SlideShare a Scribd company logo
Direct current
machine
The purpose of this seminar to represent shunt
Dc machine and Permanent magnet Dc
machine as (state space equations ) and show
how can represent time domain block
diagram and find roots to their
The field and armature voltage equation and the
relationship between torque and rotor speed may be
written as
Field voltage equation
VF = Rf if + d𝝀f/dt = Rf if +d/dt (Lff if + Lfa 𝒊𝒂 ) ----Lfa dia/dt = 0 , d/dt = p
Vf = Rf if + Lff p if = ( Rf +p Lff ) if , if = Vf / (Rf +p Lff ) ------ Lff/ Rf =𝝉f
if =( Vf/rf / (1+ 𝝉f)--------------(1)
Armature voltage equation
Va = ra ia + d𝝀a/dt = ra ia + d/dt ( Laa ia + Laf if ) ---- dif/dt =0 , d/dt = p
Va = ra ia + p Laa ia + dLaf /dt if ------ Laf = -L cos 𝜽r , LAF =L sin 𝜽r
Va = ra ia + P laa ia + 𝝎r LAF if ------ Laa/ra = 𝝉𝒂
ia = 1/ra (Va- 𝝎r LAF if ) / 1+𝒑 𝝉𝒂---------------------(2)
Torque equation
Te = J d 𝝎r /dt + Bm 𝝎r +TL = ( Jp+Bm) 𝝎r +TL
𝝎r = (Te-TL)/(Jp+Bm)--------------------------------------(3)
time domain block diagram of a shunt connected DC
machine according to equations (1 ,2 and 3) in
previous slide
the state space equation for DC machine can be readily achieved by
straightforward manipulation of the field and armature voltage equations
as shown in matrix below :-
• Ssssssssssssssssssssssssss
• Where LFF and LAA are the self inductance of the field and armature volotge
respectively.
• P is the short-hand notation for the operator
𝒅
𝒅𝒕
.
• 𝝎𝒓 is the rotor speed .
• LAF is the mutual inductance between the field and the rotating armature
coils.
• Vf = rf if +
𝒅𝒊𝒇
𝒅𝒕
LFF ------------------------------------------- equ(4)
• Va= 𝝎𝒓LAF if +ra ia +
𝒅𝒊𝒂
𝒅𝒕
LAA -----------------------------equ(5)
• Torque equation is Te = J
𝒅𝝎𝒓
𝒅𝒕
+B 𝝎𝒓+ TL-----------------equ(6)
rearrange equations (4,5 and 6) by
derived yield
•
𝒅𝒊𝒇
𝒅𝒕
=-
𝑹𝒇
𝑳𝑭𝑭
if+
𝟏
𝑳𝑭𝑭
Vf -----------------------equ(7)
•
𝒅𝒊𝒂
𝒅𝒕
=-
𝒓𝒂
𝑳𝑨𝑨
ia -
𝑳𝑨𝑭
𝑳𝑨𝑨
if 𝝎𝒓+
𝟏
𝑳𝑨𝑨
Va --------equ(8)
•
𝒅𝝎𝒓
𝒅𝒕
= -
𝑩𝒎
𝑱
𝝎𝒓 +
𝑳𝑨𝑭
𝑱
if ia -
𝟏
𝑱
TL --------equ(9) where Te= LAF if ia
• Now write state space in matrix
Permanent –magnet DC machine
• The equations that describe the operation of a permanent -
magnet DC machine are identical to those of a shunt-
connected dc machine with the field current constant .for the
permanent- magnet dc machine (LAF if )replaced by
(kv)which is a constant determined by the strength of the
magnet, the reluctance of the iron and the number of turns
