SlideShare a Scribd company logo
In the name of Allah most gracious
most merciful
• ‫الرحيم‬‫ال‬١‫لرحمن‬‫بسم‬
Tangent and Normal:
Let P be a given point on a curve y = f(x) and Q be another point on it
and let the point Q moves along the curve nearer and nearer to the point
P then the limiting position of the secant PQ provided limit exists, when
Q moves up to and ultimately coincide with P, is called the tangent to
the curve at the point P. The line through the point P perpendicular to
the tangent is called the normal to the curve at the point P.
The equation of the tangent at P(x,y) on the curve, y=f(x) is,
)( xX
dx
dy
yY −=−
( , ) ( )
dy
at P Y X
dx
α β β α⇒ − = −
Or,
The equation of the normal at P(x,y) on the curve, y=f(x) is
)(
1
xX
dx
dy
yY −
−
=− Or,
1
( , ) ( )at P y x
dy
dx
α β β α
−
⇒ − = −
Now draw PM perpendicular on x-axis. The projection TM of the
tangent PT on the x-axis, called the sub tangent.
While the projection, MN of the normal PN on the x-axis is called
sub normal.
Formula:
(i) Length of the sub tangent,
1
cot
1
tan
1
/
TM MP
y
y
dy dx
y
y
ψ
ψ
=
= ×
= ×
=
(ii) Length of the sub-normal,
1
tanMN PM
dy
y
dx
yy
ψ=
= ×
=
(iii) Length of the tangent,
)1(
2
1
1
y
y
y
PT +=
(iv) Length of the normal,
)1(
2
1yyPN +=
Find the equation of the tangent and normal to the curve of
at the point Hence calculate the length of the sub-
tangent and sub-normal.
6)( 2
−+= xxxf
.1=x
Solution:
Given,
At
We have to find the length of the tangent and also normal at the point (1, -4).
Differentiating (1) w.r. to x, we get
)(6)( 2
ixxxfy →−+==
1,x = .4612
−=−+= xy
1
2 1 0
1, 2 1 1 3x
dy
x
dx
dy
At x
dx
=
= + +
∴ = = × + =
The length of the tangent of (1, -4) is,
073
073
334
)1(3)4(
)(
=−−∴
=−−⇒
−=+⇒
−=−−⇒
−=−
YX
YX
XY
XY
xX
dx
dy
yY
And, the equation of normal is as follows:1
( )
1
( 4) ( 1)
3
3( 4) 1
3 11 0
3 11 0
Y y X x
dy
dx
Y X
Y X
X Y
X Y
− = − −
⇒ − − = − −
⇒ + = − +
⇒ + + =
∴ + + =
Length of the sub tangent is:
1y
y
=
3
4−
=
3
4
=
∴
Length of the sub normal 1y y=
34×−=
12−=
.12=
Formulae: (Polar System)
Length of the sub tangent :
Length of the sub normal :
Length of the Tangent :
Length of the Normal :
1
2
r
r
=
1r=
2
1
2
1
rr
r
r
+=
2
1
2
rr +=
Question # 03:Compute the length of the polar
sub tangent, sub normal, tangent and also
normal, of the curve at .θcos42
=r 6
π
θ =
)(cos42
ir →= θ
6
π
θ =
Solution: Given,
At,
32
32
2
3
4
6
cos4
2
2
2
=∴
=⇒
×=⇒
=
r
r
r
r
π
Differentiating (i) w. r. to
, we getθ 2 4( sin )
2
dr
r
d
dr
r Sin
d
θ
θ
θ
θ
= −
⇒ = −
At,
6
π
θ =
1
2 sin
6
1
2
2
1
1
1
2 3
dr
r
d
dr
r
d
dr
r
d
dr
d r
r
π
θ
θ
θ
θ
= − ×
⇒ = − ×
⇒ = −
⇒ = −
⇒ = −
Therefore, the length of the sub tangent is:
( )
2
1
1
2
4
2 3
1
2 3
2 3 2 3
2 6 3
r
r
=
=
= ×
=
Length of the subnormal , 1
1
2 3
r =
Length of the tangent ,
2 2
1
1
26 3
r
r r
r
+ =
Length of the normal, 2 2
