SlideShare a Scribd company logo
STUDIES ON GENETIC ANALYSIS THROUGH
DIALLEL MATING SYSTEM IN BLACKGRAM
(Vigna mungo L. Hepper)
Presented by
S. ABINAYA, B.Sc. (Ag.)
ANNAMALAI UNIVERSITY
DEPARTMENT OF GENETICS AND PLANT BREEDING
FACULTY OF AGRICULTURE
ANNAMALAI NAGAR
2020
CHAIRMAN
Dr.K.R.SARAVANAN
ASSISTANT PROFESSOR
DEPT.OF GENETICS AND
PLANT BREEDING
MEMBERS:
1)Dr.S.RANJITH RAJARAM
ASSISTANT PROFESSOR
DEPT.OF GENETICS AND PLANT
BREEDING
2)Dr.T.SIVAKUMAR
ASSOCIATE PROFESSOR
DEPT.OF.PLANT PATHOLOGY
Content
Materials and
methods
Results and
conclusion
Review of
literature• Objectives
Introduction
 Pulses are the important commodity group of crops that provide
high quality protein, also known as grain legumes.
 Among all other pulses, Black gram (Phaseolus mungo. Linn /
Vigna mungo.(L.) Hepper) is one of the important kharif pulse crop
grown in India.
 It is rich in source of nutrients and minerals as 100g edible
portion contain protein (25g), potassium (983mg), calcium
(138mg), iron (7.57mg), niacin (1.447 mg), thiamin (0.273 mg),
riboflavin (0.254mg).
 Besides, it plays a crucial role in increase soil fertility by fixing 72
Kg/ha of nitrogen into the soil.
Family : Fabaceae
Genus : Vigna
Species: mungo
Inflorescence
 Flower-bisexual, papilionaceous,small,
bracteoles are linear to lanceolate, exceeding
the calyx.
 Corolla- 5 petals, 2-wing; 2- keel; 1-standard
petal
 - Diadelphous 9+1 (9 united, 1 free)
- Style twisted below stigmatic (hairy)
surface
young bud
old bud
Developed
pod
Contd…
 Though black gram is a very popular crop in the developing
world, there is a massive gap in productivity because of the
non-availability of high yielding varieties and lack of the
quality seeds reported by (Vasanthakumar, 2016).
 The efficiency of hybridization programme highly depends on
selection of elite parents to be used.
 Therefore, the present investigation on diallel analysis in black
gram done to get superior segragants and better
recombinants.
Objectives
 To evaluate the parents and hybrids based on per se
performance for yield and its component traits.
 To estimate the general combining ability of parental line and
specific combining ability of the crosses for yield and its
component traits.
 To study the nature of governing gene action for yield and its
component traits.
 To estimate heterosis of hybrid combination for yield and its
components traits.
 To suggest suitable breeding strategies for the improvement of
yield and its component traits.
The literature pertaining to different aspects of the present
investigation was reviewed under the following headings
 Gene action
 Diallel analysis
 Combining ability
 Heterosis
Reviews
Prasad and Murugan
Reported that CO 5
x VBN 2 found to
be best cross
combination based
on gca, sca and
per se performance.
Reported that the
specific combining
ability (sca), KU-553 x
Him Mash-1 and DU-1 x
Palampur-93 were found
to be potential cross
combinations involving
good general combiner
Studied 36 F1
hybrids revealed
that WGG 42 x
RM-12-13, MGG-
347 x RM 12-13
exhibit high
number of pods
with high yield.
Studied 21 cross
combination revealed
that MASH 338 x PU
31 and UTTARA x
PU 31 exhibit high
performance in yield
attributing traits.
2015
2016
2017
2018
2019
2014
Reported that the
genotypes, PU 31, LBG
645, ADT 3, CO 6 and
LBG 709 reported
significant and positive
gca effects for majority of
seed yield attributing
traits.
.
The cross Mash 479 x
Mash 1008 exhibited
significant and positive
sca effects for number
of pods per plant and
grain yield per plant
Gill et al.,
Balouria et al.,
Suguna et al.,
Latha et al.,
Shalini and Lal
Materials
Genotypes Code Source
ADT-3 P1 Pulses research station, Vamban
ADT-5 P2 Pulses research station, Vamban
VAMBAN-8 P3 Pulses research station, Vamban
NANDI P4 NRI Agritech Pvt.Ltd, Guntur
VAMBAN-5 P5 Pulses research station, Vamban
VAMBAN-6 P6 Pulses research station, Vamban
TU-68 P7 Pulses research station, Vamban
Place : Experimental farm, Department of Genetics and plant breeding,
Faculty of agriculture, Annamalai University.
Season : kharif, 2019.
Standard check
Methods
Experimental methods:
Emasculation and Crossing :
Genotypes – 7 parents
Emasculation - hand emasculation
Pollination - Gently rubbed the pollen grains against the feather
like stigma
Crossing - All possible combination (7x7)
Crossed pod -Smaller in size with two or three seeds only.
F1 evaluation:
Method – Diallele analysis (Hayman and Jinks, 1953) and (Griffings,
1956) approach
Design- RBD with three replication [ 7 parents along with 42 F1
hybrids]
Step 1
Emasculation
&
Step 2
F1evaluation
Step 3
Selection of
superior
hybrids
Crossing block
Crossed pod
Emasculation Crossing
Emasculated
bud
F1 evaluation field view
 Days to 50% flowering
 Plant height at maturity
 Number of branches per plant
 Number of clusters per plant
 Days to maturity
 Number of pods per plant
 Number of seeds per plant
 100 seed weight
 Seed yield per plant
Observations recorded
Data obtained for various traits will be subjected to following
biometrical procedures
 Analysis of variance ( Panse and Sukhatme, 1978)
 Combining ability analysis (Hayman and Jinks, 1953) and
(Griffings, 1956) approach
 Estimation of heterosis
 Analysis of genetic parameters Johnson et al., (1955).
Statistical analysis
SOURCE Df
Days to 50
per cent
flowering
Plant
height at
maturity
Number
of
branches
per plant
Number
of
clusters
per plant
Number of
pods per
plant
Days to
maturity
Number of
seeds per
pod
100 seed
weight
Seed
yield per
plant
Replication 2 0.5217 1.4670 0.3537 0.1090 0.7959 0.4279 1.1088 0.0538 0.1726
Genotype 48 39.4262** 32.7209** 3.7494** 17.1806** 147.3889** 21.616** 2.8560** 1.2641** 24.8029**
Error 96 0.3919 0.3796 0.3051 0.3102 0.6640 0.4216 0.2825 0.0252 0.0384
CD±5 1.012074 0.9961 0.8930 0.9005 1.3173 1.0498 0.8592 0.2569 0.3169
CD±1 1.344321 1.3230 1.1862 1.1961 1.7498 1.3944 1.1413 0.3412 0.4210
SE 0.3614 0.3557 0.3189 0.3216 0.4705 0.3749 0.3068 0.0917 0.1132
TABLE.1. Analysis of variance for yield and yield attributing traits in black gram
Parents/
Crosses
Days to
50%
flowe-
ring
Plant height
at maturity
No. of
branches
per plant
No. of
clusters
/plant
No. of
pods/plant
Days to
maturity
No. of
seeds
/plant
100 seed
weight (g)
Seed yield/
plant (g)
ADT3 35.33 45.8 3.33 7.33 33.33 71 3.67 2.9 4.77
ADT5 38.33 32.5 4 11.33 39 67.67 4.67 3.73 8.3
VBN 8 40.33 35.67 4.67 10.67 29.67 70.33 4 2.25 5.48
NANDI 38.67 49.8 3 7.67 31.67 72.33 3.33 3.1 6.77
VBN5 37.67 39.2 3.33 9.67 32.33 68.33 3.67 2.73 6.33
VBN6 37.33 35.83 3.33 8.67 38.33 69.67 3.67 3.15 7.63
TU 68 33.67 35 3.33 7.33 35.67 69.67 4 3.63 6.33
ADT3 x ADT5 40.33 40.6 2.33 5.33 30 72.67 2.67 2.45 1.78
ADT3 x VBN 8 42.67 40.87 2.67 4.33 34.33 69.67** 2.67 2.47 1.53
ADT3 x NANDI 38.67** 37.87** 1.67 5.33 32.67 73 3 3.63* 2.5
ADT3 x VBN5 40.33 35.40** 2 5 35.33 73.33 3.33 3.29 2.23
ADT 3 x VBN 6 41.33 40.77 2.67 7.33 33.33 74.67 3.33 2.88 2.67
ADT3 x TU 68 38.33** 42.47 3 5.33 37.67** 72.33 3.67 3.55 3.14
ADT5 x ADT3 41.33 41.93 2.33 7.67 35.67 76.33 3.33 3.61 2.8
ADT5 x VBN8 30.33** 32.57** 6.67** 13.67** 59.00** 64.33** 7.33** 5.30** 11.23**
ADT5 x NANDI 40.67 41.83 3.33* 9.33** 39.00** 74.67 3.67 3.33 4.1
ADT5 x VBN5 37.33** 42.93 3.67* 6.67 28 72.67 3.33 3.33 2.81
ADT5 x VBN6 35.33** 33.80** 6.33** 14.67** 50.33** 66.67** 6.33** 5.17** 12.27**
ADT5 x TU 68 39.33* 41.73 2.33 8.67 23 71 3.67 3.6 2.57
Table.2. Mean performance of parents and hybrids for various traits
Parents/
Crosses
Days to
50%
flowe-
ring
Plant height
at maturity
No. of
branches
per plant
No. of
clusters
/plant
No. of
pods/plant
Days to
maturity
No. of
seeds
/plant
100 seed
weight (g)
Seed yield/
plant (g)
VBN8 x ADT3 41.67 40.33 2.67 6.33 36.67** 73.33 3.33 3.78** 5.23**
VBN8 x ADT5 35.33** 40.13 2 6 31.67 74.33 3.33 3.37 3.23
VBN8 x NANDI 36.67** 40.1 2.33 8.33 38.33** 73.67 2.67 3.37 4.2
