SM
Basic Pacing Concepts
Shibu Chacko
SM
Basic Electrical Concepts
SM
-
Unipolar
Stimulation
& Sensing
Polarity of the Pacemaker System
• Larger “antenna” for sensing
√ bigger signals
√ more interference (myopotentials !)
• Big spike on ECG
• Pectoral (pocket) stimulation possible
+
+
SM
CONFIGURATION
UNIPOLAIRE
-
Polarity of the Pacemaker System
Bipolar
Stimulation
& Sensing
+
• Smaller “antenna” for sensing
√ smaller, more specific signals
√ less interference
• Spike difficult to see on ECG
• No pectoral (pocket) stimulation
SM
Fixation mechanisms of the Electrode
Passive fixation
Wingtips
Active fixation
Screw
Active fixation
Tines
SM
Stimulation Threshold
The smallest amount of electrical energy that is
required to depolarize the heart adequately
outside the refractory period.
SM
• Inversely proportional to current density
(amount of current per mm²)
• Electrode surface as small as possible
• Compromise with the sensing of intracardiac
signals, for which a larger surface is required
• Surface of the electrode: around 6 to 8 mm²
Stimulation Threshold
SM
Output
Pulse
Pulse Amplitude
Pulse Width
Leading Edge
The energy is proportional to the pulse amplitude and the pulse
width (=surface under the curve)
Stimulation Threshold
Trailing Edge
SM
L’IMPULSION DE STIMULATION
Pulse Width
Stimulation Threshold
0.5 V
to
10 V
SM
L’IMPULSION DE STIMULATION
Stimulation Threshold
0.5 V
to
10 V
0.1 to 1.5 ms
SM
L’IMPULSION DE STIMULATION
Energy
Stimulation Threshold
0.5 V
to
10 V
0.1 to 1.5 ms
SM
Strength - Duration Curve
Pulse Width (ms)
Pulse Amplitude (V)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
2.5
2.25
2
1.75
1.5
1.25
1
0.75
0.5
0.25
0
SM
Strength - Duration Curve
Pulse Amplitude (V)
Pulse Width (ms)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Capture
Non-Capture
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
2.5
2.25
2
1.75
1.5
1.25
1
0.75
0.5
0.25
0
SM
Strength - Duration Curve
Pulse Amplitude (V)
Pulse Width (ms)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Threshold at 0.5 ms = 0.7 V
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
2.5
2.25
2
1.75
1.5
1.25
1
0.75
0.5
0.25
0
SM
Energy and
Longevity
E = x t
V
R
²
SM
Energy and Longevity
E = x PW
V
R
²
Example : 5 V, 500 Ω , 0.5 ms
E = x 0.5 = 25 µJ
5 ²
500
SM
Energy and Longevity
E = x PW
V
R
²
Example : 5 V, 500 Ω , 0.5 ms
2.5 V, 500 Ω , 0.5 ms
E = x 0.5 = 25 µJ
5 ²
500
SM
Energy and Longevity
E = x PW
V
R
²
Example : 5 V, 500 Ω , 0.5 ms
2.5 V, 500 Ω , 0.5 ms
E = x 0.5 = 25 µJ
5 ²
500
E = x 0.5 = 6.25 µJ
2.5
500
²
( Increased longevity! )
SM
Pacemaker codes and
modes
SM
NASPE/ BPEG Generic (NBG) Pacemaker Code
I. Chamber II. Chamber III. Response to IV. Programmability V. Antitachy
Paced Sensed Sensing Rate Modulation arrhythmia
funct.