of the armature winding. The time domain block diagram
may be developed for the permanent -magnet machine by
using equations ( 2 and 3) with( kv ) substituted for (LAF if)
• ia = 1/ra (Va- 𝝎r kv) / 1+𝒑 𝝉𝒂--------------------------(10)
• 𝝎r = (Te-TL)/(Jp+Bm)--------------------------------------(11)
time domain block diagram of a permanent-
magnet DC machine according to equations (10
and 11) in previous slide
To write state space equations used same
equations (8 and 9) with (kv) substituted for
(LAF if) and (Te) substituted (kv ia)
•
𝒅𝒊𝒂
𝒅𝒕
=-
𝒓𝒂
𝑳𝑨𝑨
ia -
𝒌𝒗
𝑳𝑨𝑨
𝝎𝒓+
𝟏
𝑳𝑨𝑨
Va ---------equ(12)
•
𝒅𝝎𝒓
𝒅𝒕
= -
𝑩𝒎
𝑱
𝝎𝒓 +
𝒌𝒗
𝑱
ia -
𝟏
𝑱
TL ------------equ(13)
• Now write state space in matrix
PX = [ A ] X + [ B ] U
Transfer function for permanent-
magnet DC machine to find the roots
this block in time domain we will convert it to laplace
and compare it with main equation to find the roots
Block diagram of a permanent- magnet dc
machine for a step change in applied voltage ,
therefore TL will be equal to zero
G(s) =
𝟏
𝒓𝒂
𝒌𝒗
(𝟏+𝝉𝒂𝒔)(𝑩𝒎+𝑱𝒔)
, 𝑯 𝒔 = 𝒌𝒗
∆𝜔𝑟(𝑠)
∆𝑉𝑎(𝑠)
=
𝐺(𝑠)
1 + 𝐺 𝑠 𝐻 𝑠
∆𝝎𝒓(𝒔)
∆𝑽𝒂(𝒔)
=
𝟏
𝒓𝒂
𝒌𝒗
(𝟏 + 𝝉𝒂𝒔)(𝑩𝒎 + 𝑱𝒔)
1 +
𝟏
𝒓𝒂
𝒌𝒗 𝟐
(𝟏 + 𝝉𝒂𝒔)(𝑩𝒎 + 𝑱𝒔)
∆𝝎𝒓(𝒔)
∆𝑽𝒂(𝒔)
=
1
𝑘𝑣 𝜏𝑎 𝜏𝑚
𝑠2+
1
𝜏𝑎
+
𝐵𝑚
𝐽
𝑠+
1
𝜏𝑎
(
1
𝜏𝑚
+
𝐵𝑚
𝐽
)
−−−−−− −equ(14)
∆𝒊𝒂(𝒔)
∆𝑽𝒂(𝒔)
=
∆𝝎𝒓(𝒔)
∆𝑽𝒂(𝒔)
∗
∆𝒊𝒂(𝒔)
∆𝝎𝒓(𝒔)
∆𝒊𝒂(𝒔)
∆𝝎𝒓(𝒔)
=
𝑩𝒎 + 𝑱𝒔
𝒌𝒗
∆𝒊𝒂(𝒔)
∆𝑽𝒂(𝒔)
=
𝟏
𝒓𝒂
𝒌𝒗
(𝟏 + 𝝉𝒂𝒔)(𝑩𝒎 + 𝑱𝒔)
1 +
𝟏
𝒓𝒂
𝒌𝒗 𝟐
(𝟏 + 𝝉𝒂𝒔)(𝑩𝒎 + 𝑱𝒔)
∗
𝐵𝑚 + 𝐽𝑠
𝑘𝑣
∆𝑖𝑎(𝑠)
∆𝑉𝑎(𝑠)
=
1
𝜏𝑎 𝑟𝑎
𝑠 +
𝐵𝑚
𝐽
𝑠2 +
1
𝜏𝑎
+
𝐵𝑚
𝐽
𝑠 +
1
𝜏𝑎
(
1
𝜏𝑚
+
𝐵𝑚
𝐽
)
−−−−−−−−−−−−− −equ(15)
𝜏𝑚 =
𝐽 𝑟𝑎
𝒌𝒗 𝟐
Block diagram of a permanent- magnet dc machine
for a step change in torque load , therefore Va will be
equal to zero
G(s) =
𝟏
(𝑩𝒎+𝑱𝒔)
, 𝑯 𝒔 =
−𝟏
𝒓𝒂
𝒌𝒗 𝟐
(𝟏+𝝉𝒂𝒔)
∆𝜔𝑟(𝑠)
∆𝑇𝐿(𝑠)
=
−𝐺(𝑠)
1 − 𝐺 𝑠 𝐻 𝑠
∆𝝎𝒓(𝒔)
∆𝑻𝑳(𝒔)
=
−𝟏
(𝑩𝒎 + 𝑱𝒔)
1 +
𝟏
𝒓𝒂
𝒌𝒗 𝟐
(𝟏 + 𝝉𝒂𝒔)(𝑩𝒎 + 𝑱𝒔)
𝜏𝑚 =
𝐽 𝑟𝑎
𝒌𝒗 𝟐
∆𝝎𝒓(𝒔)
∆𝑻𝑳(𝒔)
=
−1
𝐽
𝑠 +
1
𝜏𝑎
𝑠2 +
1
𝜏𝑎
𝑠 +
1
𝜏𝑎 𝜏𝑚
−−−−−− −equ(16)
∆𝒊𝒂(𝒔)
∆𝑻𝑳(𝒔)
=
∆𝝎𝒓(𝒔)
∆𝑻𝑳(𝒔)
∗
∆𝒊𝒂(𝒔)
∆𝝎𝒓(𝒔)
∆𝒊𝒂(𝒔)
∆𝝎𝒓(𝒔)
=
−
𝟏
𝒓𝒂
𝒌𝒗
𝟏 + 𝝉𝒂 𝒔
∆𝒊𝒂(𝒔)
∆𝑻𝑳(𝒔)
=
−𝟏
(𝑩𝒎 + 𝑱𝒔)
1 +
𝟏
𝒓𝒂
𝒌𝒗 𝟐
(𝟏 + 𝝉𝒂𝒔)(𝑩𝒎 + 𝑱𝒔)
∗
−
1
𝑟𝑎
𝑘𝑣
1 + 𝜏𝑎 𝑠
∆𝑖𝑎(𝑠)
∆𝑉𝑎(𝑠)
=
1
𝜏𝑎 𝜏𝑚 𝑘𝑣
𝑠2 +
1
𝜏𝑎
𝑠 +
1
𝜏𝑚 𝜏𝑎
−−−−−−−−−−−−− −equ(17)
Exmaple :- For a permanent DC motor
ra = 7Ω ,, LAA= 0.012 H , J= 1.036*𝟏𝟎−𝟔 , Bm= 6.03 *𝟏𝟎−𝟔 N.m.s , kv =
0.0141, the armature voltage stepped fro zero to (6 v) and the torque load
TL = 0 .
• Solution
from the block diagram below
∆𝐓𝐋 𝐬 = 𝟎 we will use equations ( 14 and 15 ) to find ∆𝝎𝒓(𝒔) 𝒂𝒏𝒅 ∆ 𝒊𝒂(𝒔) and then
ia and 𝝎𝒓 ,
∆ωr(s)
∆Va(s)
=
1
