SlideShare a Scribd company logo
Solutions Manual for Calculus An Applied Approach Brief
International Metric Edition 10th Edition by Larson IBSN
9781337290579
Full download:
http://downloadlink.org/p/solutions-manual-for-calculus-an-applied-approach-
brief-international-metric-edition-10th-edition-by-larson-ibsn-9781337290579/
C H A P T E R 2
Differentiation
Section 2.1 The Derivative and the Slope of a Graph............................................72
Section 2.2 Some Rules for Differentiation............................................................89
Section 2.3 Rates of Change: Velocity and Marginals...........................................96
Section 2.4 The Product and Quotient Rules........................................................102
Quiz Yourself .............................................................................................................113
Section 2.5 The Chain Rule...................................................................................115
Section 2.6 Higher-Order Derivatives...................................................................123
Section 2.7 Implicit Differentiation.......................................................................129
Section 2.8 Related Rates ......................................................................................137
Review Exercises ........................................................................................................141
Test Yourself .............................................................................................................154
72 © 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.
C H A P T E R 2
Differentiation
Section 2.1 The Derivative and the Slope of a Graph
Skills Warm Up
1. P(3, 1), Q(3, 6) 2 2 3
m =
6 − 1
; m is undefined.
3 − 3
6. lim
Δx → 0
3x Δx + 3x(Δx) + (Δx)
Δx
Δx3x2
+ 3xΔx + (Δx)2

x = 3 = lim   
Δx → 0 Δx
2. P(2, 2), Q = (−5, 2) = lim 3x2
+ 3xΔx + (Δx)
2
Δx → 0
m =
2 − 2
= 0
−5 − 2
= 3x2
m
1
=
1
y − 2 = 0(x − 2) 7. li
0 ( ) 2
y = 2
Δx → x x + Δx x
2 2
3. P(1, 5), Q(4, −1) 8. lim
Δx → 0
(x +Δx) − x
Δx
m =
−1 − 5
=
−6
= −2 x2
+ 2xΔx + (Δx)
2
− x2
4 − 1 3
y − 5 = −2(x − 1)
y − 5 = −2x + 2
y = −2x + 7
4. P(3, 5), Q(−1, −7)
= lim
Δx → 0
= lim
Δx → 0
= lim
Δx → 0
Δx
2xΔx + (Δx)
2
Δx
Δx(2x + Δx)
Δx
m =
−7 − 5
=
−1 − 3
−12
= 3
−4
= 2x
9. f (x) = 3x
y − 5 = 3(x − 3)
y = 3x − 4
2
10.
Domain: (−∞, ∞)
f (x) =
1
x − 1
5. lim
Δx → 0
2xΔx + (Δx)
=
Δx
lim
Δx → 0
Δx(2x + Δx)
Δx Domain: (−∞, 1) ∪ (1, ∞)
= lim 2x + Δx
Δx → 0
11. f (x) = 1
x3
− 2x2
+ 1
x − 1
= 2x
5 3
Domain: (−∞, ∞)
12. f (x) =
6x
x3
+ x
Domain: (−∞, 0) ∪ (0, ∞)
1. y 2. y
x
x
.
.
3
3
4
Section 2.1 The Derivative and the Slope of a Graph 73
y
3. 14. 2010: m ≈ 500
2012: m ≈ 500
The slope is the rate of change in millions of dollars
per year of sales for the years 2010 and 2012 for Fossil.
x
4. y
15. t = 3: m ≈ 8
t = 7: m ≈ 1
t = 10: m ≈ −10
The slope is the rate of change of the average
temperature in degrees Fahrenheit per month in Bland,
Virginia, for March, July, and October.
16. (a) At t1, f ′(t1) > g′(t1), so the runner given by f is
running faster.
(b) At t2, g′(t2) > f ′(t2), so the runner given by g is
5.
y
x
17.
running faster. The runner given by f has traveled
farther.
(c) At t3, the runners are at the same location, but the
runner given by g is running faster.
(d) The runner given by g will finish first because that
runner finishes the distance at a lesser value of t.
f (x) = −1 at (0, −1)
6. y msec
f (0 +Δx) − f (0)
=
Δx
=
−1 − (−1)
Δx
=
0
Δx
= 0
m = lim
Δx → 0
msec = lim 0 = 0
Δx → 0
7. The slope is m = 1.
18. f (x) = 6 at (−2, 6)
8. The slope is m = 4
msec =
f (−2 + Δx) − f (−2)
Δx
9. The slope is m = 0.
=
6 − 6
10. The slope is m = 1
Δx
=
0
Δx
11. The slope is m = − 1.
= 0
m = m m = lim 0 = 0
12. The slope is m = −3. li sec
0 0
Δx→ Δx→
13. 2009: m ≈ 118
2011: m ≈ 375
The slope is the rate of change in millions of dollars
per year of revenue for the years 2009 and 2011 for
Under Armour.
=
=
 
( )
 
2 3
( )
x
74 Chapter 2 Differentiation
19. f (x) = 13 − 4x at (3, 1) 22. f (x) = 11 − x2
at (3, 2)
f (3 +Δx) − f (3)
m =
( ) ( )
m =
sec
Δ
sec
f 3 + Δx − f 3
Δx
11 − 3 + Δx
2
− 11 − 3
2

13 − 4(3 + Δx)− 1
Δx
=
13 − 12 − 4Δx − 1
( )  ( ) 
Δx
11 − (9 + 6Δx + Δx2
) − 2
=
Δx
=
−4Δx
Δx
Δx
11 − 9 − 6Δx + (Δx)2
− 2
=
Δx
= −4
m = lim msec
Δx→ 0
= lim
Δx→ 0
(−4) = −4
−6Δx − (Δx)2
=
Δx
Δx(−6 − Δx)=
20. f (x) = 6x + 3 at (1, 9) Δx
= −6 − Δx
msec
f (1 +Δx) − f (1)=
Δx m = lim
Δx→0
msec = lim
Δx→0
(−6 − Δx) = −6
= 6(1+Δx) + 3 − 9
Δx 23. f (x) = x3
− 4x at (−1, 3)
=
6 + 6Δx + 3 − 9
Δx
msec
f (−1 + Δx) − f (−1)=
Δx
3 3
=
6Δx (−1 + Δx) − 4(−1 + Δx) − (−1) − 4(−1)
Δx =   
Δx
= 6 2 3
m = lim
Δx → 0
msec = lim 6 = 6
Δx → 0
=
−1 + 3Δx − 3(Δx) + (Δx) + 4 − 4Δx − 3
Δx
2 3
21. f (x) = 2x2
− 3 at (2, 5) =
−Δx − 3(Δx) + (Δx)
Δx
msec
f (2 +Δx) − f (2)
=
Δx
2(2 + Δx)
2
− 3 − 5
Δx(−1 − 3Δx + (Δx)
2
)=
Δx
2
=   = −1 − 3Δx + (Δx)
Δx
2(4+ 4Δx + (Δx)
2
) − 3 − 5
=
m = lim
Δx → 0
msec = lim
Δx → 0
(−1 − 3Δx + (Δx)2
) = −1
Δx 24. f (x) = 7x − x3
at (−3, 6)
8 + 8Δx + 2 Δx
2
− 3 − 5
=  
Δx
msec
f (−3 + Δx) − f (−3)
=
Δx
3
 3

2Δx(4 + Δx)
=
Δx
7(−3 + Δx) − (−3 + Δx) − 7(−3) − (−3)
=
Δx
= 2(4 + Δx) −21 + 7Δx − (−27 + 27Δx − 9(Δx)
2
+ (Δx)
3
) − 6
=
m = lim msec
Δx→ 0
= lim
Δx→ 0
(2(4 + Δx)) = 8
Δx
−20Δx + 9(Δx) − (Δx)
=
Δx
Δx(−20 + 9Δx − (Δx)
2
)=
Δx
= −20 + 9Δx − (Δx)
2
m = lim
Δx → 0
msec = lim −20 + 9Δx − (Δx)
2
= −20
Δx → 0
Section 2.1 The Derivative and the Slope of a Graph 75
25. f (x) = 2 x at (4, 4) 27. f (x) = 3
msec
f (4 +Δx) − f (4)
=
Δx
f ′(x) = lim
Δx → 0
f (x +Δx) − f (x)
Δx
=
2 4 +Δx − 2 4
Δx
=
2 4 + Δx − 4
⋅
2 4 + Δx + 4
= lim
Δx → 0
= lim
Δx → 0
3 − 3
Δx
0
ΔxΔx 2 4 + Δx + 4
= lim 0
4(4+Δx) − 16
=
Δx(2 4 + Δx + 4)
=
16 + 4Δx − 16
Δx(2 4 + Δx + 4)
28.
Δx → 0
= 0
f (x) = −2
f x +Δx − f x
=
4Δx
Δx(2 4 + Δx + 4)
=
4
2 4 + Δx + 4
f ′(x) =
=
=
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
( ) ( )
Δx
−2 − (−2)
Δx
0
Δx
m = lim msec = lim
4 = lim 0
Δx → 0
Δx→ 0 Δx→0 2 4 + Δx + 4 = 0
=
4
=
1
2 4 + 4 2 29. f (x) = −5x
26. f (x) = x + 1 at (8, 3) f ′(x) = lim
0
f (x +Δx) − f (x)
Δx
msec
f (8 +Δx) − f (8)=
Δx
=
8 +Δx + 1 − 8 + 1
Δx
Δx→
= lim
Δx → 0
= lim
Δx → 0
= lim
−5(x + Δx) − (−5x)
Δx
−5x − 5Δx + 5x
Δx
−5Δx
=
9 + Δx − 3
Δx
Δx → 0 Δx
= lim −5
=
9 +Δx − 3
⋅
9 + Δx + 3 Δx → 0
Δx
=
9 +Δx − 9
9 + Δx + 3
30.
= −5
f (x) = 4x + 1
Δx( 9 + Δx + 3)
′ m
f (x +Δx) − f (x)
=
Δx f (x) = li
0 Δx
Δx( 9 + Δx + 3) Δx→
= lim
4(x +Δx) + 1 − (4x + 1)
=
1
9 + Δx + 3
Δx → 0
= lim
Δx → 0
Δx
4x + 4Δx + 1 − 4x − 1
Δxm = lim
Δx → 0
= lim
msec
1 = lim
Δx → 0
4Δx
Δx
Δx → 0 9 + Δx + 3 = lim 4
Δx → 0
=
1
= 4
9 + 3
=
1
6
3 2
3 3
Δs
3 3 3
2 2
− Δt
2 2 2
 
 
 
 
76 Chapter 2 Differentiation
31. g(s) = 1 s + 2 32. h(t) = 6 − 1t
g′(s) =
=
=
=
=
lim
Δs → 0
lim
Δs → 0
lim
Δs → 0
lim
Δs → 0
lim
g(s+Δs) − g(s)
Δs
1
(s +Δs) + 2 − (1 s + 2)
Δs
1 s + 1Δs + 2 − 1 s − 2
Δs
1
3
Δs
1
h′(t) =
=
=
=
lim
Δt → 0
lim
Δt → 0
lim
Δt → 0
lim
Δt → 0
h(t+Δt) − h(t)
Δt
6 − 1
(t + Δt) − (6 − 1t)
Δt
6 − 1t − 1 Δt − 6 + 1t
Δt
1
2
Δt
1Δs → 0 3
=
1
= lim −
Δt → 0 2
13 = −
2
33. f (x) = 4x2
− 5x
f ′(x) =
=
lim
Δx→ 0
lim
Δx→ 0
f (x +Δx) − f (x)
Δx
4(x + Δx)2
− 5(x + Δx) − (4x2
− 5x)
Δx
4(x2
+ 2xΔx + (Δx)
2
) − 5x − 5Δx − 4x2
+ 5x
= lim
Δx→ 0 Δx
= lim
Δx→ 0
= lim
Δx→ 0
4x2
+ 8xΔx + 4(Δx)
2
− 5x − 5Δx − 4x2
+ 5x
Δx
4Δx

2x + Δx −
5


 4


Δx
 5
= lim 42x + Δx −  = 8x − 5
Δx→ 0  4
34. f (x) = 2x2
+ 7x
f ′(x) =
=
lim
Δx→ 0
lim
Δx→ 0
f (x +Δx) − f (x)
Δx
2(x + Δx)2
+ 7(x + Δx) − (2x2
+ 7x)
Δx
2(x2
+ 2xΔx + (Δx)
2
) + 7x + 7Δx − 2x2
− 7x
= lim
Δx→ 0 Δx
= lim
Δx→ 0
= lim
Δx→ 0
2x2
+ 4xΔx + 2(Δx)
2
+ 7x + 7Δx − 2x2
− 7x
Δx
2Δx