VBN8 x VBN 5 40.67 41.5 2.67 5.33 28.33 71.33 3 2.7 2.13
VBN8 x VBN6 41.67 41.8 1.67 5.33 38.67** 73.67 3.33 2.72 1.84
VBN8 x TU 68 38.33** 32.07** 6.00** 13.33** 52.33** 65.33** 6.67** 4.52** 12.20**
NANDI x ADT3 46.67 40.93 1.67 7.33 34.33 74.67 3.33 2.67 2.5
NANDI x ADT5 45.33 41.83 2.33 6 32.33 75.67 3 2.5 2.13
NANDI x VBN8 46.33 40.63 3.67* 7.67 34.67 70.33** 2.67 3.67* 7.30**
NANDI x VBN 5 42.67 41.93 2.33 6.33 36.33** 73.67 3 3.67* 2.23
NANDI x VBN6 44.33 42.57 2.67 6 28.33 71.67 2.67 3.37 2.5
NANDI x TU 68 42.67 41.67 2.67 8.67 27.67 70.33** 3.33 3.43 3.2
VBN5 x ADT 3 44.33 39.23 2.67 7 28.67 71.33 3.33 3.6 3.43
VBN5 x ADT 5 44.33 40.83 2.67 9.67** 30.33 74.67 3.33 3.3 3.2
VBN5 x VBN 8 40.67 42.23 2.33 6.67 34 72.67 3.67 2.5 2.37
VBN5 x NANDI 39.67 41.17 1.67 5.33 32.33 75.67 3.33 3.3 2.7
VBN5 x VBN6 45.33 39.73 2.67 7.67 38.33** 73.33 3.33 3.63* 2.73
VBN5 x TU 68 43.33 40.2 2.67 9.33** 33.33 71.67 3.67 3.5 4.49
(contd…)
Parents/
Crosses
Days to
50%
flowe-
ring
Plant height
at maturity
No. of
branches
per plant
No. of
clusters
/plant
No. of
pods/plant
Days to
maturity
No. of
seeds
/plant
100 seed
weight (g)
Seed yield/
plant (g)
VBN6 x ADT3 42.33 38.33** 2.33 7.33 29.33 72 3.33 3.3 2.17
VBN6 x ADT5 46 39.07 2.67 6.67 26.33 73.33 3.67 3.57 2.4
VBN6 x VBN 8 41.67 41.47 3.33* 8.33 34.33 70.33** 3.33 3.47 4
VBN6 x NANDI 39.33* 39.63 2.67 7.33 24.33 73.33 3.33 3.33 3.17
VBN6 x VBN5 44.67 41.5 3 6.33 38.67** 71.67 3.67 3.35 3.3
VBN6 x TU 68 33.67**
35.47** 5.33** 13.33** 53.67** 67.67** 6.00** 5.03** 12.37**
TU 68 x ADT 3 39.33* 39.37 2.33 8 31 76.33 3.33 2.56 2.33
TU 68 x ADT 5 41 38.33** 2.33 9.33** 29.67 74.67 3.33 3.4 2.87
TU 68 x VBN 8 43 41.67 2.67 9.00* 32.67 72.67 3.67 3.63* 7.03**
TU 68 x NANDI 45.67 38.67* 2.33 8.33 30.67 71.67 3.33 3.75** 2.67
TU 68 x VBN5 43.33 40.2 3.33* 5.67 34.67 73.67 3.33 3.52 2.63
TU 68 x VBN6 42.33 41.13 2.67 4.67 33.67 74 3 2.65 2.52
(contd…)
SOURCES Df
Days to 50
per cent
flowering
Plant
height at
maturity
Number of
branches
per plant
Number
of
clusters
per plant
Number
of pods
per plant
Days to
maturity
Number
of seeds
per pod
100 seed
weight
Seed
yield per
plant
GCA 6 11.0833 20.21 2.145 10.72 38.12 9.172 1.655 0.508 11.42
SCA 21 14.25 11.06 0.762 3.097 44.91 5.444 0.655 0.347 7.894
RECIPROCAL 21 12.6217 7.223 1.482 6.931 58.49 8.402 1.048 0.472 7.742
ERROR 96 0.1306 0.0875 0.103 0.103 0.221 0.141 0.094 0.008 0.013
GCA/SCA 0.7777 1.827 2.814 3.461 1.178 1.685 2.526 1.466 1.446
TABLE.3. Analysis of variance for combining ability effects for yield and yield attributing
characters
Parents DFF PH NOB NOC NOP DTM NOS 100SW SYP
ADT3 -0.03ns 0.80 ** -0.49 ** -1.31** -1.31 ** 0.96 ** -0.34** -0.26 ** -1.30**
ADT5 -1.08** -0.75** 0.37 ** 1.21** 0.67 ** -0.14ns 0.40 ** 0.23 ** 0.57 **
VBN8 -0.63** -0.78 ** 0.44 ** 0.45 ** 2.17 ** -1.14** 0.21 ** -0.09** 0.94 **
NANDI 1.25** 2.11** -0.46 ** -0.57** -2.11** 1.05 ** -0.48** -0.07** -0.53**
VBN5 0.97** 0.61 ** -0.25 ** -0.64** -1.50** 0.29 ** -0.22** -0.15** -0.94**
VBN6 0.29** -0.85 ** 0.20 * 0.21** 1.57 ** -0.47** 0.14ns 0.11 ** 0.50 **
TU 68 -0.77** -1.13 ** 0.18 * 0.64 ** 0.52 ** -0.54** 0.30 ** 0.23 ** 0.76 **
Table 4. Estimation of gca effects for yield and yield attributing traits
Estimation of gca effects for yield and yield attributing traits
-2.5
-2
-1.5
-1
-0.5
0
0.5
1
1.5
2
2.5
DFF PH NOB NOC NOP DTM NOS 100SW SYP
ADT3
ADT5
VBN8
NANDI
VBN5
VBN6
TU 68
CROSSES DFF PH NOB NOC NOP DTM NOS 100S SYP
ADT3 x ADT5 1.34** 1.31 ** -0.54** -1.21 ** -1.10** 1.66 ** -0.68 ** -0.31 ** -1.26 **
ADT3 x VBN 8 2.23** 0.81 ** -0.28 ns -1.62** 0.07ns -0.34ns -0.49 * 0.10 ns -0.55 **
ADT3 x NANDI 0.84** -3.43 ** -0.37 ns 0.41 * 2.36 ** -0.20ns 0.36 ns 0.11 ns 0.04 ns
ADT3 x VBN5 0.80** -4.01 ** 0.08ns 0.14 ns 0.23 ns -0.93 ** 0.27 ns 0.48 ** 0.78 **
ADT 3 x VBN
6
0.96** -0.31ns -0.20 ns 0.62 ** -3.50 ** 0.83 ** -0.09ns -0.14 * -1.08 **
ADT3 x TU 68 -0.97** 1.34** -0.01 ns -0.48 * 0.55 ns 1.90 ** -0.09ns -0.29 ** -1.01 **
ADT5 x VBN8 -6.06** -2.04** 0.53 ** 0.36 ns 7.93 ** -1.41 ** 1.10 ** 0.82 ** 1.44 **
ADT5 x NANDI 2.23** 0.56** -0.06 ns -0.79** 2.55 ** 2.23 ** -0.21ns -0.61 ** -1.21 **
ADT5 x VBN5 0.34ns 3.19** 0.06ns -0.21ns -4.57 ** 1.50 ** -0.47 * -0.14 * -0.91 **
ADT5 x VBN6 0.84** -1.88 ** 0.94 ** 1.43 ** 1.52 ** -1.41 ** 0.84 ** 0.66 ** 1.97 **
ADT5 x TU 68 1.42** 2.00 ** -1.20 ** -0.67** -9.43 ** 1.50 ** -0.83 ** -0.33 ** -2.90 **
VBN8 x NANDI 0.27ns -0.88** 0.03 ns 0.31 ns 1.88 ** 0.07 ns -0.68 ** 0.30 ** 1.04 **
Table 5. Estimation of sca effects for yield and yield attributing traits
Estimation of sca effects for yield and yield attributing traits
-20
-15
-10
-5
0
5
10
15
ADT3
x
ADT5
ADT3
x VBN
8
ADT3
x
NANDI
ADT3
x
VBN5
ADT 3
x VBN
6
ADT3
x TU
68
ADT5
x
VBN8
ADT5
x
NANDI
ADT5
x
VBN5
ADT5
x
VBN6
ADT5
x TU
68
VBN8
x
NANDI
SYP
100S
NOS
DTM
NOP
NOC
NOB
PH
DFF
CROSSES DFF PH NOB NOC NOP DTM NOS 100S SYP
VBN8 x VBN 5 -0.28ns 2.11** -0.68 ** -1.62** -4.07 ** 0.83 ** -0.28ns -0.54 ** -2.04 **
VBN8 x VBN6 1.39** 3.34** -1.13 ** -1.64 ** -1.81 ** 1.59 ** -0.64 ** -0.30 ** -2.82 **
VBN8 x TU 68 1.46** -1.14** 0.72 ** 2.26 ** 5.24** -1.34 ** 1.03 ** 0.56 ** 3.63 **
NANDI x VBN 5
-1.66** -1.09 ** -0.28ns -0.76** 3.38 ** 1.31 ** 0.25 ns 0.33 ** -0.36 **
NANDI x VBN6 -0.32ns -0.08ns -0.06 ns -0.79 ** -7.69 ** -0.10ns -0.28ns -0.06ns -1.44 **
NANDI x TU 68 3.08** -0.73 ** -0.20 ns 0.62 ** -3.52 ** -1.53 ** -0.11ns 0.06 ns -1.59 **
VBN5 x VBN6 3.13** 0.94 ** -0.11 ns -0.38ns 3.86 ** 0.66 ** -0.04ns 0.16 ** -0.84 **
VBN5 x TU 68 2.53** 0.81 ** 0.08 ns -0.31ns 0.40 ns 0.90 ** -0.21ns 0.06 ns -0.54 **
VBN6 x TU 68 -2.13** 0.37 * 0.63 ** 0.33 ns 7.00 ** -0.17ns 0.44 * 0.13 * 4.92 **
(contd…)
Estimation of sca effects for yield and yield attributing traits
-15
-10
-5
0
5
10
15
VBN8 x
VBN 5
VBN8 x
VBN6
VBN8 x
TU 68
NANDI x
VBN 5
NANDI x
VBN6
NANDI x
TU 68
VBN5 x
VBN6
VBN5 x
TU 68
VBN6 x
TU 68
SYP
100S
NOS
DTM
NOP
NOC
NOB
PH
DFF
COMPONENT
Days to 50
per cent
flowering
Plant height
Number of
branches per
plant
Number of
clusters per
plant
Number of
pods per
plant
Days to
maturity
Number of
seeds per
pod
100 seed
weight
Seed yield
per plant
D 4.76 34.67* 0.22 2.58* 12.02 2.34 0.08 0.26* 1.44
F 8.31 42.33* -0.16 1.91 17.53 2.61 -0.27 0.21 1.03
H1 34.92* 35.35* 1.52* 8.35* 101.72* 13.46* 1.21* 0.78* 18.61*
H2 28.23* 21.95* 1.32* 5.99* 85.38* 10.60* 1.11* 0.68* 15.76*
h2 42.76* 0.41 1.32* 5.17* 0.22 18.65* 0.17 0.36* 19.77*
E 0.13 0.09 0.10 0.10 0.22 0.14 0.10 0.01 0.01
H2/4H1 0.20 0.16 0.22 0.18 0.21 0.20 0.23 0.22 0.21
[(4D/H1)1/2
+F/ (4D/
H1)1/2 -F]
1.95 4.06 0.76 1.52 1.67 1.61 0.40 1.63 1.22
(H1/D)1/2 2.71 1.01 2.63 1.80 2.91 2.40 3.88 1.74 3.60
h2/H2 1.51 0.02 1.00 0.86 0.003 1.76 0.15 0.53 1.25
h 2n 0.09 0.06 0.63 0.31 0.12 0.20 0.96 0.16 0.25
TABLE.5. Estimates of genetic components of variation for yield and yield attributing traits
S.No Hybrids DFF PH NOB NOC NOP DTM NOS 100SW SYP
1 P1 x P2
5.22 **
15.12 ** -41.67 ** -52.94 ** -23.08 ** 7.39 ** -42.86 ** -34.38 ** -78.51 **
2 P1 x P3
11.30 **
16.73 ** -33.33 ** -61.76 ** -11.97 ** 2.96 ** -42.86 ** -33.93 ** -81.53 **
3 P1 x P4
0.87 **
7.37 ** -58.33 ** -52.94 ** -16.24 ** 7.88 ** -35.71 ** -2.68 ** -69.88 **
4 P1 x P5
5.22 **
0.38 ** -50.00 ** -55.88 ** -9.40 ** 8.37 ** -28.57 ** -12.05 * -73.17 **
5 P1 x P6
7.83 **
15.60 ** -33.33 ** -35.29 ** -14.53 ** 10.34 ** -28.57 ** -22.95 ** -67.87 **
6 P1 x P7
0.00 ns
20.42 ** -25.00 ** -52.94 ** -3.42 ** 6.90 ** -21.43 ** -5.00 ** -62.21 **
7 P2 x P1
7.83 **
18.90 ** -41.67 ** -32.35 ** -8.55 ** 12.81 ** -28.57 ** -3.21 ** -66.27 **
8 P2 x P3
-20.87 **
-7.66 * 66.67 ns 20.59 ** 51.28 ** -4.93 ** 57.14 ns 41.96 ** 35.34 **
9 P2 x P4
6.09 **
18.62 ** -16.67 * -17.65 ** 0.00 ** 10.34 ** -21.43 ** -10.71 ** -50.60 **
10 P2 x P5
-2.61 **
27.88 ** -8.33 ns -41.18 ** -28.21 ** 7.39 ** -28.57 ** -10.71 ** -66.14 **
11 P2 x P6
-7.83 **
-4.16 ** 58.33 ns 29.41 ns 29.06 ns -1.48 ** 35.71 ns 38.39 ** 47.79 **
