SlideShare a Scribd company logo
1
DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
Physion: Evaluating Physical Prediction
from Vision in Humans and Machines
Presenter: Kei Ota (@ohtake_i).
概要
• 書誌情報
– Physion: Evaluating Physical Prediction from Vision in Humans and Machines
– Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiau-Yu Fish Tung,
R.T. Pramod, Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, Li Fei-Fei,
Nancy Kanwisher, Joshua B. Tenenbaum, Daniel L.K. Yamins, Judith E. Fan
• Stanford, UC San Diego, MIT
– NeurIPS2021 Datasets and Benchmarks Track (2021年から新設?)
• 概要
– 現実に近い物理現象を観測した時に,既存の学習ベースのシミュレータがどれくらい
正確に未来を予測できるかを知るためのデータセット Physion を提案
– 粒⼦ベースのシミュレータが⼈間と同程度の性能を達成,
Visionベースの⼿法はObject-Centricな⼿法でも低い性能であることを⽰した
• 選んだ理由
– 粒⼦ベースのシミュレータに興味があり他の学習ベース⼿法との優劣を知りたかった
2
背景
• 学習ベースシミュレータによる物理現象のシミュレーション精度が⾼まっている
3
設計されたシミュレータ 学習ベースシミュレータ
設計・開発にとてつもない労⼒が必要 使い回しのできる汎⽤的なアーキテクチャ
実⾏に膨⼤な計算リソース(スパコン)が必要 実⾏効率について最適化可能
設計と同じレベルでしか正確でない ⼿に⼊るデータと同じくらい正確
常に逆問題を解くのに効率的とは⾔えない 勾配ベースの⼿法により制御・推論などに使える
https://www.youtube.com/watch?v=8v27_jzNynM
背景
• 現在の機械学習モデルがどれくらい正確に⽇常⽣活で観測する物理現象を理解で
きるか、未来を正確に予想できるかを知りたい
– ⼈間は幼児の段階で物理的な概念を獲得し、⼤⼈になると物理法則に則り未来を予測
– 機械学習モデルは⼈間と同じような性能を達成できる?
4
背景
• 既存のベンチマーク・データセットは以下の要求を満たしていない
– ⽇常⽣活で観測する様々な状況を網羅
– 物理的に正確な動作,実世界に近い描写,多様な物理特性
5
[Groth, et al., ECCV2018]
[Riochet, et al., arXiv]
[Bakhtin, et al., NeurIPS2019]
Physion
– 8つの現実世界でよく観測される物理現象から構成
– カメラの視点・物理特性・物体の形状などを広く網羅し写実的な動画を提供
– 現在のSoTAな機械学習モデルの結果が⼈間の性能に達しているかを評価
6
タスク
– エピソード終端までに2つの物体が接触するかを予測(2値分類)
• 𝑡!"# ステップまでの観測 {𝑋$:&!"#
} から2つの物体 𝑜', 𝑜( が接触する確率を推定する関数
ℱ): 𝑋$:&!"#
, 𝑜', 𝑜( → 𝑃(𝑐𝑜𝑛𝑡𝑎𝑐𝑡) を学習.テストデータで性能を評価
7
https://github.com/cogtoolslab/physics-benchmarking-neurips2021
被験者の実験設定
• 学習:10試⾏をラベル付きで最後まで⾒てシナリオに慣れる
• 評価:最初の数秒だけ⾒てYes/No判定(学習モデルと同じ条件)
– 8シナリオを100⼈がそれぞれ150試⾏評価
8
学習モデルの実験設定
• 学習:2000試⾏.汎化性能を確認するためAll, All But, Only で学習
• 評価:150試⾏
– ⼊⼒の⻑さを変えて評価 Observed, Observed + Simulated, Observed Full Outcome (検知問題)
– 指標:正答率,⼈間と学習モデルの回答の相関,コーエンのカッパ係数
• モデル:Encoder, Dynamics Model, Adaptor で構成
– Adaptorは2値分類器(collided or not).上記モデル学習後に教師あり学習
9
学習モデルの種類
1. 教師なし学習,Encoder + Dynamicsモデル:SVG, OP3, CSWM
2. 教師あり学習,Encoder + Dynamicsモデル:RPIN
3. 学習済みImageNet Encoder + 教師あり学習 RNN-Dynamicsモデル
– pVGG-mlp/lstm, pDeIT-mlp/lstm
4. グラフ構造NN + 完全な状態情報:GNS, GNS-RANSAC, DPI
10
学習モデルの種類
1. 教師なし学習,Encoder + Dynamicsモデル:SVG, OP3, CSWM
2. 教師あり学習,Encoder + Dynamicsモデル:RPIN
3. 学習済みImageNet Encoder + 教師あり学習 RNN-Dynamicsモデル
– pVGG-mlp/lstm, pDeIT-mlp/lstm
4. グラフ構造NN + 完全な状態情報:GNS, GNS-RANSAC, DPI
11
SVG: Stochastic Video Generation
– CNNで潜在変数を符号化 -> LSTMで将来の潜在変数を予測
– 将来の潜在変数 -> 将来の動画フレームを予測
– 潜在変数に強い制約をかけずにCNNで抽出した特徴量で物理理解が得られるか?
12
OP3
– シーンから物体検知 -> CNNで特徴量抽出 -> 物体毎の動⼒学をRGNNで予測
– 特徴量 -> 将来のフレーム変換のロスを⼊れることで object-like な表現を獲得
– それぞれの物体の将来の位置を明に分けて学習することで物理理解は獲得できるか?
13
CSWM: Contrastively-trained Structured World Models
– シーンから物体検知 -> CNNで特徴量抽出 -> 物体毎の動⼒学をRGNNで予測
– 対称学習によりパラメータを更新
– それぞれの物体の将来の位置を明に分けて学習することで物理理解は獲得できるか?
14
学習モデルの種類
1. 教師なし学習,Encoder + Dynamicsモデル:SVG, OP3, CSWM
2. 教師あり学習,Encoder + Dynamicsモデル:RPIN
3. 学習済みImageNet Encoder + 教師あり学習 RNN-Dynamicsモデル
– pVGG-mlp/lstm, pDeIT-mlp/lstm
4. グラフ構造NN + 完全な状態情報:GNS, GNS-RANSAC, DPI
15
Interaction Networks (INs)
16
1. 有向グラフの構築 𝐺 = ⟨ 𝑂, 𝑅⟩
– 𝑂 = 𝑜$ $%&,…,)!
: それぞれの物体の状態
• 位置・速度・属性 (質量, サイズ, etc.)
– 𝑅 = 𝑖, 𝑗, 𝑟* * *%&,…,)"
: 物体間の関係
• e.g., 衝突, バネ
Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, Interaction Networks for Learning about Objects, Relations and Physics, NIPS2016
Interaction Networks (INs)
17
1. 有向グラフの構築 𝐺 = ⟨ 𝑂, 𝑅⟩
– 𝑂 = 𝑜$ $%&,…,)!
: それぞれの物体の状態
• 位置・速度・属性 (質量, サイズ, etc.)
– 𝑅 = 𝑖, 𝑗, 𝑟* * *%&,…,)"
: 物体間の関係
• e.g., 衝突, バネ
2. 物体間の相互作⽤の予測
– 𝑏! = ⟨𝑜", 𝑜#, 𝑟!⟩:	
– 𝑒! = 𝑓$(𝑏!): 物体間の影響
Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, Interaction Networks for Learning about Objects, Relations and Physics, NIPS2016
Interaction Networks (INs)
18
1. 有向グラフの構築 𝐺 = ⟨ 𝑂, 𝑅⟩
– 𝑂 = 𝑜$ $%&,…,)!
: それぞれの物体の状態
• 位置・速度・属性 (質量, サイズ, etc.)
– 𝑅 = 𝑖, 𝑗, 𝑟* * *%&,…,)"
: 物体間の関係
• e.g., 衝突, バネ
2. 物体間の相互作⽤の予測
– 𝑏! = ⟨𝑜", 𝑜#, 𝑟!⟩:	
– 𝑒! = 𝑓$(𝑏!): 物体間の影響
3. 次の状態を予測
