SlideShare a Scribd company logo
Continuity of fluid flow
&
Bernoulli’s PrinCiPle
The Flow of a Fluid
The flow of a fluid is very complicated. Many aspects of fluid flow are not
well understood yet. We will limit our study to these three assumptions:
1) Incompressible fluids – this means the fluid does not change its density.
2) Steady (laminar) flow – this means the fluid flows in layers (streamlines) rather
than in a chaotic fashion as in turbulent flow.
3) Non-viscous fluids – this means there is no friction in the fluid. A non-
viscous fluid would be like water as opposed to pancake
batter.
Mass Flow RateMass Flow Rate
(kg/s)(kg/s)
Volume Flow RateVolume Flow Rate
(m(m33
/s)/s)
A ≡ Cross-sectional Area
(m2
)
m ≡ mass (kg)
t ≡ time (s)
v ≡ velocity (m/s)
V ≡ volume (m3
)
ρ ≡ density (kg/m3
)
Continuity of Fluid FlowContinuity of Fluid Flow
As a fluid flows through a pipe which changes its
cross-sectional area, its mass flow rate must remain
constant.
If the fluid is incompressible, then the volume flow rate must remain constant.
Relates the pressure (Pa), the height of the fluid
(m) and flow speed of the fluid (m/s) at one
point in a laminar flow to another point in a
laminar flow.
A special case of Bernoulli’s Principle occurs
when the flow speed of a fluid is zero at one
point in the flow and the pressure at two points
is the same. In this case Toricelli’s Equation
gives the speed of the fluid at the other point.
Momentum & Energy Example 29: Fluid Velocity & Pressure in a Pipe
 
Water is flowing through a 19-cm diameter pipe at 75-m/s.  The pipe’s diameter decreases 
to 10-cm.  The pipe is level.
 
a)What is the speed of the air in the 10-cm diameter pipe?
I’m baaaaaaaaaaack!!!!!!!
First, draw a picture of the pipe and
label it. Don’t forget to convert the
diameters to meters.
D1 = 0.19-m D2 = 0.10-m
v1 = 75-m/s v2
Now apply continuity of fluid flow
and solve for v2, just like all good
AP Physics students do!!!
Calculate the areas, A1 & A2. Remember to use
the radius of each rather than the diameter.
Finally, substitute into the equation for
v2 and simplify.
Change this
Momentum & Energy Example 29: Fluid Velocity & Pressure in a Pipe
 
Water is flowing through a 19-cm diameter pipe at 75-m/s.  The pipe’s diameter decreases 
to 10-cm.  The pipe is level.
 
b)If you wanted the airflow to reach the speed of sound (345-m/s), what would the 
diameter of the smaller pipe need to be?
Draw and label the picture!!
D1 = 0.19-m D2
v1 = 75-m/s v2=345-m/s
Apply continuity of fluid flow and solve for
the area at point 2, A2.
Calculate A1, and substitute into the
equation to find A2.
Now find the radius and then the diameter.
Momentum & Energy Example 29: Fluid Velocity & Pressure in a Pipe
 
Water is flowing through a 19-cm diameter pipe at 75-m/s.  The pipe’s diameter decreases 
to 10-cm.  The pipe is level.
 