O= none O= none O= none O= none O= none
A=atrium A= atrium T= triggered P= simple P= pacing
V= ventricle V= ventricle I= inhibited M= multi S= shock
D= dual D= dual D= dual C= communication D= dual
(A+V) (A+V) (T+I) R= Rate Modulation
Manufacturers’ Designation only:
S= single S= single
(A or V) (A or V)
SM
Causes of bradycardia requiring pacing and recommended pacemaker modes
Diagnosis Incidence (%) Recommended Pacemaker Mode
Optimal Alternative Inappropriate
Sinus node disease 25 AAIR AAI VVI; VDD
AV block 42 VDDR DDD AAI; DDI
Sinus node disease
+ AV block 10 DDDR DDD AAI; VVI
Chronic A fib
with AV block 13 VVIR VVI AAI; DDD; VDD
Carotid Sinus S. 10 DDD AAI VVI; VDD
Neurocardiogenic + hysteresis + hysteresis
Syncope
SM
Choice of a Stimulation Mode
Bradycardia
Atrial fib Normal P waves
RR  Normal A-V A-V Block
RR 
RR 
RR 
RR 
RR
VVI AAI
DDI
AAIR
DDIR
DDD DDDRVVIR
SM
Single Chamber Pacing
VVI (R)
SM
Single Chamber Pacing
AAI (R)
SM
Single Chamber Pacemaker (VVI)
 Easy to implant a ventricular lead
 Easy to program the pacemaker
 Easy follow-up
 Longevity of > 6 years
 Only one pacing rate (except rate responsive
pacemakers)
SM
NASPE/ BPEG Generic (NBG) Pacemaker Code
I. Chamber II. Chamber III. Response to IV. Programmability V. Antitachy
Paced Sensed Sensing Rate Modulation arrhythmia
funct.
O= none O= none O= none O= none O= none
A=atrium A= atrium T= triggered P= simple P= pacing
V= ventricle V= ventricle I= inhibited M= multi S= shock
D= dual D= dual D= dual C= communication D= dual
(A+V) (A+V) (T+I) R= Rate Modulation
Manufacturers’ Designation only:
S= single S= single
(A or V) (A or V)
SM
VVI MODE
SM
VVI
MODE
Vp Vp Vp Vs Vs Vp Vp Vs Vs
SM
VVI MODE
Automatic
Interval
• Automatic interval starts
from a paced complex (to
the next paced complex)
• Escape interval starts from
a sensed complex (to the
next paced complex)
Escape Interval
If the intervals are equal:
•No hysteresis
If the escape interval > automatic interval:
•Hysteresis
SM
VVI MODE (with
hysteresis)
1000 ms
850 ms
Escape interval = 1000 ms (60 ppm)
Automatic interval = 850 ms (70 ppm)
SM
NASPE/ BPEG Generic (NBG) Pacemaker Code
I. Chamber II. Chamber III. Response to IV. Programmability V. Antitachy
Paced Sensed Sensing Rate Modulation arrhythmia
funct.
O= none O= none O= none O= none O= none
A=atrium A= atrium T= triggered P= simple P= pacing
V= ventricle V= ventricle I= inhibited M= multi S= shock
D= dual D= dual D= dual C= communication D= dual
(A+V) (A+V) (T+I) R= Rate Modulation
Manufacturers’ Designation only:
S= single S= single
(A or V) (A or V)
SM
MODE AAI
SM
MODE AAI
Ap Ap Ap As Ap
SM
Dual Chamber Pacing
SM
DUAL CHAMBER
STIMULATION
SM
DUAL CHAMBER
STIMULATION
SM
DDD Pacemaker
A DDD pacemaker puts in the
beat that’s missing in order to
maintain AV synchrony
SM
DDD timing
Ap Vp Ap VpAsVs As Vs PVC
AA interval
AV-D
NPAVD
VB
CSW
PVARP ARE
VRP
VTL
VA int.
TARP
SM
DDD Pacing
• Indications:
– Sick Sinus Syndrome
– AV block
– Chronic Sinus Bradycardia with AV conduction
problems
– Pacemaker Syndrome (instead of VVI)
– AV synchrony needed (instead of VVI)
• Contraindication:
– Atrial tachyarrhythmias
SM
DUAL CHAMBER STIMULATION
Advantages  AV Synchrony
 Variability of the pacing rate
Results  Increase of the cardiac output
 Improved quality of life
 No Pacemaker Syndrome
SM
AV Synchrony
• Cardiac Output = Heart Rate X Stroke Volume
= amount of blood expelled from the heart per
minute
• Ventricles contribute 70 % to the C.O.