2x + Δx +
7


 2


Δx
 7
= lim 22x + Δx +  = 4x + 7
Δx→ 0  2
Section 2.1 The Derivative and the Slope of a Graph 77
35. h(t) = t − 3
h′(t) =
=
=
lim
Δt → 0
lim
Δt → 0
lim
h(t+Δt) − h(t)
t
t +Δt − 3 − t − 3
Δt
t +Δt − 3 − t − 3
⋅
t + Δt − 3 + t − 3
Δt → 0
= lim
Δt t + Δt − 3 +
t +Δt − 3 − (t − 3)
t − 3
Δt → 0 Δt( t + Δt − 3 + t − 3)
= lim
Δt
Δt → 0 Δt( t + Δt − 3 + t − 3)
= lim
1
Δt → 0 t + Δt − 3 + t − 3
=
1
2 t − 13
=
t − 3
2(t − 3)
36. f (x) = x + 2
f ′(x) =
=
=
lim
Δx → 0
lim
Δx → 0
lim
f (x +Δx) − f (x)
Δx
x +Δx + 2 − x + 2
Δx
x +Δx + 2 − x + 2
⋅
x + Δx + 2 + x + 2
Δx → 0
= lim
Δx x + Δx + 2 +
x +Δx + 2 − (x + 2)
x + 2
Δx → 0 Δx( x + Δx + 2 + x + 2)
= lim
Δx
Δx → 0 Δx( x + Δx + 2 + x + 2)
= lim
1
Δx → 0 x + Δx + 2 + x + 2
=
1
2 x + 2
78 Chapter 2 Differentiation
37. f (t) = t3
− 12t
f ′(t) =
=
=
=
=
=
lim
Δt → 0
lim
Δt → 0
lim
Δt → 0
lim
Δt → 0
lim
Δt → 0
lim
Δt → 0
f (t +Δt) − f (t)
Δt
(t +Δt)
3
− 12(t + Δt) − (t3
− 12t)
Δt
t3
+ 3t2
Δt + 3t(Δt)
2
+ (Δt)
3
− 12t − 12Δt − t3
+ 12t
Δt
3t2
Δt + 3t(Δt)
2
+ (Δt)
3
− 12Δt
Δt
Δt(3t2
+ 3tΔt + (Δt)
2
− 12)
Δt
(3t2
+ 3tΔt + (Δt)
2
− 12)
= 3t2
− 12
38. f (t) = t3
+ t2
f ′(t) =
=
=
=
=
=
lim
Δt → 0
lim
Δt → 0
lim
Δt → 0
lim
Δt → 0
lim
Δt → 0
lim
Δt → 0
f (t +Δt) − f (t)
Δt
(t +Δt)
3
+ (t + Δt)
2
− (t3
+ t2
)
Δt
t3
+ 3t2
Δt + 3t(Δt)
2
+ (Δt)
3
+ t2
+ 2tΔt + (Δt)
2
− t3
− t2
Δt
3t2
Δt + 3t(Δt)
2
+ (Δt)
3
+ 2tΔt + (Δt)
2
Δt
Δt(3t2
+ 3tΔt + (Δt)
2
+ 2t + Δt)
Δt
(3t2
+ 3tΔt + (Δt)
2
+ 2t + Δt)
39.
= 3t2
+ 2t
f (x) =
1
x + 2
f ′(x) =
=
=
=
=
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
f (x +Δx) − f (x)
Δx
1
−
1
x +Δx + 2 x + 2
Δx
1
⋅
x + 2
−
1
⋅
x + Δx + 2
x + Δx + 2 x + 2 x + 2 x + Δx + 2
Δx
x + 2 − (x + Δx + 2)
(x +Δx + 2)(x + 2)
Δx
−Δx
Δx → 0 Δx(x + Δx + 2)(x + 2)
= lim
−1
Δx → 0 (x + Δx + 2)(x + 2)
1
= −
(x + 2)2
2 2
2 2
8
8 8
8 8
4 8
4 8
4 8
− − Δ − (Δ ) +
4
4
Section 2.1 The Derivative and the Slope of a Graph 79
40. g(s) =
1 41. ( ) 1 2
( )
s − 4 f x = 2
x at 2, 2
f (x +Δx) − f (x)
g′(s) = lim
g(s+Δs) − g(s) f ′(x) = lim
0 Δx
Δs → 0
= lim
Δs → 0
= lim
Δs → 0
= lim
Δs
1
−
1
s +Δs − 4 s − 4
Δs
s − 4 − (s + Δs − 4)
(s +Δs − 4)(s − 4)
Δs
s − 4 − (s + Δs − 4)
(s +Δs − 4)(s − 4) 1
⋅
Δx→
= lim
Δx → 0
= lim
Δx → 0
= lim
Δx → 0
= lim
Δx → 0
1
(x + Δx)
2
− 1
x2
Δx
1
(x2
+ 2xΔx + (Δx)
2
) − 1 x2
Δx
xΔx + (Δx)
2
Δx
Δx(x+ Δx)
ΔxΔs → 0
= lim
(s + Δs − 4)(s − 4) Δs
−Δs
= lim
Δx → 0
(x + Δx)
Δs → 0 Δs(s + Δs − 4)(s − 4) = x
= lim
−1 m = f ′(2) = 2
Δs → 0 (s + Δs − 4)(s − 4) y − 2 = 2(x − 2)
= −
1 y = 2x − 2
(s − 4)
2
4
(2, 2)
−6 6
42.
−4
f (x) = − 1 x2
at (−4, −2)
f ′(x) =
=
=
=
=
=
=
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
f (x +Δx) − f (x)
Δx
− 1
(x + Δx)
2
− (− 1 x2
)
Δx
− 1
(x2
+ 2xΔx + (Δx)
2
) + 1 x2
Δx
1 x2 1 x x 1 x
2 1 x2
8 4 8 8
Δx
− 1
xΔx − 1
(Δx)
2
Δx
Δx(− 1
x − 1
Δx)
Δx
(− 1
x − 1
Δx)
= − 1
x
m = f ′(−4) = − 1
(−4) = 1
3
−9 9
(−4, −2)
y − (−2) = 1x − (−4)
y + 2 = x + 4
y = x + 2 −9
80 Chapter 2 Differentiation
43. f (x) = (x − 1)
2
at (−2, 9)
f ′(x) =
=
=
=
=
=
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
f (x +Δx) − f (x)
Δx
(x +Δx − 1)
2
− (x − 1)
2
Δx
x2
+ 2xΔx − 2x + (Δx)
2
− 2Δx + 1 − x2
+ 2x − 1
Δx
2xΔx + (Δx)
2
− 2Δx
Δx
Δx(2x + Δx − 2)
Δx
(2x + Δx − 2)
11
= 2x − 2
m = f ′(−2) = 2(−2) − 2 = −6
(−2, 9)
y − 9 = −6x − (−2)
y = −6x − 3
−12 12
−5
44. f (x) = 2x2
− 5 at (−1, −3)
f ′(x) =
=
=
=
=
=
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
f (x +Δx) − f (x)
Δx
2(x +Δx)
2
− 5 − (2x2
− 5)
Δx
2x2
+ 4xΔx + 2(Δx)
2
− 5 − 2x2
+ 5
Δx
4xΔx + 2(Δx)
2
Δx
Δx(4x + 2Δx)
Δx
(4x + 2Δx)
= 4x
m = f ′(−1) = 4(−1) = −4
2
−6 6
y − (−3) = −4(x − (−1))
y + 3 = −4x − 4
y = −4x − 7
(−1, −3)
−6
−1
Section 2.1 The Derivative and the Slope of a Graph 81
45. f (x) = x + 1 at (4, 3)
f ′(x) =
=
=
lim
Δx → 0
lim
Δx → 0
lim
f (x +Δx) − f (x)
Δx
x +Δx + 1 − ( x + 1)
Δx
x +Δx − x
⋅
x + Δx + x
Δx → 0
= lim
Δx x + Δx + x
x +Δx − x
Δx → 0 Δx( x + Δx + x)
= lim
Δx
Δx → 0 Δx( x + Δx + x)
= lim
1
Δx → 0
=
1
x + Δx + x
2 x
m = f ′(4) =
1
=
1 5
2 4 4
y − 3 =
1
(x − 4)4 −2
y =
1
x + 2
4
(4, 3)
7
46. f (x) = x + 3 at (6, 3)
f ′(x) =
=
=
lim
Δx → 0
lim
Δx → 0
lim
f (x +Δx) − f (x)
Δx
x +Δx + 3 − x + 3
Δx
x +Δx + 3 − x + 3
⋅
x + Δx + 3 + x + 3
Δx → 0
= lim
Δx x + Δx + 3 +
x +Δx + 3 − (x + 3)
x + 3
Δx → 0 Δx( x + Δx + 3 + x + 3)
= lim
Δx
Δx → 0 Δx( x + Δx + 3 + x + 3)
= lim
1
Δx → 0 x + Δx + 3 + x + 3
=
1
2 x + 3
=
x + 3
2(x + 3)
m = f ′(6) =
1
=
1
2 6 + 3 6
y − 3 =
1
(x − 6)6
y − 3 =
1
x − 1
6
y =
1
x + 2
6
7
(6, 3)
−4 8
−1
(2, −1)

2
5 25
5 (
82 Chapter 2 Differentiation
47. f (x) =
1
at

−
1
, −1
5x

5

f ′(x) =
=
=
=
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
 
f (x +Δx) − f (x)
Δx
1
−
1
5(x +Δx) 5x
Δx
x − (x + Δx)
5x(x+Δx)
Δx
x − (x + Δx)
⋅
1
Δx → 0 5x(x + Δx) Δx
= lim
−Δx
Δx → 0 5x ⋅ Δx ⋅ (x + Δx)
= lim
−1
Δx → 0 5x(x + Δx)
= −
1
5x2
m f
 1 1 1
5= ′−  = − = − = −
 5  1
5− 
 
 1 
5 
 
  

y − (−1) = −5x − −
1

1
  5
−3 3
48.
 1
y + 1 = −5x + 
 
y + 1 = −5x − 1
y = −5x − 2
f (x) =
1
at (2, −1)x − 3
−
1
, −15
−3
f ′(x) =
=
=
=
=
lim
Δx→ 0
lim
Δx→ 0
lim
Δx→ 0
lim
Δx→ 0
lim
f (x +Δx) − f (x)
Δx
1
−
1
x +Δx − 3 x − 3
Δx
1
⋅
x − 3
−
1
⋅
x + Δx − 3
x + Δx − 3 x − 3 x − 3 x + Δx − 3
Δx
x − 3 − (x + Δx − 3)
(x +Δx − 3)(x − 3)
Δx
−Δx
Δx→ 0 (x + Δx − 3)(x − 3)Δx
= lim
−1
= −
1
Δx→ 0 (x + Δx − 3)(x − 3) (x − 3)
2
1
3
m = f ′(2) = −
(2 − 3)
2
= −1
y − (−1) = −1(x − 2)
y + 1 = − x + 2
y = −x + 1
−2 7
−3
x2
4 4
2 4
2 4
4 2 4 4
 
x
1
3
3
3 3
3 3
3 3 3
= −
Section 2.1 The Derivative and the Slope of a Graph 83
49. f (x)
1
4
50. f (x) = x2
− 7
f ′(x) = lim
Δx → 0
f (x + Δx) −
Δx
f (x) f ′(x) = lim
Δx→ 0
f (x +Δx) − f (x)
Δx
= lim
Δx → 0
= lim
Δx → 0
= lim
Δx → 0
= lim
Δx → 0
− 1
(x + Δx)2
− (− 1 x2
)
Δx
− 1 x2
− 1 xΔx − 1
(Δx)
2
+ 1 x2
Δx
− 1 xΔx − 1
(Δx)
2
Δx
Δx(− 1 x − 1 Δx)
Δx
= lim
Δx→ 0
= lim
Δx→ 0
= lim
Δx→ 0
= lim
Δx→ 0
(x +Δx)
2
− 7 − (x2
− 7)
Δx
x2
+ 2xΔx + (Δx)
2
− 7 − x2
+ 7
Δx
Δx(2x + Δx)
Δx
(2x + Δx) = 2x
= lim

−
1
x −
1
Δx
 Since the slope of the given line is −2,
 
Δx → 0 2 4 
1
= −
2
Since the slope of the given line is −1,
− 2
x = −1
2x = −2
x = −1 and f (−1) = −6.
At the point (−1, −6), the tangent line parallel to
2x + y = 0 is
x = 2 and f (2) = −1. y − (−6) = −2(x − (−1))
At the point (2, −1), the tangent line parallel to
x + y = 0 is y − (−1) = −1(x − 2)
y = −x + 1.
y = −2x − 8.
51. f (x) 1
x3= −
3
f ′(x) =
=
=
=
=
=
lim
Δx→ 0
lim
Δx→ 0
lim
Δx→ 0
lim
Δx→ 0
lim
Δx→ 0
lim
Δx→ 0
f (x +Δx) − f (x)
Δx
− 1
(x + Δx)3
− (−1 x3
)
Δx
− 1
(x3
+ 3x2
Δx + 3x(Δx)
2
+ (Δx)
3
) + 1 x3
Δx
− 1 x3
− x2
Δx − x(Δx)
2
− 1
(Δx)
3
+ 1 x3
Δx
Δx(−x2
− xΔx − 1
(Δx)
2
)
Δx
(− x2
− xΔx − 1
(Δx)
2
) = −x2
Since the slope of the given line is −9,
− x2
x2
= −9
= 9
x = ±3 and f (3) = −9 and f (−3) = 9.
At the point (3, −9), the tangent line parallel to 9x + y − 6 = 0 is
y − (−9) = −9(x − 3)
y = −9x + 18.
At the point (−3, 9), the tangent line parallel to 9x + y − 6 = 0 is
y − 9 = −9(x − (−3))
y = −9x − 18.
2
2
84 Chapter 2 Differentiation
52. f (x) = x3
+ 2
f ′(x) =
=
=
=
=
=
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
f (x +Δx) − f (x)
Δx
(x +Δx)
3
+ 2 − (x3
+ 2)
Δx
x3
+ 3x2
Δx + 3x(Δx)
2
+ (Δx)
3
+ 2 − x3
− 2
Δx
3x2
Δx + 3(Δx)
2
+ (Δx)
3
Δx
Δx(3x2
+ 3xΔx + (Δx)
2
)
Δx
(3x2
+ 3xΔx + (Δx)
2
)
= 3x2
The slope of the given line is
3x − y − 4 = 0
y = 3x − 4
m = 3.
3x2
= 3
x2
= 1
x = ±1
x = 1 and f (1) = 3
x = −1 and f (−1) = 1
At the point (1, 3), the tangent line parallel to 3x − y − 4 = 0 is
y − 3 = 3(x − 1)
y − 3 = 3x − 3
y = 3x.
At the point (−1, 1), the tangent line parallel to 3x − y − 4 = 0 is
y − 1 = 3(x − (−1))
y − 1 = 3(x + 1)
y − 1 = 3x + 3
y = 3x + 4.
53. y is differentiable for all x ≠ −3.
At (−3, 0), the graph has a node.
54. y is differentiable for all x ≠ ±3.
At (±3, 0), the graph has a cusp.
55. y is differentiable for all x ≠ − 1.
At (− 1, 0), the graph has a vertical tangent line.
56. y is differentiable for all x > 1.
The derivative does not exist at endpoints.
57. y is differentiable for all x ≠ ± 2.
The function is not defined at x = ±2.
58. y is differentiable for all x ≠ 0.
The function is discontinuous at x = 0.
x −2 − 3 −1 − 1 0 1
2
1 3
2
2
f (x) 1 0.5625 0.25 0.0625 0 0.0625 0.25 0.5625 1
f ′(x) −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
 
