Simplification of Surds
To simplify surds we do one of the
following :
1. Split the numerator
2. Expand brackets
3. Rationalize
4. Apply the properties
Rationalization of Surds
𝑎
𝑏
=
𝑎
𝑏
×
𝑏
𝑏
=
𝑎𝑏
𝑏
Rationalization of Surds
𝑎
1 − 𝑏
=
𝑎
1 − 𝑏
×
1 + 𝑏
1 + 𝑏
=
𝑎(1 + 𝑏)
(1 − 𝑏)(1 + 𝑏)
Rationalization of Surds
𝑎
𝑎 − 𝑏
=
𝑎
𝑎 − 𝑏
×
𝑎 + 𝑏
𝑎 + 𝑏
=
𝑎( 𝑎 + 𝑏)
(1 − 𝑏)(1 + 𝑏)
JAMB 2010
Rationalize
2 3+ 5
5− 3
Solution
2 3 + 5
5 − 3
×
5 + 3
5 + 3
=
2 3( 5 + 3) + 5 5 + 3
5
2
− 3
2
=
2 15 + 2 3 + 5 + 15
2
=
3
2
15 + 11
WASSCE May/June 2014
Simplify 3 75 − 12 + 108
leaving your answer in surd form.
Solution
3 75 − 12 + 108
= 3 25 × 3 − 4 × 3 + 36 × 3
= 3 25 × 3 − 4 × 3 + 36 × 3
= 3 × 5 × 3 − 2 × 3 + 6 × 3
= 15 3 − 2 3 + 6 3
= 19 3
WASSCE May/June 2013
Simplify
3
4
128 − 50 leaving your
answer in surd form.
Solution
3
4
128 − 50
=
3
4
64 × 2 − 25 × 2
=
3
4
× 8 2 − 5 2
= 𝟐
SSSCE Nov. 2004
Without using Calculator, evaluate;
3 7 7 − 2 7 , If 7 = 2.646
Solution
3 7 7 − 2 7
= 𝟐𝟏 𝟕 − 𝟔 × 𝟕
= 𝟐𝟏 𝟕 − 𝟒𝟐
𝒊𝒇 7 = 2.646,
= 𝟐𝟏(𝟐. 𝟔𝟒𝟔) − 𝟒𝟐
= 𝟏𝟑. 𝟓𝟔𝟔
1. Rationalize
2
2
A.
2
2
B. 2 2
C. 2
D. − 2
E.
1
2
F. The correct answer is 2
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛
2
2
=
2
2
×
2
2
=
2 2
2
= √2
2. Simplify √3( 3 − 2)
A. 3 + 6
B. 36 − 6
C. 9 − 6
D. 6 − 6
E. 3 − 6
The correct answer is 3 − 6
Solution
3( 3 − 2)
= 3
2
− 3 × 2
= 3 − 6
3. Given that 28 − 63 = 𝑚 7. Find the value of 𝑚.
A. −4
B. −3
C. −2
D. −1
E. 1
The correct answer is −1
Solution
28 − 63 = 𝑚 7
4 × 7 − 9 × 7 = 𝑚 7
2 7 − 3 7 = 𝑚 7
− 7 = 𝑚 7
𝑚 = −1
4. Given that 2 = 𝑝 and 7 = 𝑞. Express 3.5 in terms of 𝑝 𝑎𝑛𝑑 𝑞.
A.
𝑝
𝑞
B.
𝑝
2𝑞
C.
1
2
𝑝𝑞
D.
2𝑝
𝑞
E. 𝑝 − 𝑞
The correct answer is
1
2
𝑝𝑞
Solution
3.5 =
7
2
=
7
2
=
7
2
×
2
2
=
7 × 2
2
=
1
2
𝑝𝑞
5. Simplify
6− 42
7
A.
6( 7+1)
7
B.
6( 7−6)
7
C.
6( 7−√6)
7
D.
6(1− 7)
7
E.
6( 7−1)
7
The correct answer is
6( 7−1)
7
Solution
6 − 42
7
=
6
7
−
42
7
=
6
7
−
42
7
=
6
7
− 6
=
6
7
×
7
7
− 6
=
6 × 7
7
− 6
=
6( 7 − 1)
7
6. Given that 𝑝 = 3 and 𝑞 = 7. Evaluate (𝑝 − 𝑞)(𝑝 + 𝑞)
A. −2
B. 3
C. −4
D. 6
E. 5
The correct answer is −4
Solution
𝑝 − 𝑞 𝑝 + 𝑞 = 𝑝2
− 𝑞2
= 3
2
− 7
2
= 3 − 7
= −4
7. Given that 𝑝 = 3 and 𝑞 = 7. Evaluate
3𝑝
7𝑞
A.
