SlideShare a Scribd company logo
Group:-6A 5
1
Lab:03 Transfer Function of Mechanical
Systems .
Task: For the Mechanical System Shown in Figure#1.Find the Transfer Function.
. .
Here in Figure#1
M1= M3=1kg , M2=1.5kg. K1= K2= K3=1N/m . D=0.2Ns/m.
And also find Step response and Impulse response using MATLAB.
Group:-6A 5
2
Solution For Task
o Mathematical Equations:- Table#1
For Mass1:-
F = M1 ̈ + k1 x1+ k2 (x1- x2)
= M1 ̈ + k1 x1+ k2x1-k2x2
= ̈ (M1) + x1(k1+ k2)- x2(k2)
For Mass3:-
0 = M3 ̈ +D ̇ + k3 (x3- x2) + k4 x3
= M3 ̈ +D ̇ + k3 x3- k3 x2+ k4 x3
= ̈ (M3) +D ̇ + x3(k3+ k4)- x2(k3)
For Mass2:-
0 = M2 ̈ + k2 (x2- x1) + k3 (x2- x3)
= M2 ̈ + k2 x2- k2 x1+ k3 x2- k3 x3
= ̈ (M2) + x2(k2+ k3)- x1(k2)- x3(k3)
o Transfer Function Equations:- Table#2
For Mass1:-
F = X1(s)[ M1s2
+ k1+ k2]- X2(s)[ k2]
For Mass3:-
0 = -X2(s)[ k3]+ X3(s)[ M3s2
+Ds + k3+ k4]
For Mass2:-
0 = -X1(s)[ k2]+ X2(s)[ M2s2
+ k2+ k3]
- X3(s)[ k3]
 Putting values of Mases ,Springs and Damper given in Eq(1), Eq(2), Eq(3).
F = X1(s)[ s2
+ 2]- X2(s)+0 --------------------------Eq(1)
0 = -X1(s)+ X2(s)[1.5s2
+2] - X3(s) --------------------------Eq(2)
0 = 0-X2(s)+ X3(s)[s2
+0.2s+2] --------------------------Eq(3)
o In Matrix Form in MATLAB
[ s^2 + 2, -1, 0]
[ -1, (3*s^2)/2 + 2, -1]
[ 0, -1, s^2 + s/5 + 2]
Group:-6A 5
3
o Code of Task In MATLAB
syms s F X x1 x2 x3 f
X=[x1; x2; x3]
F=[f; 0; 0]
z=[s^2+2 -1 0; -1 1.5*s^2+2 -1; 0 -1 s^2+0.2*s+2]
ZIN=inv(z)
X=ZIN*F
x1=X(1)/f
x2=X(2)/f
x3=X(3)/f
[n1,d1]=numden(x1)
[n2,d2]=numden(x2)
[n3,d3]=numden(x3)
num1=sym2poly(n1);
num2=sym2poly(n2);
num3=sym2poly(n3);
den1=sym2poly(d1);
den2=sym2poly(d2);
den3=sym2poly(d3);
g1=tf(num1,den1);
g2=tf(num2,den2);
g3=tf(num3,den3);
figure
subplot(2,1,1)
step(g1)
title('Step(x1)')
subplot(2,1,2)
impulse(g1)
title('Impulse(x1)')
figure
subplot(2,1,1)
step(g2)
title('Step(x2)')
subplot(2,1,2)
impulse(g2)
title('Impulse(x2)')
Group:-6A 5
4
figure
subplot(2,1,1)
step(g3)
title('Step(x3)')
subplot(2,1,2)
impulse(g3)
title('Impulse(x3)')
o Code Result In Command Window
X =
x1
x2
x3
F =
f
0
0
z =
[ s^2 + 2, -1, 0]
[ -1, (3*s^2)/2 + 2, -1]
[ 0, -1, s^2 + s/5 + 2]
ZIN =
[ (15*s^4 + 3*s^3 + 50*s^2 + 4*s + 30)/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s
+ 40), (2*(5*s^2 + s + 10))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40),
10/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40)]
[ (2*(5*s^2 + s + 10))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40), (2*(s^2 +
2)*(5*s^2 + s + 10))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40),
(10*(s^2 + 2))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40)]
[10/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40), (10*(s^2 +
2))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40), (5*(3*s^4 + 10*s^2 +
6))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40)]
X =
(f*(15*s^4 + 3*s^3 + 50*s^2 + 4*s + 30))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 +
6*s + 40) (2*f*(5*s^2 + s + 10))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40)
(10*f)/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40)
Group:-6A 5
5
 Transfer Function Equations x1,x2,x3
x1 =
(15*s^4 + 3*s^3 + 50*s^2 + 4*s + 30)/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s +
40)
x2 =
(2*(5*s^2 + s + 10))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40)
x3 =
10/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40)
 Numenators and Denominators of Tarnsfer Equation x1,x2,x3
n1 =
15*s^4 + 3*s^3 + 50*s^2 + 4*s + 30
d1 =
15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40
n2 =
10*s^2 + 2*s + 20
d2 =
15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40
n3 =
10
d3 =
15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40
Group:-6A 5
6
o Step Response and Impulse Response of Transfer Function Equations
Figure#1.1
Figure#1.2
Group:-6A 5
7
Figure#1.3
Conclusion:-
There are two types of responces:
1) Impulse Response: It is the reaction of any dynamic system in response to
some external change in very short time (approximately zero).
2) Step Response: The response or change of a system while giving it
continous input (constant input).
 When we applied impulse to our system, it gives us impulse response at
that time which is observed in figures (1.1, 1.2 and 1.3).
 When step input is given to the system, we got step response of our
system which is also observed in figures (1.1, 1.2 and 1.3).
 As force is directly applied on M1 so the step response of system 1 is
maximum. i-e nearly around 1.