4
2 4
2
Section 2.1 The Derivative and the Slope of a Graph 85
59. Since
y
f ′(x) = −3 for all x, f is a line of the form
5
f (x) = −3x + b.
f (0) = 2, so 2 = (−3)(0) + b, or b = 2. 2
1
Thus, f (x) = −3x + 2. −4 −3 −2 −1
x
2 3 4
60. Sample answer: Since f (−2) = f (4) = 0,
−2
−3
(x + 2)(x − 4) = 0.
A function with these zeros is f (x) = x2
− 2x − 8.
Then f ′(x) =
=
=
=
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
f (x +Δx) − f (x)
Δx
(x + Δx)
2
− 2(x + Δx) − 8 − (x2
− 2x − 8)
Δx
x2
+ 2xΔx + (Δx)
2
− 2x − 2Δx − 8 − x2
+ 2x + 8
Δx
2xΔx + (Δx)
2
− 2Δx
Δx
y
1
−3 −1
x
1 2 3 5 6
= lim 2x + Δx − 2 −2
Δx → 0
= 2x − 2.
So f ′(1) = 2(1) − 2 = 0.Sketching f (x) shows that
−8
f ′(x) < 0 for x < 1 and f ′(0) > 0 for x > 1. −9
61. 2
−2 2
−2
2 2
Analytically, the slope of f (x) = 1 x2
is
f (x +Δx) − f (x)m = lim
Δx → 0 Δx
1
(x + Δx)2
− 1 x2
= lim 4 4
Δx → 0 Δx
1 x2
+ 2x(Δx)2
+ (Δx)2
 − 1 x2
= lim
4   4
Δx → 0 Δx
1 x2
+ 1 xΔx + 1
(Δx)2
− 1 x2
= lim 4 2 4 4
Δx → 0 Δx
1 xΔx + 1
(Δx)2
= lim 2 4
Δx → 0
= lim
Δx → 0
Δx
Δx(1 xΔx + 1 Δx)
Δx
= lim (1 x + 1 Δx)Δx → 0 2 4
= 1 x.
x −2 − 3
−1 − 1 0 1
2
1 3
2
2
f (x) −6 −2.53 −0.75 −0.1 0 0.1 0.75 2.53 6
f ′(x) 9 5.0625 2.25 0.5625 0 0.5625 2.25 5.0625 9
x −2 − 3 −1 − 1 0 1
2
1 3
2
2
f (x) 4 1.6875 0.5 0.0625 0 −0.0625 −0.5 −1.6875 −4
f ′(x) −6 −3.375 −1.5 −0.375 0 −0.375 −1.5 −3.375 −6
4
4 4
4 4 4
4 4
4 4 4
4 4 4 4 4
2
( ) ( )
= −
86 Chapter 2 Differentiation
62. 4
−6 6
−4
2 2
Analytically, the slope of f (x) = 3 x3
is
m = lim
Δx→ 0
= lim
Δx→ 0
= lim
Δx→ 0
= lim
Δx→ 0
= lim
Δx→ 0
= lim
Δx→ 0
= lim
f (x +Δx) − f (x)
Δx
3
(x + Δx)
3
− 3
x3
Δx
3
(x3
+ 3x2
Δx + 3x(Δx)
2
+ (Δx)
3
) − 3
x3
Δx
3 x3
+ 9 x2
Δx + 9 x(Δx)
2
+ 3
(Δx)
3
− 3 x3
Δx
9 x2
Δx + 9 x(Δx)
2
+ 3 x(Δx)
3
Δx
Δx(9
x2
+ 9
xΔx + 3
(Δx)
2
)
Δx
(9 x2
+ 9 xΔx + 3
(Δx)
2
)Δx→ 0 4 4 4
9 2
= 4
x .
63. 2
−2 2
−2
2 2
Analytically, the slope of f (x) = − 1 x3
is
f (x +Δx) − f (x)m = lim
Δx → 0 Δx
− 1
(x + Δx)3
+ 1 x3
= lim 2 2
Δx → 0
= lim
Δx → 0
Δx
− 1 x3
+ 3x2
Δx + 3x Δx
2
+ Δx
3
 + 1 x3
2   2
Δx
− 1 3x2
Δx + 3x(Δx)2
+ (Δx)3

= lim
2  
Δx → 0 Δx
= lim −
13x2
+ 3x(Δx) + (Δx)2

Δx → 0
3
x2
.
2
2 
x −2 − 3 −1 − 1 0 1
2
1 3
2
2
f (x) −6 −3.375 −1.5 −0.375 0 −0.375 −1.5 −3.375 −6
f ′(x) 6 4.5 3 1.5 0 −1.5 −3 −4.5 −6
2
2 2
−4
Section 2.1 The Derivative and the Slope of a Graph 87
64. 2
−2 2
− 8
2 2
Analytically, the slope of f (x) = − 3
x2
is
f (x +Δx) − f (x)m = lim
Δx → 0
= lim
Δx → 0
Δx
− 3
(x + Δx)
2
− (− 3 x2
)
Δx
− 3 x2
+ 2xΔx + (Δx)2
 + 3 x2
= lim
2   2
Δx → 0 Δx
− 3 2xΔx + (Δx)2

= lim
2  
Δx → 0 Δx
= lim −
3
(2x + Δx)Δx → 0 2
= −3x.
65. f ′(x) =
f (x +Δx) − f (x) 8
lim
Δx → 0
= lim
Δx → 0
= lim
Δx → 0
Δx
(x +Δx)
2
− 4(x + Δx) − (x2
− 4x) −6 12
Δx
2xΔx + (Δx)
2
− 4Δx
Δx
= lim (2x + Δx − 4)Δx → 0
= 2x − 4
The x-intercept of the derivative indicates a point of horizontal tangency for f.
66. f ′(x) = lim
Δx → 0
f (x +Δx) − f (x)
Δx
= lim
Δx → 0
2
2 + 6(x + Δx) − (x + Δx)2
− (2 + 6x − x2
)
Δx
= lim
Δx → 0
6Δx − 2xΔx − (Δx) =
Δx
lim (6 − 2x − Δx) = 6 − 2x
Δx → 0
13
−7 14
−1
The x-intercept of the derivative indicates a point of horizontal tangency for f.
( )
( )
88 Chapter 2 Differentiation
67. f ′(x) =
f (x +Δx) − f (x)lim
Δx → 0
= lim
Δx → 0
= lim
Δx → 0
= lim
Δx → 0
Δx
(x +Δx)
3
− 3(x + Δx) − (x3
− 3x)
Δx
x3
+ 3x2
Δx + 3x(Δx)
2
+ (Δx)
3
− 3x − 3Δx − x3
+ 3x
Δx
3x2
Δx + 3x(Δx)
2
+ (Δx)
3
− 3Δx
Δx
= lim 3x2
+ 3xΔx + (Δx)
2
− 3
Δx → 0
= 3x2
− 3
4
−6 6
−4
The x-intercepts of the derivative indicate points of horizontal tangency for f.
68. f ′(x) =
f (x +Δx) − f (x)lim
Δx → 0
= lim
Δx → 0
= lim
Δx → 0
Δx
(x +Δx)
3
− 6(x + Δx)
2
− (x3
− 6x2
)
Δx
x3
− 3x2
Δx + 3x(Δx)
2
+ (Δx)
3
− 6(x2
+ 2xΔx + (Δx)
2
) − x3
+ 6x2
Δx
= lim 3x2
+ 3xΔx + (Δx)
2
− 12x − 6Δx
Δx → 0
= 3x2
− 12x
4
−4 8
−36
The x-intercepts of the derivative indicate points of horizontal tangency for f.
69. True. The slope of the graph is given by f ′(x) = 2x, 73. The graph of f (x) = x2
+ 1 is smooth at (0, 1), but the
which is different for each different x value. graph of g(x) = x + 1 has a node at (0, 1). The
70. False.
x = 0.
f (x) = x is continuous, but not differentiable at function g is not differentiable at (0, 1).
6
71. True. See page 122.
72. True. See page 115. −4 4
−1
4
4
3
−3
2
Section 2.2 Some Rules for Differentiation 89
Section 2.2 Some Rules for Differentiation
Skills Warm Up
1. (a) 2x2
, x = 2
2(22
) = 2(4) = 8
1 
5.  x
 
−3 4
=
1
4x3 4
(b) (5x)
2
, x = 2 6.
1
(3)x2  1
− 2 x−1 2
+
1
x−2 3
= x2
− x−1 2
+
1
x−2 3
5(2)
2
= 102
= 100
3  2 3 3
= x2
−
1
+
1
(c) 6x−2
, x = 2
7. 3x2
+ 2x = 0
x 3 3
x2
6(2)−2
= 6(1
) = 3
x(3x + 2) = 0
x = 0
2. (a)
1
, x = 2
(3x)2
3x + 2 = 0 → x = − 2
1 1 1 8. x3
− x = 0
2
= 2
=
3(2)
1
6 36
x(x2
− 1) = 0
x(x + 1)(x − 1) = 0(b) , x = 2
4x3
1
=
1
=
1
x = 0
x + 1 = 0 → x = −1
4(23
) 4(8) 32
x 1 0 x 1
(c)
(2x)
, x = 2
9. x2
− = → =
+ 8x − 20 = 0
4x−2
−3
−3 2
(x + 10)(x − 2) = 0
2(2) =
4
=
2
=
1 x + 10 = 0 → x = −10
4(2)
−2
4(2)
−2
4(43
) 64
10.
x − 2 = 0 → x = 2
3x2
− 10x + 8 = 0
3. 4(3)x3
+ 2(2)x = 12x3
+ 4x = 4x(3x2
+ 1) ( )( )3x − 4 x − 2 = 0
4
4. 1
( ) 2 3 1 2 3 2 3 3 1 2
( 3 2
) 3x − 4 = 0 → x = 3
2
3 x − 2
x = 2
x − 2
x = 2
x x − 1
x − 2 = 0 → x = 2
1. y = 3
y′ = 0
2. f (x) = −8
6. h(x) = 6x5
h′(x) = 30x4
5x4
f ′(x) = 0
3. y = x5
7. y =
y′ =
3
20
x3
=
10
x3
y′ = 5x4
4. f (x) =
1
= x−6
x6
6 3
3t2
8. g(t) =
4
3
f ′(x) = −6x−7 6
= −
x7
g′(t) = t
2
5. h(x) = 3x3
h′(x) = 9x2
9. f (x) = 4x
f ′(x) = 4
3 3
( )
x
= −
= −
2
4 2
90 Chapter 2 Differentiation
10. g(x) =
x
=
1
x 17. s(t) = 4t4
− 2t + t + 3
11.
3 3
g′(x) =
1
3
y = 8 − x3
y = −3x2
18.
19.
s′(t) = 16t2
− 4t + 1
y = 2x3
− x2
+ 3x − 1
y′ = 6x2
− 2x + 3
g(x) = x2 3
12. y = t2
− 6
y′ = 2t
g′(x) =
2
x−1 3
=
2
3 3x1 3
13. f (x) = 4x2
− 3x 20. h(x) = x5 2
f ′(x) = 8x − 3 h′(x) = 5
x3 2
2
14. g(x) = 3x2
+ 5x3
g′(x) = 6x + 15x2
= 15x2
+ 6x
21. y = 4t4 3
y′ = 4(4
)t1 3
= 16
t1 3
15. f (t) = −3t2
+ 2t − 4
f ′(t) = −6t + 2
22. f (x) = 10x1 6
f ′(x) =
5
x−5 6
=
5
=
5
16. y = 7x3
− 9x2
+ 8
y′ = 21x2
− 18x
23. y = 4x
3 3x5 6
−2
+ 2x2
36
x5
y′ = −8x−3
+ 4x1
= −
8
+ 4x
x3
24. s(t) = 8t−4
+ t
s′(t) = 8 −4t−6
+ 1 = −
32
+ 1
t6
Function Rewrite Differentiate Simplify
25. y =
2
7x4
y =
2
x−4
7
y′ =
−8
x−5
7
8
y′ = −
7x5
26. y =
2
3x2
y =
2
x−2
3
4
y′ = − −3
3
4
y′ = −
3x3
27.
28.
y =
1
(4x)3
y =
π
(2x)6
y =
1
x−3
64
y =
π
x−6
64
y′
3
x−4
64
y′
6π
x−7
64
y′ = −
3
64x4
y′ = −
3π
32x7
29. y =
4
(2x)−5
4x
y = 128x5
4
y′ = 128(5)x4
3
y′ = 640x4
3
30. y =
x−3
y = 4x y′ = 4(4)x y′ = 16x
31. y = 6 x y = 6x1 2
y′ = 6(1
)x−1 2
y′ =
3
x
32. y =
3 x
y =
3
x1 2
y′ =
31
x−1 2
y′ =
3
 
4 4   8 x
2 2 2
4
2
= −
Section 2.2 Some Rules for Differentiation 91
Function Rewrite Differentiate Simplify
33. y =
1
y =
1
x−1 6
y′ =
1
−
1
x−7 6 y′ = −
1
7 6
x 7 7

6
 6 7  42 x
34. y =
3
y =
3
x−3 4
y′ =
3
−
3
x−7 4
y′ = −
9
2
4
x3 2 2

4
 4 7  8 x
35. y = 5
8x y = (8x)
1 5
= 81 5
x1 5
y′ = 81 5 1
x−4 5  1 5
8 5
8
y′ = 81 5
= =
5

5x4 5 5 4 5x  5 x
36. y = 3
6x2
y = 3
6(x)
2 3
y′ = 3
6
 2
x−1 3
 3 y′ =
2 3
6
3
  3 x
37. y = x3 2
43. f (x) = − 1
x(1 + x2
) = − 1
x − 1
x3
y′ = 3
x1 2
1 3 2
2 f ′(x) = − 2
− 2
x
At the point (1, 1), y′ = 3
(1)
1 2
= 3
= m. f ′(1) = − 1
− 3
= −22 2 2 2
38. y = x−1
y′ = x−2 1
= −
44. f (x) = 3(5 − x)
2
f ′(x) = −30 + 6x
= 75 − 30x + 3x2
x2
 3 4 1 16
f ′(5) = −30 + (6)(5) = 0
At the point  , , y′ = − 2
= − = m.
 4 3 (3
) 9 45. (a) y = −2x4
+ 5x2
− 3
y′ = −8x3
+ 10x
39. f (t) = t−4
m y′(1) 8 10 2
f ′(t) = −4t−5 4
t5
At the point
= = − + =
The equation of the tangent line is
y − 0 = 2(x − 1)
y = 2x − 2. 1
, 16, f
 1
= −
4 4
= −128 = m.