• 𝑐$ = 𝑎(𝐺, 𝑥$, 𝑒$): 物体と相互作⽤を収集
• 𝑥#: 外的な影響 (e.g., 重⼒)
• 𝑒#: 内的な影響 (e.g., 張⼒)
• 𝑝$ = 𝑓+(𝑐$): 次の状態
Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, Interaction Networks for Learning about Objects, Relations and Physics, NIPS2016
Interaction Networks (INs)
19
1. 有向グラフの構築 𝐺 = ⟨ 𝑂, 𝑅⟩
– 𝑂 = 𝑜$ $%&,…,)!
: それぞれの物体の状態
• 位置・速度・属性 (質量, サイズ, etc.)
– 𝑅 = 𝑖, 𝑗, 𝑟* * *%&,…,)"
: 物体間の関係
• e.g., 衝突, バネ
2. 物体間の相互作⽤の予測
– 𝑏! = ⟨𝑜", 𝑜#, 𝑟!⟩:	
– 𝑒! = 𝑓$(𝑏!): 物体間の影響
3. 次の状態を予測
• 𝑐$ = 𝑎(𝐺, 𝑥$, 𝑒$): 物体と相互作⽤を収集
• 𝑥#: 外的な影響 (e.g., 重⼒)
• 𝑒#: 内的な影響 (e.g., 張⼒)
• 𝑝$ = 𝑓+(𝑐$): 次の状態
4. パラメータを更新
• min ||𝑜#
%&'
− 𝑝#
%&'
||(
Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, Interaction Networks for Learning about Objects, Relations and Physics, NIPS2016
Interaction Networks (INs)
20
N-body Bouncing balls String
Ground Truth Model
Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, Interaction Networks for Learning about Objects, Relations and Physics, NIPS2016
RPIN (Region Proposal Interaction Networks)
21
– CNNで特徴量抽出 -> 物体検知 -> 物体毎の動⼒学をINsで予測(速度・加速度出⼒)
– 物体検知モジュールは教師あり学習
– それぞれの物体の動⼒学を明に分けて計算することで物理理解は獲得できるか?
Propagation Networks
22
ℎ$
ℎ*
ℎ+
Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, Interaction Networks for Learning about Objects, Relations and Physics, NIPS2016.
Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B. Tenenbaum, Antonio Torralba, Russ Tedrake, Propagation Networks for Model-Based Control Under Partial Observation, ICRA2019.
Message Passingを導⼊しノード間の影響をLステップ分伝搬
粒⼦ベースのシミュレータ
• 1つの物体を複数の粒⼦で表現
– 複雑な形状・異なる性質の物体(剛体・柔軟物・流体)を表現可能
– 粒⼦毎のミクロな動⼒学を学習することで汎化性を向上
23
Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B. Tenenbaum, Daniel L. K. Yamins, Flexible Neural Representation for Physics Prediction, NeurIPS2018.
Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, Peter W. Battaglia, Learning to Simulate Complex Physics with Graph Networks, ICML2020.
GNS (Graph Networks-based Simulators)
24
Encoder
• ⼊⼒:位置・速度x5・粒⼦の種類
• 近傍点でグラフ構築
• MLPで特徴抽出
Processor
• Message-passing x10
• エッジ関数: MLP
• ノード関数: MLP
Decoder
• 加速度を推定
• 𝑦" = 𝛿)
(𝑣"
*
)
• オイラー陽解法で位置・速度計算
Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, Peter W. Battaglia, Learning to Simulate Complex Physics with Graph Networks, ICML2020.
DPI (Dynamic Particle Interaction Networks)
25
– GNSに階層構造を追加(同じ物体に属する粒⼦をグルーピング)
– 物体間のマクロな影響も考慮
Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B. Tenenbaum, Daniel L. K. Yamins, Flexible Neural Representation for Physics Prediction, NeurIPS2018.
Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, Antonio Torralba, Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids, ICLR2019.
被験者の結果
– 全てのシナリオで正答率が⾼い(50%を⼤きく超えている)
– “human zones”(灰⾊の幅)は⽐較的狭く、信頼性のある結果と⾔える
– モデルの予測性能は⼈間のエラーパターンに強い相関がある
26
粒⼦ベースモデルの結果
– ⼈間レベルの性能達成。DPI(粒⼦+階層)は⼈間を上回る
– 汎化性能が⾼い = シナリオに過適合していない(all, all-but-onceの性能も⾼い)
– 衝突が連鎖して起こるDominoesにおいてGNS, GNS-RはDPIより性能低い
• 階層構造を⽤いて同じ物体に属する粒⼦をグルーピングすることが有効
27
Visionベースモデルの結果
• 全てのモデルが⼈間レベルの性能には達しない
• SVG(動画予測モデル)
– ほとんど全く予測できていない
• OP3, CSWM, RPIN(物体毎の動⼒学を計算)
– OP3はchance-level, CSWM, RPINは~60%程度の正答率
– Object-centricな表現が物理現象の理解に繋がる
• ImageNet-pretrained model
– このタスクで学習していないがVisionモデルで最も良い性能
– 強⼒な画像特徴量の獲得が重要
28
Visionベースモデルは何を学習している?
• Observed + simで性能が上がらない
– 物体衝突タスクを解く上で「動画」の予測は役に⽴っていない
– 性能が良いモデルは動画初期の物体間の関係性(位置・姿勢・速度)を
学習していて,それがタスクを解く上で有効(かもしれない)
• shortcut-learning = 意図していないタスクの解かれ⽅の恐れも
• Full movie で性能向上
– 学習した特徴量は「衝突検知タスク」には有効
29
まとめ
• 2つの物体が接触するかを予測するデータセット Physion を提案.
– 現実世界でよく観測される8つのシナリオから構成
– カメラの視点・物理特性・物体の形状などを広く網羅し写実的な動画を提供
• 完全に状態にアクセスできる粒⼦ベースの⼿法が最も性能が良いことを⽰した
• Visionベースの⼿法はいずれも⼈間の認知性能には遠く及ばないことを⽰した
• 次のターゲットは流体や柔軟物を取り⼊れること.
また複数の剛体から構成される物体の予測性能の評価.
30
タスク⼀覧
31
実験設定
• 𝑡:;< ステップまでの観測 {𝑋=:>#$%
} から2つの物体 𝑜?, 𝑜@ が接触する確率を推定する
関数 ℱA: 𝑋=:>#$%
, 𝑜?, 𝑜@ → 𝑃(𝑐𝑜𝑛𝑡𝑎𝑐𝑡) を学習.テストデータで性能を評価
– ⼈間:少量のデータから学習し(タスクに慣れて)推定
– 学習モデル:Encoder, Dynamics Model, Adaptor で構成
• Adaptorはこのタスク⽤の2値分類器.Encoder, Dynamics Modelの学習後に教師あり学習
32
33
DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
Physion: Evaluating Physical Prediction
fromVision in Humans and Machines
Presenter: Kei Ota (@ohtake_i).