kv τa τm
s2+
1
τa
+
Bm
J
s+
1
τa
(
1
τm
+
Bm
J
)
−−−−−−−−−−−−−−−− −equ(14)
∆ia(s)
∆Va(s)
=
1
τa ra
s +
Bm
J
s2 +
1
τa
+
Bm
J
s +
1
τa
(
1
τm
+
Bm
J
)
−−−−−−−− −equ(15)
• 𝜏𝑎=
𝐿𝐴𝐴
𝑟𝑎
=
0.012
7
= 0.017 𝑠𝑒𝑐 , 𝜏𝑚 = 𝐽
𝑟𝑎
𝑘𝑣2 = 1.06 ∗ 10−6
∗
7
0.01412 = 0.037 𝑠𝑒𝑐
• compare denominator (characteristic equation ) with main second order equation
to find damping ratio and ( 𝜔𝑛)and then roots
• 𝑆2 + 2 ℰ 𝜔𝑛 𝑆 + 𝜔𝑛2-------------------------------- equ(1)
𝜔𝑛2
=
1
𝜏𝑎
1
𝜏𝑚
+
1
𝐽
=
1
0.017
1
0.037
+
6.03 ∗10−6
1.06 ∗10−6 = 1925 𝑠𝑒𝑐−2
, 𝜔𝑛 = 43.9
𝑟𝑎𝑑
𝑠𝑒𝑐
2ℰ𝜔𝑛 𝑆 =
1
𝜏𝑎
+
𝐵𝑚
𝐽
𝑆 , 2 ℰ ∗ 43.9 =
1
0.017
+
6.03 ∗10−6
1.06 ∗10−6 ; ℰ = 0.735 ,
Equation (1) become 𝑆2
+ 64.533 𝑆 + 1925
So b1,b2=
−𝑏± 𝑏2−4𝑎𝑐
2𝑎
= 𝑥 =
−64.533± 64.5332−4∗1925
2
= 32 ∓𝑗29.8
𝑏1, 𝑏2 = (𝛾 ± 𝑗𝛽)
∆𝜔𝑟 𝑠 =
∆𝑣𝑎 𝑠
𝑘𝑣 𝜏𝑎 𝜏𝑚
𝑆 𝑆+𝑏1 𝑆+𝑏2
,
6
0.0141∗0.017∗0.037
(
𝐴
𝑆
+
𝐵
𝑆+𝑏1
+
𝐶
𝑠+𝑏2
)
Now we find (A,B,C )
𝑨 = lim
𝒔→𝟎
𝑺
𝑺 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐)
𝒔=𝟎
=
𝟏
(𝑺+𝒃𝟏)(𝑺+𝒃𝟐)
𝑺=𝟎
=
𝟏
𝒃𝟏 𝒃𝟐
B= lim
𝒔→−𝒃𝟏
𝑺+𝒃𝟏
𝑺 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐)
𝒔=−𝒃𝟏 =
𝟏
𝑺 (𝑺+𝒃𝟐)
𝒔=−𝒃𝟏 =
𝟏
𝒃𝟏 𝒃𝟏−𝒃𝟐
𝑪 = lim
𝒔→−𝒃𝟐
𝑺+𝒃𝟐
𝑺 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐)
𝒔=−𝒃𝟐
=
𝟏
𝑺 (𝑺+𝒃𝟏)
𝒔=−𝒃𝟐
=
𝟏
𝒃𝟐 𝒃𝟐−𝒃𝟏
∆𝝎𝒓 𝒔 = 𝟔𝟕𝟔𝟓𝟐𝟏(
𝑨
𝒔
+
𝑩
𝒔+𝒃𝟏
+
𝑪
𝒔+𝒃𝟐
) = 𝟔𝟕𝟔𝟓𝟐𝟏
𝟏
𝒃𝟏 𝒃𝟐
𝟏
𝒔
+
𝟏
𝒃𝟏 𝒃𝟏−𝒃𝟐
𝟏
𝒔+𝒃𝟏
+
∆ia(s) =
∆𝑣𝑎(𝑠)
τa ra
s +
Bm
J
s(s2 +
1
τa
+
Bm
J
s +
1
τa
(
1
τm
+
Bm
J
))
−−−−−−−− −equ(15)
• Let a=
𝐵𝑚
𝐽
= 5.7 𝑠𝑒𝑐−1
• ∆𝑖𝑎 𝑠 =
6
0.017 ∗7
(
S+a
s (s+b1)(s+b2)
) = 50.42
𝐷
𝑠
+
𝐸
𝑠+𝑏1
+
𝐹
𝑠+𝑏2
• 𝑫 = lim
𝒔→𝟎
𝒔 (𝒔+𝒂)
𝑺 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐)
𝒔=𝟎 =
(𝒔+𝒂)
(𝑺+𝒃𝟐) (𝑺+𝒃𝟏)
𝒔=𝟎 =
𝒂
𝒃𝟏 𝒃𝟐
• 𝑬 = lim
𝒔→−𝒃𝟏
(𝑺+𝒃𝟏)(𝑺+𝒂)
𝑺 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐)
𝒔=−𝒃𝟏
=
𝑺+𝒂
𝑺 (𝑺+𝒃𝟐)
𝒔=−𝒃𝟏
=
𝒂−𝒃𝟏
𝒃𝟏 𝒃𝟏−𝒃𝟐
• 𝑪 = lim
𝒔→−𝒃𝟐
(𝑺+𝒃𝟐)(𝑺+𝒂)
𝑺 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐)
𝒔=−𝒃𝟐
=
𝑺+𝒂
𝑺 (𝑺+𝒃𝟏)
𝒔=−𝒃𝟐
=
𝒂−𝒃𝟐
𝒃𝟐 𝒃𝟐−𝒃𝟏
• ∆𝒊𝒂 𝒔 = 𝟓𝟎. 𝟒𝟐
𝒂
𝒃𝟏 𝒃𝟐
𝟏
𝒔
+
𝒂−𝒃𝟏
𝒃𝟏 𝒃𝟏−𝒃𝟐
𝟏
𝒔+𝒃𝟏
+
𝒂−𝒃𝟐
𝒃𝟐 𝒃𝟐−𝒃𝟏
𝟏
𝒔+𝒃𝟐
𝒍𝒂𝒑𝒍𝒂𝒄𝒆 𝒊𝒏𝒗𝒆𝒓𝒔𝒆
• ∆𝒊𝒂 𝒕 = 𝟓𝟎. 𝟒𝟐(
𝒂
𝒃𝟏𝒃𝟐
+
𝒂−𝒃𝟏
𝒃𝟏 𝒃𝟏−𝒃𝟐
𝒆−𝒃𝟏𝒕 +
𝒂−𝒃𝟐
𝒃𝟐 𝒃𝟐−𝒃𝟏
𝒆−𝒃𝟐𝒕)
• - complex algebra making use euler's identity a couple of times
• ∆𝒊𝒂 𝒕 𝟓𝟎. 𝟒𝟐
𝒂
𝜸 𝟐 +𝜷 𝟐 [−𝒆−𝜸𝒕(cos 𝜷𝒕 −
𝜸 𝟐+𝜷 𝟐+𝒂𝜸
𝒂𝜷
sin 𝜷𝒕) ]
• ∆𝒊𝒂 𝒕 = 𝟎. 𝟏𝟒𝟗[𝟏 − 𝒆−𝟑𝟐.𝟑 𝒕
(cos 𝟐𝟗. 𝟖𝒕 − 𝟏𝟎. 𝟑 sin 𝟐𝟗. 𝟖𝒕)]
• ia= 𝒊𝒂 𝟎 + ∆𝒊𝒂 𝒕 −−−−−−−−−− −𝒊𝒂 𝟎 = 𝟎
• So ia = 𝟎. 𝟏𝟒𝟗[𝟏 − 𝒆−𝟑𝟐.𝟑 𝒕
(cos 𝟐𝟗. 𝟖𝒕 − 𝟏𝟎. 𝟑 sin 𝟐𝟗. 𝟖𝒕)]
References
• Paul c. Krause .analysis electric machines and drive system.
USA: wiley interscience,2002,pp.76-101
Any questionAny questions