 ′  = −
 2   2  1
5
 
 
1
32
(b) and (c) 3.1
40. f (x) = x−1 3 −4.7 4.7
f ′(x) 1
x−4 3
= −
1
= −
3 3x4 3 −3.1
 1 ′
1 1 46. (a) y = x3
+ x + 4At the point 8,
2
, f (8) = − = − = m.
4 3
48  3(8)
y′ = 3x2
+ 1
41. f (x) = 2x3
+ 8x2
− x − 4 m = y′(−2) = 3(−2)
2
+ 1 = 13
42.
f ′(x) = 6x2
+ 16x − 1
At the point
(−1, 3), f ′(−1) = 6(−1)
2
+ 16(−1) − 1 = −11 = m.
f (x) = x4
− 2x3
+ 5x2
− 7x
The equation of the tangent line is
y − (−6) = 13x − (−2)
y + 6 = 13x + 26
y = 13x + 20.
f ′(x) = 4x3
− 6x2
+ 10x − 7
At the point
(−1, 15), f ′(−1) = 4(−1)
3
− 6(−1)
2
+ 10(−1) − 7
= −4 − 6 − 10 − 7 = −27 = m.
(b) and (c)
−5
50
5
−50
3
92 Chapter 2 Differentiation
47. (a) f (x) = 3
x + 5
x = x1 3
+ x1 5
50. (a) y = (2x + 1)
2
f ′(x) =
1
x−2 3
+
1
x−4 5
=
1
+
1 y = 4x2
+ 4x + 1
3 5 3x2 3
5x4 5
y′ = 8x + 4
m = f ′(1) =
1
+
1
=
8
3 5 15
m = y′ = 8(0) + 4 = 4
The equation of the tangent line is
y − 2 =
8
(x − 1)
15
The equation of the tangent line is
y − 1 = 4(x − 0)
y = 4x + 1.
y =
8
x +
22
.
15 15
(b) and (c) 3.1
(b) and (c) 3
−4 2
−4.7 4.7
−1
−3.1 51. f (x) = x2
− 4x−1
− 3x−2
f ′ x = 2x + 4x−2
+ 6x−3
= 2x +
4
+
6
48. (a) f (x) =
1
− x = x−2 3
− x
3
x2
( )
x2
x3
f ′(x) 2
x−5 3
− 1
52. f (x) = 6x2
− 5x−2
+ 7x−3
= −
3 10 21
m = f ′(−1) =
2 1
− 1 = −
( )
x x4
f ′ x
3 3
= 12x + 10x−3
− 21x−4
= 12x + 3
−
The equation of the tangent line is
y − 2 = − 1
(x + 1)
53. f (x) = x2
− 2x −
2
= x2
− 2x − 2x−4
x4
8
y = − 1 x + 5.
′( ) 2 2 8 −5
2 2
x3 3
(b) and (c) 4
f x = x − + x = x − + 5
1
54. f (x) = x2
+ 4x + = x2
+ 4x + x−1
x
−5 4
−2 55.
f ′(x) = 2x + 4 − x−2
f (x) = x4 5
+ x
= 2x + 4 −
1
x2
f ′ x =
4
x−1 5
+ 1 =
4
+ 1
49. (a) y = 3x

x2
−
2 ( )
5 5x1 5

x

 
y = 3x3
− 6 56. f (x) = x1 3
− 1
y′ = 9x2
f ′(x) 1
x−2 3 1
m = y′ = 9(2)
2
= 36
= =
3 3x2 3
The equation of the tangent line is
y − 18 = 36(x − 2)
y = 36x − 54.
57.
58.
f (x) = x(x2
+ 1) = x3
+ x
f ′(x) = 3x2
+ 1
f (x) = (x2
+ 2x)(x + 1) = x3
+ 3x2
+ 2x
(b) and (c) 50
f ′(x) = 3x2
+ 6x + 2
−5 5
−50
3
2
Section 2.2 Some Rules for Differentiation 93
59.
2x3
− 4x2
+ 3
f (x) = = 2x − 4 + 3x−2
x2
f ′(x) = 2 − 6x−3
= 2 −
6
=
2x − 6
=
2(x3
− 3)
x3
x3
x3
60.
2x2
− 3x + 1
f (x) = = 2x − 3 + x−1
x
f ′(x) = 2 − x−2 1 2x2
− 1
= 2 − =
x2
x2
61.
4x3
− 3x2
+ 2x + 5
f (x) = = 4x − 3 + 2x−1
+ 5x−2
x2
2 10 4x3
− 2x − 10
f ′(x) = 4 − 2x−2
− 10x−3
= 4 − − =
x2
x3
x3
62.
63.
−6x3
+ 3x2
− 2x + 1
f (x) = = −6x2
+ 3x − 2 + x−1
x
f ′(x) = −12x + 3 − x−2
= −12x + 3 −
1
x2
y = x4
− 2x + 3
y′ = 4x3
− 4x = 4x(x2
− 1) = 0 when x = 0, ±1
If x = ±1, then y = (±1)
4
− 2(±1)
2
+ 3 = 2.
The function has horizontal tangent lines at the points
(0, 3), (1, 2), and (−1, 2).
67.
68.
y = x2
+ 3
y′ = 2x
Set y′ = 4.
2x = 4
x = 2
If x = 2, y = (2)
2
+ 3 = 7 → (2, 7).
The graph of y = x2
+ 3 has a tangent line with slope
m = 4 at the point (2, 7).
y = x2
+ 2x
64. y = x3
+ 3x2 y′ = 2x + 2
y′ = 3x2
+ 6x = 3x(x + 2) = 0 when x = 0, −2.
The function has horizontal tangent lines at the points
(0, 0) and (−2, 4).
Set y′ = 10.
2x + 2 = 10
x = 4
x = 4, y = 4
2
+ 2 4 = 24 → 4, 24 .
65. y = 1 x2
+ 5x
If ( ) ( ) ( )
2
y′ = x + 5 = 0 when x = −5.
The graph of y = x + 2x has a tangent line with slope
The function has a horizontal tangent line at the point
m = 10 at the point (4, 24).
( 25
)−5, − 2
.
66. y = x2
+ 2x
y′ = 2x + 2 = 0when x = −1.
The function has a horizontal tangent line at the point
(−1, −1).
94 Chapter 2 Differentiation
69. (a) y
4
2
70. (a) y
5 g f
4
g f
x
−4 −2 2 4
−2
−4
3
2
−3 −2 −1
−1
x
1 2 3
(b) f ′(x) = g′(x) = 3x2
f ′(1) = g′(1) = 3
(b) f ′(x) = 2x
f ′(1) = 2
g′(x) = 6x
(c) Tangent line to f at x = 1:
f (1) = 1
y − 1 = 3(x − 1)
y = 3x − 2
Tangent line to g at x = 1:
g(1) = 4
y − 4 = 3(x − 1)
y = 3x + 1
y
4
2
g f
x
g′(1) = 6
(c) Tangent line to f at x = 1:
f (1) = 1
y − 1 = 2(x − 1)
y = 2x − 1
Tangent line to g at x = 1:
g(1) = 3
y − 3 = 6(x − 1)
y = 6x − 3
y
5 g f
4
−4 −2 2 4
3
−2
2
−4
(d) f ′ and g′ are the same.
−3 −2 −1
−1
x
1 2 3
(d) g′is 3 times f ′.
71. If g(x) = f (x) + 6, then g′(x) = f ′(x) because the derivative of a constant is 0, g′(x) = f ′(x).
72. If g(x) = 2 f (x), then g′(x) = 2 f ′(x) because of the Constant Multiple Rule.
73. If g(x) = −5 f (x), then g′(x) = −5 f ′(x) because of the Constant Multiple Rule.
74. If g(x) = 3 f (x) − 1, then g′(x) = 3 f ′(x) because of the Constant Multiple Rule and the derivative of a constant is 0.
75. (a) R = −4.1685t3
+ 175.0372
− 1950.88t + 7265.3
R′ = −12.5055t2
+ 350.074t − 1950.88
2009: R′(9) = −12.5055(9)
2
+ 350.074(9) − 1950.88 ≈ $186.8 million per year
2011: R′(11) = −12.5055(11)
2
+ 350.074(1) − 1950.88 ≈ $386.8 million per year
(b) These results are close to the estimates in Exercise 13 in Section 2.1.
(c) The slope of the graph at time t is the rate at which sales are increasing in millions of dollars per year.
Section 2.2 Some Rules for Differentiation 95
76. (a) R = −2.67538t4
+ 94.0568t3
− 1155.203t2
+ 6002.42t − 9794.2
R′ = −10.70152t3
+ 282.1704t2
− 2310.406t + 6002.42
2010: R′(10) = −10.70152(10)
3
+ 282.1704(10)
2
− 2310.406(10) + 6002 ≈ $413.88 million per year
2012: R′(12) = −10.70152(12)
3
+ 282.1704(12)
2
− 2310.406(12) + 6002 ≈ $417.86 million per year
(b) These results are close to the estimates in Exercise 14 in Section 2.1.
(c) The slope of the graph at time t is the rate at which sales are increasing in millions of dollars per year.
77. (a) More men and women seem to suffer from migraines
between 30 and 40 years old. More females than
males suffer from migraines. Fewer people whose
income is greater than or equal to $30,000 suffer
from migraines than people whose income is less
than $10,000.
81. f (x) = 4.1x3
− 12x2
+ 2.5x
f ′(x) = 12.3x2
− 24x + 2.5
12
f ′
(b) The derivatives are positive up to approximately
37 years old and negative after about 37 years of
age. The percent of adults suffering from migraines
increases up to about 37 years old, then decreases.
0 3
f
−12
The units of the derivative are percent of adults
suffering from migraines per year.
78. (a) The attendance rate for football games, g′(t), is
greater at game 1.
82.
f has horizontal tangents at (0.110, 0.135)and
(1.841, −10.486).
f (x) = x3
− 1.4x2
− 0.96x + 1.44
f ′(x) = 3x2
− 2.8x − 0.96
(b) The attendance rate for basketball games, f ′(t),
5
is greater than the rate for football games, g′(t),
at game 3.
f ′
−2 2
(c) The attendance rate for basketball games, f ′(t),
f
is greater than the rate for football games, g′(t),
at game 4. In addition, the attendance rate for
football games is decreasing at game 4.
(d) At game 5, the attendance rate for football continues
−5
f has horizontal tangents at (1.2, 0) and (−0.267, 1.577).
to increase, while the attendance rate for basketball
continues to decrease.
83. False. Let f (x) = x and g(x) = x + 1.
79. C = 7.75x + 500
Then f ′(x) = g′(x) = 1, but f (x) ≠ g(x).
C′ = 7.75, which equals the variable cost. 84. True. c is a constant.
80. C = 150x + 7000
P = R − C
P = 500x − (150x + 7000)
P = 350x − 7000
P′ = 350, which equals the profit on each dinner sold.
10
10
5 5 2
9
96 Chapter 2 Differentiation
Section 2.3 Rates of Change: Velocity and Marginals
Skills Warm Up
−63 − (−105) 42 8. y = −16x2
+ 54x + 70
1. =
21 − 7 14
= 3
y′ = −32x + 54
9. A = 1
(−2r3
+ 3r2
+ 5r)
2.
−43 − 35
=
6 − (−7)
−78
13 A′ = 1
(−6r2
+ 6r + 5)
= −6 A′ = − 3r2
+ 3r + 1
3.
24 − 33
=
−9
= −3 10. y = 1
(6x3
− 18x2
+ 63x − 15)9 − 6 3 9
y′ = 1
(18x2
− 36x + 63)
4.
40 − 16
=
24 12
= y′ = 2x2
− 4x + 7
18 − 8 10 5
5. y = 4x2
− 2x + 7
y′ = 8x − 2
6. s = −2t3
+ 8t2
− 7t
s′ = −6t2
+ 16t − 7
7. s = −16t2
+ 24t + 30
s′ = −32t + 24
11.
12.
x2
y = 12x −
5000
y′ = 12 −
2x
5000
y′ = 12 −
x
2500
y = 138 + 74x −
3x2
x3
10,000
y′ = 74 −
10,000
1. (a) 1980–1986:
120 − 63
= $9.5 billion yr
6 − 0
(e) 2004–2010:
408 − 305
≈ $17.2 billion yr
30 − 24
(b) 1986–1992:
165 − 120
12 − 6
= $7.5 billion yr (f ) 1980–2012:
453 − 63
≈ $12.2 billion yr
32 − 0
(c) 1992–1998:
226 − 165
≈ $10.2 billion yr
18 − 12
(d) 1998–2004:
305 − 226
≈ $13.2 billion yr
24 − 18
(g) 1990–2012:
453 − 152
32 − 10
(h) 2000–2012:
453 − 269
32 − 20
≈ $13.7 billion yr
≈ $15.3 billion yr
= −
= −
Section 2.3 Rates of Change: Velocity and Marginals 97
2. (a) Imports:
1980–1990:
495 − 245
= $25 billion yr
10 − 0
6. f (x) = −x2
− 6x − 5; [−3, 1]
Average rate of change:
Δf
=
f (1)− f (−3) =
−12 − 4
= −4(b) Exports:
1980–1990:
394 − 226
10 − 0
= $16.8 billion yr
Δx
f ′(x)
1 − (−3) 4
= −2x − 6
(c) Imports:
1990–2000:
1218 − 495
≈ $72.3 billion yr
20 − 10
(d) Exports:
Instantaneous rates of change:
7. f (x) = 3x4 3
; [1, 8]
Average rate of change:
f ′(−3) = 0, f ′(1) = −8
1990–2000:
782 − 394
= $38.8 billion yr Δy f (8)− f (1)= =
48 − 3
=
45
20 − 10 Δx 8 − 1 7 7
(e) Imports:
2000–2010:
1560 − 1218
= $38.0 billion yr
29 − 20
f ′(x) = 4x1 3
Instantaneous rates of change: f '(1) = 4, f ′(8) = 8
(f ) Exports: 8. f (x) = x3 2
; [1, 4]
2000–2010:
1056 − 782
29 − 20
= $30.4 billion yr Average rate of change:
(g) Imports:
Δy f (4)− f (1)= =
8 − 1
=
7
1980–2013:
2268 − 245
≈ $61.3 billion yr
33 − 0
(h) Exports:
Δx
f ′(x) =
4 − 1 3 3
3
x1 2
2
3
1980–2013:
1580 − 226
33 − 0
3. f (t) = 3t + 5; [1, 2]
Average rate of change:
≈ $41.0 billion yr
Instantaneous rates of change:
9. f (x) =
1
; [1, 5]x
Average rate of change:
f ′(1) = ,
2
f ′(4) = 3
Δy f (2)− f (1)
= =
11 − 8
= 3 ( ) ( ) 1 − − 4
Δy
=
f 5 − f 1 1
= 5
=
5
= −
1
Δt
f ′(t) = 3
2 − 1 1 Δx
f ′(x)
5 − 1 3 4 5
1
x2
Instantaneous rates of change: f ′(1) = 3, f ′(2) = 3
= −
Instantaneous rates of change:
4. h(x) = 7 − 2x; [1, 3]
Average rate of change:
f ′(1) = −1, f ′(5)
1
25
Δh
=
h(3)− h(1) =
1 − 5
= −2 10. f (x) =
1
; [1, 9]Δt 3 − 1 2 x
h′(t) = −2 Average rate of change:
Instantaneous rates of change: h(1) = −2, h(3) = −2 Δy ( ) ( ) 1 2
1f 9 − f 1
= = 3
− 1
=
− 3
= −
5. h(x) = x2
− 4x + 2; [−2, 2]
Average rate of change:
Δx
f ′(x) =
9 − 1 8 4 6
1
2x3 2
Δh
=
h(2)− h(−2)
=
−2 − 14
= −4
Instantaneous rates of change:
Δx 2 − (−2) 4 f ′(1)
1
,
2
f ′(9) =
1
54
h′(x) = 2x − 4
Instantaneous rates of change: h′(−2) = −8, h′(2) = 0