12 P2 x P7
2.61 **
18.34 ** -41.67 ** -23.53 ** -41.03 ** 4.93 ** -21.43 ** -3.57 ns -69.08 **
13 P3 x P1
8.70 **
14.37 ** -33.33 ** -44.12 ** -5.98 ** 8.37 ** -28.57 ** 1.34 ** -36.95 **
14 P3 x P2
-7.83 **
13.80 * -50.00 ns -47.06 ** -18.80 ** 9.85 ** -28.57 ns -9.82 ** -61.04 **
15 P3 x P4
-4.35 **
13.71 ** -41.67 * -26.47 ** -1.71 ** 8.87 ** -42.86 ** -9.82 ns -49.40 **
16 P3 x P5
6.09 **
17.67 ** -33.33 ** -52.94 ** -27.35 ** 5.42 ** -35.71 ** -27.68 ** -74.30 **
17 P3 x P6
8.70 **
18.53 ** -58.33 ** -52.94 ** -0.85 ** 8.87 ** -28.57 ** -27.23 ** -77.83 **
18 P3 x P7
0.00 **
-9.07 ** 50.00 ns 17.65 ns 34.19 ** -3.45 * 42.86 ns 20.98 * 46.99 **
19 P4 x P1
21.74 **
16.07 ** -58.33 ** -35.29 ** -11.97 ** 10.34 ** -28.57 ** -28.57 ** -69.88 **
20 P4 x P2
18.26 ** 18.62 **
-41.67 * -47.06 ** -17.09 ** 11.82 ** -35.71 ** -33.04 ** -74.30 **
21 P4 x P3
20.87 ** 15.22 **
-8.33 * -32.35 ** -11.11 ** 3.94 ** -42.86 ** -1.79 ns -12.05 **
Table 6. Estimation of standard heterosis for yield and yield attributing traits
-300
-200
-100
0
100
200
300
P1 x
P2
P1 x
P3
P1 x
P4
P1 x
P5
P1 x
P6
P1 x
P7
P2 x
P1
P2 x
P3
P2 x
P4
P2 x
P5
P2 x
P6
P2 x
P7
P3 x
P1
P3 x
P2
P3 x
P4
P3 x
P5
P3 x
P6
P3 x
P7
P4 x
P1
P4 x
P2
P4 x
P3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
SYP
100SW
NOS
DTM
NOP
NOC
NOB
PH
DFF
Estimation of standard heterosis for yield and yield attributing traits
S.No Hybrids DFF PH NOB NOC NOP DTM NOS 100SW SYP
22 P4 x P5
11.30 ** 18.90 **
-41.67 ** -44.12 ** -6.84 ** 8.87 ** -35.71 ** -1.79 ns -73.09 **
23 P4 x P6
15.65 ** 20.70 **
-33.33 ** -47.06 ** -27.35 ** 5.91 ** -42.86 ** -9.82 ** -69.88 **
24 P4 x P7
11.30 ** 18.15 **
-33.33 ** -23.53 ** -29.06 ** 3.94 ** -28.57 ** -8.04 ns -61.45 **
25 P5 x P1
15.65 ** 11.25 **
-33.33 ** -38.24 ** -26.50 ** 5.42 ** -28.57 ** -3.57 * -58.63 **
26 P5 x P2
15.65 ** 15.78 **
-33.33 ns -14.71 ** -22.22 ** 10.34 ** -28.57 ** -11.61 ** -61.45 **
27 P5 x P3
6.09 ** 19.75 **
-41.67 ** -41.18 ** -12.82 ** 7.39 ** -21.43 ** -33.04 ** -71.49 **
28 P5 x P4
3.48 ** 16.73 **
-58.33 ** -52.94 ** -17.09 ** 11.82 ** -28.57 ** -11.61 ns -67.47 **
29 P5 x P6
18.26 ** 12.67 **
-33.33 * -32.35 ** -1.71 ns 8.37 ** -28.57 ** -2.68 ns -67.07 **
30 P5 x P7
13.04 ** 13.99 **
-33.33 * -17.65 ** -14.53 ** 5.91 ** -21.43 ** -6.25 ns -45.94 **
31 P6 x P1
10.43 ** 8.70 **
-41.67 ** -35.29 ** -24.79 ** 6.40 ** -28.57 ** -11.61 ** -73.90 **
32 P6 x P2
20.00 ** 10.78 **
-33.33 ns -41.18 ns -32.48 ns 8.37 ** -21.43 ns -4.46 ** -71.08 **
33 P6 x P3
8.70 ** 17.58 **
-16.67 ** -26.47 ** -11.97 ** 3.94 ** -28.57 ** -7.14 ** -51.81 **
34 P6 x P4
2.61 ** 12.38 **
-33.33 ** -35.29 ** -37.61 ** 8.37 ** -28.57 ** -10.71 ** -61.85 **
35 P6 x P5
16.52 ** 17.67 **
-25.00 * -44.12 ** -0.85 ns 5.91 **
-21.43
**
-10.18 ns -60.24 **
36 P6 x P7
-12.17 ns 0.57 **
33.33 ns 17.65 ** 37.61 ** 0.00 ** 28.57 ns 34.82 ns 49.00 **
37 P7 x P1
2.61 ns 11.63 **
-41.67 ** -29.41 ** -20.51 ** 12.81 ** -28.57 ** -31.43 ** -71.89 **
38 P7 x P2
6.96 ** 8.70 **
-41.67 ** -17.65 ** -23.93 ** 10.34 ** -28.57 ** -8.93 ns -65.46 **
39 P7 x P3
12.17 ** 18.15 **
-33.33ns -20.59 ns -16.24 ** 7.39 * -21.43 ns -2.86 * -15.26 **
40 P7 x P4
19.13** 9.64 **
-41.67 ** -26.47 ** -21.37 ** 5.91 ** -28.57 ** 0.45 ns -67.87 **
41 P7 x P5
13.04 ** 13.99 **
-16.67 * -50.00 ** -11.11 ** 8.87 ** -28.57 ** -5.63 ns -68.27 **
42 P7 x P6
10.43 ns 16.64 **
-33.33 ns -58.82 ** -13.68 ** 9.36 ** -35.71 ns -29.11 ns -69.60 **
(
C
o
n
t
d
.
,
)
-250
-200
-150
-100
-50
0
50
100
150
200
250
P4 x
P5
P4 x
P6
P4 x
P7
P5 x
P1
P5 x
P2
P5 x
P3
P5 x
P4
P5 x
P6
P5 x
P7
P6 x
P1
P6 x
P2
P6 x
P3
P6 x
P4
P6 x
P5
P6 x
P7
P7 x
P1
P7 x
P2
P7 x
P3
P7 x
P4
P7 x
P5
P7 x
P6
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
SYP
100SW
NOS
DTM
NOP
NOC
NOB
PH
DFF
Estimation of standard heterosis for yield and yield attributing traits
Table.6. Selection of elite parents based on the per se performance and
gca effects of parents
S.NO Characters Per se gca effects
Comparison of
two criteria
1 Days to 50 per cent flowering
TU-68
ADT-3
ADT-5
TU-68
TU-68
2 Plant height at maturity
ADT-5
VBN-8
TU-68
VBN-6
-
3 Number of branches per plant
VBN-8
ADT-5
VBN-8
ADT-5
VBN-8
ADT-5
4 Number of clusters per plant
ADT-5
VBN-8
ADT-5
TU-68
ADT-5
5 Number of pods per plant
ADT-5
VBN-6
VBN-8
VBN-6
VBN-6
6 Days to maturity
ADT-5
VBN-5
VBN-8
TU-68
-
7 Number of seeds per pod
ADT-5
VBN-8
TU-68
ADT-5
TU-68
ADT-5
TU-68
8 100 seed weight
ADT-5
TU-68
ADT-5
TU-68
VBN-6
ADT-5
TU-68
9 Seed yield per plant
ADT-5
VBN-6
VBN-8
TU-68
ADT-5
ADT-5
S.N
O
Character Per se sca
Standard
heterosis
Comparison of
three
1 Days to 50 per cent flowering
ADT-5 x VBN-8
VBN-6 x TU-68
ADT-5 x VBN-8
VBN-6 x TU-68
ADT-5 x VBN-8
VBN-8 x ADT-5
ADT-5 x VBN-8
2 Plant height at maturity
VBN-8 x TU-68
ADT-5 x VBN-8
ADT-3x NANDI
ADT-5 x VBN-8
VBN-8 x TU-68
ADT-5 x VBN-8
ADT-5 x VBN-8
3 Number of branches per plant
ADT-5 x VBN-8
ADT-5 x VBN-6
ADT-5 x VBN-6
VBN-8 x TU-68
-
4 Number of clusters per plant
ADT-5 x VBN-6
VBN-6 x TU-68
ADT-5 x VBN-6
VBN-8 x TU-68
ADT-5 x VBN-6
VBN-6 x TU-68
ADT-5 x VBN-6
5 Number of pods per plant
ADT-5 x VBN-8
VBN-6 x TU-68
ADT-5 x VBN-8
VBN-6 x TU-68
ADT-5 x VBN-8
VBN-8 x TU-68
ADT-5 x VBN-8
VBN-6 x TU-68
6 Days to maturity
ADT-5 x VBN-8
VBN-8 x TU-68
NANDI xTU-68
ADT-5 x VBN-8
ADT-5 x VBN-8
VBN-8 x TU-68
ADT-5 x VBN-8
7 Number of seeds per pod
ADT-5 x VBN-8
ADT-5 x VBN-6
ADT-5 x VBN-8
VBN-8 x TU-68
- -
8 100 seed weight
ADT-5 x VBN-8
ADT-5 x VBN-6
ADT-5 x VBN-8
ADT-5 x VBN-6
ADT-5 x VBN-8
ADT-5 x VBN-6
ADT-5 x VBN-8
ADT-5 x VBN-6
9 Seed yield per plant
VBN-6 x TU-68
ADT-5 x VBN-6
VBN-6 x TU-68
VBN-8 x TU-68
VBN-6 x TU-68
ADT-5 x VBN-6
VBN-6 x TU-68
Table.7. Selection of superior hybrids based on per se performance, sca effect
and standard heterosis
Best hybrids
 Analysis of variance : MSS due to genotypes were significant for all the traits (presence of
considerable variability in the materials used).
 per se performance :
• parent: ADT-5, VBN-8 (plant height at maturity, number of branches per plant, number
of clusters per plant, number of pods per plant, days to maturity, number of 100
seed weight, number of seeds per pod, seed yield per plant).
• Hybrids: VBN-6 x TU-68 and ADT-5 x VBN-8, VBN-8 x TU-68 and ADT-5 x VBN-6.
 Combining ability effects:
• gca effects : ADT-5 ,TU-68, VBN-8, VBN-6
• sca effects : VBN-6 x TU-68 and VBN-8 x TU-68 (number of branches per plant, number
of clusters per plant, number of pods per plant, number of seeds per plant). ADT-5 x
VBN-8 and ADT-5 x VBN-6 (earliness, plant height, number of clusters per plant, number
of branches per plant, number of seeds per plant and 100 seed weight). These chosen
best hybrids also having high per se performance.
 Gene action:
• The estimates of variance due to the GCA were higher than the SCA for
most of the traits indicate the presence of additive gene action in the
expression of these traits.
• Predominance of dominance gene action in the expression of days to 50 per
cent flowering.
 Heterosis: Based on heterosis effect, hybrids VBN-6 x TU-68 and VBN-8 x TU-
68 chosen as best combination for seed yield yield followed by ADT-5 x VBN-8
and ADT-5 x VBN-6 show positive and significant heterosis effects.
(Contd.,)
1
• The parentsADT-5, TU-68, VBN-6, VBN-8were rated as best
parents based on theirper seperformance,gcaeffects for most
of the yield attributing traits.
2
• The hybridsVBN-6 x TU-68, VBN-8 x TU-68, ADT-5 x VBN-8
and ADT-5 x VBN-6were asserted as best hybrids based
onper seperformance,scaeffect andheterosis
3
• The estimates of GCA/SCA shows that presence of additive
gene action for most of the traits except days to 50 per cent
flowering
4
• Based on this, we should consider using selection methods
like pure line, mass selection, progeny selection and
hybridization
Diallel analysis in blackgram M.sc agri thesis viva
Diallel analysis in blackgram M.sc agri thesis viva