• Atria contribute 30 % to the C.O.
 If there is AV synchrony: C.O. = 100 %
+ appropriate opening and closing of AV valves!
SM
Pacemaker Syndrome
• = the result of a loss of AV synchrony
 atria contract against closed valves
• Symptoms: Cannon A waves
Pulsations in the neck
Fatigue
Diziness
Syncope
SM
NASPE/ BPEG Generic (NBG) Pacemaker Code
I. Chamber II. Chamber III. Response to IV. Programmability V. Antitachy
Paced Sensed Sensing Rate Modulation arrhythmia
funct.
O= none O= none O= none O= none O= none
A=atrium A= atrium T= triggered P= simple P= pacing
V= ventricle V= ventricle I= inhibited M= multi S= shock
D= dual D= dual D= dual C= communication D= dual
(A+V) (A+V) (T+I) R= Rate Modulation
Manufacturers’ Designation only:
S= single S= single
(A or V) (A or V)
SM
ECG: DDD mode
SM
DDD
mode
Vp Vp Vp Vp
As As Ap Ap
Vs Vs Vs Vs
As As Ap Ap
SM
Differential AV delay
• AV s < AV p
• Provides shorter AV delay following sensed atrial
events than following paced atrial events
• atrial sensing and pacing for optimal ventricular filling
• Equalizes true PR interval after
SM
Adaptive AV delay
• Adapts AV delay after atrial events to changes in atrial
interval:
if atrial interval shortens  AV delay shortens
• Maintains relatively constant relationship between AV
delay and total cardiac cycle for optimal hemodynamics
(AV delay = 15-20 % of total cardiac cycle)
• Improves upper rate characteristics
SM
Adaptive AV delay
• AV delay adapts in an 8:1 ratio
• For every shortening of the AA interval of 8 ms,
the AV delay shortens by 1 ms (but never < 75
ms)
• Enhances ventricular filling and increases cardiac
output
• Improves upper rate behaviour characteristics
SM
NASPE/ BPEG Generic (NBG) Pacemaker Code
I. Chamber II. Chamber III. Response to IV. Programmability V. Antitachy
Paced Sensed Sensing Rate Modulation arrhythmia
funct.
O= none O= none O= none O= none O= none
A=atrium A= atrium T= triggered P= simple P= pacing
V= ventricle V= ventricle I= inhibited M= multi S= shock
D= dual D= dual D= dual C= communication D= dual
(A+V) (A+V) (T+I) R= Rate Modulation
Manufacturers’ Designation only:
S= single S= single
(A or V) (A or V)
SM
DDI Pacing
• DDI= DVI + Atrial sensing / inhibition
• DDI is NOT a pacemaker type but a MODE
• DDD pacemaker: mode switch to DDI
 Paroxysmal atrial tachycardia’s: no tracking
allowed!
 Switch from DDD to DDI
SM
Refractory Periods
• Refractory period =
a programmable interval occurring after the
delivery of a pacing impulse or after a sensed
intrinsic complex, during which the pacemaker
can sense signals but chooses to ignore them
SM
Atrial Refractory Period
• AV delay
• PVARP= Post Ventricular Atrial Refractory Period
 TARP = Total Atrial Refractory Period
= AV delay + PVARP
SM
Atrial Refractory Period
AV delay PVARP
TARP
SM
AVD PVARP
VRP
Atrial Channel
Ventricular Channel
DDD Mode: Refractory Periods
SM
Clinical Considerations in DDD pacing
• Upper Rate Behaviour
• Control of Pacemaker Mediated Tachycardia
• Crosstalk Inhibition Protection
SM
Upper Rate Behaviour
• The pacemaker’s response to sensed rapid atrial
rates.