98 Chapter 2 Differentiation
11. f (t) = t4
− 2t2
; [−2, −1] (c) Average: [2, 3]:
Average rate of change: s(3)− s(2) 58.9 − 74.4
= = −15.5 m sec
Δy f (−1) − f (−2)= =
Δx −1 − (−2)
−1 − 8
= −9
1
3 − 2 1
v(2) = s′(2) = −10.6 m sec
f ′(t) = 4t3
− 4t
Instantaneous rates of change:
v(3) = s′(3) = −20.4 m sec
(d) Average: [3, 4]:
f ′(−2) = −24, f ′(−1) = 0
s(4)− s(3) 33.6 − 58.9
= = −25.3 m sec
12. g(x) = x3
− 1; [−1, 1]
Average rate of change:
4 − 3 1
v(3) = s′(3) = −20.4 m sec
v(4) = s′(4) = −30.2 m sec
Δy
=
g(1)− g(−1)
=
0 − (−2)
= 1    

  
Δx 1 − (−1) 2 16. (a) H′(v) = 3310
1
v−1 2 5
− 1 = 33
 − 1
  2

  v 
g′(x) = 3x2
Rate of change of heat loss with respect to wind speed.
Instantaneous rates of change: (b) H′(2) = 33
 5 
− 1
g′(−1) = 3, g′(1) = 3  2 
kcal m2
hr
13. (a) ≈
0 − 1400
3
≈ −467
≈ 83.673
= 83.673
m sec
kcal
⋅
sec
The number of visitors to the park is decreasing
at an average rate of 467 people per month from
m3
hr
kcal 1
September to December. = 83.673
m3
⋅
3600
(b) Answers will vary. Sample answer: [4, 11] = 0.023 kcal m3
Both the instantaneous rate of change at t = 8 and
′  5 
the average rate of change on [4, 11]are about zero.
H (5) = 33 − 1
5
14. (a)
ΔM
=
800 − 200
=
600
= 300 mg hr
 
kcal m2
hr
≈ 40.790
m sec
Δt 3 − 1 2
(b) Answers will vary. Sample answer: [2, 5] = 40.790
kcal
⋅
sec
m3
hr
Both the instantaneous rate of change at t = 4 and
kcal 1
15.
the average rate of change on [2, 5] is about zero.
s = −4.9t2
+ 9t + 76
Instantaneous: v(t) = s′(t) = −9.8t + 9
(a) Average: [0, 1]:
17.
= 40.790
m3
= 0.11 kcal m
s = −4.9t2
+ 170
⋅
3600
3
s(1)− s(0) 80.1 − 76
= = 4.1 m sec
(a) Average velocity =
s(3)− s(2)
3 − 2
1 − 0 1
v(0) = s′(0) = 9 m sec
v(1) = s′(1) = −0.8 m sec
125.9 − 150.4
=
1
= −24.5 m sec
(b) v = s′(t) = −9.8t, v(2) = −19.6 m sec,
(b) Average: [1, 2]: v(3) = −29.4 m sec
s(2)− s(1) 74.4 − 80.1
= = −5.7 m sec (c) s = −4.9t2
+ 170 = 0
2 − 1 1
v(1) = s′(1) = −0.8 m sec
4.9t2
= 170
1702
v(2) = s′(2) = −10.6 m sec
t =
4.9
(d)
t ≈ 5.89 seconds
v(5.89) ≈ −57.7 m sec
Section 2.3 Rates of Change: Velocity and Marginals 99
18. (a) s(t) = −4.9t2
− 5.5t + 64
v(t) = s′(t) = −9.8t − 5.5
s(2)− s(1)(b) [1, 2]:
33.4 − 53.6
= = −20.2 m sec
(c)
2 − 1 1
v(1) = −15.3 m sec
v(2) = −25.1 m sec
(d) Set s(t) = 0.
−4.9t2
− 5.5t + 64 = 0
−49t2
− 55t + 640 = 0
−(−55) ± (−55)
2
− 4(−49)(640) 55 ± 128,465
t = = ≈ 3.10 sec
(e) v(3.10) = −35.88 m sec
2(−49) −98
19. C = 205,000 + 9800x 26. R = 50(20x − x3 2
)
dC
= 9800 dR  3 1 2 
dx
dx
= 5020 −
2
x  = 1000 − 75 x
20. C = 150,000 + 7x3
27.
 
P = −2x2
+ 72x − 145
dC
= 21x2
dx
dP
= −4x + 72
dx
21. C = 55,000 + 470x − 0.25x2
, 0 ≤ x ≤ 940
28. P = −0.25x2
+ 2000x − 1,250,000
dC
= 470 − 0.5x
dx
dP
= −0.5x + 2000
dx
22. C = 100(9 + 3


x)
 

29. P = 0.0013x3
+ 12x
dP
dC 1 150
= 1000 + 3 x−1 2
 =
= 0.0039x2
+ 12
dx 

 2  x dx
23. R = 50x − 0.5x2 30. P = −0.5x3
+ 30x2
− 164.25x − 1000
dR
= 50 − x
dx
dP
= −1.5x2
+ 60x − 164.25
dx
24. R = 30x − x2 31. C = 3.6 x + 500
dR
= 30 − 2x
(a) C′(x) = 1.8 x
25.
dx
R = −6x3
+ 8x2
+ 200x (b)
C′(9) = $0.60 per unit.
C(10) − C(9) ≈ $0.584
dR
= −18x2
+ 16x + 200
dx
(c) The answers are close.
32. R = 2x(900 + 32x − x2
)
(a)
(b)
R = 1800x + 64x2
− 2x3
R′(x) = 1800 + 128x − 6x2
R′(14) = $2416
R(15) − R(14) = 2(15)900 + 32(15) − 152

= 34,650 − 32,256 = $2394
− 2(14)900 + 32(14) − 142
(c) The answers are close.
 
100 Chapter 2 Differentiation
33. P = −0.04x2
+ 25x − 1500
(a)
dP
= −0.08x + 25 = P′(x)dx
P′(150) = $13
(b)
ΔP
=
P(151) − P(150) 1362.96 − 1350
= = $12.96
Δx 151 − 150 1
(c) The results are close.
34. P = 36,000 + 2048 x −
1
, 150 ≤ x ≤ 275
8x2
dP 1
= 2048 x−1 2
−
1
(−2x−3
)dx 2

8 
=
1024
+
1
x 4x3
(a) When x = 150,
dP
dx
(d) When x = 225,
dP
dx
≈ $83.61.
≈ $68.27.
(b) When x = 175,
dP
dx
(e) When x = 250,
dP
dx
≈ $77.41.
≈ $64.76.
(c) When x = 200,
dP
dx
(f ) When x = 275,
dP
dx
≈ $72.41.
≈ $61.75.
35. P = 1.73t2
+ 190.6t + 16,994 36. (a) 103
(a) P(0) = 16,994 thousand people
P(3) = 17,581.37 thousand people
P(6) = 18,199.88 thousand people 0 15
98
P(9) = 18,849.53 thousand people
P(12) = 19,530.32 thousand people
P(15) = 20,242.25 thousand people
(b) For t < 4, the slopes are positive, and the fever is
increasing. For t > 4, the slopes are negative, and
the fever is decreasing.
P(18) = 20,985.32 thousand people
P(21) = 21,759.53 thousand people
The population is increasing from 1990 to 2011.
(c) T(0) = 100.4°F
T′(4) = 101°F
T(8) = 100.4°F
T(12) = 98.6°F
(b)
(c)
dP
= P′(t) = 3.46t + 190.6
dt
dP
represents the population growth rate.
dt
P′(0) = 190.6 thousand people per year
P′(3) = 200.98 thousand people per year
P′(6) = 211.36 thousand people per year
P′(9) = 221.74 thousand people per year
P′(12) = 232.12 thousand people per year
P′(15) = 242.5 thousand people per year
P′(18) = 252.88 thousand people per year
P′(21) = 263.26 thousand people per year
The rate of growth is increasing.
(d)
(e)
dT
= −0.075t + 0.3; the rate of change of
dt
temperature with respect to time
T′(0) = 0.3°F per hour
T′(4) = 0°F per hour
T′(8) = −0.3°F per hour
T(12) = −0.6°F per hour
For 0 ≤ t < 4, the rate of change of the
temperature is positive; therefore, the temperature is
increasing. For 4 < t ≤ 12, the rate of change of
the temperature is decreasing; therefore, the
temperature is decreasing back to a normal
temperature of 98.6°F.
Q 0 2 4 6 8 10
Model 160 120 80 40 0 −40
Table − 130 90 50 10 −30
x 600 1200 1800 2400 3000
dR dx 3.8 2.6 1.4 0.2 −1.0
dP dx 2.3 1.1 −0.1 −1.3 −2.5
P 1705 2725 3025 2605 1465
Section 2.3 Rates of Change: Velocity and Marginals 101
37. (a) TR = −10Q2
+ 160Q 39. (a) (400, 1.75), (500, 1.50)
(b) (TR)′ = MR = −20Q + 160
(c)
Slope =
1.50 − 1.75
= −0.0025
500 − 400
p − 1.75 = −0.0025(x − 400)
p = −0.0025x + 2.75
P = R − C = xp − c
= x(−0.0025x + 2.75) − (0.1x + 25)
38. (a) R = xp = x(5 − 0.001x) = 5x − 0.001x2
0.0025x2
2.65x 25
(b) P = R − C = (5x − 0.001x2
) − (35 + 1.5x)
= −0.001x2
+ 3.5x − 35
(b) 800
= − + −
(c) dR
= 5 − 0.002x
dx
dP
= 3.5 − 0.002x
dx
0 1200
0
(c)
At x = 300, P has a positive slope.
At x = 530, P has a 0 slope.
At x = 700, P has a negative slope.
P′(x) = −0.005x + 2.65
P′(300) = $1.15 per unit
P′(530) = $0 per unit
P′(700) = −$.85 per unit
40. (36,000, 30), (32,000, 35)
Slope =
35 − 30
= −
5
=
1
32,000 − 36,000 4000 800
p − 30 = −
1
(x − 36,000)800
(a)
p = −
1
800
P = R − C
x + 75 (demand function)
= xp − C = x