More Related Content

What's hot

6 gpb 621 scaling test
6 gpb 621 scaling test6 gpb 621 scaling test
6 gpb 621 scaling test
SaravananK153
 
Genomic selection
Genomic  selectionGenomic  selection
Genomic selection
pandadebadatta
 
FERTILITY RESTORATION IN MALE STERILE LINES AND RESTORER DIVERSIFICATION PROG...
FERTILITY RESTORATION IN MALE STERILE LINES AND RESTORER DIVERSIFICATION PROG...FERTILITY RESTORATION IN MALE STERILE LINES AND RESTORER DIVERSIFICATION PROG...
FERTILITY RESTORATION IN MALE STERILE LINES AND RESTORER DIVERSIFICATION PROG...
Rachana Bagudam
 
Gene Action for Yield and its Attributes by Generation Mean Analysis in Brinj...
Gene Action for Yield and its Attributes by Generation Mean Analysis in Brinj...Gene Action for Yield and its Attributes by Generation Mean Analysis in Brinj...
Gene Action for Yield and its Attributes by Generation Mean Analysis in Brinj...
AI Publications
 
Fine QTL Mapping- A step towards Marker Assisted Selection (II)
Fine QTL Mapping- A step towards Marker Assisted Selection  (II)Fine QTL Mapping- A step towards Marker Assisted Selection  (II)
Fine QTL Mapping- A step towards Marker Assisted Selection (II)
Mahesh Hampannavar
 
Heterotic pools
Heterotic poolsHeterotic pools
Heterotic pools
Rachana Bagudam
 
Combining ability
Combining abilityCombining ability
Combining ability
Parvati Tamrakar
 
Organellar heterosis
Organellar heterosisOrganellar heterosis
Organellar heterosis
Rachana Bagudam
 
Stability analysis and G*E interactions in plants
Stability analysis and G*E interactions in plantsStability analysis and G*E interactions in plants
Stability analysis and G*E interactions in plants
Rachana Bagudam
 
16.Recurrent selection
16.Recurrent selection16.Recurrent selection
16.Recurrent selection
Naveen Kumar
 
Advances in plant breeding
Advances in plant breedingAdvances in plant breeding
Advances in plant breeding
SHUATS
 
Genepyramiding for biotic resistance
Genepyramiding for biotic resistanceGenepyramiding for biotic resistance
Genepyramiding for biotic resistance
Senthil Natesan
 
Mating designs..
Mating designs..Mating designs..
Cytogenetic stocks in in plant breeding
Cytogenetic stocks in in plant breedingCytogenetic stocks in in plant breeding
Cytogenetic stocks in in plant breeding
manjeet singh
 
1 gpb 621 quantitative genetics introduction
1 gpb 621 quantitative genetics   introduction1 gpb 621 quantitative genetics   introduction
1 gpb 621 quantitative genetics introduction
SaravananK153
 
Gene action in breeding plants
Gene action  in  breeding plantsGene action  in  breeding plants
Gene action in breeding plants
Muhammad Zulqarnain
 
Production of inbred lines & hybrid variety
Production of inbred lines & hybrid varietyProduction of inbred lines & hybrid variety
Vr wr graph
Vr wr  graphVr wr  graph
Vr wr graph
gokul das
 
Advances in the research to achieve resistance to wheat rusts
Advances in the research to achieve resistance to wheat rustsAdvances in the research to achieve resistance to wheat rusts
Advances in the research to achieve resistance to wheat rusts
CIMMYT
 
release and notification of variety in india
release and notification of variety in indiarelease and notification of variety in india
release and notification of variety in india
Mahammed Faizan
 

What's hot (20)

6 gpb 621 scaling test
6 gpb 621 scaling test6 gpb 621 scaling test
6 gpb 621 scaling test
 
Genomic selection
Genomic  selectionGenomic  selection
Genomic selection
 
FERTILITY RESTORATION IN MALE STERILE LINES AND RESTORER DIVERSIFICATION PROG...
FERTILITY RESTORATION IN MALE STERILE LINES AND RESTORER DIVERSIFICATION PROG...FERTILITY RESTORATION IN MALE STERILE LINES AND RESTORER DIVERSIFICATION PROG...
FERTILITY RESTORATION IN MALE STERILE LINES AND RESTORER DIVERSIFICATION PROG...
 
Gene Action for Yield and its Attributes by Generation Mean Analysis in Brinj...
Gene Action for Yield and its Attributes by Generation Mean Analysis in Brinj...Gene Action for Yield and its Attributes by Generation Mean Analysis in Brinj...
Gene Action for Yield and its Attributes by Generation Mean Analysis in Brinj...
 
Fine QTL Mapping- A step towards Marker Assisted Selection (II)
Fine QTL Mapping- A step towards Marker Assisted Selection  (II)Fine QTL Mapping- A step towards Marker Assisted Selection  (II)
Fine QTL Mapping- A step towards Marker Assisted Selection (II)
 
Heterotic pools
Heterotic poolsHeterotic pools
Heterotic pools
 
Combining ability
Combining abilityCombining ability
Combining ability
 
Organellar heterosis
Organellar heterosisOrganellar heterosis
Organellar heterosis
 
Stability analysis and G*E interactions in plants
Stability analysis and G*E interactions in plantsStability analysis and G*E interactions in plants
Stability analysis and G*E interactions in plants
 
16.Recurrent selection
16.Recurrent selection16.Recurrent selection
16.Recurrent selection
 
Advances in plant breeding
Advances in plant breedingAdvances in plant breeding
Advances in plant breeding
 
Genepyramiding for biotic resistance
Genepyramiding for biotic resistanceGenepyramiding for biotic resistance
Genepyramiding for biotic resistance
 
Mating designs..
Mating designs..Mating designs..
Mating designs..
 
Cytogenetic stocks in in plant breeding
Cytogenetic stocks in in plant breedingCytogenetic stocks in in plant breeding
Cytogenetic stocks in in plant breeding
 
1 gpb 621 quantitative genetics introduction
1 gpb 621 quantitative genetics   introduction1 gpb 621 quantitative genetics   introduction
1 gpb 621 quantitative genetics introduction
 
Gene action in breeding plants
Gene action  in  breeding plantsGene action  in  breeding plants
Gene action in breeding plants
 
Production of inbred lines & hybrid variety
Production of inbred lines & hybrid varietyProduction of inbred lines & hybrid variety
Production of inbred lines & hybrid variety
 
Vr wr graph
Vr wr  graphVr wr  graph
Vr wr graph
 
Advances in the research to achieve resistance to wheat rusts
Advances in the research to achieve resistance to wheat rustsAdvances in the research to achieve resistance to wheat rusts
Advances in the research to achieve resistance to wheat rusts
 
release and notification of variety in india
release and notification of variety in indiarelease and notification of variety in india
release and notification of variety in india
 

Similar to Diallel analysis in blackgram M.sc agri thesis viva

Combining ability analysis and nature of gene action for grain yield in Maize...
Combining ability analysis and nature of gene action for grain yield in Maize...Combining ability analysis and nature of gene action for grain yield in Maize...
Combining ability analysis and nature of gene action for grain yield in Maize...
Agriculture Journal IJOEAR
 
Line × tester analysis for yield contributing morphological traits in Triticu...
Line × tester analysis for yield contributing morphological traits in Triticu...Line × tester analysis for yield contributing morphological traits in Triticu...
Line × tester analysis for yield contributing morphological traits in Triticu...
Innspub Net
 
Genetic Variability for yield in Maize (Zea mays l.) inbred lines
Genetic Variability  for yield in Maize (Zea mays l.) inbred linesGenetic Variability  for yield in Maize (Zea mays l.) inbred lines
Genetic Variability for yield in Maize (Zea mays l.) inbred lines
FekaduKorsa
 
Assesment of genetic divergence in chickpea kabuli cultivars
Assesment of genetic divergence in chickpea kabuli cultivarsAssesment of genetic divergence in chickpea kabuli cultivars
Assesment of genetic divergence in chickpea kabuli cultivars
Naveen Jakhar
 
Priorities of breeding approaches in bt cottons.dr. yanal alkuddsi
Priorities of breeding approaches in bt cottons.dr. yanal alkuddsiPriorities of breeding approaches in bt cottons.dr. yanal alkuddsi
Priorities of breeding approaches in bt cottons.dr. yanal alkuddsi
Dr. Yanal A. Alkuddsi
 
Development of synthetic maize germplasm
Development of synthetic maize germplasm Development of synthetic maize germplasm
Development of synthetic maize germplasm
CIMMYT
 
Estimation of genetic variability and efficiency of selection for grain yield...
Estimation of genetic variability and efficiency of selection for grain yield...Estimation of genetic variability and efficiency of selection for grain yield...
Estimation of genetic variability and efficiency of selection for grain yield...
Naveen Jakhar
 
Study of genetic variability in germplasm of common bread wheat
Study of genetic variability in germplasm of common bread wheatStudy of genetic variability in germplasm of common bread wheat
Study of genetic variability in germplasm of common bread wheat
YANKEY BHUTIA
 
INFLUENCE OF SEED PELLETING ON GROWTH, SEED YIELD AND YIELD CONTRIBUTING TRAI...
INFLUENCE OF SEED PELLETING ON GROWTH, SEED YIELD AND YIELD CONTRIBUTING TRAI...INFLUENCE OF SEED PELLETING ON GROWTH, SEED YIELD AND YIELD CONTRIBUTING TRAI...
INFLUENCE OF SEED PELLETING ON GROWTH, SEED YIELD AND YIELD CONTRIBUTING TRAI...
IRJET Journal
 
Screening of Castor Genotypes for Early Maturity
Screening of Castor Genotypes for Early MaturityScreening of Castor Genotypes for Early Maturity
Screening of Castor Genotypes for Early Maturity
Premier Publishers
 
2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...
2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...
2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...
FOODCROPS
 
EnvironmentGeneticdiversitystudiesincowpea.pdf
EnvironmentGeneticdiversitystudiesincowpea.pdfEnvironmentGeneticdiversitystudiesincowpea.pdf
EnvironmentGeneticdiversitystudiesincowpea.pdf
RahulNegi301188
 
Combining Ability Analysis of Maize (Zea Mays L.) Inbred Lines for Grain Yiel...
Combining Ability Analysis of Maize (Zea Mays L.) Inbred Lines for Grain Yiel...Combining Ability Analysis of Maize (Zea Mays L.) Inbred Lines for Grain Yiel...
Combining Ability Analysis of Maize (Zea Mays L.) Inbred Lines for Grain Yiel...
Premier Publishers
 
mung bean ppt.pptxnew.pptx
mung bean ppt.pptxnew.pptxmung bean ppt.pptxnew.pptx
mung bean ppt.pptxnew.pptx
rajeshkumarmishra06
 
Monday theme 3 1645 1700 room 2 soboka
Monday theme 3 1645 1700 room 2 sobokaMonday theme 3 1645 1700 room 2 soboka
Monday theme 3 1645 1700 room 2 soboka
African Potato Association (APA)
 
Theme 3: Effect of dormancy-breaking methods on seed tuber sprouting and subs...
Theme 3: Effect of dormancy-breaking methods on seed tuber sprouting and subs...Theme 3: Effect of dormancy-breaking methods on seed tuber sprouting and subs...
Theme 3: Effect of dormancy-breaking methods on seed tuber sprouting and subs...
African Potato Association (APA)
 
Hybrid_Rice_Breeding_Seed_Production.ppt
Hybrid_Rice_Breeding_Seed_Production.pptHybrid_Rice_Breeding_Seed_Production.ppt
Hybrid_Rice_Breeding_Seed_Production.ppt
Swati Shukla
 
Breeding and Seed_Production.ppt
Breeding and Seed_Production.pptBreeding and Seed_Production.ppt
Breeding and Seed_Production.ppt
MdMainulIslamRashad
 
The System of Rice Intensification (SRI)
The System of Rice Intensification (SRI)The System of Rice Intensification (SRI)
The System of Rice Intensification (SRI)
IFAD International Fund for Agricultural Development
 

Similar to Diallel analysis in blackgram M.sc agri thesis viva (20)

Combining ability analysis and nature of gene action for grain yield in Maize...
Combining ability analysis and nature of gene action for grain yield in Maize...Combining ability analysis and nature of gene action for grain yield in Maize...
Combining ability analysis and nature of gene action for grain yield in Maize...
 