1
13
2 3
r r+ =
Curvature:
Sδ
λ
The curvature at a given point P is the limit (if it exists) of the
average curvature (bending) of arc PQ when the length of this arc
approaches zero. The curvature at P is denoted by
The angle is called the angle of contingence of P .
.
δψ
The average curvature or average bending of the arc
Thus, Curvature at is:
S
PQ
δ
δψ
=
P 0sLim
S
d
ds
δ
δψ
λ
δ
ψ
→=
=
Therefore, the curvature is the rate at which the curve
curve's or how much the curve is curving.
Radius of curvature:
The reciprocal of the curvature is called the radius of
the curvature of the curve at P.
It is usually denoted by,
Thus,
λ
ρ
.
1
ψλ
ρ
d
ds
==
Question#01: Find the radius of curvature for y = f (x)
Solution:
We know, ψtan=
dx
dy
2
2
2
2
2
3
sec
sec
1
sec sec
1
sec
d y d
dxdx
d ds
ds dx
ψ
ψ
ψ
ψ
ψ ψ
ρ
ψ
ρ
⇒ =
=
=
=
ψ
ψ
ψ
sec
cos
1
cos
=
=
=
dx
ds
dx
ds
ds
dx
( )
( )
( )
( )
( )
( ) 2
3
2
3
2
3
2
3
2
3
2
3
2
1
2
2
2
1
2
2
1
2
12
2
2
2
2
2
1
1
1
1
1
1
tan1
1
sec
1
y
y
y
y
y
y
yy
y
dx
yd
+
==∴
+
=∴
+
=⇒
+=⇒
+=⇒
=⇒
ρ
λ
ρ
ρ
ρ
ψ
ρ
ψ
ρ
Question#02: Find the radius of curvature at (0, 0) of
the curve
Solution:
Given,
Differentiating w. r. to. x, we have
Again, differentiating w. r. to. x , we get
Now at (0, 0),
And,
xxxy 72 23
+−=
xxxy 72 23
+−=
2
1 3 4 7
dy
y x x
dx
= = − +
2
22
6 4
d y
y x
dx
== = −
( ) ( )2
1 3 0 4 0 7 7y = − + =
( )2 6 0 4 4y = − = −
Thus, radius of curvature at (0, 0) is:
( )
2
2
1
2
3
1
y
y+
=ρ
( )
( ) ( )
3
2 2
333
32 22
2
1 7
4
50 25 2 5 2 125
4 4 22
+
=
−
× ×
= = − = − = −
−
Question#02: Find the curvature and radius of
curvature at (0, b) of the curve
Ans:
Question#03: Show that the curvature at of
the curve is
2 2
1.
x y
a b
+ =
2
a
b
−
3 3
,
2 2
a a 
 ÷
 3 3
3x y axy+ = 8 2
3a
−
Question#4: Find the radius of curvature at of
the curve
Solution: Given,
Differentiating w. r. to , we get
( ),r θ
θ2cos22
ar =
2 2
2 2
2
cos2
ln ln( cos2 )
2ln ln ln(cos2 )
r a
r a
r a
θ
θ
θ
=
⇒ =
⇒ = +
θ
)1(2tan
2tan.
1
2)2sin(
2cos
1
0
1
.2
1
1
→−=⇒
−=⇒
×−×+=
θ
θ
θ
θθ
rr
r
r
d
dr
r
θ2tan222
1 rr =∴
Again differentiating w. r. to , we haveθ
( )
( ) ( )
2
2
2
1
2
tan 2
tan 2 sec 2 .2.
tan 2 2 sec 2
tan 2 tan 2 2 sec 2
d
r r
d
dr
r
d
r r
r r
θ
θ
θ θ
θ
θ θ
θ θ θ
= −
= − −
= − −
= − − −
θθ 2sec22tan 22
2 rrr −=⇒
Therefore, radius of curvature at is,( ),r θ
( )
3
2 2 2
1
2 2
1 22
r r
r r r r
ρ
+
=
+ −
( )
( )
( ){ }
( )
3
2 2 2 2
2 2 2 2 2
3
22 2
2 2 2 2 2 2 2
3
3 2 2
2 2 2 2 2
3 3 3 3
2 2 2 2 2 2 2 2
3 3
2 2
tan 2
2 tan 2 tan 2 2 sec 2
1 tan 2
2 tan 2 tan 2 2 sec 2
sec 2
tan 2 2 sec 2
sec 2 sec 2
(1 tan 2 ) 2 sec 2 sec 2 2 sec 2
sec 2
33 sec 2
r r
r r r r r
r
r r r r
r
r r r
r r
r r r r
r r
r
θ
θ θ θ
θ
θ θ θ
θ
θ θ
θ θ
θ θ θ θ
θ
θ
+
=
+ − −
+
=
+ − +
=
+ +
= =
+ + +
= = ×
2
2
2 2 2
2 2
2 2
sec 2
3
1
cos 2 sec 2
3 cos 2
r a
r
a a a
r a
r r r
θ
ρ θ θ
θ
= ×
 
