 2 = 𝟒 𝒙 + 𝟑
  • 26. Question: Simplify: 𝑚3−8 2𝑚−1 ∙ 2𝑚2+3𝑚−2 𝑚2−4 . a. 𝑚2 + 2𝑚 + 4 b. 𝑚2 + 2𝑚 − 4 c. 𝑚2 − 2𝑚 + 4 d. 𝑚2 − 2𝑚 − 4 ANS: A = 𝑚 − 2 𝑚2 + 2𝑚 + 4 2𝑚 − 1 ∙ 2𝑚 − 1 𝑚 + 2 𝑚 + 2 𝑚 − 2 = 𝒎𝟐 + 𝟐𝒎 + 𝟒
  • 27. Question: What is the remainder if 2𝑥3 − 3𝑥2 + 5𝑥 − 4 is divided by 𝑥 − 1? a. 0 b. -8 c. -4 d. 6 ANS: A 𝑥 − 𝑐 = 𝑥 − 1 𝑠𝑜 𝑐 = 1 = 2 1 3 − 3 1 2 + 5 1 − 4 = 𝟎
  • 28. Question: Given: 𝑓 𝑥 = 𝑥 − 3 𝑥 + 4 + 4 when divided by (𝑥 − 𝑘), the remainder is 𝑘. Find 𝑘. a. 2 b. 3 c. 4 d. -3 ANS: C 𝑓 𝑥 = 𝑥2 + 𝑥 − 8 𝑓 𝑘 = 𝑘 𝑘 = 𝑘2 + 𝑘 − 8 0 = 𝑘2 − 8 𝒌 = ±𝟒
  • 29. Question: Find the sum of the coefficients of all terms in 5𝑥2 − 3𝑦2 8 ? a. 186 b. 256 c. 512 d. 542 ANS: B Substitute 1 to all variables = 5 1 2 − 3 1 2 8 = 28 or 256
  • 30. Linear Equations in One Unknown • The ultimate goal is to transform the equation into 𝑥 = 𝑎 𝑏 , which specifies the value of x. This is called the solution or roots. No Solution Unique Solution Infinitely Many Solution Solve 𝑥+5 𝑥−5 = 1; 𝑥 ≠ 5. 𝑥 − 5 𝑥 + 5 𝑥 − 5 = 1 𝑥 − 5 𝑥 + 5 = 𝑥 − 5 5 = −5 False Statement Solve 𝑥 𝑥−1 + 4 15 = 4 5𝑥−5 + 3 5 (3) 5 𝑥 + 𝑥– 1 4 = 3 4 + 3(𝑥– 1)(3) 15𝑥 + 4𝑥– 4 = 12 + 9𝑥– 9 19𝑥 – 4 = 9𝑥 + 3 19𝑥 – 9𝑥 = 3 + 4 𝑥 = 7 10 Solve 5 2𝑥 − 1 = 2 8𝑥 − 7 − 3 2𝑥 − 3 10𝑥 − 5 = 16𝑥 − 14 − 6𝑥 + 9 10𝑥 − 5 = 10𝑥 − 5 0 = 0 True Statement
  • 31. Solving Linear Equation w/ Two Unknown • Graphical Method Unique Solution Infinitely Many No Solution
  • 32. Solving Linear Equation w/ Two Unknown SUBSTITUTION ELIMINATION DETERMINANTS Solve: 2𝑥 − 𝑦 = 3 2𝑥 + 3𝑦 = 7 EQN 1: 𝑦 = 2𝑥 − 3 EQN 2: 2𝑥 + 3 2𝑥 − 3 = 7 2𝑥 + 6𝑥 − 9 = 7 8𝑥 = 16 𝑥 = 2 EQN 1: 𝑦 = 2 2 − 3 = 1 Solve: 2𝑥 − 𝑦 = 3 2𝑥 + 3𝑦 = 7 2𝑥 − 𝑦 = 3 −(2𝑥 + 3𝑦 = 7) −4𝑦 = −4 𝑦 = 1 EQN 1: 2𝑥 − 1 = 3 𝑥 = 2 Solve: 2𝑥 − 𝑦 = 3 2𝑥 + 3𝑦 = 7 𝑥 = 3 −1 7 3 2 −1 2 3 = 3 3 − 7 −1 2 3 − 2 −1 = 16 8 = 2 𝑦 = 2 3 2 7 2 −1 2 3 = 2 7 − 2 3 2 3 − 2 −1 = 8 8 = 1
  • 33. Question: Find the value of 𝑥 and 𝑦 that satisfies the system of equations: 3𝑥 − 𝑦 = 6 and 9𝑥 − 𝑦 = 12. a. 𝑥 = 3; 𝑦 = 1 b. 𝑥 = 1; y = −3 c. 𝑥 = 2; 𝑦 = 2 d. 𝑥 = 4; 𝑦 = 2 ANS: B 3𝑥 − 𝑦 = 6 − 9𝑥 − 𝑦 = 12 −6𝑥 = −6 Implies 𝒙 = 𝟏. 3 1 − 𝑦 = 6 𝒚 = −𝟑