More Related Content

What's hot

Module3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sirModule3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sir
SHAMJITH KM
 

What's hot (20)

Chapter 01
Chapter 01Chapter 01
Chapter 01
 
Impact of jet
Impact of jetImpact of jet
Impact of jet
 
General steps of the finite element method
General steps of the finite element methodGeneral steps of the finite element method
General steps of the finite element method
 
Module3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sirModule3 direct stiffness- rajesh sir
Module3 direct stiffness- rajesh sir
 
Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws Dimensional analysis Similarity laws Model laws
Dimensional analysis Similarity laws Model laws
 
Truss Analysis using Finite Element method ppt
Truss Analysis using Finite Element method pptTruss Analysis using Finite Element method ppt
Truss Analysis using Finite Element method ppt
 
maths
maths maths
maths
 
DESIGN OF ISOLATOR (LEAD RUBBER BEARING)
DESIGN OF ISOLATOR (LEAD RUBBER BEARING)DESIGN OF ISOLATOR (LEAD RUBBER BEARING)
DESIGN OF ISOLATOR (LEAD RUBBER BEARING)
 
ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS ME6603 - FINITE ELEMENT ANALYSIS
ME6603 - FINITE ELEMENT ANALYSIS
 
single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations
 
Modal & Harmonic Response Analysis
Modal & Harmonic Response AnalysisModal & Harmonic Response Analysis
Modal & Harmonic Response Analysis
 
Applications of Fluid Mechanics
Applications of Fluid MechanicsApplications of Fluid Mechanics
Applications of Fluid Mechanics
 
Lesson 06, shearing stresses (Updated)
Lesson 06, shearing stresses (Updated)Lesson 06, shearing stresses (Updated)
Lesson 06, shearing stresses (Updated)
 
Dynamics of multiple degree of freedom linear systems
Dynamics of multiple degree of freedom linear systemsDynamics of multiple degree of freedom linear systems
Dynamics of multiple degree of freedom linear systems
 
Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...
Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...
Solution Manul for Structural Analysis in SI Units 10th Edition by Russell Hi...
 
Robustness metrics: How are they calculated and when should they be used?
Robustness metrics: How are they calculated and when should they be used?Robustness metrics: How are they calculated and when should they be used?
Robustness metrics: How are they calculated and when should they be used?
 
Module 2 (forms of energy) 2021 2022
Module 2 (forms of energy) 2021   2022Module 2 (forms of energy) 2021   2022
Module 2 (forms of energy) 2021 2022
 
The theory of continuum and elasto plastic materials
The theory of continuum and elasto plastic materialsThe theory of continuum and elasto plastic materials
The theory of continuum and elasto plastic materials
 
Module 7, Spring 2020.pdf
Module  7, Spring 2020.pdfModule  7, Spring 2020.pdf
Module 7, Spring 2020.pdf
 
STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD STATE-SPACE AVERAGING METHOD
STATE-SPACE AVERAGING METHOD
 

Similar to Mathematical Modelling of Electro-Mechanical System in Matlab

Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltos
bellidomates
 
Math quota-cmu-g-455
Math quota-cmu-g-455Math quota-cmu-g-455
Math quota-cmu-g-455
Rungroj Ssan
 