∴ = = ⇒ = ⇒ = 
 
Q
1
2 2
2
tan 2
tan 2 2 sec 2
r r
r r r
θ
θ θ
= − 
 
= −  
Q
Question#5: Find the radius of curvature at of
the curve
Ans:
( ),r θ
cosm m
r a mθ=
1
( 1)
m
m
a
m r
ρ −
=
+
Centre of Curvature:
Let be the centre of curvature at P(x, y) of curve
y = f (x).
Then,
where
),( βαC
2
1 1
2
2
1
2
(1 )
,
1
y y
x
y
y
y
y
α
β
+
= −
+
= +
1
2
2 2
dy
y
dx
d y
y
dx
=
=
Question#06: Find the centre of curvature of
corresponding to the point (4, 4).
Solution: Given the equation of the curve is,
Differentiating w. r. to. x, we have,
At (4, 4),
16=xy
)(
16
16
i
x
y
xy
→=⇒
=
)(
16
21 ii
x
y →−=
1 2
16
1.
4
y = − = −
Again differentiating w.r.to. x we get,
At (4, 4),
If be the centre of curvature at P(x, y) of curve
y= f (x, y)
then,
Therefore, the centre of the curvature is (8, 8).
1 2
16
y
x
 
= − 
 
Q
32
32
x
y =
2
1
4
32
32 ==y
),( βαC
8
2
1
)11)(1(
4
)1(
2
2
11
=
+−
−=
+
−=
y
yy
xα
( )
( )
1 4, 4
2 4, 4
1
1
2
y
y
 = −
 
 
= 
 
Q
8
2
1
11
4
1 2
2
2
1
=
+
+=
+
+=
y
y
yβ
M. M. Billah,
Assistant Professor of Mathematics
AUST

More Related Content

What's hot

Basic mechanical engineering (BMET-101/102) unit 4- part1 (force system and a...
Basic mechanical engineering (BMET-101/102) unit 4- part1 (force system and a...Basic mechanical engineering (BMET-101/102) unit 4- part1 (force system and a...
Basic mechanical engineering (BMET-101/102) unit 4- part1 (force system and a...
Varun Pratap Singh
 
Tipos de saques.-
Tipos de saques.- Tipos de saques.-
Tipos de saques.-
juanmanueldiazguerre1
 
Tema 14 salto con pertiga
Tema 14   salto con pertigaTema 14   salto con pertiga
Tema 14 salto con pertiga
Alfonso Valero Valenzuela
 
Cátedra de Halterofilia y Disciplinas Pesisticas Afines
Cátedra de Halterofilia y Disciplinas Pesisticas AfinesCátedra de Halterofilia y Disciplinas Pesisticas Afines
Cátedra de Halterofilia y Disciplinas Pesisticas Afines
Luis Fernando Gonzalez Arango
 
Basketball 1
Basketball 1Basketball 1
Basketball 1
ADRIAN DE LA FUENTE
 
Pagine da elementi di ginnastica artistica
Pagine da elementi di ginnastica artisticaPagine da elementi di ginnastica artistica
Pagine da elementi di ginnastica artistica
Calzetti & Mariucci Editori
 
Experimental and numerical stress analysis of a rectangular wing structure
Experimental and numerical stress analysis of a rectangular wing structureExperimental and numerical stress analysis of a rectangular wing structure
Experimental and numerical stress analysis of a rectangular wing structure
Lahiru Dilshan
 
Trening u5 statki; zabawy oswajające z piłką z akcentem kształtowania orienta...
Trening u5 statki; zabawy oswajające z piłką z akcentem kształtowania orienta...Trening u5 statki; zabawy oswajające z piłką z akcentem kształtowania orienta...
Trening u5 statki; zabawy oswajające z piłką z akcentem kształtowania orienta...
Mariusz Łuc
 
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
Ekeeda
 

What's hot (9)

Basic mechanical engineering (BMET-101/102) unit 4- part1 (force system and a...
Basic mechanical engineering (BMET-101/102) unit 4- part1 (force system and a...Basic mechanical engineering (BMET-101/102) unit 4- part1 (force system and a...
Basic mechanical engineering (BMET-101/102) unit 4- part1 (force system and a...
 
Tipos de saques.-
Tipos de saques.- Tipos de saques.-
Tipos de saques.-
 
Tema 14 salto con pertiga
Tema 14   salto con pertigaTema 14   salto con pertiga
Tema 14 salto con pertiga
 
Cátedra de Halterofilia y Disciplinas Pesisticas Afines
Cátedra de Halterofilia y Disciplinas Pesisticas AfinesCátedra de Halterofilia y Disciplinas Pesisticas Afines
Cátedra de Halterofilia y Disciplinas Pesisticas Afines
 
Basketball 1
Basketball 1Basketball 1
Basketball 1
 
Pagine da elementi di ginnastica artistica
Pagine da elementi di ginnastica artisticaPagine da elementi di ginnastica artistica
Pagine da elementi di ginnastica artistica
 
Experimental and numerical stress analysis of a rectangular wing structure
Experimental and numerical stress analysis of a rectangular wing structureExperimental and numerical stress analysis of a rectangular wing structure
Experimental and numerical stress analysis of a rectangular wing structure
 
Trening u5 statki; zabawy oswajające z piłką z akcentem kształtowania orienta...
Trening u5 statki; zabawy oswajające z piłką z akcentem kształtowania orienta...Trening u5 statki; zabawy oswajające z piłką z akcentem kształtowania orienta...
Trening u5 statki; zabawy oswajające z piłką z akcentem kształtowania orienta...
 