c)The pressure in the large diameter pipe is 1.2-atm.  If the 10-cm pipe is placed 1.5-m 
above the 19-cm diameter pipe, what will the pressure in the 10-cm pipe be?
Draw and label the diagram. Continuity of
fluid flow still gives you a speed of 270-m/s
at the 10-cm end.
h =1.5-mv1 = 75-m/s
v2 = 270-m/s
Convert the pressure to Pa.
P1 = 1.2 X 105
-Pa
Write out Bernoulli’s Equation. We will
assume the density of the water remains
constant. (1000-kg/m3
)
Since h1 = 0, we can drop this term
as we solve for P2.
Substitute in and simplify.
Momentum & Energy Example 30: Water Flow from a Tank
A water tank with a valve at the bottom is shown below.  Assume the cross-sectional area 
at A is very large compared with that at B, and the acceleration of gravity is 9.81-m/s2
.
a) What is the speed the water leaves the spigot at B after the valve is opened?
Apply Bernoulli’s principle.
At A & B, the pressure is the same so we
can eliminate these terms.
We need to find hB using a bit of
trigonometry.
We can also assume the speed at
A is zero.
vA = 0-m/s
Solve the equation for vB.This is Torricelli’s Equation.Substitute and find vB.
Momentum & Energy Example 30: Water Flow from a Tank
A water tank with a valve at the bottom is shown below.  Assume the cross-sectional area 
at A is very large compared with that at B, and the acceleration of gravity is 9.81-m/s2
.
b) What is the maximum height above the opening of the spigot (∆ymax
) attained 
by the water stream coming out of the spigot at B after the valve is opened?
This is just a projectile motion problem.
So we can use our equations of motion.
At maximum height vy = 0, so solving
for ∆ymax we get this equation.
We need to use trigonometry, to find
voy. then substitute to find the
solution.
10-m/s
voy = 10sin(49) = 7.5-m/s)
Momentum & Energy Example 30: Water Flow from a Tank
A water tank with a valve at the bottom is shown below. Assume the cross-sectional area
at A is very large compared with that at B, and the acceleration of gravity is 9.81-m/s2
.
b) What is the maximum height above the opening of the spigot (∆ymax
) attained
by the water stream coming out of the spigot at B after the valve is opened?
This is just a projectile motion problem.
So we can use our equations of motion.
At maximum height vy = 0, so solving
for ∆ymax we get this equation.
We need to use trigonometry, to find
voy. then substitute to find the
solution.
10-m/s
voy = 10sin(49) = 7.5-m/s)

More Related Content

What's hot

Equation of continuity
Equation of continuityEquation of continuity
Equation of continuity
sahbg
 
EJERCICIO 2
EJERCICIO 2EJERCICIO 2
EJERCICIO 2
yeisyynojos
 
Ecuación de continuidad
Ecuación de continuidad Ecuación de continuidad
Ecuación de continuidad
ErikCalvopia
 
Diapositivas ecuación de continuidad
Diapositivas ecuación de continuidadDiapositivas ecuación de continuidad
Diapositivas ecuación de continuidad
ErikCalvopia
 
Homework transport phenomena
Homework transport phenomenaHomework transport phenomena
Homework transport phenomena
jhonalberto3444
 
Cuestionario n° 5 dinámica de los fluidos
Cuestionario  n° 5   dinámica de los fluidosCuestionario  n° 5   dinámica de los fluidos
Cuestionario n° 5 dinámica de los fluidos
Direccion General de Escuelas
 
أسئلة 1
أسئلة 1أسئلة 1
أسئلة 1
Lama K Banna
 
51495
5149551495
51495
jatinar123
 
Ostwald
OstwaldOstwald
Ostwald
Norman Rivera
 
Ejercicio 4. Ecuación diferencial
Ejercicio 4. Ecuación diferencialEjercicio 4. Ecuación diferencial
Ejercicio 4. Ecuación diferencial
yeisyynojos
 
Volume flow rate_measurement
Volume flow rate_measurementVolume flow rate_measurement
Volume flow rate_measurement
aparna kadam
 
Laminar flow
Laminar flowLaminar flow
Laminar flow
Vishal Chaudhari
 
Problema 5
Problema 5Problema 5
Problema 5
yeisyynojos
 
Practica 4 medición_de_caudal_
Practica 4 medición_de_caudal_Practica 4 medición_de_caudal_
Practica 4 medición_de_caudal_
yeisyynojos
 
Flow through circular tube
Flow through circular tubeFlow through circular tube
Flow through circular tube
Mausam Patel
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
guest7b51c7
 