  • 34. Question: If 𝑓 𝑥 = 2𝑥2 − 𝑥 + 1, what is the value of 𝑓 𝑥 − 𝑓(𝑥 + 1)? a. 4x-1 b. -4x-1 c. 4x+1 d. 1-4x ANS: B = 2𝑥2 − 𝑥 + 1 − 2 𝑥 + 1 2 − 𝑥 + 1 + 1 = 2𝑥2 − 𝑥 + 1 − 2𝑥2 − 4𝑥 − 2 + 𝑥 + 1 − 1 = −𝟒𝒙 − 𝟏
  • 35. Solving Quadratic Equation FACTORING QUADRATIC FORMULA ROOTS - The goal is to factor the equation completely. Make sure the factors are on left-hand side and zero (0) on right-hand side. For quadratic eqn 𝑎𝑥2 + 𝑏𝑥 + 𝑐; 𝒙 = −𝒃± 𝒃𝟐−𝟒𝒂𝒄 𝟐𝒂 Sum : 𝒓𝟏 + 𝒓𝟐 = − 𝒃 𝒂 Product: 𝒓𝟏 ∙ 𝒓𝟐 = 𝒄 𝒂 Solve: 3𝑥2 − 5𝑥 − 2 = 0 3𝑥 + 1 𝑥 − 2 = 0 3𝑥 + 1 = 0 | 𝑥 − 2 = 0 𝑥 = − 1 3 or 𝑥 = 2 Solve: 3𝑥2 − 5𝑥 − 2 = 0 𝑥 = − −5 ± −5 2 − 4 3 −2 2 3 𝑥 = 5 ± 49 6 𝑥 = − 1 3 or 𝑥 = 2 One root of the eqn 3𝑥2 − 5𝑥 + 𝑐 = 0 is 2. Find the other root and the value of 𝑐. Sum: 𝑟 + 2 = 5 3 → 𝑟 = −1/3 Product: 2 − 1 3 = 𝑐 3 → 𝑐 = −2
  • 36. Remarks: 1. 𝑏2 − 4𝑎𝑐 is called the discriminant of the quadratic equation. 2. If 𝑏2 − 4𝑎𝑐 = 0, then the roots are real and both are equal to − 𝑏 2𝑎 3. If 𝑏2 − 4𝑎𝑐 > 0, then the roots are real and unequal. 4. If 𝑏2 − 4𝑎𝑐 < 0, then the roots are imaginary numbers.
  • 37. Question: The values of 𝑥 in the equation 𝑥 2 5 − 𝑥 1 5 − 2 = 0 are: a. 1 & -2 b. -1 & 2 c. -1 & 32 d. 1 & -32 ANS: C 𝑥 1 5 2 − 𝑥 1 5 − 2 = 0 By factoring, 𝑥 1 5 − 2 𝑥 1 5 + 1 = 0 𝑥 1 5 − 2 = 0 or 𝑥 1 5 + 1 = 0 𝒙 = 𝟐𝟓 = 𝟑𝟐 or 𝒙 = −𝟏 𝟓 = −𝟏
  • 38. Question: Give the sum of the roots of 2𝑥2 − 8𝑥 + 1 = 0. a. 4 b. -5 c. -2 d. 2 ANS: A 𝑟1 + 𝑟2 = − −8 2 = 𝟒
  • 39. Question: Find 𝑘 in the equation 4𝑥2 + 𝑘𝑥 + 9 = 0 so that it will only have one real root. a. 10 b. 11 c. 12 d. 13 ANS: C Real and unique roots if 𝑏2 − 4𝑎𝑐 = 0 𝑘2 − 4 4 9 = 0 𝑘2 = 144 𝒌 = ±𝟏𝟐
  • 40. Question: Find the roots of 𝑥2 − 4 + 4𝑥 = 0. a. 2 b. 2 and -2 c. 0 d. no root ANS: D 𝑥2 − 4 = − 4𝑥 𝑥2 − 4 = 4𝑥 𝑥2 − 4𝑥 − 4 = 0 𝑥 − 2 2 = 0 𝑥 = 2 Checking: 0 + 16 ≠ 0. False statement → No roots
  • 41. Partial Fractions Illustrations: • 3 𝑥−1 𝑥+2 = 𝐴 𝑥−1 + 𝐵 𝑥+2 • 3𝑥2+2𝑥+1 𝑥−1 3 = 𝐴 𝑥−1 + 𝐵 𝑥−1 2 + 𝐶 𝑥−1 3 • 3𝑥−5 𝑥−1 𝑥2+𝑥+1 2 = 𝐴 𝑥−1 + 𝐵𝑥+𝐶 𝑥2+𝑥+1 + 𝐷𝑥+𝐸 𝑥2+𝑥+1 2 • 3𝑥−2 𝑥−1 2 𝑥2+𝑥+1 = 𝐴 𝑥−1 + 𝐵 𝑥−1 2 + 𝐶𝑥+𝐷 𝑥2+𝑥+1