Engineering Mechanics
Engineering MechanicsEngineering Mechanics
Engineering Mechanics
 

Viewers also liked

Compactness and homogeneous maps on Banach function spaces
Compactness and homogeneous maps on Banach function spacesCompactness and homogeneous maps on Banach function spaces
Compactness and homogeneous maps on Banach function spaces
esasancpe
 
CG OpenGL polar curves & input display color-course 4
CG OpenGL polar curves & input display color-course 4CG OpenGL polar curves & input display color-course 4
CG OpenGL polar curves & input display color-course 4
fungfung Chen
 
M1 unit iv-jntuworld
M1 unit iv-jntuworldM1 unit iv-jntuworld
M1 unit iv-jntuworldmrecedu
 
Numerical analysis convexity, concavity
Numerical analysis  convexity, concavityNumerical analysis  convexity, concavity
Numerical analysis convexity, concavity
SHAMJITH KM
 
Limit, Continuity and Differentiability for JEE Main 2014
Limit, Continuity and Differentiability for JEE Main 2014Limit, Continuity and Differentiability for JEE Main 2014
Limit, Continuity and Differentiability for JEE Main 2014
Ednexa
 
Evolute and involute
Evolute and involuteEvolute and involute
Evolute and involuteBed Dhakal
 
Database 2 ddbms,homogeneous & heterognus adv & disadvan
Database 2 ddbms,homogeneous & heterognus adv & disadvanDatabase 2 ddbms,homogeneous & heterognus adv & disadvan
Database 2 ddbms,homogeneous & heterognus adv & disadvan
Iftikhar Ahmad
 
Curve generation %a1 v involute and evolute
Curve generation %a1 v involute and evoluteCurve generation %a1 v involute and evolute
Curve generation %a1 v involute and evolute
Tanuj Parikh
 
Difusión Estadística en Cantabria
Difusión Estadística en CantabriaDifusión Estadística en Cantabria
Difusión Estadística en Cantabria
Miguel Expósito Martín
 
Chapter 7 homogeneous debt portfolios
Chapter 7   homogeneous debt portfoliosChapter 7   homogeneous debt portfolios
Chapter 7 homogeneous debt portfolios
Quan Risk
 
euler's theorem
euler's theoremeuler's theorem
euler's theorem
mihir jain
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
Seyid Kadher
 
Lesson 15 polar curves
Lesson 15    polar curvesLesson 15    polar curves
Lesson 15 polar curvesJean Leano
 
Center of pressure and hydrostatic force on a submerged body rev
Center of pressure and hydrostatic force on a submerged body revCenter of pressure and hydrostatic force on a submerged body rev
Center of pressure and hydrostatic force on a submerged body revNatalie Ulza
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
Matthew Leingang
 
Center of gravity
Center of gravityCenter of gravity
Center of gravityClement Tay
 
THE CALCULUS INTEGRAL (Beta Version 2009)
THE CALCULUS INTEGRAL (Beta Version 2009)THE CALCULUS INTEGRAL (Beta Version 2009)
THE CALCULUS INTEGRAL (Beta Version 2009)
briansthomson
 
Regulation of blood pressure
Regulation of blood pressureRegulation of blood pressure
Regulation of blood pressure
Ali Mansoor
 

Viewers also liked (20)

Compactness and homogeneous maps on Banach function spaces
Compactness and homogeneous maps on Banach function spacesCompactness and homogeneous maps on Banach function spaces
Compactness and homogeneous maps on Banach function spaces
 
CG OpenGL polar curves & input display color-course 4
CG OpenGL polar curves & input display color-course 4CG OpenGL polar curves & input display color-course 4
CG OpenGL polar curves & input display color-course 4
 
Curvature
CurvatureCurvature
Curvature
 
M1 unit iv-jntuworld
M1 unit iv-jntuworldM1 unit iv-jntuworld
M1 unit iv-jntuworld
 
Numerical analysis convexity, concavity
Numerical analysis  convexity, concavityNumerical analysis  convexity, concavity
Numerical analysis convexity, concavity
 