• A rapid atrial rate is a rate > Upper Rate Limit (URL) or
Ventricular Tracking Limit (VTL)
• VTL= a rate beyond which 1:1 tracking will NOT occur
= “the absolute speed limit in the ventricle”
(max. 180 bpm)
SM
Upper Rate Behaviour
• Fixed Ratio Block or Multiblock or 2:1 block
• Wenckebach response
SM
Wenckebach Response
• Progressive prolongation of the AV delay until a
ventricular output pulse is missed in response
to atrial activity exceeding the ventricular
tracking limit
SM
DDD Mode: 1:1 Tracking
40
50
60
70
80
90
100
110
120
30 60 120 180 180 20060 120 180 200
1:1 tracking
Atrial Rate
Ventricular
Rate
SM
DDD Mode: Wenckebach
40
50
60
70
80
90
100
110
120
30 60 120 180 180 20060 120 180 200
1:1 tracking Wenckebach
Ventricular
Rate
Atrial Rate
SM
Wenckebach Response
P wave (falls
outside PVARP)
AV delay PVARP
VTL
AV delay
SM
How to recognize Wenckebach?
• Grouped beating
• Progressive prolongation of the AV delay until
the ventricular output is missed
• Ventricular pacing at the VTL
SM
Pacemaker Mediated Tachycardia (PMT)
Rapid ventricular pacing due to RETROGRADE
CONDUCTION, most commonly at exactly the
upper rate limit.
SM
Retrograde Conduction
• Propagation of an impulse from the ventricle
back to the atrium.
• Also known as VA conduction
• 60 % of the population have the ability to conduct
retrogradely
• 33 % of patients with complete heart block have the
ability to conduct retrogradely
• Average retrograde conduction time= 235ms ± 55 ms
SM
AVD PVARP
VRP
Atrial Channel
Ventricular Channel
DDD Mode: Refractory Periods
SM
Common Causes of PMT
• Loss of atrial capture
• Premature Ventricular Contractions (PVC’s)
• Myopotential Tracking
SM
AVD
PVARP PVARP
Retrograde P waves
PVARP PVARP
PVC
Pacemaker Mediated Tachycardia
SM
PMT Prevention
• Program PVARP longer than VA
conduction time
• PVARP + AV delay = TARP  determines 2:1 block
250 ms + 150 ms = 400 ms  2:1 block at 150 bpm
350 ms + 150 ms = 500 ms  2:1 block at 120 bpm
SM
AVD
PVARP AREPVARP
AVD
PVARP
Retrograde P wave
The ARE is programmable (off; 50; 100; 150 ms)
PVC
Atrial Refractory Extension after a PVC
SM
Tachycardia Termination Algorithm (TTA)
• After 15 consecutive paced ventricular events
at EXACTLY the upper rate limit, the 16 th
ventricular output pulse is dropped.
• TTA breaks PMT, but does not prevent it.
• TTA breaks PMT only at the upper rate limit.
SM
Retrograde P wavesPVC
1 2 14 15 Inhibition of the 16 th
ventricular output
pulse
Tachycardia Termination Algorithm
SM
Crosstalk
• Sensing of the atrial output pulse by
the ventricular sense amplifier
SM
Crosstalk Inhibition
• Inappropriate inhibition of the
ventricular spike due to sensing of
the atrial output pulse by the
ventricular sense amplifier.
SM
Factors Affecting Crosstalk
• Atrial pulse amplitude and pulse width
• Ventricular sensitivity
• Anatomical location of atrial and ventricular
electrodes
SM
Managing Crosstalk
• Atrial Pulse Energy
• Ventricular Sensitivity
• Ventricular Blanking Period
• Crosstalk Sensing Window
• Safety Pacing (Non Physiologic AV delay)
SM
Ventricular Blanking Period (VB)
• A short (21-75 ms) period that begins
simultaneously with an atrial output pulse and
during which the ventricular sense amplifier is
totally blind to incoming signals.
AV delay
VB
SM
AVD PVARP
VRP
Ventricular Blanking Period
DDD Mode: Crosstalk Inhibition Protection
Atrial Channel
Ventricular Channel
SM
Crosstalk Sensing Window
• A short (25-40ms) period of time that starts at
the end of the ventricular blanking period
• If during this time interval the ventricular lead
senses an event (may be crosstalk, may also
be a PVC), a ventricular output pulse is
delivered after 100 ms = SAFETY PACING
• This 100 ms time period = Non Physiologic AV
delay
SM
Safety Pacing
Non Physiologic AV delay (100 ms)
Ventricular Blanking
Period
Crosstalk Sensing Window
Atrial Output
Ventricular Output
Ventricular Sense
SM
Pacemaker Follow-Up
Dual Chamber Pacemaker

Basic Pacing Concepts

  • 1.