−
1
x + 75

− (5x + 700,000) = −
1
x2
+ 70x − 700,000
800

800
(b) 400,000
 
At x = 18,000, P has a positive slope.
At x = 28,000, P has a 0 slope.
At x = 36,000, P has a negative slope.
0 50,000
0
(c) P′(x) = −
1
400
x + 70
P′(18,000) = $25 per ticket
P′(28,000) = $0 per ticket
P′(36,000) = −$20 per ticket
x 10 15 20 25 30 35 40
C 1750 1166.67 875 700 583.33 500 437.5
dC dx −175 −77.78 −43.75 −28 −19.44 −14.29 −10.94
102 Chapter 2 Differentiation
41. (a) C(x) =
 25,000 km 1 L  0.70 dollar 

yr

x km

1 L

   
C(x) =
17,500 dollars
x yr
dollars
dC 17,500 yr
(b) = −
dx x2 km
L
(c)
The marginal cost is the change of savings for a 1-kilometer per liter increase in fuel efficiency.
(d) The driver who gets 15 kilometers per liter would benefit more than the driver who gets 35 kilometers per liter.
The value of dC dx is a greater savings for x = 15 than for x = 35.
42. (a) f ′(0.789)is the rate of change of the number of liters of gasoline sold when the price is $0.789 liter.
(b) In general, it should be negative. Demand tends to decrease as price increases. Answers will vary.
43. (a) Average rate of change from 2000 to 2013:
Δ p
Δt
=
16,576.66 − 10,786.85
≈ $445.37 yr
13 − 0
(b) Average rate of change from 2003 to 2007:
Δ p
Δt
=
13,264.82 − 10,453.92
7 − 3
≈ $702.73 yr
So, the instantaneous rate of change for 2005 is p′(5) ≈ $702.73 yr.
(c) Average rate of change from 2004 to 2006:
Δ p
Δt
=
12,463.15 − 10,783.01
≈ $840.07 yr
6 − 4
So, the instantaneous rate of change for 2005 is p′(5) ≈ $840.07 yr.
(d) The average rate of change from 2004 to 2006 is a better estimate because the data is closer to the years in question.
44. Answers will vary. Sample answer:
The rate of growth in the lag phase is relatively slow when compared with the rapid growth in the acceleration phase.
The population grows slower in the deceleration phase, and there is no growth at equilibrium. These changes could be
explained by food supply or seasonal growth.
Section 2.4 The Product and Quotient Rules
Skills Warm Up
1. (x2
+ 1)(2) + (2x + 7)(2x) = 2x2
+ 2 + 4x2
+ 14x
= 6x2
+ 14x + 2
= 2(3x2
+ 7x + 1)
2. (2x − x3
)(8x) + (4x2
)(2 − 3x2
) = 16x2
− 8x4
+ 8x2
− 12x4
= 24x2
− 20x4
= 4x2
(6 − 5x2
)
3
x 4 x2
+ 2 2x + x2
+ 4 1
3
= 8x2
x2
+ 2 x2
+ 43. ( )( ) ( ) ( )( ) ( ) ( )
 
2
2
2
2 2
Section 2.4 The Product and Quotient Rules 103
Skills Warm Up —continued—
4. x2
(2)(2x + 1)(2) + (2x + 1)
4
(2x) = 4x2
(2x + 1) + 2x(2x + 1)
4
= 2x(2x + 1)2x + (2x + 1)
3

5.
(2x + 7)(5) − (5x + 6)(2)
(2x + 7)
2
=
10x + 35 − 10x − 12
(2x + 7)2
=
23
(2x + 7)2
(x2
− 4)(2x + 1) − (x2
+ x)(2x)
6. 2
=
2x3
+ x2
− 8x − 4 − 2x3
− 2x2
2
(x2
− 4) (x2
− 4)
−x2
− 8x − 4
=
(x2
− 4)
(x2
+ 1)(2)− (2x + 1)(2x)
7. 2
=
2x2
+ 2 − 4x2
− 2x
2
(x2
+ 1) (x2
+ 1)
−2x2
− 2x + 2
=
(x2
+ 1)
−2(x2
+ x − 1)=
(x2
+ 1)
(1 − x4
)(4)− (4x − 1)(−4x3
)8. 2
=
4 − 4x4
+ 16x4
− 4x3
2
(1 − x4
) (1 − x4
)
12x4
− 4x3
+ 4
=
(1 − x4
)
2
4(3x4
− x3
+ 1)=
(1 − x4
)
2
9. (x−1
+ x)(2) + (2x − 3)(−x−2
+ 1) = 2x−1
+ 2x + (−2x−1
+ 2x + 3x−2
− 3)
= 4x + 3x−2
− 3
= 4x +
3
− 3
x2
4x3
− 3x2
+ 3
=
x2
(1 − x−1
)(1)− (x − 4)(x−2
) 1 − x−1
− x−1
+ 4x−2
 x2

10.
(1 − x−1
)
= 
 1 − 2x−1
+ x−2  
 x 
x2
− 2x + 4
=
x2
− 2x + 1
x2
− 2x + 4
=
(x − 1)2
104 Chapter 2 Differentiation
Skills Warm Up —continued—
11. f (x) = 3x2
− x + 4
f ′(x) = 6x − 1
13. f (x) =
2
=
7x
2
x−1
7
2 2
f ′(2) = 6(2) − 1 f ′(x) = − x−2
= −
= 12 − 1
7 7x2
2
f ′(2) = − 2
12.
= 11
f (x) = −x3
+ x2
+ 8x
f ′(x) = −3x2
+ 2x + 8
7(2)
1
= −
14
f ′(2) = −3(22
) + 2(2) + 8 14. f (x) = x2
−
1
x2
= −3(4) + 4 + 8
= 0
f ′(x) = 2x +
2
x3
2
f ′(2) = 2(2) +
23
= 4 +
2
8
= 4 +
1
4
=
17
4
1. f (x) = (2x − 3)(1 − 5x)
f ′(x) = (2x − 3)(−5) + (1 − 5x)(2)
= −10x + 15 + 2 − 10x
= −20x + 17
2. g(x) = (4x − 7)(3x + 1)
g′(x) = (4x − 7)(3) + (3x + 1)(4)
= 12x − 21 + 12x + 4
= 24x − 17
3. f (x) = (6x − x2
)(4 + 3x)
f ′(x) = (6x − x2
)(3) + (4 + 3x)(6 − 2x)
5. f (x) = x(x2
+ 3)
f ′(x) = x(2x) + (x2
+ 3)(1)
= 2x2
+ x2
+ 3
= 3x2
+ 3
6. f (x) = x2
(3x3
− 1)
f ′(x) = x2
(9x2
) + (3x3
− 1)(2x)
= 9x4
+ 6x4
− 2x
= 15x4
− 2x
7. h(x) =
 2
− 3

(x2
+ 7) = (2x−1
− 3)(x2
+ 7)
x

= 18x − 3x2
+ 24 − 8x + 18x − 6x2
= −9x2
+ 28x + 24
4. f (x) = (5x − x3
)(2x + 9)
f ′(x) = (5x − x3
)(2) + (2x + 9)(5 − 3x2
)
= 10x − 2x3
+ 10 − 6x3
+ 45 − 27x2
 
h′(x) = (2x−1
− 3)(2x) + (x2
+ 7)(−2x−2
)
= 4 − 6x − 2 − 14x−2
= −6x + 2 −
14
x2
8. f (x) = (3 − x)
 4
− 5