Limit, Continuity and Differentiability for JEE Main 2014
Limit, Continuity and Differentiability for JEE Main 2014Limit, Continuity and Differentiability for JEE Main 2014
Limit, Continuity and Differentiability for JEE Main 2014
 
Evolute and involute
Evolute and involuteEvolute and involute
Evolute and involute
 
Database 2 ddbms,homogeneous & heterognus adv & disadvan
Database 2 ddbms,homogeneous & heterognus adv & disadvanDatabase 2 ddbms,homogeneous & heterognus adv & disadvan
Database 2 ddbms,homogeneous & heterognus adv & disadvan
 
Curve generation %a1 v involute and evolute
Curve generation %a1 v involute and evoluteCurve generation %a1 v involute and evolute
Curve generation %a1 v involute and evolute
 
Difusión Estadística en Cantabria
Difusión Estadística en CantabriaDifusión Estadística en Cantabria
Difusión Estadística en Cantabria
 
Chapter 02 differentiation
Chapter 02 differentiationChapter 02 differentiation
Chapter 02 differentiation
 
Chapter 7 homogeneous debt portfolios
Chapter 7   homogeneous debt portfoliosChapter 7   homogeneous debt portfolios
Chapter 7 homogeneous debt portfolios
 
euler's theorem
euler's theoremeuler's theorem
euler's theorem
 
Continuity and differentiability
Continuity and differentiability Continuity and differentiability
Continuity and differentiability
 
Lesson 15 polar curves
Lesson 15    polar curvesLesson 15    polar curves
Lesson 15 polar curves
 
Center of pressure and hydrostatic force on a submerged body rev
Center of pressure and hydrostatic force on a submerged body revCenter of pressure and hydrostatic force on a submerged body rev
Center of pressure and hydrostatic force on a submerged body rev
 
Lesson 11: Limits and Continuity
Lesson 11: Limits and ContinuityLesson 11: Limits and Continuity
Lesson 11: Limits and Continuity
 
Center of gravity
Center of gravityCenter of gravity
Center of gravity
 
THE CALCULUS INTEGRAL (Beta Version 2009)
THE CALCULUS INTEGRAL (Beta Version 2009)THE CALCULUS INTEGRAL (Beta Version 2009)
THE CALCULUS INTEGRAL (Beta Version 2009)
 
Regulation of blood pressure
Regulation of blood pressureRegulation of blood pressure
Regulation of blood pressure
 

Similar to Tangent and curvature

Presentation on calculus
Presentation on calculusPresentation on calculus
Presentation on calculus
Shariful Haque Robin
 
Circle
CircleCircle
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
OlooPundit
 
1513 circles
1513 circles1513 circles
1513 circles
Dr Fereidoun Dejahang
 
Radius of-curvature
Radius of-curvatureRadius of-curvature
Radius of-curvature
Zahidul Islam
 
D4 trigonometrypdf
D4 trigonometrypdfD4 trigonometrypdf
D4 trigonometrypdf
Krysleng Lynlyn
 
circles_ppt angle and their relationship.ppt
circles_ppt angle and their relationship.pptcircles_ppt angle and their relationship.ppt
circles_ppt angle and their relationship.ppt
MisterTono
 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
Abhishek Chauhan
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
Wathna
 
Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
Saidatina Khadijah
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2tutulk
 
Cricle.pptx
Cricle.pptxCricle.pptx
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
Abhishek Choksi
 
economics
economicseconomics
economics
SanyiTesfa
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
A Jorge Garcia
 
Derivatives
DerivativesDerivatives
Derivatives
Nisarg Amin
 

Similar to Tangent and curvature (20)

Maths05
Maths05Maths05
Maths05
 
Presentation on calculus
Presentation on calculusPresentation on calculus
Presentation on calculus
 
Circle
CircleCircle
Circle
 
Applications of Differential Calculus in real life
Applications of Differential Calculus in real life Applications of Differential Calculus in real life
Applications of Differential Calculus in real life
 
Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010Maths 301 key_sem_1_2009_2010
Maths 301 key_sem_1_2009_2010
 
1513 circles
1513 circles1513 circles
1513 circles
 
Radius of-curvature
Radius of-curvatureRadius of-curvature
Radius of-curvature
 
D4 trigonometrypdf
D4 trigonometrypdfD4 trigonometrypdf
D4 trigonometrypdf
 
circles_ppt angle and their relationship.ppt
circles_ppt angle and their relationship.pptcircles_ppt angle and their relationship.ppt
circles_ppt angle and their relationship.ppt
 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
 
Core 2 revision notes
Core 2 revision notesCore 2 revision notes
Core 2 revision notes
 