More Related Content

What's hot

Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
saahil kshatriya
 
Inroduction_To_Algorithms_Lect14
Inroduction_To_Algorithms_Lect14Inroduction_To_Algorithms_Lect14
Inroduction_To_Algorithms_Lect14
Naor Ami
 

What's hot (20)

Laplace Transform of Periodic Function
Laplace Transform of Periodic FunctionLaplace Transform of Periodic Function
Laplace Transform of Periodic Function
 
linear transfermation.pptx
linear transfermation.pptxlinear transfermation.pptx
linear transfermation.pptx
 
Laplace periodic function with graph
Laplace periodic function with graphLaplace periodic function with graph
Laplace periodic function with graph
 
Curvature (2)
Curvature (2)Curvature (2)
Curvature (2)
 
Linear transformation and application
Linear transformation and applicationLinear transformation and application
Linear transformation and application
 
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
Laplace transform: UNIT STEP FUNCTION, SECOND SHIFTING THEOREM, DIRAC DELTA F...
 
Laplace Transforms
Laplace TransformsLaplace Transforms
Laplace Transforms
 
LEADCOMPENSATOR DESIGN FOR A SYSTEM USING MATLAB
LEADCOMPENSATOR DESIGN FOR A SYSTEM USING MATLAB  LEADCOMPENSATOR DESIGN FOR A SYSTEM USING MATLAB
LEADCOMPENSATOR DESIGN FOR A SYSTEM USING MATLAB
 
21 All Pairs Shortest Path
21 All Pairs Shortest Path21 All Pairs Shortest Path
21 All Pairs Shortest Path
 
Algorithms of graph
Algorithms of graphAlgorithms of graph
Algorithms of graph
 
Laplace transforms and problems
Laplace transforms and problemsLaplace transforms and problems
Laplace transforms and problems
 
Laplace transforms
Laplace transformsLaplace transforms
Laplace transforms
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Inverse Laplace Transform
Inverse Laplace TransformInverse Laplace Transform
Inverse Laplace Transform
 
Graph for Coulomb damped oscillation
Graph for Coulomb damped oscillationGraph for Coulomb damped oscillation
Graph for Coulomb damped oscillation
 
Inverse laplace transforms
Inverse laplace transformsInverse laplace transforms
Inverse laplace transforms
 
The Floyd–Warshall algorithm
The Floyd–Warshall algorithmThe Floyd–Warshall algorithm
The Floyd–Warshall algorithm
 
EM3 mini project Laplace Transform
EM3 mini project Laplace TransformEM3 mini project Laplace Transform
EM3 mini project Laplace Transform
 
Inverse laplace
Inverse laplaceInverse laplace
Inverse laplace
 
Inroduction_To_Algorithms_Lect14
Inroduction_To_Algorithms_Lect14Inroduction_To_Algorithms_Lect14
Inroduction_To_Algorithms_Lect14
 

Similar to Direct current machine

Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
HebaEng
 
Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matrices
EasyStudy3
 

Similar to Direct current machine (20)

Engineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsxEngineering Analysis -Third Class.ppsx
Engineering Analysis -Third Class.ppsx
 
Mod 3.pptx
Mod 3.pptxMod 3.pptx
Mod 3.pptx
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
Helicopter rotor dynamics
Helicopter rotor dynamicsHelicopter rotor dynamics
Helicopter rotor dynamics
 
eecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdfeecs242_lect3_rxarch.pdf
eecs242_lect3_rxarch.pdf
 
lecture 5 courseII (6).pptx
lecture 5 courseII (6).pptxlecture 5 courseII (6).pptx
lecture 5 courseII (6).pptx
 
6 radar range-doppler-angular loops
6 radar range-doppler-angular loops6 radar range-doppler-angular loops
6 radar range-doppler-angular loops
 
Principles of Communication (Intro to Oscillators)
Principles of Communication (Intro to Oscillators)Principles of Communication (Intro to Oscillators)
Principles of Communication (Intro to Oscillators)
 
Laplace Transform and its applications
Laplace Transform and its applicationsLaplace Transform and its applications
Laplace Transform and its applications
 
A-tutorial.pdf
A-tutorial.pdfA-tutorial.pdf
A-tutorial.pdf
 
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
Circuit Network Analysis - [Chapter5] Transfer function, frequency response, ...
 