Line × tester analysis for yield contributing morphological traits in Triticu...
Line × tester analysis for yield contributing morphological traits in Triticu...Line × tester analysis for yield contributing morphological traits in Triticu...
Line × tester analysis for yield contributing morphological traits in Triticu...
 
Genetic Variability for yield in Maize (Zea mays l.) inbred lines
Genetic Variability  for yield in Maize (Zea mays l.) inbred linesGenetic Variability  for yield in Maize (Zea mays l.) inbred lines
Genetic Variability for yield in Maize (Zea mays l.) inbred lines
 
Assesment of genetic divergence in chickpea kabuli cultivars
Assesment of genetic divergence in chickpea kabuli cultivarsAssesment of genetic divergence in chickpea kabuli cultivars
Assesment of genetic divergence in chickpea kabuli cultivars
 
khabazan bazrgar 2015
khabazan bazrgar 2015khabazan bazrgar 2015
khabazan bazrgar 2015
 
Priorities of breeding approaches in bt cottons.dr. yanal alkuddsi
Priorities of breeding approaches in bt cottons.dr. yanal alkuddsiPriorities of breeding approaches in bt cottons.dr. yanal alkuddsi
Priorities of breeding approaches in bt cottons.dr. yanal alkuddsi
 
Development of synthetic maize germplasm
Development of synthetic maize germplasm Development of synthetic maize germplasm
Development of synthetic maize germplasm
 
Estimation of genetic variability and efficiency of selection for grain yield...
Estimation of genetic variability and efficiency of selection for grain yield...Estimation of genetic variability and efficiency of selection for grain yield...
Estimation of genetic variability and efficiency of selection for grain yield...
 
Study of genetic variability in germplasm of common bread wheat
Study of genetic variability in germplasm of common bread wheatStudy of genetic variability in germplasm of common bread wheat
Study of genetic variability in germplasm of common bread wheat
 
INFLUENCE OF SEED PELLETING ON GROWTH, SEED YIELD AND YIELD CONTRIBUTING TRAI...
INFLUENCE OF SEED PELLETING ON GROWTH, SEED YIELD AND YIELD CONTRIBUTING TRAI...INFLUENCE OF SEED PELLETING ON GROWTH, SEED YIELD AND YIELD CONTRIBUTING TRAI...
INFLUENCE OF SEED PELLETING ON GROWTH, SEED YIELD AND YIELD CONTRIBUTING TRAI...
 
Screening of Castor Genotypes for Early Maturity
Screening of Castor Genotypes for Early MaturityScreening of Castor Genotypes for Early Maturity
Screening of Castor Genotypes for Early Maturity
 
2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...
2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...
2017. Sarah M Potts. Identification of QTL and candidate genes for plant dens...
 
EnvironmentGeneticdiversitystudiesincowpea.pdf
EnvironmentGeneticdiversitystudiesincowpea.pdfEnvironmentGeneticdiversitystudiesincowpea.pdf
EnvironmentGeneticdiversitystudiesincowpea.pdf
 
Combining Ability Analysis of Maize (Zea Mays L.) Inbred Lines for Grain Yiel...
Combining Ability Analysis of Maize (Zea Mays L.) Inbred Lines for Grain Yiel...Combining Ability Analysis of Maize (Zea Mays L.) Inbred Lines for Grain Yiel...
Combining Ability Analysis of Maize (Zea Mays L.) Inbred Lines for Grain Yiel...
 
mung bean ppt.pptxnew.pptx
mung bean ppt.pptxnew.pptxmung bean ppt.pptxnew.pptx
mung bean ppt.pptxnew.pptx
 
Monday theme 3 1645 1700 room 2 soboka
Monday theme 3 1645 1700 room 2 sobokaMonday theme 3 1645 1700 room 2 soboka
Monday theme 3 1645 1700 room 2 soboka
 
Theme 3: Effect of dormancy-breaking methods on seed tuber sprouting and subs...
Theme 3: Effect of dormancy-breaking methods on seed tuber sprouting and subs...Theme 3: Effect of dormancy-breaking methods on seed tuber sprouting and subs...
Theme 3: Effect of dormancy-breaking methods on seed tuber sprouting and subs...
 
Hybrid_Rice_Breeding_Seed_Production.ppt
Hybrid_Rice_Breeding_Seed_Production.pptHybrid_Rice_Breeding_Seed_Production.ppt
Hybrid_Rice_Breeding_Seed_Production.ppt
 
Breeding and Seed_Production.ppt
Breeding and Seed_Production.pptBreeding and Seed_Production.ppt
Breeding and Seed_Production.ppt
 
The System of Rice Intensification (SRI)
The System of Rice Intensification (SRI)The System of Rice Intensification (SRI)
The System of Rice Intensification (SRI)
 

More from Rahulselvaraj

Genetics and breeding of cultivated mushroom
Genetics and breeding of cultivated mushroomGenetics and breeding of cultivated mushroom
Genetics and breeding of cultivated mushroom
Rahulselvaraj
 
science 8th standard
science 8th standardscience 8th standard
science 8th standard
Rahulselvaraj
 
cytoplasmic genetic male sterility
cytoplasmic genetic male sterilitycytoplasmic genetic male sterility
cytoplasmic genetic male sterility
Rahulselvaraj
 
Agrobacterium mediated gene transfer
Agrobacterium mediated gene transferAgrobacterium mediated gene transfer
Agrobacterium mediated gene transfer
Rahulselvaraj
 
Tobacco
TobaccoTobacco
Tobacco
Rahulselvaraj
 
Monsomic analysis.pptx2
Monsomic analysis.pptx2Monsomic analysis.pptx2
Monsomic analysis.pptx2
Rahulselvaraj
 

More from Rahulselvaraj (6)

Genetics and breeding of cultivated mushroom
Genetics and breeding of cultivated mushroomGenetics and breeding of cultivated mushroom
Genetics and breeding of cultivated mushroom
 
science 8th standard
science 8th standardscience 8th standard
science 8th standard
 
cytoplasmic genetic male sterility
cytoplasmic genetic male sterilitycytoplasmic genetic male sterility
cytoplasmic genetic male sterility
 
Agrobacterium mediated gene transfer
Agrobacterium mediated gene transferAgrobacterium mediated gene transfer
Agrobacterium mediated gene transfer
 
Tobacco
TobaccoTobacco
Tobacco
 
Monsomic analysis.pptx2
Monsomic analysis.pptx2Monsomic analysis.pptx2
Monsomic analysis.pptx2
 

Recently uploaded

Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
RenuJangid3
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
muralinath2
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
IvanMallco1
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
muralinath2
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
AlguinaldoKong
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
Areesha Ahmad
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
AADYARAJPANDEY1
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
moosaasad1975
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
muralinath2
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
Richard Gill
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
YOGESH DOGRA
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
SAMIR PANDA
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
Richard Gill
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
muralinath2
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
ossaicprecious19
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
IqrimaNabilatulhusni
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
AADYARAJPANDEY1
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
pablovgd
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
kumarmathi863
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
aishnasrivastava
 

Recently uploaded (20)

Leaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdfLeaf Initiation, Growth and Differentiation.pdf
Leaf Initiation, Growth and Differentiation.pdf
 
Hemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptxHemostasis_importance& clinical significance.pptx
Hemostasis_importance& clinical significance.pptx
 
filosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptxfilosofia boliviana introducción jsjdjd.pptx
filosofia boliviana introducción jsjdjd.pptx
 
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptxBody fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
Body fluids_tonicity_dehydration_hypovolemia_hypervolemia.pptx
 
EY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptxEY - Supply Chain Services 2018_template.pptx
EY - Supply Chain Services 2018_template.pptx
 
GBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture MediaGBSN - Microbiology (Lab 4) Culture Media
GBSN - Microbiology (Lab 4) Culture Media
 
Cancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate PathwayCancer cell metabolism: special Reference to Lactate Pathway
Cancer cell metabolism: special Reference to Lactate Pathway
 
What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.What is greenhouse gasses and how many gasses are there to affect the Earth.
What is greenhouse gasses and how many gasses are there to affect the Earth.
 
Hemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptxHemoglobin metabolism_pathophysiology.pptx
Hemoglobin metabolism_pathophysiology.pptx
 
Richard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlandsRichard's aventures in two entangled wonderlands
Richard's aventures in two entangled wonderlands
 
Mammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also FunctionsMammalian Pineal Body Structure and Also Functions
Mammalian Pineal Body Structure and Also Functions
 
Seminar of U.V. Spectroscopy by SAMIR PANDA
 Seminar of U.V. Spectroscopy by SAMIR PANDA Seminar of U.V. Spectroscopy by SAMIR PANDA
Seminar of U.V. Spectroscopy by SAMIR PANDA
 
Richard's entangled aventures in wonderland
Richard's entangled aventures in wonderlandRichard's entangled aventures in wonderland
Richard's entangled aventures in wonderland
 
platelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptxplatelets_clotting_biogenesis.clot retractionpptx
platelets_clotting_biogenesis.clot retractionpptx
 
Lab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerinLab report on liquid viscosity of glycerin
Lab report on liquid viscosity of glycerin
 
general properties of oerganologametal.ppt
general properties of oerganologametal.pptgeneral properties of oerganologametal.ppt
general properties of oerganologametal.ppt
 
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCINGRNA INTERFERENCE: UNRAVELING GENETIC SILENCING
RNA INTERFERENCE: UNRAVELING GENETIC SILENCING
 
NuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final versionNuGOweek 2024 Ghent - programme - final version
NuGOweek 2024 Ghent - programme - final version
 
Structures and textures of metamorphic rocks
Structures and textures of metamorphic rocksStructures and textures of metamorphic rocks
Structures and textures of metamorphic rocks
 
Structural Classification Of Protein (SCOP)
Structural Classification Of Protein  (SCOP)Structural Classification Of Protein  (SCOP)
Structural Classification Of Protein (SCOP)
 