Rosser's theorem
Rosser's theoremRosser's theorem
Rosser's theorem
 
Sbma 4603 numerical methods Assignment
Sbma 4603 numerical methods AssignmentSbma 4603 numerical methods Assignment
Sbma 4603 numerical methods Assignment
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2
 
Maths04
Maths04Maths04
Maths04
 
Cricle.pptx
Cricle.pptxCricle.pptx
Cricle.pptx
 
Topic: Fourier Series ( Periodic Function to change of interval)
Topic: Fourier Series ( Periodic Function to  change of interval)Topic: Fourier Series ( Periodic Function to  change of interval)
Topic: Fourier Series ( Periodic Function to change of interval)
 
economics
economicseconomics
economics
 
Crib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC examsCrib Sheet AP Calculus AB and BC exams
Crib Sheet AP Calculus AB and BC exams
 
Derivatives
DerivativesDerivatives
Derivatives
 

More from Anik Syed

Math for 1.1 (M.B.B.S) :D
Math for 1.1 (M.B.B.S) :D Math for 1.1 (M.B.B.S) :D
Math for 1.1 (M.B.B.S) :D Anik Syed
 
Physics for 1.1
Physics for 1.1 Physics for 1.1
Physics for 1.1 Anik Syed
 
Mecanical foisal sir
Mecanical foisal sirMecanical foisal sir
Mecanical foisal sirAnik Syed
 
Untitled Presentation
Untitled PresentationUntitled Presentation
Untitled PresentationAnik Syed
 
2938 [autosaved]
2938 [autosaved]2938 [autosaved]
2938 [autosaved]
Anik Syed
 

More from Anik Syed (6)

EEE-1101
EEE-1101EEE-1101
EEE-1101
 
Math for 1.1 (M.B.B.S) :D
Math for 1.1 (M.B.B.S) :D Math for 1.1 (M.B.B.S) :D
Math for 1.1 (M.B.B.S) :D
 
Physics for 1.1
Physics for 1.1 Physics for 1.1
Physics for 1.1
 
Mecanical foisal sir
Mecanical foisal sirMecanical foisal sir
Mecanical foisal sir
 
Untitled Presentation
Untitled PresentationUntitled Presentation
Untitled Presentation
 
2938 [autosaved]
2938 [autosaved]2938 [autosaved]
2938 [autosaved]
 

Recently uploaded

Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
RaedMohamed3
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
Vivekanand Anglo Vedic Academy
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
Pavel ( NSTU)
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
Nguyen Thanh Tu Collection
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
siemaillard
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
Celine George
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
Delapenabediema
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
bennyroshan06
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
PedroFerreira53928
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
Sandy Millin
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
Col Mukteshwar Prasad
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
Celine George
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
Vikramjit Singh
 

Recently uploaded (20)

Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Palestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptxPalestine last event orientationfvgnh .pptx
Palestine last event orientationfvgnh .pptx
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
 
1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 
Synthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptxSynthetic Fiber Construction in lab .pptx
Synthetic Fiber Construction in lab .pptx
 
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
GIÁO ÁN DẠY THÊM (KẾ HOẠCH BÀI BUỔI 2) - TIẾNG ANH 8 GLOBAL SUCCESS (2 CỘT) N...
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
How to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS ModuleHow to Split Bills in the Odoo 17 POS Module
How to Split Bills in the Odoo 17 POS Module
 
The Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official PublicationThe Challenger.pdf DNHS Official Publication
The Challenger.pdf DNHS Official Publication
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptxMARUTI SUZUKI- A Successful Joint Venture in India.pptx
MARUTI SUZUKI- A Successful Joint Venture in India.pptx
 
Basic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumersBasic phrases for greeting and assisting costumers
Basic phrases for greeting and assisting costumers
 
2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...2024.06.01 Introducing a competency framework for languag learning materials ...
2024.06.01 Introducing a competency framework for languag learning materials ...
 
How to Break the cycle of negative Thoughts
How to Break the cycle of negative ThoughtsHow to Break the cycle of negative Thoughts
How to Break the cycle of negative Thoughts
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
 
Digital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and ResearchDigital Tools and AI for Teaching Learning and Research
Digital Tools and AI for Teaching Learning and Research
 