EC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transformEC8352-Signals and Systems - Laplace transform
EC8352-Signals and Systems - Laplace transform
 
Digital control systems (dcs) lecture 18-19-20
Digital control systems (dcs) lecture 18-19-20Digital control systems (dcs) lecture 18-19-20
Digital control systems (dcs) lecture 18-19-20
 
Transmission lines
Transmission linesTransmission lines
Transmission lines
 
NAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace TransformNAS-Ch4-Application of Laplace Transform
NAS-Ch4-Application of Laplace Transform
 
Linear transformations and matrices
Linear transformations and matricesLinear transformations and matrices
Linear transformations and matrices
 
First Order Active RC Sections
First Order Active RC SectionsFirst Order Active RC Sections
First Order Active RC Sections
 
PRODUCT RULES
PRODUCT RULESPRODUCT RULES
PRODUCT RULES
 
Second Order Active RC Blocks
Second Order Active RC BlocksSecond Order Active RC Blocks
Second Order Active RC Blocks
 
Top ranking colleges in india
Top ranking colleges in indiaTop ranking colleges in india
Top ranking colleges in india
 

Recently uploaded

Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
Neometrix_Engineering_Pvt_Ltd
 
School management system project report.pdf
School management system project report.pdfSchool management system project report.pdf
School management system project report.pdf
Kamal Acharya
 
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdfONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
Kamal Acharya
 

Recently uploaded (20)

retail automation billing system ppt.pptx
retail automation billing system ppt.pptxretail automation billing system ppt.pptx
retail automation billing system ppt.pptx
 
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical EngineeringIntroduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-4 Notes for II-II Mechanical Engineering
 
ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdfONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
ONLINE CAR SERVICING SYSTEM PROJECT REPORT.pdf
 
Scaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltageScaling in conventional MOSFET for constant electric field and constant voltage
Scaling in conventional MOSFET for constant electric field and constant voltage
 
NO1 Pandit Black Magic Removal in Uk kala jadu Specialist kala jadu for Love ...
NO1 Pandit Black Magic Removal in Uk kala jadu Specialist kala jadu for Love ...NO1 Pandit Black Magic Removal in Uk kala jadu Specialist kala jadu for Love ...
NO1 Pandit Black Magic Removal in Uk kala jadu Specialist kala jadu for Love ...
 
Standard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - NeometrixStandard Reomte Control Interface - Neometrix
Standard Reomte Control Interface - Neometrix
 
KIT-601 Lecture Notes-UNIT-4.pdf Frequent Itemsets and Clustering
KIT-601 Lecture Notes-UNIT-4.pdf Frequent Itemsets and ClusteringKIT-601 Lecture Notes-UNIT-4.pdf Frequent Itemsets and Clustering
KIT-601 Lecture Notes-UNIT-4.pdf Frequent Itemsets and Clustering
 
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptxCloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
 
Introduction to Casting Processes in Manufacturing
Introduction to Casting Processes in ManufacturingIntroduction to Casting Processes in Manufacturing
Introduction to Casting Processes in Manufacturing
 
School management system project report.pdf
School management system project report.pdfSchool management system project report.pdf
School management system project report.pdf
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdfONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
ONLINE VEHICLE RENTAL SYSTEM PROJECT REPORT.pdf
 
Online resume builder management system project report.pdf
Online resume builder management system project report.pdfOnline resume builder management system project report.pdf
Online resume builder management system project report.pdf
 
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and VisualizationKIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
KIT-601 Lecture Notes-UNIT-5.pdf Frame Works and Visualization
 
Natalia Rutkowska - BIM School Course in Kraków
Natalia Rutkowska - BIM School Course in KrakówNatalia Rutkowska - BIM School Course in Kraków
Natalia Rutkowska - BIM School Course in Kraków
 
Peek implant persentation - Copy (1).pdf
Peek implant persentation - Copy (1).pdfPeek implant persentation - Copy (1).pdf
Peek implant persentation - Copy (1).pdf
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES  INTRODUCTION UNIT-IENERGY STORAGE DEVICES  INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
 