  • 42. Question: Find A and B such that 𝑥+10 𝑥2−4 = 𝐴 𝑥−2 + 𝐵 𝑥+2 . a. A= -3; B= 2 b. A= -3; B= -2 c. A= 3; B= -2 d. A= 3; B= 2 ANS: C 𝑥 + 10 = 𝐴 𝑥 + 2 + 𝐵 𝑥 − 2 𝑥 + 10 = 𝐴 + 𝐵 𝑥 + 2𝐴 − 2𝐵 This implies 𝐴 + 𝐵 = 1 and 2𝐴 − 2𝐵 = 10 Then, 2 1 − 𝐵 − 2𝐵 = 10 −4𝐵 = 8 𝑩 = −𝟐 From 𝐴 + 𝐵 = 1 𝑨 = 𝟑
  • 43. Question: Find the value of A: 𝑥2 + 4𝑥 + 10 𝑥3 + 2𝑥2 + 5𝑥 = 𝐴 𝑥 + 𝐵 2𝑥 + 2 𝑥2 + 2𝑥 + 5 + 𝐶 𝑥2 + 2𝑥 + 5 a. 2 b. -2 c. ½ d. -1/2 ANS: A 𝑥2 + 4𝑥 + 10 = 𝐴 𝑥2 + 2𝑥 + 5 + 𝐵𝑥 2𝑥 + 2 + 𝐶𝑥 𝑥2 + 4𝑥 + 10 = 𝐴 + 2𝐵 𝑥2 + 2𝐴 + 2𝐵 + 𝐶 𝑥 + 5𝐴 5𝐴 = 10 𝑨 = 𝟐
  • 44. Progression DESCRIPTION LAST TERM SUM MEAN Arithmetic Progression Sequence of number with a fixed common difference i.e., 1, 3, 5, 7, 9 𝐿 = 𝑎 + 𝑛 − 1 𝑑 𝑆 = 𝑛 2 (𝑎 + 𝐿) 𝑏 = 𝑎 + 𝑐 2 Geometric Progression Sequence of number with a fixed common ratio i.e., 1, 3, 9, 27 𝐿 = 𝑎𝑟𝑛−1 𝑆 = 𝑎 1 − 𝑟𝑛 1 − 𝑟 𝑏 = ± 𝑎𝑐 Harmonic Progression The sequence of numbers formed by the reciprocals of the terms of an arithmetic progression (i.e., 1, 1 3 , 1 5 , 1 7 , 1 9 ).
  • 45. Question: What is the 30th element of the arithmetic sequence for which the first element is 5 and the third is 13? a. 237 b. 125 c. 121 d. 150 ANS: C Given: 𝑎 = 5; 𝑎3 = 13; 𝑛 = 30 𝑎2 = 5 + 13 2 = 9 𝑑 = 4 𝑎30 = 5 + 30 − 1 4 𝒂𝟑𝟎 = 𝟏𝟐𝟏
  • 46. Question: Find the 12th term of the series 6, 3, 2. a. ½ b. ¼ c. 1/8 d. 1/12 ANS: A 𝑁𝑜𝑡𝑒: 1 6 , 1 3 , 1 2 is an arithmetic seq. Given: 𝑎1 = 1 6 ; 𝑑 = 1 6 ; 𝑛 = 12 𝑎12 = 1 6 + 12 − 1 1 6 𝑎12 = 12 6 𝑜𝑟 2 Thus, the 12th term is 𝟏 𝟐 .
  • 47. Question: The 1st term of a geometric progression is 64, the last term is -2 and the sum of the terms is 42. How many terms are there? a. 12 b. 10 c. 8 d. 6 ANS: D 42 = 64 1−𝑟𝑛 1−𝑟 −2 = 64𝑟𝑛−1 42 − 42𝑟 = 64 − 64𝑟𝑛 − 2𝑟 64 = 𝑟𝑛 42 − 42𝑟 = 64 − 64 − 2𝑟 64 42 − 42𝑟 = 64 + 2𝑟 − 1 32 = − 1 2 𝑛−1 44𝑟 = −22 − 1 2 5 = − 1 2 𝑛−1 𝑟 = − 1 2 𝑛 − 1 = 5 𝑜𝑟 𝑛 = 6
  • 48. Problem Solving Step 1. Identify the given and unknowns Step 2. Translate word phrases into algebraic symbols Step 3. Perform the operations and solve for the unknowns Step 4. Verify your answer.