More Related Content

What's hot

【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
Deep Learning JP
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
Deep Learning JP
 
Decision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence ModelingDecision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence Modeling
Tomoya Oda
 
Deep learning - A Visual Introduction
Deep learning - A Visual IntroductionDeep learning - A Visual Introduction
Deep learning - A Visual Introduction
Lukas Masuch
 
Tutorial on Deep Learning
Tutorial on Deep LearningTutorial on Deep Learning
Tutorial on Deep Learning
inside-BigData.com
 
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
Deep Learning JP
 
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017
Kenta Oono
 
[PR12] PR-063: Peephole predicting network performance before training
[PR12] PR-063: Peephole predicting network performance before training[PR12] PR-063: Peephole predicting network performance before training
[PR12] PR-063: Peephole predicting network performance before training
Taegyun Jeon
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksDeep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural Networks
Christian Perone
 
Image Translation with GAN
Image Translation with GANImage Translation with GAN
Image Translation with GAN
Junho Cho
 
Deep learning frameworks v0.40
Deep learning frameworks v0.40Deep learning frameworks v0.40
Deep learning frameworks v0.40
Jessica Willis
 
Introduction to Chainer Chemistry
Introduction to Chainer ChemistryIntroduction to Chainer Chemistry
Introduction to Chainer Chemistry
Preferred Networks
 
Convolutional neural network
Convolutional neural network Convolutional neural network
Convolutional neural network
Yan Xu
 
David Barber - Deep Nets, Bayes and the story of AI
David Barber - Deep Nets, Bayes and the story of AIDavid Barber - Deep Nets, Bayes and the story of AI
David Barber - Deep Nets, Bayes and the story of AI
Bayes Nets meetup London
 
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
GeeksLab Odessa
 
HML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep LearningHML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep Learning
Yan Xu
 
101: Convolutional Neural Networks
101: Convolutional Neural Networks 101: Convolutional Neural Networks
101: Convolutional Neural Networks
Mad Scientists
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
Abhishek Bhandwaldar
 
Bayesian networks in AI
Bayesian networks in AIBayesian networks in AI
Bayesian networks in AI
Byoung-Hee Kim
 
150424 Scalable Object Detection using Deep Neural Networks
150424 Scalable Object Detection using Deep Neural Networks150424 Scalable Object Detection using Deep Neural Networks
150424 Scalable Object Detection using Deep Neural Networks
Junho Cho
 

What's hot (20)

【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
 
【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ【DL輪読会】ViT + Self Supervised Learningまとめ
【DL輪読会】ViT + Self Supervised Learningまとめ
 
Decision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence ModelingDecision Transformer: Reinforcement Learning via Sequence Modeling
Decision Transformer: Reinforcement Learning via Sequence Modeling
 
Deep learning - A Visual Introduction
Deep learning - A Visual IntroductionDeep learning - A Visual Introduction
Deep learning - A Visual Introduction
 
Tutorial on Deep Learning
Tutorial on Deep LearningTutorial on Deep Learning
Tutorial on Deep Learning
 