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
 

Direct current machine

  • 1. Direct current machine The purpose of this seminar to represent shunt Dc machine and Permanent magnet Dc machine as (state space equations ) and show how can represent time domain block diagram and find roots to their
  • 2.
  • 3. The field and armature voltage equation and the relationship between torque and rotor speed may be written as Field voltage equation VF = Rf if + d𝝀f/dt = Rf if +d/dt (Lff if + Lfa 𝒊𝒂 ) ----Lfa dia/dt = 0 , d/dt = p Vf = Rf if + Lff p if = ( Rf +p Lff ) if , if = Vf / (Rf +p Lff ) ------ Lff/ Rf =𝝉f if =( Vf/rf / (1+ 𝝉f)--------------(1) Armature voltage equation Va = ra ia + d𝝀a/dt = ra ia + d/dt ( Laa ia + Laf if ) ---- dif/dt =0 , d/dt = p Va = ra ia + p Laa ia + dLaf /dt if ------ Laf = -L cos 𝜽r , LAF =L sin 𝜽r Va = ra ia + P laa ia + 𝝎r LAF if ------ Laa/ra = 𝝉𝒂 ia = 1/ra (Va- 𝝎r LAF if ) / 1+𝒑 𝝉𝒂---------------------(2) Torque equation Te = J d 𝝎r /dt + Bm 𝝎r +TL = ( Jp+Bm) 𝝎r +TL 𝝎r = (Te-TL)/(Jp+Bm)--------------------------------------(3)
  • 4. time domain block diagram of a shunt connected DC machine according to equations (1 ,2 and 3) in previous slide
  • 5. the state space equation for DC machine can be readily achieved by straightforward manipulation of the field and armature voltage equations as shown in matrix below :- • Ssssssssssssssssssssssssss • Where LFF and LAA are the self inductance of the field and armature volotge respectively. • P is the short-hand notation for the operator 𝒅 𝒅𝒕 . • 𝝎𝒓 is the rotor speed . • LAF is the mutual inductance between the field and the rotating armature coils. • Vf = rf if + 𝒅𝒊𝒇 𝒅𝒕 LFF ------------------------------------------- equ(4) • Va= 𝝎𝒓LAF if +ra ia + 𝒅𝒊𝒂 𝒅𝒕 LAA -----------------------------equ(5) • Torque equation is Te = J 𝒅𝝎𝒓 𝒅𝒕 +B 𝝎𝒓+ TL-----------------equ(6)
  • 6. rearrange equations (4,5 and 6) by derived yield • 𝒅𝒊𝒇 𝒅𝒕 =- 𝑹𝒇 𝑳𝑭𝑭 if+ 𝟏 𝑳𝑭𝑭 Vf -----------------------equ(7) • 𝒅𝒊𝒂 𝒅𝒕 =- 𝒓𝒂 𝑳𝑨𝑨 ia - 𝑳𝑨𝑭 𝑳𝑨𝑨 if 𝝎𝒓+ 𝟏 𝑳𝑨𝑨 Va --------equ(8) • 𝒅𝝎𝒓 𝒅𝒕 = - 𝑩𝒎 𝑱 𝝎𝒓 + 𝑳𝑨𝑭 𝑱 if ia - 𝟏 𝑱 TL --------equ(9) where Te= LAF if ia • Now write state space in matrix