Diallel analysis in blackgram M.sc agri thesis viva

  • 1.
  • 2. STUDIES ON GENETIC ANALYSIS THROUGH DIALLEL MATING SYSTEM IN BLACKGRAM (Vigna mungo L. Hepper) Presented by S. ABINAYA, B.Sc. (Ag.) ANNAMALAI UNIVERSITY DEPARTMENT OF GENETICS AND PLANT BREEDING FACULTY OF AGRICULTURE ANNAMALAI NAGAR 2020
  • 3. CHAIRMAN Dr.K.R.SARAVANAN ASSISTANT PROFESSOR DEPT.OF GENETICS AND PLANT BREEDING MEMBERS: 1)Dr.S.RANJITH RAJARAM ASSISTANT PROFESSOR DEPT.OF GENETICS AND PLANT BREEDING 2)Dr.T.SIVAKUMAR ASSOCIATE PROFESSOR DEPT.OF.PLANT PATHOLOGY
  • 4. Content Materials and methods Results and conclusion Review of literature• Objectives Introduction
  • 5.  Pulses are the important commodity group of crops that provide high quality protein, also known as grain legumes.  Among all other pulses, Black gram (Phaseolus mungo. Linn / Vigna mungo.(L.) Hepper) is one of the important kharif pulse crop grown in India.  It is rich in source of nutrients and minerals as 100g edible portion contain protein (25g), potassium (983mg), calcium (138mg), iron (7.57mg), niacin (1.447 mg), thiamin (0.273 mg), riboflavin (0.254mg).  Besides, it plays a crucial role in increase soil fertility by fixing 72 Kg/ha of nitrogen into the soil.
  • 6. Family : Fabaceae Genus : Vigna Species: mungo Inflorescence  Flower-bisexual, papilionaceous,small, bracteoles are linear to lanceolate, exceeding the calyx.  Corolla- 5 petals, 2-wing; 2- keel; 1-standard petal  - Diadelphous 9+1 (9 united, 1 free) - Style twisted below stigmatic (hairy) surface young bud old bud Developed pod
  • 7. Contd…  Though black gram is a very popular crop in the developing world, there is a massive gap in productivity because of the non-availability of high yielding varieties and lack of the quality seeds reported by (Vasanthakumar, 2016).  The efficiency of hybridization programme highly depends on selection of elite parents to be used.  Therefore, the present investigation on diallel analysis in black gram done to get superior segragants and better recombinants.
  • 8. Objectives  To evaluate the parents and hybrids based on per se performance for yield and its component traits.  To estimate the general combining ability of parental line and specific combining ability of the crosses for yield and its component traits.  To study the nature of governing gene action for yield and its component traits.  To estimate heterosis of hybrid combination for yield and its components traits.  To suggest suitable breeding strategies for the improvement of yield and its component traits.
  • 9. The literature pertaining to different aspects of the present investigation was reviewed under the following headings  Gene action  Diallel analysis  Combining ability  Heterosis Reviews
  • 10. Prasad and Murugan Reported that CO 5 x VBN 2 found to be best cross combination based on gca, sca and per se performance. Reported that the specific combining ability (sca), KU-553 x Him Mash-1 and DU-1 x Palampur-93 were found to be potential cross combinations involving good general combiner Studied 36 F1 hybrids revealed that WGG 42 x RM-12-13, MGG- 347 x RM 12-13 exhibit high number of pods with high yield. Studied 21 cross combination revealed that MASH 338 x PU 31 and UTTARA x PU 31 exhibit high performance in yield attributing traits. 2015 2016 2017 2018 2019 2014 Reported that the genotypes, PU 31, LBG 645, ADT 3, CO 6 and LBG 709 reported significant and positive gca effects for majority of seed yield attributing traits. . The cross Mash 479 x Mash 1008 exhibited significant and positive sca effects for number of pods per plant and grain yield per plant Gill et al., Balouria et al., Suguna et al., Latha et al., Shalini and Lal
  • 11. Materials Genotypes Code Source ADT-3 P1 Pulses research station, Vamban ADT-5 P2 Pulses research station, Vamban VAMBAN-8 P3 Pulses research station, Vamban NANDI P4 NRI Agritech Pvt.Ltd, Guntur VAMBAN-5 P5 Pulses research station, Vamban VAMBAN-6 P6 Pulses research station, Vamban TU-68 P7 Pulses research station, Vamban Place : Experimental farm, Department of Genetics and plant breeding, Faculty of agriculture, Annamalai University. Season : kharif, 2019. Standard check
  • 12.
  • 13. Methods Experimental methods: Emasculation and Crossing : Genotypes – 7 parents Emasculation - hand emasculation Pollination - Gently rubbed the pollen grains against the feather like stigma Crossing - All possible combination (7x7) Crossed pod -Smaller in size with two or three seeds only. F1 evaluation: Method – Diallele analysis (Hayman and Jinks, 1953) and (Griffings, 1956) approach Design- RBD with three replication [ 7 parents along with 42 F1 hybrids]
  • 14. Step 1 Emasculation & Step 2 F1evaluation Step 3 Selection of superior hybrids
  • 18.  Days to 50% flowering  Plant height at maturity  Number of branches per plant  Number of clusters per plant  Days to maturity  Number of pods per plant  Number of seeds per plant  100 seed weight  Seed yield per plant Observations recorded
  • 19. Data obtained for various traits will be subjected to following biometrical procedures  Analysis of variance ( Panse and Sukhatme, 1978)  Combining ability analysis (Hayman and Jinks, 1953) and (Griffings, 1956) approach  Estimation of heterosis  Analysis of genetic parameters Johnson et al., (1955). Statistical analysis
  • 20.
  • 21. SOURCE Df Days to 50 per cent flowering Plant height at maturity Number of branches per plant Number of clusters per plant Number of pods per plant Days to maturity Number of seeds per pod 100 seed weight Seed yield per plant Replication 2 0.5217 1.4670 0.3537 0.1090 0.7959 0.4279 1.1088 0.0538 0.1726 Genotype 48 39.4262** 32.7209** 3.7494** 17.1806** 147.3889** 21.616** 2.8560** 1.2641** 24.8029** Error 96 0.3919 0.3796 0.3051 0.3102 0.6640 0.4216 0.2825 0.0252 0.0384 CD±5 1.012074 0.9961 0.8930 0.9005 1.3173 1.0498 0.8592 0.2569 0.3169 CD±1 1.344321 1.3230 1.1862 1.1961 1.7498 1.3944 1.1413 0.3412 0.4210 SE 0.3614 0.3557 0.3189 0.3216 0.4705 0.3749 0.3068 0.0917 0.1132 TABLE.1. Analysis of variance for yield and yield attributing traits in black gram
  • 22. Parents/ Crosses Days to 50% flowe- ring Plant height at maturity No. of branches per plant No. of clusters /plant No. of pods/plant Days to maturity No. of seeds /plant 100 seed weight (g) Seed yield/ plant (g) ADT3 35.33 45.8 3.33 7.33 33.33 71 3.67 2.9 4.77 ADT5 38.33 32.5 4 11.33 39 67.67 4.67 3.73 8.3 VBN 8 40.33 35.67 4.67 10.67 29.67 70.33 4 2.25 5.48 NANDI 38.67 49.8 3 7.67 31.67 72.33 3.33 3.1 6.77 VBN5 37.67 39.2 3.33 9.67 32.33 68.33 3.67 2.73 6.33 VBN6 37.33 35.83 3.33 8.67 38.33 69.67 3.67 3.15 7.63 TU 68 33.67 35 3.33 7.33 35.67 69.67 4 3.63 6.33 ADT3 x ADT5 40.33 40.6 2.33 5.33 30 72.67 2.67 2.45 1.78 ADT3 x VBN 8 42.67 40.87 2.67 4.33 34.33 69.67** 2.67 2.47 1.53 ADT3 x NANDI 38.67** 37.87** 1.67 5.33 32.67 73 3 3.63* 2.5 ADT3 x VBN5 40.33 35.40** 2 5 35.33 73.33 3.33 3.29 2.23 ADT 3 x VBN 6 41.33 40.77 2.67 7.33 33.33 74.67 3.33 2.88 2.67 ADT3 x TU 68 38.33** 42.47 3 5.33 37.67** 72.33 3.67 3.55 3.14 ADT5 x ADT3 41.33 41.93 2.33 7.67 35.67 76.33 3.33 3.61 2.8 ADT5 x VBN8 30.33** 32.57** 6.67** 13.67** 59.00** 64.33** 7.33** 5.30** 11.23** ADT5 x NANDI 40.67 41.83 3.33* 9.33** 39.00** 74.67 3.67 3.33 4.1 ADT5 x VBN5 37.33** 42.93 3.67* 6.67 28 72.67 3.33 3.33 2.81 ADT5 x VBN6 35.33** 33.80** 6.33** 14.67** 50.33** 66.67** 6.33** 5.17** 12.27** ADT5 x TU 68 39.33* 41.73 2.33 8.67 23 71 3.67 3.6 2.57 Table.2. Mean performance of parents and hybrids for various traits