  • 2.
  • 3.
    SM - Unipolar Stimulation & Sensing Polarity ofthe Pacemaker System • Larger “antenna” for sensing √ bigger signals √ more interference (myopotentials !) • Big spike on ECG • Pectoral (pocket) stimulation possible + +
  • 4.
    SM CONFIGURATION UNIPOLAIRE - Polarity of thePacemaker System Bipolar Stimulation & Sensing + • Smaller “antenna” for sensing √ smaller, more specific signals √ less interference • Spike difficult to see on ECG • No pectoral (pocket) stimulation
  • 5.
    SM Fixation mechanisms ofthe Electrode Passive fixation Wingtips Active fixation Screw Active fixation Tines
  • 6.
    SM Stimulation Threshold The smallestamount of electrical energy that is required to depolarize the heart adequately outside the refractory period.
  • 7.
    SM • Inversely proportionalto current density (amount of current per mm²) • Electrode surface as small as possible • Compromise with the sensing of intracardiac signals, for which a larger surface is required • Surface of the electrode: around 6 to 8 mm² Stimulation Threshold
  • 8.
    SM Output Pulse Pulse Amplitude Pulse Width LeadingEdge The energy is proportional to the pulse amplitude and the pulse width (=surface under the curve) Stimulation Threshold Trailing Edge
  • 9.
    SM L’IMPULSION DE STIMULATION PulseWidth Stimulation Threshold 0.5 V to 10 V
  • 10.
    SM L’IMPULSION DE STIMULATION StimulationThreshold 0.5 V to 10 V 0.1 to 1.5 ms
  • 11.
    SM L’IMPULSION DE STIMULATION Energy StimulationThreshold 0.5 V to 10 V 0.1 to 1.5 ms
  • 12.
    SM Strength - DurationCurve Pulse Width (ms) Pulse Amplitude (V) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25 0
  • 13.
    SM Strength - DurationCurve Pulse Amplitude (V) Pulse Width (ms) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Capture Non-Capture 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25 0
  • 14.
    SM Strength - DurationCurve Pulse Amplitude (V) Pulse Width (ms) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Threshold at 0.5 ms = 0.7 V 5 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0 2.5 2.25 2 1.75 1.5 1.25 1 0.75 0.5 0.25 0
  • 15.
  • 16.
    SM Energy and Longevity E= x PW V R ² Example : 5 V, 500 Ω , 0.5 ms E = x 0.5 = 25 µJ 5 ² 500
  • 17.
    SM Energy and Longevity E= x PW V R ² Example : 5 V, 500 Ω , 0.5 ms 2.5 V, 500 Ω , 0.5 ms E = x 0.5 = 25 µJ 5 ² 500
  • 18.
    SM Energy and Longevity E= x PW V R ² Example : 5 V, 500 Ω , 0.5 ms 2.5 V, 500 Ω , 0.5 ms E = x 0.5 = 25 µJ 5 ² 500 E = x 0.5 = 6.25 µJ 2.5 500 ² ( Increased longevity! )
  • 19.
  • 20.
    SM NASPE/ BPEG Generic(NBG) Pacemaker Code I. Chamber II. Chamber III. Response to IV. Programmability V. Antitachy Paced Sensed Sensing Rate Modulation arrhythmia funct. O= none O= none O= none O= none O= none A=atrium A= atrium T= triggered P= simple P= pacing V= ventricle V= ventricle I= inhibited M= multi S= shock D= dual D= dual D= dual C= communication D= dual (A+V) (A+V) (T+I) R= Rate Modulation Manufacturers’ Designation only: S= single S= single (A or V) (A or V)
  • 21.