  • 7. Permanent –magnet DC machine • The equations that describe the operation of a permanent - magnet DC machine are identical to those of a shunt- connected dc machine with the field current constant .for the permanent- magnet dc machine (LAF if )replaced by (kv)which is a constant determined by the strength of the magnet, the reluctance of the iron and the number of turns of the armature winding. The time domain block diagram may be developed for the permanent -magnet machine by using equations ( 2 and 3) with( kv ) substituted for (LAF if) • ia = 1/ra (Va- 𝝎r kv) / 1+𝒑 𝝉𝒂--------------------------(10) • 𝝎r = (Te-TL)/(Jp+Bm)--------------------------------------(11)
  • 8. time domain block diagram of a permanent- magnet DC machine according to equations (10 and 11) in previous slide
  • 9. To write state space equations used same equations (8 and 9) with (kv) substituted for (LAF if) and (Te) substituted (kv ia) • 𝒅𝒊𝒂 𝒅𝒕 =- 𝒓𝒂 𝑳𝑨𝑨 ia - 𝒌𝒗 𝑳𝑨𝑨 𝝎𝒓+ 𝟏 𝑳𝑨𝑨 Va ---------equ(12) • 𝒅𝝎𝒓 𝒅𝒕 = - 𝑩𝒎 𝑱 𝝎𝒓 + 𝒌𝒗 𝑱 ia - 𝟏 𝑱 TL ------------equ(13) • Now write state space in matrix PX = [ A ] X + [ B ] U
  • 10. Transfer function for permanent- magnet DC machine to find the roots this block in time domain we will convert it to laplace and compare it with main equation to find the roots
  • 11. Block diagram of a permanent- magnet dc machine for a step change in applied voltage , therefore TL will be equal to zero G(s) = 𝟏 𝒓𝒂 𝒌𝒗 (𝟏+𝝉𝒂𝒔)(𝑩𝒎+𝑱𝒔) , 𝑯 𝒔 = 𝒌𝒗 ∆𝜔𝑟(𝑠) ∆𝑉𝑎(𝑠) = 𝐺(𝑠) 1 + 𝐺 𝑠 𝐻 𝑠
  • 12. ∆𝝎𝒓(𝒔) ∆𝑽𝒂(𝒔) = 𝟏 𝒓𝒂 𝒌𝒗 (𝟏 + 𝝉𝒂𝒔)(𝑩𝒎 + 𝑱𝒔) 1 + 𝟏 𝒓𝒂 𝒌𝒗 𝟐 (𝟏 + 𝝉𝒂𝒔)(𝑩𝒎 + 𝑱𝒔) ∆𝝎𝒓(𝒔) ∆𝑽𝒂(𝒔) = 1 𝑘𝑣 𝜏𝑎 𝜏𝑚 𝑠2+ 1 𝜏𝑎 + 𝐵𝑚 𝐽 𝑠+ 1 𝜏𝑎 ( 1 𝜏𝑚 + 𝐵𝑚 𝐽 ) −−−−−− −equ(14) ∆𝒊𝒂(𝒔) ∆𝑽𝒂(𝒔) = ∆𝝎𝒓(𝒔) ∆𝑽𝒂(𝒔) ∗ ∆𝒊𝒂(𝒔) ∆𝝎𝒓(𝒔) ∆𝒊𝒂(𝒔) ∆𝝎𝒓(𝒔) = 𝑩𝒎 + 𝑱𝒔 𝒌𝒗 ∆𝒊𝒂(𝒔) ∆𝑽𝒂(𝒔) = 𝟏 𝒓𝒂 𝒌𝒗 (𝟏 + 𝝉𝒂𝒔)(𝑩𝒎 + 𝑱𝒔) 1 + 𝟏 𝒓𝒂 𝒌𝒗 𝟐 (𝟏 + 𝝉𝒂𝒔)(𝑩𝒎 + 𝑱𝒔) ∗ 𝐵𝑚 + 𝐽𝑠 𝑘𝑣 ∆𝑖𝑎(𝑠) ∆𝑉𝑎(𝑠) = 1 𝜏𝑎 𝑟𝑎 𝑠 + 𝐵𝑚 𝐽 𝑠2 + 1 𝜏𝑎 + 𝐵𝑚 𝐽 𝑠 + 1 𝜏𝑎 ( 1 𝜏𝑚 + 𝐵𝑚 𝐽 ) −−−−−−−−−−−−− −equ(15) 𝜏𝑚 = 𝐽 𝑟𝑎 𝒌𝒗 𝟐
  • 13. Block diagram of a permanent- magnet dc machine for a step change in torque load , therefore Va will be equal to zero G(s) = 𝟏 (𝑩𝒎+𝑱𝒔) , 𝑯 𝒔 = −𝟏 𝒓𝒂 𝒌𝒗 𝟐 (𝟏+𝝉𝒂𝒔) ∆𝜔𝑟(𝑠) ∆𝑇𝐿(𝑠) = −𝐺(𝑠) 1 − 𝐺 𝑠 𝐻 𝑠
  • 14. ∆𝝎𝒓(𝒔) ∆𝑻𝑳(𝒔) = −𝟏 (𝑩𝒎 + 𝑱𝒔) 1 + 𝟏 𝒓𝒂 𝒌𝒗 𝟐 (𝟏 + 𝝉𝒂𝒔)(𝑩𝒎 + 𝑱𝒔) 𝜏𝑚 = 𝐽 𝑟𝑎 𝒌𝒗 𝟐 ∆𝝎𝒓(𝒔) ∆𝑻𝑳(𝒔) = −1 𝐽 𝑠 + 1 𝜏𝑎 𝑠2 + 1 𝜏𝑎 𝑠 + 1 𝜏𝑎 𝜏𝑚 −−−−−− −equ(16) ∆𝒊𝒂(𝒔) ∆𝑻𝑳(𝒔) = ∆𝝎𝒓(𝒔) ∆𝑻𝑳(𝒔) ∗ ∆𝒊𝒂(𝒔) ∆𝝎𝒓(𝒔) ∆𝒊𝒂(𝒔) ∆𝝎𝒓(𝒔) = − 𝟏 𝒓𝒂 𝒌𝒗 𝟏 + 𝝉𝒂 𝒔 ∆𝒊𝒂(𝒔) ∆𝑻𝑳(𝒔) = −𝟏 (𝑩𝒎 + 𝑱𝒔) 1 + 𝟏 𝒓𝒂 𝒌𝒗 𝟐 (𝟏 + 𝝉𝒂𝒔)(𝑩𝒎 + 𝑱𝒔) ∗ − 1 𝑟𝑎 𝑘𝑣 1 + 𝜏𝑎 𝑠 ∆𝑖𝑎(𝑠) ∆𝑉𝑎(𝑠) = 1 𝜏𝑎 𝜏𝑚 𝑘𝑣 𝑠2 + 1 𝜏𝑎 𝑠 + 1 𝜏𝑚 𝜏𝑎 −−−−−−−−−−−−− −equ(17)
  • 15. Exmaple :- For a permanent DC motor ra = 7Ω ,, LAA= 0.012 H , J= 1.036*𝟏𝟎−𝟔 , Bm= 6.03 *𝟏𝟎−𝟔 N.m.s , kv = 0.0141, the armature voltage stepped fro zero to (6 v) and the torque load TL = 0 . • Solution from the block diagram below ∆𝐓𝐋 𝐬 = 𝟎 we will use equations ( 14 and 15 ) to find ∆𝝎𝒓(𝒔) 𝒂𝒏𝒅 ∆ 𝒊𝒂(𝒔) and then ia and 𝝎𝒓 ,