Qb103354
Qb103354Qb103354
Qb103354
manojg1990
 
KINEMATICS OF FLUIDS (Chapter 3)
KINEMATICS OF FLUIDS (Chapter 3)KINEMATICS OF FLUIDS (Chapter 3)
KINEMATICS OF FLUIDS (Chapter 3)
Shekh Muhsen Uddin Ahmed
 
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
Shekh Muhsen Uddin Ahmed
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
Dr.Risalah A. Mohammed
 

What's hot (20)

Equation of continuity
Equation of continuityEquation of continuity
Equation of continuity
 
EJERCICIO 2
EJERCICIO 2EJERCICIO 2
EJERCICIO 2
 
Ecuación de continuidad
Ecuación de continuidad Ecuación de continuidad
Ecuación de continuidad
 
Diapositivas ecuación de continuidad
Diapositivas ecuación de continuidadDiapositivas ecuación de continuidad
Diapositivas ecuación de continuidad
 
Homework transport phenomena
Homework transport phenomenaHomework transport phenomena
Homework transport phenomena
 
Cuestionario n° 5 dinámica de los fluidos
Cuestionario  n° 5   dinámica de los fluidosCuestionario  n° 5   dinámica de los fluidos
Cuestionario n° 5 dinámica de los fluidos
 
أسئلة 1
أسئلة 1أسئلة 1
أسئلة 1
 
51495
5149551495
51495
 
Ostwald
OstwaldOstwald
Ostwald
 
Ejercicio 4. Ecuación diferencial
Ejercicio 4. Ecuación diferencialEjercicio 4. Ecuación diferencial
Ejercicio 4. Ecuación diferencial
 
Volume flow rate_measurement
Volume flow rate_measurementVolume flow rate_measurement
Volume flow rate_measurement
 
Laminar flow
Laminar flowLaminar flow
Laminar flow
 
Problema 5
Problema 5Problema 5
Problema 5
 
Practica 4 medición_de_caudal_
Practica 4 medición_de_caudal_Practica 4 medición_de_caudal_
Practica 4 medición_de_caudal_
 
Flow through circular tube
Flow through circular tubeFlow through circular tube
Flow through circular tube
 
Fluid dynamics 1
Fluid dynamics 1Fluid dynamics 1
Fluid dynamics 1
 
Qb103354
Qb103354Qb103354
Qb103354
 
KINEMATICS OF FLUIDS (Chapter 3)
KINEMATICS OF FLUIDS (Chapter 3)KINEMATICS OF FLUIDS (Chapter 3)
KINEMATICS OF FLUIDS (Chapter 3)
 
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
TWO-DIMENSIONAL IDEAL FLOW (Chapter 6)
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
 

Viewers also liked

Introduction to Computational Fluid Dynamics
Introduction to Computational Fluid DynamicsIntroduction to Computational Fluid Dynamics
Introduction to Computational Fluid Dynamics
iMentor Education
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013Madd Maths
 
Transformer
TransformerTransformer
Transformer
Pavan11
 
Pratik Vadher - Fluid Mechanics
Pratik Vadher - Fluid MechanicsPratik Vadher - Fluid Mechanics
Pratik Vadher - Fluid Mechanics
Pratik Vadher
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
SHAMJITH KM
 
Properties of fluids
Properties of fluidsProperties of fluids
Properties of fluids
Rushikesh Raval
 
6 7 irrotational flow
6 7 irrotational flow6 7 irrotational flow
6 7 irrotational flownavala
 
Study of fluids
Study of fluidsStudy of fluids
Study of fluids
Sadhana28
 
Basiceqs3
Basiceqs3Basiceqs3
Basiceqs3
Uzma Nadeem
 
Fluids and their properties
Fluids and their propertiesFluids and their properties
Fluids and their properties
Dew Shruti
 
Transport phenomena
Transport phenomenaTransport phenomena
Transport phenomena
Zin Eddine Dadach
 
Application of Fluid Dynamics In Traffic Management
Application of Fluid Dynamics In Traffic ManagementApplication of Fluid Dynamics In Traffic Management
Application of Fluid Dynamics In Traffic Management
Jaydeep Deshpande
 
