The document discusses using k-nearest neighbor (k-NN) algorithm for missing data imputation. It compares the performance of mean, median, and standard deviation imputation techniques when combined with k-NN. The techniques are applied to group data of different sizes, and median and standard deviation show better results than mean substitution. Accuracy improves with larger group sizes and higher percentages of missing data. Median and standard deviation imputation have slightly better performance than mean imputation for missing data imputation when combined with k-NN.