Tangent and curvature

  • 1. In the name of Allah most gracious most merciful • ‫الرحيم‬‫ال‬١‫لرحمن‬‫بسم‬
  • 3. Let P be a given point on a curve y = f(x) and Q be another point on it and let the point Q moves along the curve nearer and nearer to the point P then the limiting position of the secant PQ provided limit exists, when Q moves up to and ultimately coincide with P, is called the tangent to the curve at the point P. The line through the point P perpendicular to the tangent is called the normal to the curve at the point P. The equation of the tangent at P(x,y) on the curve, y=f(x) is, )( xX dx dy yY −=− ( , ) ( ) dy at P Y X dx α β β α⇒ − = − Or, The equation of the normal at P(x,y) on the curve, y=f(x) is )( 1 xX dx dy yY − − =− Or, 1 ( , ) ( )at P y x dy dx α β β α − ⇒ − = −
  • 4. Now draw PM perpendicular on x-axis. The projection TM of the tangent PT on the x-axis, called the sub tangent. While the projection, MN of the normal PN on the x-axis is called sub normal. Formula: (i) Length of the sub tangent, 1 cot 1 tan 1 / TM MP y y dy dx y y ψ ψ = = × = × =
  • 5. (ii) Length of the sub-normal, 1 tanMN PM dy y dx yy ψ= = × = (iii) Length of the tangent, )1( 2 1 1 y y y PT += (iv) Length of the normal, )1( 2 1yyPN +=
  • 6. Find the equation of the tangent and normal to the curve of at the point Hence calculate the length of the sub- tangent and sub-normal. 6)( 2 −+= xxxf .1=x Solution: Given, At We have to find the length of the tangent and also normal at the point (1, -4). Differentiating (1) w.r. to x, we get )(6)( 2 ixxxfy →−+== 1,x = .4612 −=−+= xy 1 2 1 0 1, 2 1 1 3x dy x dx dy At x dx = = + + ∴ = = × + =
  • 7. The length of the tangent of (1, -4) is, 073 073 334 )1(3)4( )( =−−∴ =−−⇒ −=+⇒ −=−−⇒ −=− YX YX XY XY xX dx dy yY And, the equation of normal is as follows:1 ( ) 1 ( 4) ( 1) 3 3( 4) 1 3 11 0 3 11 0 Y y X x dy dx Y X Y X X Y X Y − = − − ⇒ − − = − − ⇒ + = − + ⇒ + + = ∴ + + =
  • 8. Length of the sub tangent is: 1y y = 3 4− = 3 4 = ∴ Length of the sub normal 1y y= 34×−= 12−= .12=
  • 9. Formulae: (Polar System) Length of the sub tangent : Length of the sub normal : Length of the Tangent : Length of the Normal : 1 2 r r = 1r= 2 1 2 1 rr r r += 2 1 2 rr +=
  • 10. Question # 03:Compute the length of the polar sub tangent, sub normal, tangent and also normal, of the curve at .θcos42 =r 6 π θ = )(cos42 ir →= θ 6 π θ = Solution: Given, At, 32 32 2 3 4 6 cos4 2 2 2 =∴ =⇒ ×=⇒ = r r r r π
  • 11. Differentiating (i) w. r. to , we getθ 2 4( sin ) 2 dr r d dr r Sin d θ θ θ θ = − ⇒ = − At, 6 π θ = 1 2 sin 6 1 2 2 1 1 1 2 3 dr r d dr r d dr r d dr d r r π θ θ θ θ = − × ⇒ = − × ⇒ = − ⇒ = − ⇒ = −
  • 12. Therefore, the length of the sub tangent is: ( ) 2 1 1 2 4 2 3 1 2 3 2 3 2 3 2 6 3 r r = = = × = Length of the subnormal , 1 1 2 3 r = Length of the tangent , 2 2 1 1 26 3 r r r r + = Length of the normal, 2 2 1 13 2 3 r r+ =
  • 13. Curvature: Sδ λ The curvature at a given point P is the limit (if it exists) of the average curvature (bending) of arc PQ when the length of this arc approaches zero. The curvature at P is denoted by The angle is called the angle of contingence of P . . δψ
  • 14. The average curvature or average bending of the arc Thus, Curvature at is: S PQ δ δψ = P 0sLim S d ds δ δψ λ δ ψ →= = Therefore, the curvature is the rate at which the curve curve's or how much the curve is curving. Radius of curvature: The reciprocal of the curvature is called the radius of the curvature of the curve at P. It is usually denoted by, Thus, λ ρ . 1 ψλ ρ d ds ==