35182797 additional-mathematics-form-4-and-5-notes
35182797 additional-mathematics-form-4-and-5-notes35182797 additional-mathematics-form-4-and-5-notes
35182797 additional-mathematics-form-4-and-5-notes
Wendy Pindah
 

Similar to Mathematical Modelling of Electro-Mechanical System in Matlab (18)

Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
 
Solutions manual for calculus an applied approach brief international metric ...
Solutions manual for calculus an applied approach brief international metric ...Solutions manual for calculus an applied approach brief international metric ...
Solutions manual for calculus an applied approach brief international metric ...
 
resposta do capitulo 15
resposta do capitulo 15resposta do capitulo 15
resposta do capitulo 15
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
 
Analysis of Electro-Mechanical System
Analysis of Electro-Mechanical SystemAnalysis of Electro-Mechanical System
Analysis of Electro-Mechanical System
 
Ejerciciosderivadasresueltos
EjerciciosderivadasresueltosEjerciciosderivadasresueltos
Ejerciciosderivadasresueltos
 
Math quota-cmu-g-455
Math quota-cmu-g-455Math quota-cmu-g-455
Math quota-cmu-g-455
 
Mathematical Modelling of Electrical/Mechanical modellinng in MATLAB
Mathematical Modelling of Electrical/Mechanical modellinng in MATLABMathematical Modelling of Electrical/Mechanical modellinng in MATLAB
Mathematical Modelling of Electrical/Mechanical modellinng in MATLAB
 
Tugas blog-matematika
Tugas blog-matematikaTugas blog-matematika
Tugas blog-matematika
 
Csm chapters12
Csm chapters12Csm chapters12
Csm chapters12
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Per de matematica listo.
Per de matematica listo.Per de matematica listo.
Per de matematica listo.
 
35182797 additional-mathematics-form-4-and-5-notes
35182797 additional-mathematics-form-4-and-5-notes35182797 additional-mathematics-form-4-and-5-notes
35182797 additional-mathematics-form-4-and-5-notes
 
Maths05
Maths05Maths05
Maths05
 
9 chap
9 chap9 chap
9 chap
 
Basic m4-2-chapter1
Basic m4-2-chapter1Basic m4-2-chapter1
Basic m4-2-chapter1
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 Functions
 
Deber10
Deber10Deber10
Deber10
 

More from COMSATS Abbottabad

More from COMSATS Abbottabad (20)

Kalman filter
Kalman filterKalman filter
Kalman filter
 
Enterpreneurship
EnterpreneurshipEnterpreneurship
Enterpreneurship
 
Sine wave inverter
Sine wave inverterSine wave inverter
Sine wave inverter
 
Light Tracking Solar Panel
Light Tracking Solar PanelLight Tracking Solar Panel
Light Tracking Solar Panel
 
coding and burning program in FPGA
coding and burning program in FPGAcoding and burning program in FPGA
coding and burning program in FPGA
 
8 bit full adder
8 bit full adder8 bit full adder
8 bit full adder
 
Fabrication process of Integrated Circuit (IC's)
Fabrication process of Integrated Circuit (IC's)Fabrication process of Integrated Circuit (IC's)
Fabrication process of Integrated Circuit (IC's)
 
IMPLEMENTING ARITHMETIC INSTRUCTIONS IN EMU 8086
IMPLEMENTING ARITHMETIC INSTRUCTIONS IN EMU 8086IMPLEMENTING ARITHMETIC INSTRUCTIONS IN EMU 8086
IMPLEMENTING ARITHMETIC INSTRUCTIONS IN EMU 8086
 
implementation of data instrucions in emu8086
implementation of data instrucions in emu8086implementation of data instrucions in emu8086
implementation of data instrucions in emu8086
 
Addition, subtraction and multiplication in assembly language
Addition, subtraction and multiplication in assembly languageAddition, subtraction and multiplication in assembly language
Addition, subtraction and multiplication in assembly language
 
Introduction to MATLAB
Introduction to MATLAB Introduction to MATLAB
Introduction to MATLAB
 
Encoder + decoder
Encoder + decoderEncoder + decoder
Encoder + decoder
 
Principles of Communication
Principles of CommunicationPrinciples of Communication
Principles of Communication
 
Aurduino coding for transformer interfacing
Aurduino coding for transformer interfacingAurduino coding for transformer interfacing
Aurduino coding for transformer interfacing
 
Transformer Interfacing with Laptop
Transformer Interfacing with LaptopTransformer Interfacing with Laptop
Transformer Interfacing with Laptop
 