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
【DL輪読会】言語以外でのTransformerのまとめ (ViT, Perceiver, Frozen Pretrained Transformer etc)
 
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017
 
[PR12] PR-063: Peephole predicting network performance before training
[PR12] PR-063: Peephole predicting network performance before training[PR12] PR-063: Peephole predicting network performance before training
[PR12] PR-063: Peephole predicting network performance before training
 
Deep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural NetworksDeep Learning - Convolutional Neural Networks
Deep Learning - Convolutional Neural Networks
 
Image Translation with GAN
Image Translation with GANImage Translation with GAN
Image Translation with GAN
 
Deep learning frameworks v0.40
Deep learning frameworks v0.40Deep learning frameworks v0.40
Deep learning frameworks v0.40
 
Introduction to Chainer Chemistry
Introduction to Chainer ChemistryIntroduction to Chainer Chemistry
Introduction to Chainer Chemistry
 
Convolutional neural network
Convolutional neural network Convolutional neural network
Convolutional neural network
 
David Barber - Deep Nets, Bayes and the story of AI
David Barber - Deep Nets, Bayes and the story of AIDavid Barber - Deep Nets, Bayes and the story of AI
David Barber - Deep Nets, Bayes and the story of AI
 
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...AI&BigData Lab. Артем Чернодуб  "Распознавание изображений методом Lazy Deep ...
AI&BigData Lab. Артем Чернодуб "Распознавание изображений методом Lazy Deep ...
 
HML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep LearningHML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep Learning
 
101: Convolutional Neural Networks
101: Convolutional Neural Networks 101: Convolutional Neural Networks
101: Convolutional Neural Networks
 
Introduction to deep learning
Introduction to deep learningIntroduction to deep learning
Introduction to deep learning
 
Bayesian networks in AI
Bayesian networks in AIBayesian networks in AI
Bayesian networks in AI
 
150424 Scalable Object Detection using Deep Neural Networks
150424 Scalable Object Detection using Deep Neural Networks150424 Scalable Object Detection using Deep Neural Networks
150424 Scalable Object Detection using Deep Neural Networks
 

Similar to 【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Machines

[Mmlab seminar 2016] deep learning for human pose estimation
[Mmlab seminar 2016] deep learning for human pose estimation[Mmlab seminar 2016] deep learning for human pose estimation
[Mmlab seminar 2016] deep learning for human pose estimation
Wei Yang
 
Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...
Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...
Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...
Bayes Nets meetup London
 
Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...
Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...
Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...
Ian Morgan
 
IRJET - Object Detection using Deep Learning with OpenCV and Python
IRJET - Object Detection using Deep Learning with OpenCV and PythonIRJET - Object Detection using Deep Learning with OpenCV and Python
IRJET - Object Detection using Deep Learning with OpenCV and Python
IRJET Journal
 
direct use of particle filters for decision making
direct use of particle filters for decision makingdirect use of particle filters for decision making
direct use of particle filters for decision making
Ryuichi Ueda
 
TRiPODの紹介
TRiPODの紹介TRiPODの紹介
TRiPODの紹介
Hitoshi Nishimura
 
Artificial Intelligence Applications in Petroleum Engineering - Part I
Artificial Intelligence Applications in Petroleum Engineering - Part IArtificial Intelligence Applications in Petroleum Engineering - Part I
Artificial Intelligence Applications in Petroleum Engineering - Part I
Ramez Abdalla, M.Sc
 
最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に - 最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に -
Hiroshi Fukui
 
Particle Swarm Optimization
Particle Swarm OptimizationParticle Swarm Optimization
Particle Swarm Optimization
Stelios Petrakis
 
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep NetworksModel-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Yoonho Lee
 
Machine Learning ICS 273A
Machine Learning ICS 273AMachine Learning ICS 273A
Machine Learning ICS 273A
butest
 
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing codeISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
Kengo Sato
 
Sampling based motion planning method and shallow survey
Sampling based motion planning method and shallow surveySampling based motion planning method and shallow survey
Sampling based motion planning method and shallow survey
ssuser165ef9
 
Location Prediction Under Data Sparsity
Location Prediction Under Data SparsityLocation Prediction Under Data Sparsity
Location Prediction Under Data Sparsity
James McInerney
 
Scaling Self-Experimentation
Scaling Self-ExperimentationScaling Self-Experimentation
Scaling Self-Experimentation
Ida Sim
 
[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...
[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...
[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...
NAVER Engineering
 
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
MLconf
 
Action Genome: Action As Composition of Spatio Temporal Scene Graphs
Action Genome: Action As Composition of Spatio Temporal Scene GraphsAction Genome: Action As Composition of Spatio Temporal Scene Graphs
Action Genome: Action As Composition of Spatio Temporal Scene Graphs
Sangmin Woo
 
Computational Training for Domain Scientists & Data Literacy
Computational Training for Domain Scientists & Data LiteracyComputational Training for Domain Scientists & Data Literacy
Computational Training for Domain Scientists & Data Literacy
Joshua Bloom
 
When Remote Sensing Meets Artificial Intelligence
When Remote Sensing Meets Artificial IntelligenceWhen Remote Sensing Meets Artificial Intelligence
When Remote Sensing Meets Artificial Intelligence
WahyuRahmaniar2
 

Similar to 【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Machines (20)

[Mmlab seminar 2016] deep learning for human pose estimation
[Mmlab seminar 2016] deep learning for human pose estimation[Mmlab seminar 2016] deep learning for human pose estimation
[Mmlab seminar 2016] deep learning for human pose estimation
 
Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...
Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...
Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...
 
Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...
Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...
Professor Steve Roberts; The Bayesian Crowd: scalable information combinati...
 