= (3 − x)(4x−2
− 5)
x2 
 
= −8x3
− 27x2
+ 20x + 45
( ) ( )( 3
) ( 2
)( )f ′ x = 3 − x −8x−
+ 4x−
− 5 −1
= − 24x−3
+ 8x−2
− 4x−2
+ 5
24 4
= − + + 5
x3
x2
2
2
2
2
2
2
Section 2.4 The Product and Quotient Rules 105
9. g(x) = (x2
− 4x + 3)(x − 2)
g′(x) = (x2
− 4x + 3)(1) + (x − 2)(2x − 4)
= x2
− 4x + 3 + 2x2
− 4x − 4x + 8
15. f (t) =
t + 6
t2
− 8
f ′(t) =
( )( ) ( )( )
t2
− 8 1 −
2
t + 6 2t
2
= 3x2
− 12x + 11
(t − 8)
10. g(x) = (x2
− 2x + 1)(x3
− 1)
g′(x) = (x2
− 2x + 1)(3x2
) + (x3
− 1)(2x − 2)
t2
− 8t − 2t2
− 12t
=
(t2
− 8)
−t2
− 12t − 8
= 3x4
− 6x3
+ 3x2
+ 2x4
− 2x3
− 2x + 2
= 5x4
− 8x3
+ 3x2
− 2x + 2
=
(t2
− 8)
11. h(x) =
x
x − 5
h′(x) =
(x − 5)(1)− x(1)
=
x − 5 − x 5
= −
16. g(x) =
g′(x) =
4x − 5
x2
− 1
(x2
− 1)(4)− (4x − 5)(2x)
2
(x − 5)
2
(x − 5)
2
(x − 5)
2 (x2
− 1)
4x2
− 4 − 8x2
+ 10x
12. h(x) =
x2
x + 3
=
(x2
− 1)
−4x2
+ 10x − 4
(x)
(x + 3)(2x) − x (1) =
( 2
)
h′ =
(x + 3)
2
x − 1
13.
=
=
f (t) =
2x2
+ 6x − x2
(x + 3)
2
x2
+ 6x
(x + 3)
2
2t2
− 3
3t + 1
17. f (x) =
f ′(x) =
=
x2
+ 6x + 5
2x − 1
(2x − 1)(2x + 6) − (x2
+ 6x + 5)(2)
(2x − 1)
2
4x2
+ 12x − 2x − 6 − 2x2
− 12x − 10
(2x − 1)
2
( )
(3t + 1)(4t) − (2t − 3)(3) 2x2
− 2x − 16
f ′ t =
(3t + 1)
2
=
(2x − 1)
2
12t2
+ 4t − 6t2
+ 9
=
(3t + 1)2
6t2
+ 4t + 9
=
(3t + 1)
2
18. f (x) =
f ′(x) =
4x2
− x + 2
3 − 4x
(3 − 4x)(8x − 1) − (4x2
− x + 2)(−4)
(3 − 4x)
2
24x − 3 − 32x2
+ 4x + 16x2
− 4x + 8
14. f (x) =
7x + 3
4x − 9
f ′(x) =
(4x − 9)(7)− (7x + 3)(4)
(4x − 9)
2
=
(3 − 4x)2
−16x2
+ 24x + 5
=
(3 − 4x)2
=
28x − 63 − 28x − 12
(x − 1)2
= −
75
(4x − 9)
2
x
106 Chapter 2 Differentiation
19. f (x) =
6 + 2x−1
3x − 1
20. f (x) =
5 − x−2
x + 2
′(x) =
(3x − 1)(−2x ) − (6 + 2x )(3) (x + 2)(2x ) − (5 − x )(1)−2 −1
f
(3x 1)
2
f ′(x) =
−3 −2
x + 2−
−2 −3 −2
−6x−1
+ 2x−2
− 18 − 6x−1
=
(3x − 1)2
=
2x + 4x − 5 + x
(x + 2)2
−3 −2
2x−2
− 12x−1
− 18
=
(3x − 1)2
=
4x + 3x − 5
(x + 2)2
4
+
3
− 52
−
12
− 18 3 2
= x2
x =
(3x − 1)2
2 − 12x − 18x2
x2
(3x − 1)
2
= x x
(x + 2)
2
4 + 2x − 5x3
=
x3
(x + 2)2
Function Rewrite Differentiate Simplify
21. f (x) =
x3
+ 6x
3
f (x) =
1
x3
+ 2x
3
f ′(x) = x2
+ 2 f ′(x) = x2
+ 2
22. f (x) =
x3
+ 2x2
10
f (x) =
1
x3
+
1
x2
10 5
f ′(x) =
3
x2
+
2
x
10 5
f ′(x) =
3
x2
+
2
x
10 5
23.
7x2
y =
5
2x4
y =
7
x2
5
2
y' =
7
⋅ 2x
5
2
y′ =
14
x
5
8
24. y =
9
7
y = x4
9
7 −3
y′ = ⋅ 4x3
9
−4
y′ = x3
9
7
25. y =
3x3 y = x
3
y' = −7x y′ = −
x4
26. y =
4
5x2
y =
4
x−2
5
8
y′ = − −3
5
8
y′ = −
5x3
27.
4x2
− 3x
y = y =
1
x3 2
−
3
x1 2
, x ≠ 0 y′ =
3
x1 2
−
3
x−1 2
y′ =
3
x −
3
8 x 2 8 4 16 4 16 x
5(3x2
+ 2x) 25 10
28. y = y =
5
x5 3
+
5
x5 3
, x ≠ 0 y′ =
25
x2 3
+
10
x−1 3
, x ≠ 0 y′ =
3
x2
+
29.
6 3
x
x2
− 4x + 3
y =
2(x − 1)
2 3
y =
1
(x − 3), x ≠ 1
2
y′ =
6 9
1
(1), x ≠ 1
2
y′ =
6 9 3
x
1
, x ≠ 1
2
30.
x2
− 4
y =
4(x + 2)
y =
1
4
(x − 2), x ≠ −2 y′ =
1
(1), x ≠ −2
4
y′ =
1
, x ≠ −2
4
31. f ′(x) = (x3
− 3x)(4x + 3) + (3x2
− 3)(2x2
+ 3x + 5)
= 4x4
+ 3x3
− 12x2
− 9x + 6x4
+ 9x3
+ 9x2
− 9x − 15
= 10x4
+ 12x3
− 3x2
− 18x − 15
Product Rule and Simple Power Rule
3
2
3
2
2
2
2
2
2
Section 2.4 The Product and Quotient Rules 107
32. h′(t) = (t5
− 1)(8t − 7) + (5t4
)(4t2
− 7t − 3) 35.
(x2
− 1)(3x2
+ 3) − (x3
+ 3x + 2)(2x)
f ′(x) =
= 8t6
− 7t5
− 8t + 7 + 20t6
− 35t5
− 15t4
(x2
− 1)
33.
= 28t6
− 42t5
− 15t4
− 8t + 7
Product Rule and Simple Power Rule
h(t) = 1
(6t − 4)
3x4
− 3 − 2x4
− 6x2
− 4x
=
(x2
− 1)
x4
− 6x2
− 4x − 3=
h′(t) = 1
(6) = 2 (x2
− 1)
Constant Multiple and Simple Power Rules Quotient Rule and Simple Power Rule
34. f (x) = 1
(3x − 8) 2x3
− 4x2
− 9
f x =
f ′(x) =
2
1
(3) = 3
36. ( )
x3
− 5
2 2
Constant Multiple and Simple Power Rules
(x3
− 5)(3x2
− 8x) − (2x3
− 4x2
− 9)(3x2
)f ′(x) =
(x3
− 5)
3x5
− 8x4
− 15x2
+ 40x − 6x5
+ 12x4
− 27x2
=
(x3
− 5)
−3x5
+ 4x4
− 42x2
+ 40x=
(x3
− 5)
37. f (x) =
20
=
( )( )
= x − 5, x ≠ −4
Quotient Rule and Simple Power Rule
x2
− x − x − 5 x + 4
f ′(x) = 1
x + 4 (x + 4)
38.
Simple Power Rule
h(t) =
3 22 7
=
( )( ) = 3t + 1, t ≠ −7
t2
+ t +
t + 7
3t + 1 1 + 7
t + 7
h′(t) = 3, t ≠ −7
Simple Power Rule
39. g(t) = (2t3
− 1) = (2t3
− 1)(2t3
− 1)
g′(t) = (2t3
− 1)(6t2
) + (2t3
− 1)(6t2
)
= 12t2
(2t3
− 1)
Product Rule and Simple Power Rule
f x =
2
4x3
− 2x − 3 = 4x3
− 2x − 3 4x3
− 2x − 340. ( ) ( ) ( )( )
f ′(x) = (4x3
− 2x − 3)(12x2
− 2) + (4x3
− 2x − 3)(12x2
− 2)
= 48x5
− 24x3
− 36x2
− 8x3
+ 4x + 6 + 48x5
− 24x3
− 36x2
− 8x3
+ 4x + 6
= 96x5
− 48x3
− 72x2
− 16x3
+ 8x + 12
Product Rule and Simple Power Rule
2
2
108 Chapter 2 Differentiation
41. g(s) =
s2
− 2s + 5
=
s
s2
− 2s + 5
s1 2
45. f (x) = (x + 4)(2x + 9)(x − 3)
( )
s1 2
(2s − 2) − (s2
− 2s + 5)(1
s−1 2
)
= 2x2
+ 17x + 36 (x − 3)
g′(s) = 2
s
f ′(x) = (2x2
+ 17x + 36)(1) + (x − 3)(4x + 17)
2s3 2
− 2s1 2
− 1 s3 2
+ s1 2
− 5 s−1 2
= 2 2
s
3 5 3s2
− 2s − 5
= (2x2
+ 17x + 36) + (4x2
+ 5x − 51)
= 6x2
+ 22x − 15
= s1 2
− s−1 2
− s−3 2
= Product Rule and Simple Power Rule
2 2 2s3 2
Quotient Rule and Simple Power Rule
x3
− 5x2
− 6x x3
− 5x2
− 6x
46. f (x) = (3x3
+ 4x)(x − 5)(x + 1)
= (3x3
+ 4x)(x2
− 4x − 5)
3 2 2
42. f (x) = =
x x1 2 f ′(x) = (3x + 4x)(2x − 4) + (x − 4x − 5)(9x + 4)
= x5 2
− 5x3 2
− 6x1 2 = (6x4
− 12x3
+ 8x2
− 16x)
f ′(x) =
5
x3 2
−
15
x1 2
− 3x−1 2 + (9x − 36x − 41x − 16x − 20)
2 2
=
5
x3 2
−
15
x1 2
−
3
4 3 2
= 15x4
− 48x3
− 33x2
− 32x − 20
Product Rule and Simple Power Rule2 2
5x2
− 15x − 6
=
2x1 2
x1 2
47. f (x) = (5x + 2)(x2
+ x)
Constant Multiple and Simple Power Rules f ′(x) = (5x + 2)(2x + 1) + (x2
+ x)(5)
= 10x2
+ 9x + 2 + 5x2
+ 5x
43. f (x) =
(x − 2)(3x + 1) 3x2
− 5x − 2
=
10
= 15x2
+ 14x + 2
4x + 2 4x + 2
( )
(4x + 2)(6x − 5) − (3x − 5x − 2)(4)
m = f ′(−1) = 3 (−1, 0)
−5 5
f ′ x =
(4x + 2)
2
y − 0 = 3(x − (−1))
24x2
− 8x − 10 − 12x2
+ 20x + 8
=
(4x + 2)2
12x2
+ 12x − 2
=
48.
y = 3x + 3
f (x) = (x2
− 1)(x3
− 3x)
−10
4(2x + 1)
2
( ) ( 2
)( 2
) ( 2
)( )f ′ x = x − 1 3x − 3 + x − 3x 2x
2(6x2
+ 6x − 1)=
2(2x + 1)
2
= 3x4
− 6x2
+ 3 + 2x4
− 6x2
4 2
6x2
+ 6x − 1
= 5x − 12x + 3
=
2(2x + 1)2
m = f ′(−2) = 5(−2)
4
− 12(−2)
2
+ 3 = 35
Quotient Rule and Simple Power Rule
y − (−6) = 35(x − (−2))
y + 6 = 35x + 70
44. f (x) =
(x + 1)(2x − 7)
=
2x2
− 5x − 7 y = 35x + 64
2x + 1 2x + 1
( )
(2x + 1)(4x − 5) − (2x − 5x − 7)(2)
2
−6 6
f ′ x =
(2x + 1)
2
8x2
− 6x − 5 − 4x2
+ 10x + 14
=
(2x + 1)2
4x2
+ 4x + 9
=
(2x + 1)
2
(−2, −6)
−8
Quotient Rule and Simple Power Rule
(9, 18)
2
2 2
−
2
10
=
Section 2.4 The Product and Quotient Rules 109
49. f (x) = x3
(x2
− 4) 50. f (x) = x(x − 3) = x1 2
(x − 3)
f ′(x) = x2
(2x) + (x2
− 4)(3x2
)
= 2x4
+ 3x4
− 12x2
f ′(x) = x1 2
(1) + (x − 3)(1
x−1 2
)
= x1 2
+ 1
x1 2
− 3
x−1 2
= 5x4
− 12x2
m = f ′(1) = −7 −5
3
x1 2 3
x−1 2
2 2
5
(1, −3) m = f ′(9) = 3
(9)1 2
− 3
(9)−1 2
= 9
− 1
= 4
y − (−3) = −7(x − 1)
y = −7x + 4 −10
2 2 2 2
y − 18 = 4(x − 9)
y = 4x − 18
10
51. f (x) =
3x − 2
x + 1
f ′(x) =
(x + 1)(3) − (3x − 2)(1)
0 20
0
=
3x + 3 − 3x + 2
=
5
f ′(4) =
1
5
(x + 1)
2
(x + 1)
2
(x + 1)
2
y − 2 =
1
(x − 4)5
y − 2 =
1
x −
4
5 5
y =
1
x +
6
5 5
4
(4, 2)
−2 10
−4
52. f ′(x) =
(x − 1)2− (2x + 1)
=
−3
53. (x)
(3x − 2)(6x + 5) 18x2
+ 3x − 10
f = =
(x − 1)
2
(x − 1)
2
2x − 3 2x − 3
f ′(2) = −3
( )
(2x − 3)(36x + 3) − (18x + 3x − 10)(2)
y − 5 = −3(x − 2)
f ′ x =
(2x − 3)
2
y = −3x + 11
8
(2, 5)
72x2
− 102x − 9 − 36x2
− 6x − 20
=
(2x − 3)2
36x2
− 108x + 11
=
(2x − 3)
2
−7 8
36(−1)
2
− 108(−1) + 11 31
m = f ′(−1) = =
−2
(2(−1) − 3)
2
5
y − (−1) =
31
(x − (−1)) 10
5
y =
31
x +
26
5 5 −5
(−1, −1)
5
−10
2 3 2
2 2
2 3 4
−2 2
2
2
110 Chapter 2 Differentiation
54. f (x) =
(x + )(x + x) =
2 2
x3
+ 3x2
+ 2x
x − 4 x − 4
( )
(x − 4)(3x + 6x + 2) − (x + 3x + 2x)(1)
f ′ x =
(x − 4)2
3x3
− 12x2
+ 6x2
− 24x + 2x − 8 − x3
− 3x2
− 2x
=
(x − 4)2
2x3
− 9x2
− 24x − 8
=
(x − 4)
2
m = f ′(1) =
2(1)3
− 9(1)2
− 24(1)− 8 13
= − 4
(1 − 4)
2
y − (−2) = −
13
(x − 1)3
y =
13
x +
7
3 3
3
−8 4
(1, −2)
−4
55. ( )
(x − 1)(2x) − x (1) x − 2x 59. f (x) = x(x + 1) = x + x
2 2 2
f ′ x = =
(x − 1)
2
(x − 1)
2
f ′(x) = 2x + 1
f ′(x) = 0 when x2
− 2x = x(x − 2) = 0, which
implies that x = 0 or x = 2. Thus, the horizontal
tangent lines occur at (0, 0) and (2, 4).
6
f
−2 2
56. ( )
(x + 1)(2x) − (x )(2x)
f ′
2x −3
f ′ x =
2
2
=
2
2
(x + 1) (x + 1) 60. f (x) = x2
(x + 1) = x3
+ x2
f ′(x) = 0 when 2x = 0, which implies that x = 0.
Thus, the horizontal tangent line occurs
at (0, 0).
f ′(x) = 3x2
+ 2x = x(3x + 2)
3
f ′
f
57. ( )
(x + 1)(4x ) − x (3x ) x + 4x
−2 2
3 3 4 2 6 3
f ′ x = 2
= 2
(x3
+ 1) (x3
+ 1)
f ′(x) = 0 when x6
+ 4x3
implies that x = 0 or x =
= x3
(x3
+ 4) = 0, which
3
−4. Thus, the horizontal
61.
−1
f (x) = x(x + 1)(x − 1) 11
3
tangent lines occur at (0, 0) and (3
−4, −2.117).
58. ( )
(x + 1)(4x ) − (x + 3)(2x)
= x − x f ′
f ′(x) = 3x2
− 1
f
f ′ x =
(x2
−6
+ 1)
2x(x2
+ 3)(x2
− 1) 62. f (x) = x2
(x + 1)(x − 1) = x4
− x2
=
(x2
+ 1) f ′(x) = 4x3
− 2x = 2x(2x2
3
− 1)
f ′(x) = 0 when 2x(x2
+ 3)(x2
− 1) = 0, which
implies that x = 0 or x = ±1.Thus, the horizontal
tangent lines occur at (0, 3), (1, 2), and (−1, 2).
f ′ f
−2 2
−1
2
2
2
2
2 2
2 2
Section 2.4 The Product and Quotient Rules 111
63.
 3p 
x = 2751 −  66.
dP 50(t + 2)(1) − (t + 1750)(50)= 2
 5p + 1 dt
50(t + 2)
dx (5p + 1)3 − (3p)(5)
275
 3 
275
50(t + 2) − (t + 1750)
= −   = −   =
dp (5p + 1)
2
(5p + 1) 2500(t + 2)
2
=
−1748
When p = 4,
dx  3 
= −275 2
 ≈ −1.87 units
dp (21) 
50(t + 2)
2
=
−874
64.
per dollar.
dx
= 0 − 1 −
dp
(p + 1)(2) − (2p)(1)
(p + 1)
2
25(t + 2)
2
(a) When t = 1,
dP
dt
=
−874
≈ −3.88 percent day.
225
= −1 −
2
(p + 1)2
−(p + 1)
2
− 2
(b) When t = 10,
dP
dt
=
−874
3600
437
=
(p + 1)2
−p2
− 2p − 3
=
(p + 1)2
67.
t2
− t + 1
P =
t2
+ 1
= −
1800
≈ −0.24 percent day.
When p = 3,
dx
=
−9 − 6 − 3
≈ −1.13 units (t2
1)(2t 1) (t2
t 1)(2t)dp 16 P′ =
+ − − − + t2
− 1
=
per dollar. (t2
+ 1) (t2
+ 1)

(50 + t2
)(4) − (4t)(2t) 
200 − 4t2  (a) P′(0.5) = −0.480 week
65. P′ = 500  = 500 

(50 + t2
)  
(50 + t2
)  (b) P′(2) = 0.120 week
   
 184 
When t = 2, P′ = 500  ≈ 31.55 bacteria hour.
(c) P′(8) = 0.015 week
(54) Each rate in parts (a), (b), and (c) is the rate at which the
level of oxygen in the pond is changing at that particular
time.
68. T
 4t2
+ 16t + 75
= 10 
 t2
+ 4t + 10 
Initial temperature: T(0) = 75°F
 2 2 
′( ) (t + 4t + 10)(8t + 16) − (4t + 16t + 75)(2t + 4)
 −700(t + 2)T t = 10

(t2
+ 4t + 10)
=
 (t2
+ 4t + 10)
(a)
(b)
(c)
(d)
 