Continuity equation1
Continuity equation1Continuity equation1
Continuity equation1Wajid Siyal
 
Fluid properties
Fluid propertiesFluid properties
Fluid properties
Ashish Khudaiwala
 
Fluid Properties Density , Viscosity , Surface tension & Capillarity
Fluid Properties Density , Viscosity , Surface tension & Capillarity Fluid Properties Density , Viscosity , Surface tension & Capillarity
Fluid Properties Density , Viscosity , Surface tension & Capillarity
Smit Shah
 
Essential fluids
Essential fluids Essential fluids
Essential fluids
Keith Vaugh
 

Viewers also liked (20)

Introduction to Computational Fluid Dynamics
Introduction to Computational Fluid DynamicsIntroduction to Computational Fluid Dynamics
Introduction to Computational Fluid Dynamics
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013
 
Momentum2
Momentum2Momentum2
Momentum2
 
Momentum2
Momentum2Momentum2
Momentum2
 
Transformer
TransformerTransformer
Transformer
 
Pratik Vadher - Fluid Mechanics
Pratik Vadher - Fluid MechanicsPratik Vadher - Fluid Mechanics
Pratik Vadher - Fluid Mechanics
 
6. balance laws jan 2013
6. balance laws jan 20136. balance laws jan 2013
6. balance laws jan 2013
 
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sirModule4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
 
CFD
CFDCFD
CFD
 
Properties of fluids
Properties of fluidsProperties of fluids
Properties of fluids
 
6 7 irrotational flow
6 7 irrotational flow6 7 irrotational flow
6 7 irrotational flow
 
Study of fluids
Study of fluidsStudy of fluids
Study of fluids
 
Basiceqs3
Basiceqs3Basiceqs3
Basiceqs3
 
Fluids and their properties
Fluids and their propertiesFluids and their properties
Fluids and their properties
 
Transport phenomena
Transport phenomenaTransport phenomena
Transport phenomena
 
Application of Fluid Dynamics In Traffic Management
Application of Fluid Dynamics In Traffic ManagementApplication of Fluid Dynamics In Traffic Management
Application of Fluid Dynamics In Traffic Management
 
Continuity equation1
Continuity equation1Continuity equation1
Continuity equation1
 
Fluid properties
Fluid propertiesFluid properties
Fluid properties
 
Fluid Properties Density , Viscosity , Surface tension & Capillarity
Fluid Properties Density , Viscosity , Surface tension & Capillarity Fluid Properties Density , Viscosity , Surface tension & Capillarity
Fluid Properties Density , Viscosity , Surface tension & Capillarity
 
Essential fluids
Essential fluids Essential fluids
Essential fluids
 

Similar to Continuity of fluid flow & bernoulli's principle

Engr 2860 u practice problems 29nov14
Engr 2860 u practice problems 29nov14Engr 2860 u practice problems 29nov14
Engr 2860 u practice problems 29nov14
Abdullah070
 
Hidráulica
Hidráulica Hidráulica
Hidráulica
MarielaAguilera11
 
Basic equation of fluid flow mechan.pptx
Basic equation of fluid flow mechan.pptxBasic equation of fluid flow mechan.pptx
Basic equation of fluid flow mechan.pptx
AjithPArun1
 
FM-II Lec 4
FM-II Lec 4FM-II Lec 4
FM-II Lec 4
Civil Zone
 
Ch.1 fluid dynamic
Ch.1 fluid dynamicCh.1 fluid dynamic
Ch.1 fluid dynamic
Malika khalil
 
Hidrodinámica
HidrodinámicaHidrodinámica
Hidrodinámica
oberh
 
Bernoulli's principle
Bernoulli's  principleBernoulli's  principle
Bernoulli's principle
Ang Sovann
 
Lecture 14 related rates - section 4.1
Lecture 14   related rates - section 4.1Lecture 14   related rates - section 4.1
Lecture 14 related rates - section 4.1
njit-ronbrown
 