Temperature control Switch and Display By Led
Temperature control Switch and Display By LedTemperature control Switch and Display By Led
Temperature control Switch and Display By Led
 
stress and strain
stress and strainstress and strain
stress and strain
 
Generating PM wave
Generating PM wave Generating PM wave
Generating PM wave
 
Generating FM wave
Generating FM waveGenerating FM wave
Generating FM wave
 
Filter Designing
Filter DesigningFilter Designing
Filter Designing
 

Recently uploaded

Digital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdfDigital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdf
AbrahamGadissa
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
R&R Consult
 
Laundry management system project report.pdf
Laundry management system project report.pdfLaundry management system project report.pdf
Laundry management system project report.pdf
Kamal Acharya
 

Recently uploaded (20)

Digital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdfDigital Signal Processing Lecture notes n.pdf
Digital Signal Processing Lecture notes n.pdf
 
A case study of cinema management system project report..pdf
A case study of cinema management system project report..pdfA case study of cinema management system project report..pdf
A case study of cinema management system project report..pdf
 
Danfoss NeoCharge Technology -A Revolution in 2024.pdf
Danfoss NeoCharge Technology -A Revolution in 2024.pdfDanfoss NeoCharge Technology -A Revolution in 2024.pdf
Danfoss NeoCharge Technology -A Revolution in 2024.pdf
 
HYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generationHYDROPOWER - Hydroelectric power generation
HYDROPOWER - Hydroelectric power generation
 
Online resume builder management system project report.pdf
Online resume builder management system project report.pdfOnline resume builder management system project report.pdf
Online resume builder management system project report.pdf
 
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptxCFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
CFD Simulation of By-pass Flow in a HRSG module by R&R Consult.pptx
 
Introduction to Casting Processes in Manufacturing
Introduction to Casting Processes in ManufacturingIntroduction to Casting Processes in Manufacturing
Introduction to Casting Processes in Manufacturing
 
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical EngineeringIntroduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
Introduction to Machine Learning Unit-5 Notes for II-II Mechanical Engineering
 
Construction method of steel structure space frame .pptx
Construction method of steel structure space frame .pptxConstruction method of steel structure space frame .pptx
Construction method of steel structure space frame .pptx
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Immunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary AttacksImmunizing Image Classifiers Against Localized Adversary Attacks
Immunizing Image Classifiers Against Localized Adversary Attacks
 
Laundry management system project report.pdf
Laundry management system project report.pdfLaundry management system project report.pdf
Laundry management system project report.pdf
 
Democratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek AryaDemocratizing Fuzzing at Scale by Abhishek Arya
Democratizing Fuzzing at Scale by Abhishek Arya
 
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptxCloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
 
Water Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdfWater Industry Process Automation and Control Monthly - May 2024.pdf
Water Industry Process Automation and Control Monthly - May 2024.pdf
 
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
Sachpazis:Terzaghi Bearing Capacity Estimation in simple terms with Calculati...
 
The Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdfThe Benefits and Techniques of Trenchless Pipe Repair.pdf
The Benefits and Techniques of Trenchless Pipe Repair.pdf
 
Natalia Rutkowska - BIM School Course in Kraków
Natalia Rutkowska - BIM School Course in KrakówNatalia Rutkowska - BIM School Course in Kraków
Natalia Rutkowska - BIM School Course in Kraków
 
Courier management system project report.pdf
Courier management system project report.pdfCourier management system project report.pdf
Courier management system project report.pdf
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 