IRJET - Object Detection using Deep Learning with OpenCV and Python
IRJET - Object Detection using Deep Learning with OpenCV and PythonIRJET - Object Detection using Deep Learning with OpenCV and Python
IRJET - Object Detection using Deep Learning with OpenCV and Python
 
direct use of particle filters for decision making
direct use of particle filters for decision makingdirect use of particle filters for decision making
direct use of particle filters for decision making
 
TRiPODの紹介
TRiPODの紹介TRiPODの紹介
TRiPODの紹介
 
Artificial Intelligence Applications in Petroleum Engineering - Part I
Artificial Intelligence Applications in Petroleum Engineering - Part IArtificial Intelligence Applications in Petroleum Engineering - Part I
Artificial Intelligence Applications in Petroleum Engineering - Part I
 
最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に - 最近の研究情勢についていくために - Deep Learningを中心に -
最近の研究情勢についていくために - Deep Learningを中心に -
 
Particle Swarm Optimization
Particle Swarm OptimizationParticle Swarm Optimization
Particle Swarm Optimization
 
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep NetworksModel-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
 
Machine Learning ICS 273A
Machine Learning ICS 273AMachine Learning ICS 273A
Machine Learning ICS 273A
 
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing codeISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
ISMB2014読み会 イントロ + Deep learning of the tissue-regulated splicing code
 
Sampling based motion planning method and shallow survey
Sampling based motion planning method and shallow surveySampling based motion planning method and shallow survey
Sampling based motion planning method and shallow survey
 
Location Prediction Under Data Sparsity
Location Prediction Under Data SparsityLocation Prediction Under Data Sparsity
Location Prediction Under Data Sparsity
 
Scaling Self-Experimentation
Scaling Self-ExperimentationScaling Self-Experimentation
Scaling Self-Experimentation
 
[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...
[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...
[CVPR 2018] Utilizing unlabeled or noisy labeled data (classification, detect...
 
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
 
Action Genome: Action As Composition of Spatio Temporal Scene Graphs
Action Genome: Action As Composition of Spatio Temporal Scene GraphsAction Genome: Action As Composition of Spatio Temporal Scene Graphs
Action Genome: Action As Composition of Spatio Temporal Scene Graphs
 
Computational Training for Domain Scientists & Data Literacy
Computational Training for Domain Scientists & Data LiteracyComputational Training for Domain Scientists & Data Literacy
Computational Training for Domain Scientists & Data Literacy
 
When Remote Sensing Meets Artificial Intelligence
When Remote Sensing Meets Artificial IntelligenceWhen Remote Sensing Meets Artificial Intelligence
When Remote Sensing Meets Artificial Intelligence
 

More from Deep Learning JP

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
Deep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
Deep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
Deep Learning JP
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
Deep Learning JP
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
Deep Learning JP
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
Deep Learning JP
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
Deep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
Deep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
Deep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
Deep Learning JP
 

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
 
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
【DL輪読会】Zero-Shot Dual-Lens Super-Resolution
 
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
【DL輪読会】BloombergGPT: A Large Language Model for Finance arxiv
 
【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM【DL輪読会】マルチモーダル LLM
【DL輪読会】マルチモーダル LLM
 
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo... 【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
【 DL輪読会】ToolLLM: Facilitating Large Language Models to Master 16000+ Real-wo...
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
 

Recently uploaded

Session 1 - Intro to Robotic Process Automation.pdf
Session 1 - Intro to Robotic Process Automation.pdfSession 1 - Intro to Robotic Process Automation.pdf
Session 1 - Intro to Robotic Process Automation.pdf
UiPathCommunity
 
AppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSFAppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSF
Ajin Abraham
 
"Choosing proper type of scaling", Olena Syrota
"Choosing proper type of scaling", Olena Syrota"Choosing proper type of scaling", Olena Syrota
"Choosing proper type of scaling", Olena Syrota
Fwdays
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
Ivo Velitchkov
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
Antonios Katsarakis
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
Jakub Marek
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
Chart Kalyan
 
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
Fwdays
 
Y-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PPY-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PP
c5vrf27qcz
 
GNSS spoofing via SDR (Criptored Talks 2024)
GNSS spoofing via SDR (Criptored Talks 2024)GNSS spoofing via SDR (Criptored Talks 2024)
GNSS spoofing via SDR (Criptored Talks 2024)
Javier Junquera
 
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham HillinQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
LizaNolte
 
Principle of conventional tomography-Bibash Shahi ppt..pptx
Principle of conventional tomography-Bibash Shahi ppt..pptxPrinciple of conventional tomography-Bibash Shahi ppt..pptx
Principle of conventional tomography-Bibash Shahi ppt..pptx
BibashShahi
 
Demystifying Knowledge Management through Storytelling
Demystifying Knowledge Management through StorytellingDemystifying Knowledge Management through Storytelling
Demystifying Knowledge Management through Storytelling
Enterprise Knowledge
 
"What does it really mean for your system to be available, or how to define w...
"What does it really mean for your system to be available, or how to define w..."What does it really mean for your system to be available, or how to define w...
"What does it really mean for your system to be available, or how to define w...
Fwdays
 
High performance Serverless Java on AWS- GoTo Amsterdam 2024
High performance Serverless Java on AWS- GoTo Amsterdam 2024High performance Serverless Java on AWS- GoTo Amsterdam 2024
High performance Serverless Java on AWS- GoTo Amsterdam 2024
Vadym Kazulkin
 
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeckPoznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
FilipTomaszewski5
 
Must Know Postgres Extension for DBA and Developer during Migration
Must Know Postgres Extension for DBA and Developer during MigrationMust Know Postgres Extension for DBA and Developer during Migration
Must Know Postgres Extension for DBA and Developer during Migration
Mydbops
 
Day 2 - Intro to UiPath Studio Fundamentals
Day 2 - Intro to UiPath Studio FundamentalsDay 2 - Intro to UiPath Studio Fundamentals
Day 2 - Intro to UiPath Studio Fundamentals
UiPathCommunity
 
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Pitangent Analytics & Technology Solutions Pvt. Ltd
 
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-EfficiencyFreshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
ScyllaDB
 

Recently uploaded (20)

Session 1 - Intro to Robotic Process Automation.pdf
Session 1 - Intro to Robotic Process Automation.pdfSession 1 - Intro to Robotic Process Automation.pdf
Session 1 - Intro to Robotic Process Automation.pdf
 
AppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSFAppSec PNW: Android and iOS Application Security with MobSF
AppSec PNW: Android and iOS Application Security with MobSF
 