Fluid flow rate Experiment No. 5.pdf
Fluid flow rate Experiment No. 5.pdfFluid flow rate Experiment No. 5.pdf
Fluid flow rate Experiment No. 5.pdf
Kaiwan B. Hamasalih
 
=Lectures-9_Weirs_.pdf.dep of civil eng.
=Lectures-9_Weirs_.pdf.dep of civil eng.=Lectures-9_Weirs_.pdf.dep of civil eng.
=Lectures-9_Weirs_.pdf.dep of civil eng.
AhmadIbrahim465739
 
Qb103352
Qb103352Qb103352
Qb103352
manojg1990
 
110 fluid mechanics
110 fluid mechanics110 fluid mechanics
110 fluid mechanics
Zakaria Masud
 
Bernoulli’s equation and their applications
Bernoulli’s equation and their applicationsBernoulli’s equation and their applications
Bernoulli’s equation and their applications
AMIE(I) Study Circle
 
12 Fluid dynamics.pdf
12 Fluid dynamics.pdf12 Fluid dynamics.pdf
12 Fluid dynamics.pdf
raymond960424
 
A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1
jntuworld
 
Fluid Mechanic Lectures
Fluid Mechanic Lectures Fluid Mechanic Lectures
Fluid Mechanic Lectures
Barhm Mohamad
 
Friction in noncircular conduits of fluid.pptx
Friction in noncircular conduits of fluid.pptxFriction in noncircular conduits of fluid.pptx
Friction in noncircular conduits of fluid.pptx
MuhammadHabib533231
 
WATS 3 (1-50) Fluid Mechanics and Thermodynamics
WATS 3 (1-50) Fluid Mechanics and ThermodynamicsWATS 3 (1-50) Fluid Mechanics and Thermodynamics
WATS 3 (1-50) Fluid Mechanics and Thermodynamics
Mark Russell
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
Mohsin Siddique
 
Flash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return LinesFlash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return Lines
Vijay Sarathy
 

Similar to Continuity of fluid flow & bernoulli's principle (20)

Engr 2860 u practice problems 29nov14
Engr 2860 u practice problems 29nov14Engr 2860 u practice problems 29nov14
Engr 2860 u practice problems 29nov14
 
Hidráulica
Hidráulica Hidráulica
Hidráulica
 
Basic equation of fluid flow mechan.pptx
Basic equation of fluid flow mechan.pptxBasic equation of fluid flow mechan.pptx
Basic equation of fluid flow mechan.pptx
 
FM-II Lec 4
FM-II Lec 4FM-II Lec 4
FM-II Lec 4
 
Ch.1 fluid dynamic
Ch.1 fluid dynamicCh.1 fluid dynamic
Ch.1 fluid dynamic
 
Hidrodinámica
HidrodinámicaHidrodinámica
Hidrodinámica
 
Bernoulli's principle
Bernoulli's  principleBernoulli's  principle
Bernoulli's principle
 
Lecture 14 related rates - section 4.1
Lecture 14   related rates - section 4.1Lecture 14   related rates - section 4.1
Lecture 14 related rates - section 4.1
 
Fluid flow rate Experiment No. 5.pdf
Fluid flow rate Experiment No. 5.pdfFluid flow rate Experiment No. 5.pdf
Fluid flow rate Experiment No. 5.pdf
 
=Lectures-9_Weirs_.pdf.dep of civil eng.
=Lectures-9_Weirs_.pdf.dep of civil eng.=Lectures-9_Weirs_.pdf.dep of civil eng.
=Lectures-9_Weirs_.pdf.dep of civil eng.
 
