Reinforcement learning is a machine learning technique that involves trial-and-error learning. The agent learns to map situations to actions by trial interactions with an environment in order to maximize a reward signal. Deep Q-networks use reinforcement learning and deep learning to allow agents to learn complex behaviors directly from high-dimensional sensory inputs like pixels. DQN uses experience replay and target networks to stabilize learning from experiences. DQN has achieved human-level performance on many Atari 2600 games.