"Choosing proper type of scaling", Olena Syrota
"Choosing proper type of scaling", Olena Syrota"Choosing proper type of scaling", Olena Syrota
"Choosing proper type of scaling", Olena Syrota
 
Apps Break Data
Apps Break DataApps Break Data
Apps Break Data
 
Dandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity serverDandelion Hashtable: beyond billion requests per second on a commodity server
Dandelion Hashtable: beyond billion requests per second on a commodity server
 
Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)Main news related to the CCS TSI 2023 (2023/1695)
Main news related to the CCS TSI 2023 (2023/1695)
 
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdfHow to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
How to Interpret Trends in the Kalyan Rajdhani Mix Chart.pdf
 
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk"Frontline Battles with DDoS: Best practices and Lessons Learned",  Igor Ivaniuk
"Frontline Battles with DDoS: Best practices and Lessons Learned", Igor Ivaniuk
 
Y-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PPY-Combinator seed pitch deck template PP
Y-Combinator seed pitch deck template PP
 
GNSS spoofing via SDR (Criptored Talks 2024)
GNSS spoofing via SDR (Criptored Talks 2024)GNSS spoofing via SDR (Criptored Talks 2024)
GNSS spoofing via SDR (Criptored Talks 2024)
 
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham HillinQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
inQuba Webinar Mastering Customer Journey Management with Dr Graham Hill
 
Principle of conventional tomography-Bibash Shahi ppt..pptx
Principle of conventional tomography-Bibash Shahi ppt..pptxPrinciple of conventional tomography-Bibash Shahi ppt..pptx
Principle of conventional tomography-Bibash Shahi ppt..pptx
 
Demystifying Knowledge Management through Storytelling
Demystifying Knowledge Management through StorytellingDemystifying Knowledge Management through Storytelling
Demystifying Knowledge Management through Storytelling
 
"What does it really mean for your system to be available, or how to define w...
"What does it really mean for your system to be available, or how to define w..."What does it really mean for your system to be available, or how to define w...
"What does it really mean for your system to be available, or how to define w...
 
High performance Serverless Java on AWS- GoTo Amsterdam 2024
High performance Serverless Java on AWS- GoTo Amsterdam 2024High performance Serverless Java on AWS- GoTo Amsterdam 2024
High performance Serverless Java on AWS- GoTo Amsterdam 2024
 
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeckPoznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
Poznań ACE event - 19.06.2024 Team 24 Wrapup slidedeck
 
Must Know Postgres Extension for DBA and Developer during Migration
Must Know Postgres Extension for DBA and Developer during MigrationMust Know Postgres Extension for DBA and Developer during Migration
Must Know Postgres Extension for DBA and Developer during Migration
 
Day 2 - Intro to UiPath Studio Fundamentals
Day 2 - Intro to UiPath Studio FundamentalsDay 2 - Intro to UiPath Studio Fundamentals
Day 2 - Intro to UiPath Studio Fundamentals
 
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
Crafting Excellence: A Comprehensive Guide to iOS Mobile App Development Serv...
 
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-EfficiencyFreshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
Freshworks Rethinks NoSQL for Rapid Scaling & Cost-Efficiency
 

【DL輪読会】Physion: Evaluating Physical Prediction from Vision in Humans and Machines