Qb103352
Qb103352Qb103352
Qb103352
 
110 fluid mechanics
110 fluid mechanics110 fluid mechanics
110 fluid mechanics
 
Bernoulli’s equation and their applications
Bernoulli’s equation and their applicationsBernoulli’s equation and their applications
Bernoulli’s equation and their applications
 
12 Fluid dynamics.pdf
12 Fluid dynamics.pdf12 Fluid dynamics.pdf
12 Fluid dynamics.pdf
 
A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1A109212102 mechanicsoffluids1
A109212102 mechanicsoffluids1
 
Fluid Mechanic Lectures
Fluid Mechanic Lectures Fluid Mechanic Lectures
Fluid Mechanic Lectures
 
Friction in noncircular conduits of fluid.pptx
Friction in noncircular conduits of fluid.pptxFriction in noncircular conduits of fluid.pptx
Friction in noncircular conduits of fluid.pptx
 
WATS 3 (1-50) Fluid Mechanics and Thermodynamics
WATS 3 (1-50) Fluid Mechanics and ThermodynamicsWATS 3 (1-50) Fluid Mechanics and Thermodynamics
WATS 3 (1-50) Fluid Mechanics and Thermodynamics
 
Fluid kinematics
Fluid kinematicsFluid kinematics
Fluid kinematics
 
Flash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return LinesFlash Steam and Steam Condensates in Return Lines
Flash Steam and Steam Condensates in Return Lines
 

More from POLITEKNIK NEGERI BALI (11)

Btu
BtuBtu
Btu
 
Subcool 2
Subcool 2Subcool 2
Subcool 2
 
Airflow ac 2
Airflow ac 2Airflow ac 2
Airflow ac 2
 
Pump
PumpPump
Pump
 
Pump theory
Pump theoryPump theory
Pump theory
 
10 fluid dynamics
10 fluid dynamics10 fluid dynamics
10 fluid dynamics
 
Aliran dan penurunan tek...resistensi dan diameter
Aliran dan penurunan tek...resistensi dan diameterAliran dan penurunan tek...resistensi dan diameter
Aliran dan penurunan tek...resistensi dan diameter
 
Bagaimana tidak untuk he...tware basis pengetahuana
Bagaimana tidak untuk he...tware basis pengetahuanaBagaimana tidak untuk he...tware basis pengetahuana
Bagaimana tidak untuk he...tware basis pengetahuana
 
Lesson 4 bernoulli's theorem
Lesson 4  bernoulli's theoremLesson 4  bernoulli's theorem
Lesson 4 bernoulli's theorem
 
Presentation g pita
Presentation g pitaPresentation g pita
Presentation g pita
 
Cooling system idiosyncrasies 2006
Cooling system idiosyncrasies 2006Cooling system idiosyncrasies 2006
Cooling system idiosyncrasies 2006
 