  • 16. ∆ωr(s) ∆Va(s) = 1 kv τa τm s2+ 1 τa + Bm J s+ 1 τa ( 1 τm + Bm J ) −−−−−−−−−−−−−−−− −equ(14) ∆ia(s) ∆Va(s) = 1 τa ra s + Bm J s2 + 1 τa + Bm J s + 1 τa ( 1 τm + Bm J ) −−−−−−−− −equ(15) • 𝜏𝑎= 𝐿𝐴𝐴 𝑟𝑎 = 0.012 7 = 0.017 𝑠𝑒𝑐 , 𝜏𝑚 = 𝐽 𝑟𝑎 𝑘𝑣2 = 1.06 ∗ 10−6 ∗ 7 0.01412 = 0.037 𝑠𝑒𝑐 • compare denominator (characteristic equation ) with main second order equation to find damping ratio and ( 𝜔𝑛)and then roots • 𝑆2 + 2 ℰ 𝜔𝑛 𝑆 + 𝜔𝑛2-------------------------------- equ(1) 𝜔𝑛2 = 1 𝜏𝑎 1 𝜏𝑚 + 1 𝐽 = 1 0.017 1 0.037 + 6.03 ∗10−6 1.06 ∗10−6 = 1925 𝑠𝑒𝑐−2 , 𝜔𝑛 = 43.9 𝑟𝑎𝑑 𝑠𝑒𝑐 2ℰ𝜔𝑛 𝑆 = 1 𝜏𝑎 + 𝐵𝑚 𝐽 𝑆 , 2 ℰ ∗ 43.9 = 1 0.017 + 6.03 ∗10−6 1.06 ∗10−6 ; ℰ = 0.735 , Equation (1) become 𝑆2 + 64.533 𝑆 + 1925 So b1,b2= −𝑏± 𝑏2−4𝑎𝑐 2𝑎 = 𝑥 = −64.533± 64.5332−4∗1925 2 = 32 ∓𝑗29.8 𝑏1, 𝑏2 = (𝛾 ± 𝑗𝛽) ∆𝜔𝑟 𝑠 = ∆𝑣𝑎 𝑠 𝑘𝑣 𝜏𝑎 𝜏𝑚 𝑆 𝑆+𝑏1 𝑆+𝑏2 , 6 0.0141∗0.017∗0.037 ( 𝐴 𝑆 + 𝐵 𝑆+𝑏1 + 𝐶 𝑠+𝑏2 )
  • 17. Now we find (A,B,C ) 𝑨 = lim 𝒔→𝟎 𝑺 𝑺 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐) 𝒔=𝟎 = 𝟏 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐) 𝑺=𝟎 = 𝟏 𝒃𝟏 𝒃𝟐 B= lim 𝒔→−𝒃𝟏 𝑺+𝒃𝟏 𝑺 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐) 𝒔=−𝒃𝟏 = 𝟏 𝑺 (𝑺+𝒃𝟐) 𝒔=−𝒃𝟏 = 𝟏 𝒃𝟏 𝒃𝟏−𝒃𝟐 𝑪 = lim 𝒔→−𝒃𝟐 𝑺+𝒃𝟐 𝑺 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐) 𝒔=−𝒃𝟐 = 𝟏 𝑺 (𝑺+𝒃𝟏) 𝒔=−𝒃𝟐 = 𝟏 𝒃𝟐 𝒃𝟐−𝒃𝟏 ∆𝝎𝒓 𝒔 = 𝟔𝟕𝟔𝟓𝟐𝟏( 𝑨 𝒔 + 𝑩 𝒔+𝒃𝟏 + 𝑪 𝒔+𝒃𝟐 ) = 𝟔𝟕𝟔𝟓𝟐𝟏 𝟏 𝒃𝟏 𝒃𝟐 𝟏 𝒔 + 𝟏 𝒃𝟏 𝒃𝟏−𝒃𝟐 𝟏 𝒔+𝒃𝟏 +
  • 18. ∆ia(s) = ∆𝑣𝑎(𝑠) τa ra s + Bm J s(s2 + 1 τa + Bm J s + 1 τa ( 1 τm + Bm J )) −−−−−−−− −equ(15) • Let a= 𝐵𝑚 𝐽 = 5.7 𝑠𝑒𝑐−1 • ∆𝑖𝑎 𝑠 = 6 0.017 ∗7 ( S+a s (s+b1)(s+b2) ) = 50.42 𝐷 𝑠 + 𝐸 𝑠+𝑏1 + 𝐹 𝑠+𝑏2 • 𝑫 = lim 𝒔→𝟎 𝒔 (𝒔+𝒂) 𝑺 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐) 𝒔=𝟎 = (𝒔+𝒂) (𝑺+𝒃𝟐) (𝑺+𝒃𝟏) 𝒔=𝟎 = 𝒂 𝒃𝟏 𝒃𝟐 • 𝑬 = lim 𝒔→−𝒃𝟏 (𝑺+𝒃𝟏)(𝑺+𝒂) 𝑺 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐) 𝒔=−𝒃𝟏 = 𝑺+𝒂 𝑺 (𝑺+𝒃𝟐) 𝒔=−𝒃𝟏 = 𝒂−𝒃𝟏 𝒃𝟏 𝒃𝟏−𝒃𝟐 • 𝑪 = lim 𝒔→−𝒃𝟐 (𝑺+𝒃𝟐)(𝑺+𝒂) 𝑺 (𝑺+𝒃𝟏)(𝑺+𝒃𝟐) 𝒔=−𝒃𝟐 = 𝑺+𝒂 𝑺 (𝑺+𝒃𝟏) 𝒔=−𝒃𝟐 = 𝒂−𝒃𝟐 𝒃𝟐 𝒃𝟐−𝒃𝟏 • ∆𝒊𝒂 𝒔 = 𝟓𝟎. 𝟒𝟐 𝒂 𝒃𝟏 𝒃𝟐 𝟏 𝒔 + 𝒂−𝒃𝟏 𝒃𝟏 𝒃𝟏−𝒃𝟐 𝟏 𝒔+𝒃𝟏 + 𝒂−𝒃𝟐 𝒃𝟐 𝒃𝟐−𝒃𝟏 𝟏 𝒔+𝒃𝟐 𝒍𝒂𝒑𝒍𝒂𝒄𝒆 𝒊𝒏𝒗𝒆𝒓𝒔𝒆 • ∆𝒊𝒂 𝒕 = 𝟓𝟎. 𝟒𝟐( 𝒂 𝒃𝟏𝒃𝟐 + 𝒂−𝒃𝟏 𝒃𝟏 𝒃𝟏−𝒃𝟐 𝒆−𝒃𝟏𝒕 + 𝒂−𝒃𝟐 𝒃𝟐 𝒃𝟐−𝒃𝟏 𝒆−𝒃𝟐𝒕) • - complex algebra making use euler's identity a couple of times • ∆𝒊𝒂 𝒕 𝟓𝟎. 𝟒𝟐 𝒂 𝜸 𝟐 +𝜷 𝟐 [−𝒆−𝜸𝒕(cos 𝜷𝒕 − 𝜸 𝟐+𝜷 𝟐+𝒂𝜸 𝒂𝜷 sin 𝜷𝒕) ] • ∆𝒊𝒂 𝒕 = 𝟎. 𝟏𝟒𝟗[𝟏 − 𝒆−𝟑𝟐.𝟑 𝒕 (cos 𝟐𝟗. 𝟖𝒕 − 𝟏𝟎. 𝟑 sin 𝟐𝟗. 𝟖𝒕)] • ia= 𝒊𝒂 𝟎 + ∆𝒊𝒂 𝒕 −−−−−−−−−− −𝒊𝒂 𝟎 = 𝟎 • So ia = 𝟎. 𝟏𝟒𝟗[𝟏 − 𝒆−𝟑𝟐.𝟑 𝒕 (cos 𝟐𝟗. 𝟖𝒕 − 𝟏𝟎. 𝟑 sin 𝟐𝟗. 𝟖𝒕)]
  • 19. References • Paul c. Krause .analysis electric machines and drive system. USA: wiley interscience,2002,pp.76-101