    SM Causes of bradycardiarequiring pacing and recommended pacemaker modes Diagnosis Incidence (%) Recommended Pacemaker Mode Optimal Alternative Inappropriate Sinus node disease 25 AAIR AAI VVI; VDD AV block 42 VDDR DDD AAI; DDI Sinus node disease + AV block 10 DDDR DDD AAI; VVI Chronic A fib with AV block 13 VVIR VVI AAI; DDD; VDD Carotid Sinus S. 10 DDD AAI VVI; VDD Neurocardiogenic + hysteresis + hysteresis Syncope
  • 22.
    SM Choice of aStimulation Mode Bradycardia Atrial fib Normal P waves RR  Normal A-V A-V Block RR  RR  RR  RR  RR VVI AAI DDI AAIR DDIR DDD DDDRVVIR
  • 23.
  • 24.
  • 25.
    SM Single Chamber Pacemaker(VVI)  Easy to implant a ventricular lead  Easy to program the pacemaker  Easy follow-up  Longevity of > 6 years  Only one pacing rate (except rate responsive pacemakers)
  • 26.
    SM NASPE/ BPEG Generic(NBG) Pacemaker Code I. Chamber II. Chamber III. Response to IV. Programmability V. Antitachy Paced Sensed Sensing Rate Modulation arrhythmia funct. O= none O= none O= none O= none O= none A=atrium A= atrium T= triggered P= simple P= pacing V= ventricle V= ventricle I= inhibited M= multi S= shock D= dual D= dual D= dual C= communication D= dual (A+V) (A+V) (T+I) R= Rate Modulation Manufacturers’ Designation only: S= single S= single (A or V) (A or V)
  • 27.
  • 28.
    SM VVI MODE Vp Vp VpVs Vs Vp Vp Vs Vs
  • 29.
    SM VVI MODE Automatic Interval • Automaticinterval starts from a paced complex (to the next paced complex) • Escape interval starts from a sensed complex (to the next paced complex) Escape Interval If the intervals are equal: •No hysteresis If the escape interval > automatic interval: •Hysteresis
  • 30.
    SM VVI MODE (with hysteresis) 1000ms 850 ms Escape interval = 1000 ms (60 ppm) Automatic interval = 850 ms (70 ppm)
  • 31.
    SM NASPE/ BPEG Generic(NBG) Pacemaker Code I. Chamber II. Chamber III. Response to IV. Programmability V. Antitachy Paced Sensed Sensing Rate Modulation arrhythmia funct. O= none O= none O= none O= none O= none A=atrium A= atrium T= triggered P= simple P= pacing V= ventricle V= ventricle I= inhibited M= multi S= shock D= dual D= dual D= dual C= communication D= dual (A+V) (A+V) (T+I) R= Rate Modulation Manufacturers’ Designation only: S= single S= single (A or V) (A or V)
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
    SM DDD Pacemaker A DDDpacemaker puts in the beat that’s missing in order to maintain AV synchrony
  • 38.
    SM DDD timing Ap VpAp VpAsVs As Vs PVC AA interval AV-D NPAVD VB CSW PVARP ARE VRP VTL VA int. TARP
  • 39.
    SM DDD Pacing • Indications: –Sick Sinus Syndrome – AV block – Chronic Sinus Bradycardia with AV conduction problems – Pacemaker Syndrome (instead of VVI) – AV synchrony needed (instead of VVI) • Contraindication: – Atrial tachyarrhythmias
  • 40.
    SM DUAL CHAMBER STIMULATION Advantages AV Synchrony  Variability of the pacing rate Results  Increase of the cardiac output  Improved quality of life  No Pacemaker Syndrome
  • 41.
    SM AV Synchrony • CardiacOutput = Heart Rate X Stroke Volume = amount of blood expelled from the heart per minute • Ventricles contribute 70 % to the C.O. • Atria contribute 30 % to the C.O.  If there is AV synchrony: C.O. = 100 % + appropriate opening and closing of AV valves!
  • 42.
    SM Pacemaker Syndrome • =the result of a loss of AV synchrony  atria contract against closed valves • Symptoms: Cannon A waves Pulsations in the neck Fatigue Diziness Syncope
  • 43.