  • 23. Parents/ Crosses Days to 50% flowe- ring Plant height at maturity No. of branches per plant No. of clusters /plant No. of pods/plant Days to maturity No. of seeds /plant 100 seed weight (g) Seed yield/ plant (g) VBN8 x ADT3 41.67 40.33 2.67 6.33 36.67** 73.33 3.33 3.78** 5.23** VBN8 x ADT5 35.33** 40.13 2 6 31.67 74.33 3.33 3.37 3.23 VBN8 x NANDI 36.67** 40.1 2.33 8.33 38.33** 73.67 2.67 3.37 4.2 VBN8 x VBN 5 40.67 41.5 2.67 5.33 28.33 71.33 3 2.7 2.13 VBN8 x VBN6 41.67 41.8 1.67 5.33 38.67** 73.67 3.33 2.72 1.84 VBN8 x TU 68 38.33** 32.07** 6.00** 13.33** 52.33** 65.33** 6.67** 4.52** 12.20** NANDI x ADT3 46.67 40.93 1.67 7.33 34.33 74.67 3.33 2.67 2.5 NANDI x ADT5 45.33 41.83 2.33 6 32.33 75.67 3 2.5 2.13 NANDI x VBN8 46.33 40.63 3.67* 7.67 34.67 70.33** 2.67 3.67* 7.30** NANDI x VBN 5 42.67 41.93 2.33 6.33 36.33** 73.67 3 3.67* 2.23 NANDI x VBN6 44.33 42.57 2.67 6 28.33 71.67 2.67 3.37 2.5 NANDI x TU 68 42.67 41.67 2.67 8.67 27.67 70.33** 3.33 3.43 3.2 VBN5 x ADT 3 44.33 39.23 2.67 7 28.67 71.33 3.33 3.6 3.43 VBN5 x ADT 5 44.33 40.83 2.67 9.67** 30.33 74.67 3.33 3.3 3.2 VBN5 x VBN 8 40.67 42.23 2.33 6.67 34 72.67 3.67 2.5 2.37 VBN5 x NANDI 39.67 41.17 1.67 5.33 32.33 75.67 3.33 3.3 2.7 VBN5 x VBN6 45.33 39.73 2.67 7.67 38.33** 73.33 3.33 3.63* 2.73 VBN5 x TU 68 43.33 40.2 2.67 9.33** 33.33 71.67 3.67 3.5 4.49 (contd…)
  • 24. Parents/ Crosses Days to 50% flowe- ring Plant height at maturity No. of branches per plant No. of clusters /plant No. of pods/plant Days to maturity No. of seeds /plant 100 seed weight (g) Seed yield/ plant (g) VBN6 x ADT3 42.33 38.33** 2.33 7.33 29.33 72 3.33 3.3 2.17 VBN6 x ADT5 46 39.07 2.67 6.67 26.33 73.33 3.67 3.57 2.4 VBN6 x VBN 8 41.67 41.47 3.33* 8.33 34.33 70.33** 3.33 3.47 4 VBN6 x NANDI 39.33* 39.63 2.67 7.33 24.33 73.33 3.33 3.33 3.17 VBN6 x VBN5 44.67 41.5 3 6.33 38.67** 71.67 3.67 3.35 3.3 VBN6 x TU 68 33.67** 35.47** 5.33** 13.33** 53.67** 67.67** 6.00** 5.03** 12.37** TU 68 x ADT 3 39.33* 39.37 2.33 8 31 76.33 3.33 2.56 2.33 TU 68 x ADT 5 41 38.33** 2.33 9.33** 29.67 74.67 3.33 3.4 2.87 TU 68 x VBN 8 43 41.67 2.67 9.00* 32.67 72.67 3.67 3.63* 7.03** TU 68 x NANDI 45.67 38.67* 2.33 8.33 30.67 71.67 3.33 3.75** 2.67 TU 68 x VBN5 43.33 40.2 3.33* 5.67 34.67 73.67 3.33 3.52 2.63 TU 68 x VBN6 42.33 41.13 2.67 4.67 33.67 74 3 2.65 2.52 (contd…)
  • 25. SOURCES Df Days to 50 per cent flowering Plant height at maturity Number of branches per plant Number of clusters per plant Number of pods per plant Days to maturity Number of seeds per pod 100 seed weight Seed yield per plant GCA 6 11.0833 20.21 2.145 10.72 38.12 9.172 1.655 0.508 11.42 SCA 21 14.25 11.06 0.762 3.097 44.91 5.444 0.655 0.347 7.894 RECIPROCAL 21 12.6217 7.223 1.482 6.931 58.49 8.402 1.048 0.472 7.742 ERROR 96 0.1306 0.0875 0.103 0.103 0.221 0.141 0.094 0.008 0.013 GCA/SCA 0.7777 1.827 2.814 3.461 1.178 1.685 2.526 1.466 1.446 TABLE.3. Analysis of variance for combining ability effects for yield and yield attributing characters
  • 26. Parents DFF PH NOB NOC NOP DTM NOS 100SW SYP ADT3 -0.03ns 0.80 ** -0.49 ** -1.31** -1.31 ** 0.96 ** -0.34** -0.26 ** -1.30** ADT5 -1.08** -0.75** 0.37 ** 1.21** 0.67 ** -0.14ns 0.40 ** 0.23 ** 0.57 ** VBN8 -0.63** -0.78 ** 0.44 ** 0.45 ** 2.17 ** -1.14** 0.21 ** -0.09** 0.94 ** NANDI 1.25** 2.11** -0.46 ** -0.57** -2.11** 1.05 ** -0.48** -0.07** -0.53** VBN5 0.97** 0.61 ** -0.25 ** -0.64** -1.50** 0.29 ** -0.22** -0.15** -0.94** VBN6 0.29** -0.85 ** 0.20 * 0.21** 1.57 ** -0.47** 0.14ns 0.11 ** 0.50 ** TU 68 -0.77** -1.13 ** 0.18 * 0.64 ** 0.52 ** -0.54** 0.30 ** 0.23 ** 0.76 ** Table 4. Estimation of gca effects for yield and yield attributing traits
  • 27. Estimation of gca effects for yield and yield attributing traits -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 DFF PH NOB NOC NOP DTM NOS 100SW SYP ADT3 ADT5 VBN8 NANDI VBN5 VBN6 TU 68
  • 28. CROSSES DFF PH NOB NOC NOP DTM NOS 100S SYP ADT3 x ADT5 1.34** 1.31 ** -0.54** -1.21 ** -1.10** 1.66 ** -0.68 ** -0.31 ** -1.26 ** ADT3 x VBN 8 2.23** 0.81 ** -0.28 ns -1.62** 0.07ns -0.34ns -0.49 * 0.10 ns -0.55 ** ADT3 x NANDI 0.84** -3.43 ** -0.37 ns 0.41 * 2.36 ** -0.20ns 0.36 ns 0.11 ns 0.04 ns ADT3 x VBN5 0.80** -4.01 ** 0.08ns 0.14 ns 0.23 ns -0.93 ** 0.27 ns 0.48 ** 0.78 ** ADT 3 x VBN 6 0.96** -0.31ns -0.20 ns 0.62 ** -3.50 ** 0.83 ** -0.09ns -0.14 * -1.08 ** ADT3 x TU 68 -0.97** 1.34** -0.01 ns -0.48 * 0.55 ns 1.90 ** -0.09ns -0.29 ** -1.01 ** ADT5 x VBN8 -6.06** -2.04** 0.53 ** 0.36 ns 7.93 ** -1.41 ** 1.10 ** 0.82 ** 1.44 ** ADT5 x NANDI 2.23** 0.56** -0.06 ns -0.79** 2.55 ** 2.23 ** -0.21ns -0.61 ** -1.21 ** ADT5 x VBN5 0.34ns 3.19** 0.06ns -0.21ns -4.57 ** 1.50 ** -0.47 * -0.14 * -0.91 ** ADT5 x VBN6 0.84** -1.88 ** 0.94 ** 1.43 ** 1.52 ** -1.41 ** 0.84 ** 0.66 ** 1.97 ** ADT5 x TU 68 1.42** 2.00 ** -1.20 ** -0.67** -9.43 ** 1.50 ** -0.83 ** -0.33 ** -2.90 ** VBN8 x NANDI 0.27ns -0.88** 0.03 ns 0.31 ns 1.88 ** 0.07 ns -0.68 ** 0.30 ** 1.04 ** Table 5. Estimation of sca effects for yield and yield attributing traits
  • 29. Estimation of sca effects for yield and yield attributing traits -20 -15 -10 -5 0 5 10 15 ADT3 x ADT5 ADT3 x VBN 8 ADT3 x NANDI ADT3 x VBN5 ADT 3 x VBN 6 ADT3 x TU 68 ADT5 x VBN8 ADT5 x NANDI ADT5 x VBN5 ADT5 x VBN6 ADT5 x TU 68 VBN8 x NANDI SYP 100S NOS DTM NOP NOC NOB PH DFF
  • 30. CROSSES DFF PH NOB NOC NOP DTM NOS 100S SYP VBN8 x VBN 5 -0.28ns 2.11** -0.68 ** -1.62** -4.07 ** 0.83 ** -0.28ns -0.54 ** -2.04 ** VBN8 x VBN6 1.39** 3.34** -1.13 ** -1.64 ** -1.81 ** 1.59 ** -0.64 ** -0.30 ** -2.82 ** VBN8 x TU 68 1.46** -1.14** 0.72 ** 2.26 ** 5.24** -1.34 ** 1.03 ** 0.56 ** 3.63 ** NANDI x VBN 5 -1.66** -1.09 ** -0.28ns -0.76** 3.38 ** 1.31 ** 0.25 ns 0.33 ** -0.36 ** NANDI x VBN6 -0.32ns -0.08ns -0.06 ns -0.79 ** -7.69 ** -0.10ns -0.28ns -0.06ns -1.44 ** NANDI x TU 68 3.08** -0.73 ** -0.20 ns 0.62 ** -3.52 ** -1.53 ** -0.11ns 0.06 ns -1.59 ** VBN5 x VBN6 3.13** 0.94 ** -0.11 ns -0.38ns 3.86 ** 0.66 ** -0.04ns 0.16 ** -0.84 ** VBN5 x TU 68 2.53** 0.81 ** 0.08 ns -0.31ns 0.40 ns 0.90 ** -0.21ns 0.06 ns -0.54 ** VBN6 x TU 68 -2.13** 0.37 * 0.63 ** 0.33 ns 7.00 ** -0.17ns 0.44 * 0.13 * 4.92 ** (contd…)
  • 31. Estimation of sca effects for yield and yield attributing traits -15 -10 -5 0 5 10 15 VBN8 x VBN 5 VBN8 x VBN6 VBN8 x TU 68 NANDI x VBN 5 NANDI x VBN6 NANDI x TU 68 VBN5 x VBN6 VBN5 x TU 68 VBN6 x TU 68 SYP 100S NOS DTM NOP NOC NOB PH DFF
  • 32. COMPONENT Days to 50 per cent flowering Plant height Number of branches per plant Number of clusters per plant Number of pods per plant Days to maturity Number of seeds per pod 100 seed weight Seed yield per plant D 4.76 34.67* 0.22 2.58* 12.02 2.34 0.08 0.26* 1.44 F 8.31 42.33* -0.16 1.91 17.53 2.61 -0.27 0.21 1.03 H1 34.92* 35.35* 1.52* 8.35* 101.72* 13.46* 1.21* 0.78* 18.61* H2 28.23* 21.95* 1.32* 5.99* 85.38* 10.60* 1.11* 0.68* 15.76* h2 42.76* 0.41 1.32* 5.17* 0.22 18.65* 0.17 0.36* 19.77* E 0.13 0.09 0.10 0.10 0.22 0.14 0.10 0.01 0.01 H2/4H1 0.20 0.16 0.22 0.18 0.21 0.20 0.23 0.22 0.21 [(4D/H1)1/2 +F/ (4D/ H1)1/2 -F] 1.95 4.06 0.76 1.52 1.67 1.61 0.40 1.63 1.22 (H1/D)1/2 2.71 1.01 2.63 1.80 2.91 2.40 3.88 1.74 3.60 h2/H2 1.51 0.02 1.00 0.86 0.003 1.76 0.15 0.53 1.25 h 2n 0.09 0.06 0.63 0.31 0.12 0.20 0.96 0.16 0.25 TABLE.5. Estimates of genetic components of variation for yield and yield attributing traits