  • 1. 1 DEEP LEARNING JP [DL Papers] http://deeplearning.jp/ Physion: Evaluating Physical Prediction from Vision in Humans and Machines Presenter: Kei Ota (@ohtake_i).
  • 2. 概要 • 書誌情報 – Physion: Evaluating Physical Prediction from Vision in Humans and Machines – Daniel M. Bear, Elias Wang, Damian Mrowca, Felix J. Binder, Hsiau-Yu Fish Tung, R.T. Pramod, Cameron Holdaway, Sirui Tao, Kevin Smith, Fan-Yun Sun, Li Fei-Fei, Nancy Kanwisher, Joshua B. Tenenbaum, Daniel L.K. Yamins, Judith E. Fan • Stanford, UC San Diego, MIT – NeurIPS2021 Datasets and Benchmarks Track (2021年から新設?) • 概要 – 現実に近い物理現象を観測した時に,既存の学習ベースのシミュレータがどれくらい 正確に未来を予測できるかを知るためのデータセット Physion を提案 – 粒⼦ベースのシミュレータが⼈間と同程度の性能を達成, Visionベースの⼿法はObject-Centricな⼿法でも低い性能であることを⽰した • 選んだ理由 – 粒⼦ベースのシミュレータに興味があり他の学習ベース⼿法との優劣を知りたかった 2
  • 3. 背景 • 学習ベースシミュレータによる物理現象のシミュレーション精度が⾼まっている 3 設計されたシミュレータ 学習ベースシミュレータ 設計・開発にとてつもない労⼒が必要 使い回しのできる汎⽤的なアーキテクチャ 実⾏に膨⼤な計算リソース(スパコン)が必要 実⾏効率について最適化可能 設計と同じレベルでしか正確でない ⼿に⼊るデータと同じくらい正確 常に逆問題を解くのに効率的とは⾔えない 勾配ベースの⼿法により制御・推論などに使える https://www.youtube.com/watch?v=8v27_jzNynM
  • 5. 背景 • 既存のベンチマーク・データセットは以下の要求を満たしていない – ⽇常⽣活で観測する様々な状況を網羅 – 物理的に正確な動作,実世界に近い描写,多様な物理特性 5 [Groth, et al., ECCV2018] [Riochet, et al., arXiv] [Bakhtin, et al., NeurIPS2019]
  • 7. タスク – エピソード終端までに2つの物体が接触するかを予測(2値分類) • 𝑡!"# ステップまでの観測 {𝑋$:&!"# } から2つの物体 𝑜', 𝑜( が接触する確率を推定する関数 ℱ): 𝑋$:&!"# , 𝑜', 𝑜( → 𝑃(𝑐𝑜𝑛𝑡𝑎𝑐𝑡) を学習.テストデータで性能を評価 7 https://github.com/cogtoolslab/physics-benchmarking-neurips2021
  • 9. 学習モデルの実験設定 • 学習:2000試⾏.汎化性能を確認するためAll, All But, Only で学習 • 評価:150試⾏ – ⼊⼒の⻑さを変えて評価 Observed, Observed + Simulated, Observed Full Outcome (検知問題) – 指標:正答率,⼈間と学習モデルの回答の相関,コーエンのカッパ係数 • モデル:Encoder, Dynamics Model, Adaptor で構成 – Adaptorは2値分類器(collided or not).上記モデル学習後に教師あり学習 9
  • 10. 学習モデルの種類 1. 教師なし学習,Encoder + Dynamicsモデル:SVG, OP3, CSWM 2. 教師あり学習,Encoder + Dynamicsモデル:RPIN 3. 学習済みImageNet Encoder + 教師あり学習 RNN-Dynamicsモデル – pVGG-mlp/lstm, pDeIT-mlp/lstm 4. グラフ構造NN + 完全な状態情報:GNS, GNS-RANSAC, DPI 10
  • 11. 学習モデルの種類 1. 教師なし学習,Encoder + Dynamicsモデル:SVG, OP3, CSWM 2. 教師あり学習,Encoder + Dynamicsモデル:RPIN 3. 学習済みImageNet Encoder + 教師あり学習 RNN-Dynamicsモデル – pVGG-mlp/lstm, pDeIT-mlp/lstm 4. グラフ構造NN + 完全な状態情報:GNS, GNS-RANSAC, DPI 11
  • 12. SVG: Stochastic Video Generation – CNNで潜在変数を符号化 -> LSTMで将来の潜在変数を予測 – 将来の潜在変数 -> 将来の動画フレームを予測 – 潜在変数に強い制約をかけずにCNNで抽出した特徴量で物理理解が得られるか? 12
  • 13. OP3 – シーンから物体検知 -> CNNで特徴量抽出 -> 物体毎の動⼒学をRGNNで予測 – 特徴量 -> 将来のフレーム変換のロスを⼊れることで object-like な表現を獲得 – それぞれの物体の将来の位置を明に分けて学習することで物理理解は獲得できるか? 13
  • 14. CSWM: Contrastively-trained Structured World Models – シーンから物体検知 -> CNNで特徴量抽出 -> 物体毎の動⼒学をRGNNで予測 – 対称学習によりパラメータを更新 – それぞれの物体の将来の位置を明に分けて学習することで物理理解は獲得できるか? 14
  • 15. 学習モデルの種類 1. 教師なし学習,Encoder + Dynamicsモデル:SVG, OP3, CSWM 2. 教師あり学習,Encoder + Dynamicsモデル:RPIN 3. 学習済みImageNet Encoder + 教師あり学習 RNN-Dynamicsモデル – pVGG-mlp/lstm, pDeIT-mlp/lstm 4. グラフ構造NN + 完全な状態情報:GNS, GNS-RANSAC, DPI 15
  • 16. Interaction Networks (INs) 16 1. 有向グラフの構築 𝐺 = ⟨ 𝑂, 𝑅⟩ – 𝑂 = 𝑜$ $%&,…,)! : それぞれの物体の状態 • 位置・速度・属性 (質量, サイズ, etc.) – 𝑅 = 𝑖, 𝑗, 𝑟* * *%&,…,)" : 物体間の関係 • e.g., 衝突, バネ Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, Interaction Networks for Learning about Objects, Relations and Physics, NIPS2016
  • 17. Interaction Networks (INs) 17 1. 有向グラフの構築 𝐺 = ⟨ 𝑂, 𝑅⟩ – 𝑂 = 𝑜$ $%&,…,)! : それぞれの物体の状態 • 位置・速度・属性 (質量, サイズ, etc.) – 𝑅 = 𝑖, 𝑗, 𝑟* * *%&,…,)" : 物体間の関係 • e.g., 衝突, バネ 2. 物体間の相互作⽤の予測 – 𝑏! = ⟨𝑜", 𝑜#, 𝑟!⟩: – 𝑒! = 𝑓$(𝑏!): 物体間の影響 Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, Interaction Networks for Learning about Objects, Relations and Physics, NIPS2016
  • 18. Interaction Networks (INs) 18 1. 有向グラフの構築 𝐺 = ⟨ 𝑂, 𝑅⟩ – 𝑂 = 𝑜$ $%&,…,)! : それぞれの物体の状態 • 位置・速度・属性 (質量, サイズ, etc.) – 𝑅 = 𝑖, 𝑗, 𝑟* * *%&,…,)" : 物体間の関係 • e.g., 衝突, バネ 2. 物体間の相互作⽤の予測 – 𝑏! = ⟨𝑜", 𝑜#, 𝑟!⟩: – 𝑒! = 𝑓$(𝑏!): 物体間の影響 3. 次の状態を予測 • 𝑐$ = 𝑎(𝐺, 𝑥$, 𝑒$): 物体と相互作⽤を収集 • 𝑥#: 外的な影響 (e.g., 重⼒) • 𝑒#: 内的な影響 (e.g., 張⼒) • 𝑝$ = 𝑓+(𝑐$): 次の状態 Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, Interaction Networks for Learning about Objects, Relations and Physics, NIPS2016