Mathematical Modelling of Electro-Mechanical System in Matlab

  • 1. Group:-6A 5 1 Lab:03 Transfer Function of Mechanical Systems . Task: For the Mechanical System Shown in Figure#1.Find the Transfer Function. . . Here in Figure#1 M1= M3=1kg , M2=1.5kg. K1= K2= K3=1N/m . D=0.2Ns/m. And also find Step response and Impulse response using MATLAB.
  • 2. Group:-6A 5 2 Solution For Task o Mathematical Equations:- Table#1 For Mass1:- F = M1 ̈ + k1 x1+ k2 (x1- x2) = M1 ̈ + k1 x1+ k2x1-k2x2 = ̈ (M1) + x1(k1+ k2)- x2(k2) For Mass3:- 0 = M3 ̈ +D ̇ + k3 (x3- x2) + k4 x3 = M3 ̈ +D ̇ + k3 x3- k3 x2+ k4 x3 = ̈ (M3) +D ̇ + x3(k3+ k4)- x2(k3) For Mass2:- 0 = M2 ̈ + k2 (x2- x1) + k3 (x2- x3) = M2 ̈ + k2 x2- k2 x1+ k3 x2- k3 x3 = ̈ (M2) + x2(k2+ k3)- x1(k2)- x3(k3) o Transfer Function Equations:- Table#2 For Mass1:- F = X1(s)[ M1s2 + k1+ k2]- X2(s)[ k2] For Mass3:- 0 = -X2(s)[ k3]+ X3(s)[ M3s2 +Ds + k3+ k4] For Mass2:- 0 = -X1(s)[ k2]+ X2(s)[ M2s2 + k2+ k3] - X3(s)[ k3]  Putting values of Mases ,Springs and Damper given in Eq(1), Eq(2), Eq(3). F = X1(s)[ s2 + 2]- X2(s)+0 --------------------------Eq(1) 0 = -X1(s)+ X2(s)[1.5s2 +2] - X3(s) --------------------------Eq(2) 0 = 0-X2(s)+ X3(s)[s2 +0.2s+2] --------------------------Eq(3) o In Matrix Form in MATLAB [ s^2 + 2, -1, 0] [ -1, (3*s^2)/2 + 2, -1] [ 0, -1, s^2 + s/5 + 2]
  • 3. Group:-6A 5 3 o Code of Task In MATLAB syms s F X x1 x2 x3 f X=[x1; x2; x3] F=[f; 0; 0] z=[s^2+2 -1 0; -1 1.5*s^2+2 -1; 0 -1 s^2+0.2*s+2] ZIN=inv(z) X=ZIN*F x1=X(1)/f x2=X(2)/f x3=X(3)/f [n1,d1]=numden(x1) [n2,d2]=numden(x2) [n3,d3]=numden(x3) num1=sym2poly(n1); num2=sym2poly(n2); num3=sym2poly(n3); den1=sym2poly(d1); den2=sym2poly(d2); den3=sym2poly(d3); g1=tf(num1,den1); g2=tf(num2,den2); g3=tf(num3,den3); figure subplot(2,1,1) step(g1) title('Step(x1)') subplot(2,1,2) impulse(g1) title('Impulse(x1)') figure subplot(2,1,1) step(g2) title('Step(x2)') subplot(2,1,2) impulse(g2) title('Impulse(x2)')
  • 4. Group:-6A 5 4 figure subplot(2,1,1) step(g3) title('Step(x3)') subplot(2,1,2) impulse(g3) title('Impulse(x3)') o Code Result In Command Window X = x1 x2 x3 F = f 0 0 z = [ s^2 + 2, -1, 0] [ -1, (3*s^2)/2 + 2, -1] [ 0, -1, s^2 + s/5 + 2] ZIN = [ (15*s^4 + 3*s^3 + 50*s^2 + 4*s + 30)/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40), (2*(5*s^2 + s + 10))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40), 10/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40)] [ (2*(5*s^2 + s + 10))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40), (2*(s^2 + 2)*(5*s^2 + s + 10))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40), (10*(s^2 + 2))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40)] [10/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40), (10*(s^2 + 2))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40), (5*(3*s^4 + 10*s^2 + 6))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40)] X = (f*(15*s^4 + 3*s^3 + 50*s^2 + 4*s + 30))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40) (2*f*(5*s^2 + s + 10))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40) (10*f)/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40)
  • 5. Group:-6A 5 5  Transfer Function Equations x1,x2,x3 x1 = (15*s^4 + 3*s^3 + 50*s^2 + 4*s + 30)/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40) x2 = (2*(5*s^2 + s + 10))/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40) x3 = 10/(15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40)  Numenators and Denominators of Tarnsfer Equation x1,x2,x3 n1 = 15*s^4 + 3*s^3 + 50*s^2 + 4*s + 30 d1 = 15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40 n2 = 10*s^2 + 2*s + 20 d2 = 15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40 n3 = 10 d3 = 15*s^6 + 3*s^5 + 80*s^4 + 10*s^3 + 120*s^2 + 6*s + 40
  • 6. Group:-6A 5 6 o Step Response and Impulse Response of Transfer Function Equations Figure#1.1 Figure#1.2
  • 7. Group:-6A 5 7 Figure#1.3 Conclusion:- There are two types of responces: 1) Impulse Response: It is the reaction of any dynamic system in response to some external change in very short time (approximately zero). 2) Step Response: The response or change of a system while giving it continous input (constant input).  When we applied impulse to our system, it gives us impulse response at that time which is observed in figures (1.1, 1.2 and 1.3).  When step input is given to the system, we got step response of our system which is also observed in figures (1.1, 1.2 and 1.3).  As force is directly applied on M1 so the step response of system 1 is maximum. i-e nearly around 1.