  • 33. S.No Hybrids DFF PH NOB NOC NOP DTM NOS 100SW SYP 1 P1 x P2 5.22 ** 15.12 ** -41.67 ** -52.94 ** -23.08 ** 7.39 ** -42.86 ** -34.38 ** -78.51 ** 2 P1 x P3 11.30 ** 16.73 ** -33.33 ** -61.76 ** -11.97 ** 2.96 ** -42.86 ** -33.93 ** -81.53 ** 3 P1 x P4 0.87 ** 7.37 ** -58.33 ** -52.94 ** -16.24 ** 7.88 ** -35.71 ** -2.68 ** -69.88 ** 4 P1 x P5 5.22 ** 0.38 ** -50.00 ** -55.88 ** -9.40 ** 8.37 ** -28.57 ** -12.05 * -73.17 ** 5 P1 x P6 7.83 ** 15.60 ** -33.33 ** -35.29 ** -14.53 ** 10.34 ** -28.57 ** -22.95 ** -67.87 ** 6 P1 x P7 0.00 ns 20.42 ** -25.00 ** -52.94 ** -3.42 ** 6.90 ** -21.43 ** -5.00 ** -62.21 ** 7 P2 x P1 7.83 ** 18.90 ** -41.67 ** -32.35 ** -8.55 ** 12.81 ** -28.57 ** -3.21 ** -66.27 ** 8 P2 x P3 -20.87 ** -7.66 * 66.67 ns 20.59 ** 51.28 ** -4.93 ** 57.14 ns 41.96 ** 35.34 ** 9 P2 x P4 6.09 ** 18.62 ** -16.67 * -17.65 ** 0.00 ** 10.34 ** -21.43 ** -10.71 ** -50.60 ** 10 P2 x P5 -2.61 ** 27.88 ** -8.33 ns -41.18 ** -28.21 ** 7.39 ** -28.57 ** -10.71 ** -66.14 ** 11 P2 x P6 -7.83 ** -4.16 ** 58.33 ns 29.41 ns 29.06 ns -1.48 ** 35.71 ns 38.39 ** 47.79 ** 12 P2 x P7 2.61 ** 18.34 ** -41.67 ** -23.53 ** -41.03 ** 4.93 ** -21.43 ** -3.57 ns -69.08 ** 13 P3 x P1 8.70 ** 14.37 ** -33.33 ** -44.12 ** -5.98 ** 8.37 ** -28.57 ** 1.34 ** -36.95 ** 14 P3 x P2 -7.83 ** 13.80 * -50.00 ns -47.06 ** -18.80 ** 9.85 ** -28.57 ns -9.82 ** -61.04 ** 15 P3 x P4 -4.35 ** 13.71 ** -41.67 * -26.47 ** -1.71 ** 8.87 ** -42.86 ** -9.82 ns -49.40 ** 16 P3 x P5 6.09 ** 17.67 ** -33.33 ** -52.94 ** -27.35 ** 5.42 ** -35.71 ** -27.68 ** -74.30 ** 17 P3 x P6 8.70 ** 18.53 ** -58.33 ** -52.94 ** -0.85 ** 8.87 ** -28.57 ** -27.23 ** -77.83 ** 18 P3 x P7 0.00 ** -9.07 ** 50.00 ns 17.65 ns 34.19 ** -3.45 * 42.86 ns 20.98 * 46.99 ** 19 P4 x P1 21.74 ** 16.07 ** -58.33 ** -35.29 ** -11.97 ** 10.34 ** -28.57 ** -28.57 ** -69.88 ** 20 P4 x P2 18.26 ** 18.62 ** -41.67 * -47.06 ** -17.09 ** 11.82 ** -35.71 ** -33.04 ** -74.30 ** 21 P4 x P3 20.87 ** 15.22 ** -8.33 * -32.35 ** -11.11 ** 3.94 ** -42.86 ** -1.79 ns -12.05 ** Table 6. Estimation of standard heterosis for yield and yield attributing traits
  • 34. -300 -200 -100 0 100 200 300 P1 x P2 P1 x P3 P1 x P4 P1 x P5 P1 x P6 P1 x P7 P2 x P1 P2 x P3 P2 x P4 P2 x P5 P2 x P6 P2 x P7 P3 x P1 P3 x P2 P3 x P4 P3 x P5 P3 x P6 P3 x P7 P4 x P1 P4 x P2 P4 x P3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 SYP 100SW NOS DTM NOP NOC NOB PH DFF Estimation of standard heterosis for yield and yield attributing traits
  • 35. S.No Hybrids DFF PH NOB NOC NOP DTM NOS 100SW SYP 22 P4 x P5 11.30 ** 18.90 ** -41.67 ** -44.12 ** -6.84 ** 8.87 ** -35.71 ** -1.79 ns -73.09 ** 23 P4 x P6 15.65 ** 20.70 ** -33.33 ** -47.06 ** -27.35 ** 5.91 ** -42.86 ** -9.82 ** -69.88 ** 24 P4 x P7 11.30 ** 18.15 ** -33.33 ** -23.53 ** -29.06 ** 3.94 ** -28.57 ** -8.04 ns -61.45 ** 25 P5 x P1 15.65 ** 11.25 ** -33.33 ** -38.24 ** -26.50 ** 5.42 ** -28.57 ** -3.57 * -58.63 ** 26 P5 x P2 15.65 ** 15.78 ** -33.33 ns -14.71 ** -22.22 ** 10.34 ** -28.57 ** -11.61 ** -61.45 ** 27 P5 x P3 6.09 ** 19.75 ** -41.67 ** -41.18 ** -12.82 ** 7.39 ** -21.43 ** -33.04 ** -71.49 ** 28 P5 x P4 3.48 ** 16.73 ** -58.33 ** -52.94 ** -17.09 ** 11.82 ** -28.57 ** -11.61 ns -67.47 ** 29 P5 x P6 18.26 ** 12.67 ** -33.33 * -32.35 ** -1.71 ns 8.37 ** -28.57 ** -2.68 ns -67.07 ** 30 P5 x P7 13.04 ** 13.99 ** -33.33 * -17.65 ** -14.53 ** 5.91 ** -21.43 ** -6.25 ns -45.94 ** 31 P6 x P1 10.43 ** 8.70 ** -41.67 ** -35.29 ** -24.79 ** 6.40 ** -28.57 ** -11.61 ** -73.90 ** 32 P6 x P2 20.00 ** 10.78 ** -33.33 ns -41.18 ns -32.48 ns 8.37 ** -21.43 ns -4.46 ** -71.08 ** 33 P6 x P3 8.70 ** 17.58 ** -16.67 ** -26.47 ** -11.97 ** 3.94 ** -28.57 ** -7.14 ** -51.81 ** 34 P6 x P4 2.61 ** 12.38 ** -33.33 ** -35.29 ** -37.61 ** 8.37 ** -28.57 ** -10.71 ** -61.85 ** 35 P6 x P5 16.52 ** 17.67 ** -25.00 * -44.12 ** -0.85 ns 5.91 ** -21.43 ** -10.18 ns -60.24 ** 36 P6 x P7 -12.17 ns 0.57 ** 33.33 ns 17.65 ** 37.61 ** 0.00 ** 28.57 ns 34.82 ns 49.00 ** 37 P7 x P1 2.61 ns 11.63 ** -41.67 ** -29.41 ** -20.51 ** 12.81 ** -28.57 ** -31.43 ** -71.89 ** 38 P7 x P2 6.96 ** 8.70 ** -41.67 ** -17.65 ** -23.93 ** 10.34 ** -28.57 ** -8.93 ns -65.46 ** 39 P7 x P3 12.17 ** 18.15 ** -33.33ns -20.59 ns -16.24 ** 7.39 * -21.43 ns -2.86 * -15.26 ** 40 P7 x P4 19.13** 9.64 ** -41.67 ** -26.47 ** -21.37 ** 5.91 ** -28.57 ** 0.45 ns -67.87 ** 41 P7 x P5 13.04 ** 13.99 ** -16.67 * -50.00 ** -11.11 ** 8.87 ** -28.57 ** -5.63 ns -68.27 ** 42 P7 x P6 10.43 ns 16.64 ** -33.33 ns -58.82 ** -13.68 ** 9.36 ** -35.71 ns -29.11 ns -69.60 ** ( C o n t d . , )
  • 36. -250 -200 -150 -100 -50 0 50 100 150 200 250 P4 x P5 P4 x P6 P4 x P7 P5 x P1 P5 x P2 P5 x P3 P5 x P4 P5 x P6 P5 x P7 P6 x P1 P6 x P2 P6 x P3 P6 x P4 P6 x P5 P6 x P7 P7 x P1 P7 x P2 P7 x P3 P7 x P4 P7 x P5 P7 x P6 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 SYP 100SW NOS DTM NOP NOC NOB PH DFF Estimation of standard heterosis for yield and yield attributing traits
  • 37. Table.6. Selection of elite parents based on the per se performance and gca effects of parents S.NO Characters Per se gca effects Comparison of two criteria 1 Days to 50 per cent flowering TU-68 ADT-3 ADT-5 TU-68 TU-68 2 Plant height at maturity ADT-5 VBN-8 TU-68 VBN-6 - 3 Number of branches per plant VBN-8 ADT-5 VBN-8 ADT-5 VBN-8 ADT-5 4 Number of clusters per plant ADT-5 VBN-8 ADT-5 TU-68 ADT-5 5 Number of pods per plant ADT-5 VBN-6 VBN-8 VBN-6 VBN-6 6 Days to maturity ADT-5 VBN-5 VBN-8 TU-68 - 7 Number of seeds per pod ADT-5 VBN-8 TU-68 ADT-5 TU-68 ADT-5 TU-68 8 100 seed weight ADT-5 TU-68 ADT-5 TU-68 VBN-6 ADT-5 TU-68 9 Seed yield per plant ADT-5 VBN-6 VBN-8 TU-68 ADT-5 ADT-5
  • 38. S.N O Character Per se sca Standard heterosis Comparison of three 1 Days to 50 per cent flowering ADT-5 x VBN-8 VBN-6 x TU-68 ADT-5 x VBN-8 VBN-6 x TU-68 ADT-5 x VBN-8 VBN-8 x ADT-5 ADT-5 x VBN-8 2 Plant height at maturity VBN-8 x TU-68 ADT-5 x VBN-8 ADT-3x NANDI ADT-5 x VBN-8 VBN-8 x TU-68 ADT-5 x VBN-8 ADT-5 x VBN-8 3 Number of branches per plant ADT-5 x VBN-8 ADT-5 x VBN-6 ADT-5 x VBN-6 VBN-8 x TU-68 - 4 Number of clusters per plant ADT-5 x VBN-6 VBN-6 x TU-68 ADT-5 x VBN-6 VBN-8 x TU-68 ADT-5 x VBN-6 VBN-6 x TU-68 ADT-5 x VBN-6 5 Number of pods per plant ADT-5 x VBN-8 VBN-6 x TU-68 ADT-5 x VBN-8 VBN-6 x TU-68 ADT-5 x VBN-8 VBN-8 x TU-68 ADT-5 x VBN-8 VBN-6 x TU-68 6 Days to maturity ADT-5 x VBN-8 VBN-8 x TU-68 NANDI xTU-68 ADT-5 x VBN-8 ADT-5 x VBN-8 VBN-8 x TU-68 ADT-5 x VBN-8 7 Number of seeds per pod ADT-5 x VBN-8 ADT-5 x VBN-6 ADT-5 x VBN-8 VBN-8 x TU-68 - - 8 100 seed weight ADT-5 x VBN-8 ADT-5 x VBN-6 ADT-5 x VBN-8 ADT-5 x VBN-6 ADT-5 x VBN-8 ADT-5 x VBN-6 ADT-5 x VBN-8 ADT-5 x VBN-6 9 Seed yield per plant VBN-6 x TU-68 ADT-5 x VBN-6 VBN-6 x TU-68 VBN-8 x TU-68 VBN-6 x TU-68 ADT-5 x VBN-6 VBN-6 x TU-68 Table.7. Selection of superior hybrids based on per se performance, sca effect and standard heterosis
  • 40.
  • 41.  Analysis of variance : MSS due to genotypes were significant for all the traits (presence of considerable variability in the materials used).  per se performance : • parent: ADT-5, VBN-8 (plant height at maturity, number of branches per plant, number of clusters per plant, number of pods per plant, days to maturity, number of 100 seed weight, number of seeds per pod, seed yield per plant). • Hybrids: VBN-6 x TU-68 and ADT-5 x VBN-8, VBN-8 x TU-68 and ADT-5 x VBN-6.  Combining ability effects: • gca effects : ADT-5 ,TU-68, VBN-8, VBN-6 • sca effects : VBN-6 x TU-68 and VBN-8 x TU-68 (number of branches per plant, number of clusters per plant, number of pods per plant, number of seeds per plant). ADT-5 x VBN-8 and ADT-5 x VBN-6 (earliness, plant height, number of clusters per plant, number of branches per plant, number of seeds per plant and 100 seed weight). These chosen best hybrids also having high per se performance.
  • 42.  Gene action: • The estimates of variance due to the GCA were higher than the SCA for most of the traits indicate the presence of additive gene action in the expression of these traits. • Predominance of dominance gene action in the expression of days to 50 per cent flowering.  Heterosis: Based on heterosis effect, hybrids VBN-6 x TU-68 and VBN-8 x TU- 68 chosen as best combination for seed yield yield followed by ADT-5 x VBN-8 and ADT-5 x VBN-6 show positive and significant heterosis effects. (Contd.,)
  • 43. 1 • The parentsADT-5, TU-68, VBN-6, VBN-8were rated as best parents based on theirper seperformance,gcaeffects for most of the yield attributing traits. 2 • The hybridsVBN-6 x TU-68, VBN-8 x TU-68, ADT-5 x VBN-8 and ADT-5 x VBN-6were asserted as best hybrids based onper seperformance,scaeffect andheterosis 3 • The estimates of GCA/SCA shows that presence of additive gene action for most of the traits except days to 50 per cent flowering 4 • Based on this, we should consider using selection methods like pure line, mass selection, progeny selection and hybridization