    SM NASPE/ BPEG Generic(NBG) Pacemaker Code I. Chamber II. Chamber III. Response to IV. Programmability V. Antitachy Paced Sensed Sensing Rate Modulation arrhythmia funct. O= none O= none O= none O= none O= none A=atrium A= atrium T= triggered P= simple P= pacing V= ventricle V= ventricle I= inhibited M= multi S= shock D= dual D= dual D= dual C= communication D= dual (A+V) (A+V) (T+I) R= Rate Modulation Manufacturers’ Designation only: S= single S= single (A or V) (A or V)
  • 44.
  • 45.
    SM DDD mode Vp Vp VpVp As As Ap Ap Vs Vs Vs Vs As As Ap Ap
  • 46.
    SM Differential AV delay •AV s < AV p • Provides shorter AV delay following sensed atrial events than following paced atrial events • atrial sensing and pacing for optimal ventricular filling • Equalizes true PR interval after
  • 47.
    SM Adaptive AV delay •Adapts AV delay after atrial events to changes in atrial interval: if atrial interval shortens  AV delay shortens • Maintains relatively constant relationship between AV delay and total cardiac cycle for optimal hemodynamics (AV delay = 15-20 % of total cardiac cycle) • Improves upper rate characteristics
  • 48.
    SM Adaptive AV delay •AV delay adapts in an 8:1 ratio • For every shortening of the AA interval of 8 ms, the AV delay shortens by 1 ms (but never < 75 ms) • Enhances ventricular filling and increases cardiac output • Improves upper rate behaviour characteristics
  • 49.
    SM NASPE/ BPEG Generic(NBG) Pacemaker Code I. Chamber II. Chamber III. Response to IV. Programmability V. Antitachy Paced Sensed Sensing Rate Modulation arrhythmia funct. O= none O= none O= none O= none O= none A=atrium A= atrium T= triggered P= simple P= pacing V= ventricle V= ventricle I= inhibited M= multi S= shock D= dual D= dual D= dual C= communication D= dual (A+V) (A+V) (T+I) R= Rate Modulation Manufacturers’ Designation only: S= single S= single (A or V) (A or V)
  • 50.
    SM DDI Pacing • DDI=DVI + Atrial sensing / inhibition • DDI is NOT a pacemaker type but a MODE • DDD pacemaker: mode switch to DDI  Paroxysmal atrial tachycardia’s: no tracking allowed!  Switch from DDD to DDI
  • 51.
    SM Refractory Periods • Refractoryperiod = a programmable interval occurring after the delivery of a pacing impulse or after a sensed intrinsic complex, during which the pacemaker can sense signals but chooses to ignore them
  • 52.
    SM Atrial Refractory Period •AV delay • PVARP= Post Ventricular Atrial Refractory Period  TARP = Total Atrial Refractory Period = AV delay + PVARP
  • 53.
  • 54.
    SM AVD PVARP VRP Atrial Channel VentricularChannel DDD Mode: Refractory Periods
  • 55.
    SM Clinical Considerations inDDD pacing • Upper Rate Behaviour • Control of Pacemaker Mediated Tachycardia • Crosstalk Inhibition Protection
  • 56.
    SM Upper Rate Behaviour •The pacemaker’s response to sensed rapid atrial rates. • A rapid atrial rate is a rate > Upper Rate Limit (URL) or Ventricular Tracking Limit (VTL) • VTL= a rate beyond which 1:1 tracking will NOT occur = “the absolute speed limit in the ventricle” (max. 180 bpm)
  • 57.
    SM Upper Rate Behaviour •Fixed Ratio Block or Multiblock or 2:1 block • Wenckebach response
  • 58.
    SM Wenckebach Response • Progressiveprolongation of the AV delay until a ventricular output pulse is missed in response to atrial activity exceeding the ventricular tracking limit
  • 59.
    SM DDD Mode: 1:1Tracking 40 50 60 70 80 90 100 110 120 30 60 120 180 180 20060 120 180 200 1:1 tracking Atrial Rate Ventricular Rate
  • 60.