3 21
19
B.
3 21
21
C.
3 11
49
D.
3 21
49
E.
3 21
10
The correct answer is
3 21
49
Solution
3𝑝
7𝑞
=
3 3
7 7
=
3 3
7 7
×
7
7
=
3 21
7 × 7
=
3 21
49
8. If 2𝑥 =
1
2
. Find the value of 𝑥
A. 𝑥 =
2
4
B. 𝑥 =
2
2
C. 𝑥 =
2
8
D. 𝑥 =
2
16
E. 𝑥 =
2
32
The correct answer is𝑥 =
2
4
Solution
2𝑥 =
1
2
Dividing through by 2
We have
𝑥 =
1
2 2
𝑥 =
1
2 2
×
2
2
𝑥 =
2
2(2)
𝑥 =
2
4
9. If 2𝑥 − 2𝑥 = √6. Find the value of 𝑥
A. 𝑥 =
6( 2+2)
2
B. 𝑥 = −
6( 2+2)
2
C. 𝑥 = −
6( 2−2)
2
D. 𝑥 =
6( 2−2)
2
E. 𝑥 =
6( 2−2)
4
The correct answer is𝑥 = −
6( 2+2)
2
Solution
2𝑥 − 2𝑥 = √6
Factor 𝑥 to obtain;
2 − 2 𝑥 = √6
Dividing through by 2 − 2
We have
𝑥 =
√6
2 − 2
Rationalize ;
𝑥 =
√6
2 − 2
×
2 + 2
2 + 2
𝑥 =
6( 2 + 2)
−2
𝑥 = −
6( 2 + 2)
2
10. Simplify
3
7 3
A.
3
7
B.
3
3
C.
3
21
D.
3
17
E.
3 3
7
The correct answer is
3
7
Solution
=
3
7 3
×
3
3
=
3 3
7(3)
=
3
7
SUMMARY
Rationalizing surds means removing the radical sign from the denominator
The conjugate of 𝑎 is still 𝑎
The conjugate of 𝑎 − 𝑏 is still 𝑎 + 𝑏

Surds revision card

  • 1.
    Simplification of Surds Tosimplify surds we do one of the following : 1. Split the numerator 2. Expand brackets 3. Rationalize 4. Apply the properties
  • 2.
  • 3.
    Rationalization of Surds 𝑎 1− 𝑏 = 𝑎 1 − 𝑏 × 1 + 𝑏 1 + 𝑏 = 𝑎(1 + 𝑏) (1 − 𝑏)(1 + 𝑏)
  • 4.
    Rationalization of Surds 𝑎 𝑎− 𝑏 = 𝑎 𝑎 − 𝑏 × 𝑎 + 𝑏 𝑎 + 𝑏 = 𝑎( 𝑎 + 𝑏) (1 − 𝑏)(1 + 𝑏)
  • 5.
    JAMB 2010 Rationalize 2 3+5 5− 3 Solution 2 3 + 5 5 − 3 × 5 + 3 5 + 3 = 2 3( 5 + 3) + 5 5 + 3 5 2 − 3 2 = 2 15 + 2 3 + 5 + 15 2 = 3 2 15 + 11
  • 6.
    WASSCE May/June 2014 Simplify3 75 − 12 + 108 leaving your answer in surd form. Solution 3 75 − 12 + 108 = 3 25 × 3 − 4 × 3 + 36 × 3 = 3 25 × 3 − 4 × 3 + 36 × 3 = 3 × 5 × 3 − 2 × 3 + 6 × 3 = 15 3 − 2 3 + 6 3 = 19 3
  • 7.
    WASSCE May/June 2013 Simplify 3 4 128− 50 leaving your answer in surd form. Solution 3 4 128 − 50 = 3 4 64 × 2 − 25 × 2 = 3 4 × 8 2 − 5 2 = 𝟐
  • 8.
    SSSCE Nov. 2004 Withoutusing Calculator, evaluate; 3 7 7 − 2 7 , If 7 = 2.646 Solution 3 7 7 − 2 7 = 𝟐𝟏 𝟕 − 𝟔 × 𝟕 = 𝟐𝟏 𝟕 − 𝟒𝟐 𝒊𝒇 7 = 2.646, = 𝟐𝟏(𝟐. 𝟔𝟒𝟔) − 𝟒𝟐 = 𝟏𝟑. 𝟓𝟔𝟔
  • 9.