  • 49. Question: One pipe can fill a tank in 45 minutes and another pipe can fill it in 30 minutes. If these two pipes are open while a 3rd pipe is drawing water from the tank, it takes 27 minutes to fill the tank. How long will it take the 3rd pipe alone to empty a full tank? a. 48 min b. 20 min c. 54 min d. 60 min ANS: C TIME RATE Pipe 1 45min 1/45 Pipe 2 30min 1/30 Pipe 3 X min 1/x 1 45 + 1 30 − 1 𝑥 = 1 27 𝑥 = 54 𝑚𝑖𝑛
  • 50. Question: A student in a chemistry laboratory wants to form a 32 ml mixture of 2 solutions to contain 30% acid. Solution A contains 42% acid and solution B contains18% acid. How many ml of each solution must be used? a. A=16; B=16 b. A=14; B=18 c. A=10; B=22 d. A=15; B=17 ANS: A mL % Soln 1 X 42% Soln 2 y 18% 𝑥 + 𝑦 = 32 0.42𝑥 + 0.18𝑦 = 32 0.3 0.42 32 − 𝑦 + 0.18𝑦 = 9.6 13.44 − 0.24𝑦 = 9.6 𝑦 = 16 𝑥 = 16
  • 51. Question: Mary was four times as old as Ann four years ago and if Mary will be twice as old as Ann four years hence. How old is Ann? a. 14 b. 12 c. 10 d. 8 ANS: D -4 Present +4 Mary 4(x-4) 4x-8 Ann X-4 x X+4 2 𝑥 + 4 = 4𝑥 − 8 2𝑥 = 16 𝑥 = 8
  • 52. Question: The number of centimeters in the perimeter of a certain square is equal to the number of square centimeter in its area. Find the length of the sides of the square. a. 5 cm b. 2 cm c. 4 cm d. 6 cm ANS: C 4𝑠 = 𝑠2 𝑠2 − 4𝑠 = 0 𝑠 𝑠 − 4 = 0 𝑠 = 0 𝑜𝑟 𝒔 = 𝟒
  • 53. Question: Find two consecutive even integers such that the square of larger is 44 greater than the square of the smaller integer. a. 10 & 12 b. 12 & 14 c. 8 & 10 d. 14 & 16 ANS: A Let 𝑥 and 𝑥 + 2 be the two even integers 𝑥 + 2 2 = 𝑥2 + 44 𝑥2 + 4𝑥 + 4 = 𝑥2 + 44 4𝑥 = 40 𝒙 = 𝟏𝟎 𝒙 + 𝟐 = 𝟏𝟐
  • 54. Question: A boat travels at the rate of 28 kph in still water. It took the boat 2.75 hrs to travel downstream and 4.25 hrs to cover the same distance upstream. Find the rate of the water current. a. 5 kph b. 6 kph c. 7 kph d. 8 kph ANS: B 𝐷 = 𝑅𝑇 2.75 𝑥 + 28 = 4.25 28 − 𝑥 2.75𝑥 + 77 = −4.25𝑥 + 119 7𝑥 = 42 𝑥 = 6
  • 55. Question: The unit digits of a 2-digit no. exceeds the tens digit by 3. If the digits are reversed and divided by the original, the quotient is 2 and remainder is 2. Find the number. a. 25 b. 36 c. 14 d. 22 ANS: A 𝑑𝑖𝑔𝑖𝑡 = 10𝑥 + 𝑥 + 3 Reverse = 10 𝑥 + 3 + 𝑥 10 𝑥 + 3 + 𝑥 10𝑥 + 𝑥 + 3 = 2 + 2 10𝑥 + 𝑥 + 3 11𝑥 + 30 11𝑥 + 3 = 22𝑥 + 8 11𝑥 + 3 11𝑥 + 30 = 22𝑥 + 8 11𝑥 = 22 𝑥 = 2 Digit = 20 + 2 + 3 = 25
  • 56. Complex Number: Complex numbers are written in the form 𝑎 + 𝑏𝑖, where 𝑎 is the real part and 𝑏𝑖 is the imaginary part. When dealing with imaginary number always remember that 𝑖2 = −1. Example: 𝑖15 = 𝑖14 𝑖 = 𝑖2 7 𝑖 = −1 7 𝑖 = −𝑖
  • 57. Question: (3 – 2i)(4 + 2i) is equal to ________. a. 12 – 4i b. 8 – 2i c. 16 – 2i d. 8 + 2i ANS: C = 12 − 8𝑖 + 6𝑖 − 4𝑖2 = 12 − 2𝑖 − 4 −1 = 16 − 2𝑖