  • 19. Interaction Networks (INs) 19 1. 有向グラフの構築 𝐺 = ⟨ 𝑂, 𝑅⟩ – 𝑂 = 𝑜$ $%&,…,)! : それぞれの物体の状態 • 位置・速度・属性 (質量, サイズ, etc.) – 𝑅 = 𝑖, 𝑗, 𝑟* * *%&,…,)" : 物体間の関係 • e.g., 衝突, バネ 2. 物体間の相互作⽤の予測 – 𝑏! = ⟨𝑜", 𝑜#, 𝑟!⟩: – 𝑒! = 𝑓$(𝑏!): 物体間の影響 3. 次の状態を予測 • 𝑐$ = 𝑎(𝐺, 𝑥$, 𝑒$): 物体と相互作⽤を収集 • 𝑥#: 外的な影響 (e.g., 重⼒) • 𝑒#: 内的な影響 (e.g., 張⼒) • 𝑝$ = 𝑓+(𝑐$): 次の状態 4. パラメータを更新 • min ||𝑜# %&' − 𝑝# %&' ||( Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, Interaction Networks for Learning about Objects, Relations and Physics, NIPS2016
  • 20. Interaction Networks (INs) 20 N-body Bouncing balls String Ground Truth Model Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, Interaction Networks for Learning about Objects, Relations and Physics, NIPS2016
  • 21. RPIN (Region Proposal Interaction Networks) 21 – CNNで特徴量抽出 -> 物体検知 -> 物体毎の動⼒学をINsで予測(速度・加速度出⼒) – 物体検知モジュールは教師あり学習 – それぞれの物体の動⼒学を明に分けて計算することで物理理解は獲得できるか?
  • 22. Propagation Networks 22 ℎ$ ℎ* ℎ+ Peter W. Battaglia, Razvan Pascanu, Matthew Lai, Danilo Rezende, Koray Kavukcuoglu, Interaction Networks for Learning about Objects, Relations and Physics, NIPS2016. Yunzhu Li, Jiajun Wu, Jun-Yan Zhu, Joshua B. Tenenbaum, Antonio Torralba, Russ Tedrake, Propagation Networks for Model-Based Control Under Partial Observation, ICRA2019. Message Passingを導⼊しノード間の影響をLステップ分伝搬
  • 23. 粒⼦ベースのシミュレータ • 1つの物体を複数の粒⼦で表現 – 複雑な形状・異なる性質の物体(剛体・柔軟物・流体)を表現可能 – 粒⼦毎のミクロな動⼒学を学習することで汎化性を向上 23 Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B. Tenenbaum, Daniel L. K. Yamins, Flexible Neural Representation for Physics Prediction, NeurIPS2018. Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, Peter W. Battaglia, Learning to Simulate Complex Physics with Graph Networks, ICML2020.
  • 24. GNS (Graph Networks-based Simulators) 24 Encoder • ⼊⼒:位置・速度x5・粒⼦の種類 • 近傍点でグラフ構築 • MLPで特徴抽出 Processor • Message-passing x10 • エッジ関数: MLP • ノード関数: MLP Decoder • 加速度を推定 • 𝑦" = 𝛿) (𝑣" * ) • オイラー陽解法で位置・速度計算 Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, Peter W. Battaglia, Learning to Simulate Complex Physics with Graph Networks, ICML2020.
  • 25. DPI (Dynamic Particle Interaction Networks) 25 – GNSに階層構造を追加(同じ物体に属する粒⼦をグルーピング) – 物体間のマクロな影響も考慮 Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B. Tenenbaum, Daniel L. K. Yamins, Flexible Neural Representation for Physics Prediction, NeurIPS2018. Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, Antonio Torralba, Learning Particle Dynamics for Manipulating Rigid Bodies, Deformable Objects, and Fluids, ICLR2019.
  • 26. 被験者の結果 – 全てのシナリオで正答率が⾼い(50%を⼤きく超えている) – “human zones”(灰⾊の幅)は⽐較的狭く、信頼性のある結果と⾔える – モデルの予測性能は⼈間のエラーパターンに強い相関がある 26
  • 27. 粒⼦ベースモデルの結果 – ⼈間レベルの性能達成。DPI(粒⼦+階層)は⼈間を上回る – 汎化性能が⾼い = シナリオに過適合していない(all, all-but-onceの性能も⾼い) – 衝突が連鎖して起こるDominoesにおいてGNS, GNS-RはDPIより性能低い • 階層構造を⽤いて同じ物体に属する粒⼦をグルーピングすることが有効 27
  • 28. Visionベースモデルの結果 • 全てのモデルが⼈間レベルの性能には達しない • SVG(動画予測モデル) – ほとんど全く予測できていない • OP3, CSWM, RPIN(物体毎の動⼒学を計算) – OP3はchance-level, CSWM, RPINは~60%程度の正答率 – Object-centricな表現が物理現象の理解に繋がる • ImageNet-pretrained model – このタスクで学習していないがVisionモデルで最も良い性能 – 強⼒な画像特徴量の獲得が重要 28
  • 29. Visionベースモデルは何を学習している? • Observed + simで性能が上がらない – 物体衝突タスクを解く上で「動画」の予測は役に⽴っていない – 性能が良いモデルは動画初期の物体間の関係性(位置・姿勢・速度)を 学習していて,それがタスクを解く上で有効(かもしれない) • shortcut-learning = 意図していないタスクの解かれ⽅の恐れも • Full movie で性能向上 – 学習した特徴量は「衝突検知タスク」には有効 29
  • 30. まとめ • 2つの物体が接触するかを予測するデータセット Physion を提案. – 現実世界でよく観測される8つのシナリオから構成 – カメラの視点・物理特性・物体の形状などを広く網羅し写実的な動画を提供 • 完全に状態にアクセスできる粒⼦ベースの⼿法が最も性能が良いことを⽰した • Visionベースの⼿法はいずれも⼈間の認知性能には遠く及ばないことを⽰した • 次のターゲットは流体や柔軟物を取り⼊れること. また複数の剛体から構成される物体の予測性能の評価. 30
  • 32. 実験設定 • 𝑡:;< ステップまでの観測 {𝑋=:>#$% } から2つの物体 𝑜?, 𝑜@ が接触する確率を推定する 関数 ℱA: 𝑋=:>#$% , 𝑜?, 𝑜@ → 𝑃(𝑐𝑜𝑛𝑡𝑎𝑐𝑡) を学習.テストデータで性能を評価 – ⼈間:少量のデータから学習し(タスクに慣れて)推定 – 学習モデル:Encoder, Dynamics Model, Adaptor で構成 • Adaptorはこのタスク⽤の2値分類器.Encoder, Dynamics Modelの学習後に教師あり学習 32
  • 33. 33 DEEP LEARNING JP [DL Papers] http://deeplearning.jp/ Physion: Evaluating Physical Prediction fromVision in Humans and Machines Presenter: Kei Ota (@ohtake_i).