    1. Rationalize 2 2 A. 2 2 B. 22 C. 2 D. − 2 E. 1 2 F. The correct answer is 2 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 2 2 = 2 2 × 2 2 = 2 2 2 = √2
  • 10.
    2. Simplify √3(3 − 2) A. 3 + 6 B. 36 − 6 C. 9 − 6 D. 6 − 6 E. 3 − 6 The correct answer is 3 − 6 Solution 3( 3 − 2) = 3 2 − 3 × 2 = 3 − 6
  • 11.
    3. Given that28 − 63 = 𝑚 7. Find the value of 𝑚. A. −4 B. −3 C. −2 D. −1 E. 1 The correct answer is −1 Solution 28 − 63 = 𝑚 7 4 × 7 − 9 × 7 = 𝑚 7 2 7 − 3 7 = 𝑚 7 − 7 = 𝑚 7 𝑚 = −1
  • 12.
    4. Given that2 = 𝑝 and 7 = 𝑞. Express 3.5 in terms of 𝑝 𝑎𝑛𝑑 𝑞. A. 𝑝 𝑞 B. 𝑝 2𝑞 C. 1 2 𝑝𝑞 D. 2𝑝 𝑞 E. 𝑝 − 𝑞 The correct answer is 1 2 𝑝𝑞 Solution 3.5 = 7 2 = 7 2 = 7 2 × 2 2 = 7 × 2 2 = 1 2 𝑝𝑞
  • 13.
    5. Simplify 6− 42 7 A. 6(7+1) 7 B. 6( 7−6) 7 C. 6( 7−√6) 7 D. 6(1− 7) 7 E. 6( 7−1) 7 The correct answer is 6( 7−1) 7 Solution 6 − 42 7 = 6 7 − 42 7 = 6 7 − 42 7 = 6 7 − 6 = 6 7 × 7 7 − 6 = 6 × 7 7 − 6 = 6( 7 − 1) 7
  • 14.
    6. Given that𝑝 = 3 and 𝑞 = 7. Evaluate (𝑝 − 𝑞)(𝑝 + 𝑞) A. −2 B. 3 C. −4 D. 6 E. 5 The correct answer is −4 Solution 𝑝 − 𝑞 𝑝 + 𝑞 = 𝑝2 − 𝑞2 = 3 2 − 7 2 = 3 − 7 = −4
  • 15.
    7. Given that𝑝 = 3 and 𝑞 = 7. Evaluate 3𝑝 7𝑞 A. 3 21 19 B. 3 21 21 C. 3 11 49 D. 3 21 49 E. 3 21 10 The correct answer is 3 21 49 Solution 3𝑝 7𝑞 = 3 3 7 7 = 3 3 7 7 × 7 7 = 3 21 7 × 7 = 3 21 49
  • 16.
    8. If 2𝑥= 1 2 . Find the value of 𝑥 A. 𝑥 = 2 4 B. 𝑥 = 2 2 C. 𝑥 = 2 8 D. 𝑥 = 2 16 E. 𝑥 = 2 32 The correct answer is𝑥 = 2 4 Solution 2𝑥 = 1 2 Dividing through by 2 We have 𝑥 = 1 2 2 𝑥 = 1 2 2 × 2 2 𝑥 = 2 2(2) 𝑥 = 2 4
  • 17.
    9. If 2𝑥− 2𝑥 = √6. Find the value of 𝑥 A. 𝑥 = 6( 2+2) 2 B. 𝑥 = − 6( 2+2) 2 C. 𝑥 = − 6( 2−2) 2 D. 𝑥 = 6( 2−2) 2 E. 𝑥 = 6( 2−2) 4 The correct answer is𝑥 = − 6( 2+2) 2 Solution 2𝑥 − 2𝑥 = √6 Factor 𝑥 to obtain; 2 − 2 𝑥 = √6 Dividing through by 2 − 2 We have 𝑥 = √6 2 − 2 Rationalize ; 𝑥 = √6 2 − 2 × 2 + 2 2 + 2 𝑥 = 6( 2 + 2) −2 𝑥 = − 6( 2 + 2) 2
  • 18.
    10. Simplify 3 7 3 A. 3 7 B. 3 3 C. 3 21 D. 3 17 E. 33 7 The correct answer is 3 7 Solution = 3 7 3 × 3 3 = 3 3 7(3) = 3 7
  • 19.
    SUMMARY Rationalizing surds meansremoving the radical sign from the denominator The conjugate of 𝑎 is still 𝑎 The conjugate of 𝑎 − 𝑏 is still 𝑎 + 𝑏