    SM DDD Mode: Wenckebach 40 50 60 70 80 90 100 110 120 3060 120 180 180 20060 120 180 200 1:1 tracking Wenckebach Ventricular Rate Atrial Rate
  • 61.
    SM Wenckebach Response P wave(falls outside PVARP) AV delay PVARP VTL AV delay
  • 62.
    SM How to recognizeWenckebach? • Grouped beating • Progressive prolongation of the AV delay until the ventricular output is missed • Ventricular pacing at the VTL
  • 63.
    SM Pacemaker Mediated Tachycardia(PMT) Rapid ventricular pacing due to RETROGRADE CONDUCTION, most commonly at exactly the upper rate limit.
  • 64.
    SM Retrograde Conduction • Propagationof an impulse from the ventricle back to the atrium. • Also known as VA conduction • 60 % of the population have the ability to conduct retrogradely • 33 % of patients with complete heart block have the ability to conduct retrogradely • Average retrograde conduction time= 235ms ± 55 ms
  • 65.
    SM AVD PVARP VRP Atrial Channel VentricularChannel DDD Mode: Refractory Periods
  • 66.
    SM Common Causes ofPMT • Loss of atrial capture • Premature Ventricular Contractions (PVC’s) • Myopotential Tracking
  • 67.
    SM AVD PVARP PVARP Retrograde Pwaves PVARP PVARP PVC Pacemaker Mediated Tachycardia
  • 68.
    SM PMT Prevention • ProgramPVARP longer than VA conduction time • PVARP + AV delay = TARP  determines 2:1 block 250 ms + 150 ms = 400 ms  2:1 block at 150 bpm 350 ms + 150 ms = 500 ms  2:1 block at 120 bpm
  • 69.
    SM AVD PVARP AREPVARP AVD PVARP Retrograde Pwave The ARE is programmable (off; 50; 100; 150 ms) PVC Atrial Refractory Extension after a PVC
  • 70.
    SM Tachycardia Termination Algorithm(TTA) • After 15 consecutive paced ventricular events at EXACTLY the upper rate limit, the 16 th ventricular output pulse is dropped. • TTA breaks PMT, but does not prevent it. • TTA breaks PMT only at the upper rate limit.
  • 71.
    SM Retrograde P wavesPVC 12 14 15 Inhibition of the 16 th ventricular output pulse Tachycardia Termination Algorithm
  • 72.
    SM Crosstalk • Sensing ofthe atrial output pulse by the ventricular sense amplifier
  • 73.
    SM Crosstalk Inhibition • Inappropriateinhibition of the ventricular spike due to sensing of the atrial output pulse by the ventricular sense amplifier.
  • 74.
    SM Factors Affecting Crosstalk •Atrial pulse amplitude and pulse width • Ventricular sensitivity • Anatomical location of atrial and ventricular electrodes
  • 75.
    SM Managing Crosstalk • AtrialPulse Energy • Ventricular Sensitivity • Ventricular Blanking Period • Crosstalk Sensing Window • Safety Pacing (Non Physiologic AV delay)
  • 76.
    SM Ventricular Blanking Period(VB) • A short (21-75 ms) period that begins simultaneously with an atrial output pulse and during which the ventricular sense amplifier is totally blind to incoming signals. AV delay VB
  • 77.
    SM AVD PVARP VRP Ventricular BlankingPeriod DDD Mode: Crosstalk Inhibition Protection Atrial Channel Ventricular Channel
  • 78.
    SM Crosstalk Sensing Window •A short (25-40ms) period of time that starts at the end of the ventricular blanking period • If during this time interval the ventricular lead senses an event (may be crosstalk, may also be a PVC), a ventricular output pulse is delivered after 100 ms = SAFETY PACING • This 100 ms time period = Non Physiologic AV delay
  • 79.
    SM Safety Pacing Non PhysiologicAV delay (100 ms) Ventricular Blanking Period Crosstalk Sensing Window Atrial Output Ventricular Output Ventricular Sense
  • 80.