  • 15. Question#01: Find the radius of curvature for y = f (x) Solution: We know, ψtan= dx dy 2 2 2 2 2 3 sec sec 1 sec sec 1 sec d y d dxdx d ds ds dx ψ ψ ψ ψ ψ ψ ρ ψ ρ ⇒ = = = = ψ ψ ψ sec cos 1 cos = = = dx ds dx ds ds dx
  • 16. ( ) ( ) ( ) ( ) ( ) ( ) 2 3 2 3 2 3 2 3 2 3 2 3 2 1 2 2 2 1 2 2 1 2 12 2 2 2 2 2 1 1 1 1 1 1 tan1 1 sec 1 y y y y y y yy y dx yd + ==∴ + =∴ + =⇒ +=⇒ +=⇒ =⇒ ρ λ ρ ρ ρ ψ ρ ψ ρ
  • 17. Question#02: Find the radius of curvature at (0, 0) of the curve Solution: Given, Differentiating w. r. to. x, we have Again, differentiating w. r. to. x , we get Now at (0, 0), And, xxxy 72 23 +−= xxxy 72 23 +−= 2 1 3 4 7 dy y x x dx = = − + 2 22 6 4 d y y x dx == = − ( ) ( )2 1 3 0 4 0 7 7y = − + = ( )2 6 0 4 4y = − = −
  • 18. Thus, radius of curvature at (0, 0) is: ( ) 2 2 1 2 3 1 y y+ =ρ ( ) ( ) ( ) 3 2 2 333 32 22 2 1 7 4 50 25 2 5 2 125 4 4 22 + = − × × = = − = − = − −
  • 19. Question#02: Find the curvature and radius of curvature at (0, b) of the curve Ans: Question#03: Show that the curvature at of the curve is 2 2 1. x y a b + = 2 a b − 3 3 , 2 2 a a   ÷  3 3 3x y axy+ = 8 2 3a −
  • 20. Question#4: Find the radius of curvature at of the curve Solution: Given, Differentiating w. r. to , we get ( ),r θ θ2cos22 ar = 2 2 2 2 2 cos2 ln ln( cos2 ) 2ln ln ln(cos2 ) r a r a r a θ θ θ = ⇒ = ⇒ = + θ )1(2tan 2tan. 1 2)2sin( 2cos 1 0 1 .2 1 1 →−=⇒ −=⇒ ×−×+= θ θ θ θθ rr r r d dr r θ2tan222 1 rr =∴
  • 21. Again differentiating w. r. to , we haveθ ( ) ( ) ( ) 2 2 2 1 2 tan 2 tan 2 sec 2 .2. tan 2 2 sec 2 tan 2 tan 2 2 sec 2 d r r d dr r d r r r r θ θ θ θ θ θ θ θ θ θ = − = − − = − − = − − − θθ 2sec22tan 22 2 rrr −=⇒
  • 22. Therefore, radius of curvature at is,( ),r θ ( ) 3 2 2 2 1 2 2 1 22 r r r r r r ρ + = + − ( ) ( ) ( ){ } ( ) 3 2 2 2 2 2 2 2 2 2 3 22 2 2 2 2 2 2 2 2 3 3 2 2 2 2 2 2 2 3 3 3 3 2 2 2 2 2 2 2 2 3 3 2 2 tan 2 2 tan 2 tan 2 2 sec 2 1 tan 2 2 tan 2 tan 2 2 sec 2 sec 2 tan 2 2 sec 2 sec 2 sec 2 (1 tan 2 ) 2 sec 2 sec 2 2 sec 2 sec 2 33 sec 2 r r r r r r r r r r r r r r r r r r r r r r r r r θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ θ + = + − − + = + − + = + + = = + + + = = × 2 2 2 2 2 2 2 2 2 sec 2 3 1 cos 2 sec 2 3 cos 2 r a r a a a r a r r r θ ρ θ θ θ = ×   ∴ = = ⇒ = ⇒ =    Q 1 2 2 2 tan 2 tan 2 2 sec 2 r r r r r θ θ θ = −    = −   Q
  • 23. Question#5: Find the radius of curvature at of the curve Ans: ( ),r θ cosm m r a mθ= 1 ( 1) m m a m r ρ − = +
  • 24. Centre of Curvature: Let be the centre of curvature at P(x, y) of curve y = f (x). Then, where ),( βαC 2 1 1 2 2 1 2 (1 ) , 1 y y x y y y y α β + = − + = + 1 2 2 2 dy y dx d y y dx = =
  • 25. Question#06: Find the centre of curvature of corresponding to the point (4, 4). Solution: Given the equation of the curve is, Differentiating w. r. to. x, we have, At (4, 4), 16=xy )( 16 16 i x y xy →=⇒ = )( 16 21 ii x y →−= 1 2 16 1. 4 y = − = −
  • 26. Again differentiating w.r.to. x we get, At (4, 4), If be the centre of curvature at P(x, y) of curve y= f (x, y) then, Therefore, the centre of the curvature is (8, 8). 1 2 16 y x   = −    Q 32 32 x y = 2 1 4 32 32 ==y ),( βαC 8 2 1 )11)(1( 4 )1( 2 2 11 = +− −= + −= y yy xα ( ) ( ) 1 4, 4 2 4, 4 1 1 2 y y  = −     =    Q 8 2 1 11 4 1 2 2 2 1 = + += + += y y yβ
  • 27. M. M. Billah, Assistant Professor of Mathematics AUST