Continuity of fluid flow & bernoulli's principle

  • 1. Continuity of fluid flow & Bernoulli’s PrinCiPle
  • 2. The Flow of a Fluid The flow of a fluid is very complicated. Many aspects of fluid flow are not well understood yet. We will limit our study to these three assumptions: 1) Incompressible fluids – this means the fluid does not change its density. 2) Steady (laminar) flow – this means the fluid flows in layers (streamlines) rather than in a chaotic fashion as in turbulent flow. 3) Non-viscous fluids – this means there is no friction in the fluid. A non- viscous fluid would be like water as opposed to pancake batter.
  • 3. Mass Flow RateMass Flow Rate (kg/s)(kg/s) Volume Flow RateVolume Flow Rate (m(m33 /s)/s) A ≡ Cross-sectional Area (m2 ) m ≡ mass (kg) t ≡ time (s) v ≡ velocity (m/s) V ≡ volume (m3 ) ρ ≡ density (kg/m3 ) Continuity of Fluid FlowContinuity of Fluid Flow As a fluid flows through a pipe which changes its cross-sectional area, its mass flow rate must remain constant. If the fluid is incompressible, then the volume flow rate must remain constant.
  • 4. Relates the pressure (Pa), the height of the fluid (m) and flow speed of the fluid (m/s) at one point in a laminar flow to another point in a laminar flow. A special case of Bernoulli’s Principle occurs when the flow speed of a fluid is zero at one point in the flow and the pressure at two points is the same. In this case Toricelli’s Equation gives the speed of the fluid at the other point.
  • 5. Momentum & Energy Example 29: Fluid Velocity & Pressure in a Pipe   Water is flowing through a 19-cm diameter pipe at 75-m/s.  The pipe’s diameter decreases  to 10-cm.  The pipe is level.   a)What is the speed of the air in the 10-cm diameter pipe? I’m baaaaaaaaaaack!!!!!!! First, draw a picture of the pipe and label it. Don’t forget to convert the diameters to meters. D1 = 0.19-m D2 = 0.10-m v1 = 75-m/s v2 Now apply continuity of fluid flow and solve for v2, just like all good AP Physics students do!!! Calculate the areas, A1 & A2. Remember to use the radius of each rather than the diameter. Finally, substitute into the equation for v2 and simplify. Change this
  • 6. Momentum & Energy Example 29: Fluid Velocity & Pressure in a Pipe   Water is flowing through a 19-cm diameter pipe at 75-m/s.  The pipe’s diameter decreases  to 10-cm.  The pipe is level.   b)If you wanted the airflow to reach the speed of sound (345-m/s), what would the  diameter of the smaller pipe need to be? Draw and label the picture!! D1 = 0.19-m D2 v1 = 75-m/s v2=345-m/s Apply continuity of fluid flow and solve for the area at point 2, A2. Calculate A1, and substitute into the equation to find A2. Now find the radius and then the diameter.
  • 7. Momentum & Energy Example 29: Fluid Velocity & Pressure in a Pipe   Water is flowing through a 19-cm diameter pipe at 75-m/s.  The pipe’s diameter decreases  to 10-cm.  The pipe is level.   c)The pressure in the large diameter pipe is 1.2-atm.  If the 10-cm pipe is placed 1.5-m  above the 19-cm diameter pipe, what will the pressure in the 10-cm pipe be? Draw and label the diagram. Continuity of fluid flow still gives you a speed of 270-m/s at the 10-cm end. h =1.5-mv1 = 75-m/s v2 = 270-m/s Convert the pressure to Pa. P1 = 1.2 X 105 -Pa Write out Bernoulli’s Equation. We will assume the density of the water remains constant. (1000-kg/m3 ) Since h1 = 0, we can drop this term as we solve for P2. Substitute in and simplify.
  • 8. Momentum & Energy Example 30: Water Flow from a Tank A water tank with a valve at the bottom is shown below.  Assume the cross-sectional area  at A is very large compared with that at B, and the acceleration of gravity is 9.81-m/s2 . a) What is the speed the water leaves the spigot at B after the valve is opened? Apply Bernoulli’s principle. At A & B, the pressure is the same so we can eliminate these terms. We need to find hB using a bit of trigonometry. We can also assume the speed at A is zero. vA = 0-m/s Solve the equation for vB.This is Torricelli’s Equation.Substitute and find vB.
  • 9. Momentum & Energy Example 30: Water Flow from a Tank A water tank with a valve at the bottom is shown below.  Assume the cross-sectional area  at A is very large compared with that at B, and the acceleration of gravity is 9.81-m/s2 . b) What is the maximum height above the opening of the spigot (∆ymax ) attained  by the water stream coming out of the spigot at B after the valve is opened? This is just a projectile motion problem. So we can use our equations of motion. At maximum height vy = 0, so solving for ∆ymax we get this equation. We need to use trigonometry, to find voy. then substitute to find the solution. 10-m/s voy = 10sin(49) = 7.5-m/s)
  • 10. Momentum & Energy Example 30: Water Flow from a Tank A water tank with a valve at the bottom is shown below. Assume the cross-sectional area at A is very large compared with that at B, and the acceleration of gravity is 9.81-m/s2 . b) What is the maximum height above the opening of the spigot (∆ymax ) attained by the water stream coming out of the spigot at B after the valve is opened? This is just a projectile motion problem. So we can use our equations of motion. At maximum height vy = 0, so solving for ∆ymax we get this equation. We need to use trigonometry, to find voy. then substitute to find the solution. 10-m/s voy = 10sin(49) = 7.5-m/s)