T ′(1) ≈ −9.33°F hr
T′(3) ≈ −3.64°F hr
T′(5) ≈ −1.62°F hr
T′(10) ≈ −0.37°F hr
Each rate in parts (a), (b), (c), and (d) is the rate at which the temperature of the food in the refrigerator
is changing at that particular time.
8
75
8 4
4 4
 

2
x
112 Chapter 2 Differentiation
69. C = x3
− 15x2
+ 87x − 73, 4 ≤ x ≤ 9 72. (a) P = ax2
+ bx + c
Marginal cost:
dC
dx
= 3x2
− 30x + 87
When x = 10, P = 50: 50 = 100a + 10b + c.
When x = 12, P = 60: 60 = 144a + 12b + c.
Average cost:
C
= x2
− 15x + 87 −
73 When x = 14, P = 65: 65 = 196a + 14b + c.
x x Solving this system, we have
(a) 60
dC
dx
a = − 5, b = 4
, and c = −75.
Thus, P = − 5 x2
+ 75 x − 75.
C
(b) 80
4 9
0
(b) Point of intersection:
3x2
− 30x + 87 = x2
− 15x + 87 −
73
x
0 20
0
2x2
− 15x +
73
= 0
x
(c) Marginal profit: P′ = − 5 x + 75
= 0  x = 15
2x3
− 15x2
+ 73 = 0
x ≈ 6.683
73.
This is the maximum point on the graph of P, so
selling 15 units will maximize the profit.
f (x) = 2g(x) + h(x)
When x = 6.683,
C
=
dC
≈ 20.50.
x dx
Thus, the point of intersection is (6.683, 20.50).
At this point average cost is at a minimum.
70. (a) As time passes, the percent of people aware of the
product approaches approximately 95%.
(b) As time passes, the rate of change of the percent of
people aware of the product approaches zero.
74.
75.
f ′(x) = 2g′(x) + h′(x)
f ′(2) = 2(−2) + 4 = 0
f (x) = 3 − g(x)
f ′(x) = −g′(x)
f ′(2) = −(−2) = 2
f (x) = g(x)h(x)
 200 x 71. C = 100
x2
+ ,
x + 30
x ≥ 1 f ′(x) = g(x)h′(x) + h(x)g′(x)
 
C′ 100 2(200x−3
) (x + 30) − x f ′(2) = g(2)h′(2) + h(2)g′(2)
= − +

 
(x + 30)
2


= (3)(4) + (−1)(−2) 
= 14
100
400 30 
= − + 
 x3
′
(x + 30)
2

 400 30 
 76. f (x) =
g(x)
h(x)
(a) C (10) = 100−
103
+ = −38.125
402
 
f ′ x
h(x)g′(x)− g(x)h′(x)
=
(b) C′(15) ≈ −10.37
( )
h(x)
(c) C′(20) ≈ −3.8
Increasing the order size reduces the cost per item.
An order size of 2000 should be chosen since the
cost per item is the smallest at x = 20.
f ′(2) =
(−1)(−2) − (3)(4)
(−1)
2
77. Answers will vary.
= −10
 
Chapter 2 Quiz Yourself 113
Chapter 2 Quiz Yourself
1. f (x) = 5x + 3 2. f (x) = x + 3
f ′(x) = lim
f (x +Δx) − f (x)
f ′(x) =
f (x +Δx) − f (x)
lim
Δx → 0 Δx Δx → 0 Δx
= lim
5(x +Δx) + 3 − (5x + 3) = lim
x +Δx + 3 − x + 3
Δx → 0 Δx Δx → 0 Δx
= lim
5x + 5Δx + 3 − 5x − 3 = lim
( )
x + Δx + 3 − x + 3
Δx → 0 Δx Δx → 0 Δx( x + Δx + 3 + x + 3)
= lim
5Δx
= lim
1
Δx → 0 Δx Δx → 0 x + Δx + 3 + x + 3
= lim 5 = 5 1Δx → 0 =
At (−2, −7): m = 5
2 x + 3
At (1, 2): m =
1
=
1
2 1 + 3 4
3. f (x) = 3x − x2
f ′(x) =
=
=
=
=
=
=
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
lim
Δx → 0
f (x +Δx) − f (x)
Δx
3(x + Δx) − (x + Δx)
2
 − (3x − x2
)
Δx
3x + 3Δx − (x2
+ 2x(Δx) + (Δx)
2
) − (3x − x2
)
Δx
3x + 3Δx − x2
− 2x(Δx) − (Δx)
2
− 3x + x2
Δx
3x − 2x(Δx) − (Δx)
2
Δx
Δx(3 − 2x − Δx)
Δx
(3 − 2x − Δ) = 3 − 2x
At (4, −4): m = 3 − 2(4) = 3 − 8 = −5
4. f (x) = 12
f ′(x) = 0
5. f (x) = 19x + 9
f ′(x) = 19
8. f (x) = 4x−2
f ′(x) = −8x−3
9. f (x) = 10x−1 5
8= −
x3
+ x−3
6. f (x) = x4
− 3x3
− 5x2
+ 8
f ′(x) = 4x3
− 9x2
− 10x
f ′(x) = −2x−6 5
− 3x−4
= −
2
−
3
x−6 5
x4
7. f (x) = 12x1 4
f ′(x) = 3x−3 4
=
3
x3 4
2
2
2
2
114 Chapter 2 Differentiation
10. f (x) =
2x + 3
3x + 2
16. f (x) =
1
; [−5, −2]3x
f ′(x) =
(3x + 2)(2) − (2x + 3)(3)
(3x + 2)
2
Average rate of change:
1  1  3
− −
− − −  −
=
6x + 4 − 6x − 9 ( ) ( )
Δy
=
f 2 f 5
=
6  15 = 30 = −
1
(3x + 2)
2
5
Δx −2 − (−5) 3 3 30
1
= −
(3x + 2)2
f ′(x) = −
3x2
Instantaneous rates of change:
11. f (x) = (x2
+ 1)(−2x + 4)
f ′(x) = (x2
+ 1)(−2) + (−2x + 4)(2x)
f ′(−2) = −
1
,
12
f ′(−5) = −
1
75
= −6x2
+ 8x − 2 17. ( ) [ ]
f x = 3
x; 8, 27
Average rate of change:
12. f (x) = (x2
+ 3x + 4)(5x − 2) y f (27) − f (8) 3 2 1Δ
= =
−
=
f ′(x) = (x2
+ 3x + 4)(5) + (5x − 2)(2x + 3) Δx 27 − 8 19 19
= 5x2
+ 15x + 20 + 10x2
+ 11x − 6 f (x) = x = x
= 15x2
+ 26x + 14
4x
3 1 3
f ′(x) =
1
x−2 3
=
1
3 3x2 3
113. f (x) =
x2
+ 3
Instantaneous rates of change: f ′(8) = ,
12
2
f ′ 27 =
1
f ′(x) =
(x
+ 3)(4) − 4x(2x) ( )
27
( 2
)
x + 3
4x2
+ 12 − 8x2 18. P = −0.0125x2
+ 16x − 600
=
(x2
+ 3) (a)
dP
= −0.025x + 16
dx
−4x2
+ 12
=
(x2
+ 3) When x = 175,
dP
= $11.625.
dx
−4(x2
− 3) (b) P(176) − P(175) = 1828.8 − 1817.1875
=
(x2
+ 3) = $11.6125
(c) The results are approximately equal.
14. f (x) = x2
− 3x + 1; [0, 3]
Average rate of change: 19. f (x) = 5x2
+ 6x − 1
Δy f (3)− f (0)
=
1 − 1 ( )
= = 0
f ′ x = 10x + 6
Δx 3 − 0 3 At (−1, −2), m = −4.
f ′(x) = 2x − 3
Instantaneous rates of change: f ′(0) = −3, f ′(3) = 3
y + 2 = −4(x + 1)
y = −4x − 6
15. f (x) = 2x3
+ x3
− x + 4; [−1, 1]
Average rate of change:
2
−5 4
Δy f (1)− f (−1)=
Δx 1 − (−1)
6 − 4
= = 1
2
(−1, −2)
−4
f ′(x) = 6x2
+ 2x − 1
Instantaneous rates of change: f ′(−1) = 3, f ′(1) = 7
= −
x +
−1 3 2
8 2
Section 2.5 The Chain Rule 115
20. f (x) =
8
= 8x−3 2
x3
21. f (x) = (x2
+ 1)(4x − 3)
f ′(x) = (x2
+ 1)(4) + (4x − 3)(2x)
f ′(x) = −12x−5 2 12 12
= −
x5 2
x2
x
12 3
= 4x2
+ 4 + 8x2
− 6x
= 12x2
− 6x + 4
m = f ′(4) = − = −
(4)2
4 8
m = f ′(1) = 12(1)
2
− 6(1) + 4 = 10
y − 1 = −
3
(x − 4)8
y − 1 = −
3
x +
3
8 2
5
(4, 1)
y − 2 = 10(x − 1)
y = 10x − 8
−5
10
(1, 2)
5
3 5 −1 8
y = −
−1 −10
22. f (x) =
5x + 4
2 − 3x
f ′(x) =
(2 − 3x)(5) − (5x + 4)(−3)
(2 − 3x)
2
22
=
10 − 15x + 15x + 12
(2 − 3x)
2
=
22
(2 − 3x)
2
1
m = f ′(1) =
(2 − 3(1))
2
= 22 0 8
y − (−9) = 22(x − 1)
y + 9 = 22x − 22
y = 22x − 31 −15
(1, −9)
23. S = −0.01722t3
+ 0.7333t2
− 7.657t + 45.47, 7 ≤ t ≤ 13
(a)
dS
= S′(t) = −0.051666t2
+ 1.4666t − 7.657
dt
(b) 2008: S′(8) ≈ $0.77 yr
2011: S′(11) ≈ $2.22 yr
2012: S′(12) ≈ $2.50 yr
Section 2.5 The Chain Rule
Skills Warm Up
1. 5
(1 − 5x)
2
= (1 − 5x)
2 5 x 1 2 −1 3
2. 4
(2x − 1)3
= (2x − 1)3 4
5. = x3
1 − 2x
(1 − 2x)
3.
1
4x2
+ 1
= (4x2
+ 1)
−1 2
(3 − 7x)
3
6.
2x
(3 − 7x)
3 2
= = (2x) (3 − 7x)
2x
4.
1
6
2x3
+ 9
= (2x3
+ 9)
−1 6
7. 3x3
− 6x2
+ 5x − 10 = 3x2
(x − 2) + 5(x − 2)
= (3x2
+ 5)(x − 2)
2 3
 
−1 3
 3
2
2
2
1 2
3
4
( ) ( )
3
2
116 Chapter 2 Differentiation
Skills Warm Up —continued—
8. 5x x − x − 5 x + 1 = x(5 x − 1) − 1(5 x − 1) 10. −x5
+ 6x3
+ 7x2
− 42 = − x3
(x2
− 6) + 7(x2
− 6)
2
2
2
= (x − 1)(5
3
2
2
x − 1)
2
= (− x3
+ 7)(x2
− 6)
= −(x3
− 7)(x2
− 6)
9. 4(x + 1) − x(x + 1) = (x + 1) 4 − x(x + 1)
 
2
2
3
= (x + 1) (4 − x − x)
y = f (g(x)) u = g(x) y = f (u) 11. y = (5x4
− 2x)
1. y = (6x − 5)
4
2
u = 6x − 5
3
2
y = u4
3
y′ =
 2
(5x4
 3
 2

− 2x) (20x3
− 2)
−1 3
2. y = (x − 2x + 3) u = x − 2x + 3 y = u y′ =  (5x4
− 2x) (2)(10x3
− 1) 3
3. y =
4. y =
5x − 2
3
9 − x2
u = 5x − 2
u = 9 − x2
y = u
y = 3
u
y′ =
 4
(5x4
− 2x)
−1 3
(10x3
− 1) 
4(10x3
− 1) 40x3
− 4
′ = =
y
4 1 3 3
x4
x5. y = (3x + 1)
−1
u = 3x + 1 y = u−1 3(5x − 2x) 3 5 − 2
6. y = (x2
− 3)
−1 2
u = x2
− 3 y = u−1 2
12. y = (x3
+ 2x2
)
−1
3 2
−2
2
7. y = (4x + 7)
2
y′ = 2(4x + 7)
1
(4)
y′ = (−1)(x
3x2
y′ = −
+ 2x ) (3x
+ 4x
+ 4x)
y′ = 8(4x + 7)
= 32x + 56
(x3
+ 2x2
)
2
f x =
2
= 2 1 − x3
−1
; (c) General Power Rule
8. y = (3x2
− 2)
13. ( )
1 − x3 ( )
y′ = 3(3x2
− 2) (6x) 14. f (x) =
7
(1 − x)
3 = 7(1 − x)
−3
; (c) General Power Rule
y′ = 18x(3x2
− 2)
15. f (x) =
3
82
; (b) Constant Rule
9. y = 3 − x2
= (3 − x2
)
1 2
16. f (x) = 3
x2
= x2 3
; (a) Simple Power Rule
y′ =
1
(3 − x2
)
−1 2
(−2x)
2
−1 2 x 17. f (x) =
x2
+ 9
; (d) Quotient Ruley′ = −x(3 − x ) = −
(3 − x )
x3
+ 4x2
− 6
1 2
y′ = −
x 18. f (x) =
x
; (d) Quotient Rule
3 − x2 x + 2x − 5
y′ = 3 2x − 7
2
2 = 6 2x − 7
2
10. y = 4 4
6x + 5 = 4(6x + 5)
1 4 19. ( ) ( ) ( )
1  −5 4
y′ = 4  6x + 5 6
 
20. y = (3 − 5x)
4
3 3
y′ = 6(6x + 5)
−5 4
=
6
(6x + 5)
5 4
21.
y′ = 4(3 − 5x) (−5) = −20(3 − 5x)
h′(x) = 2(6x − x3
)(6 − 3x2
) = 6x(6 − x2
)(2 − x2
)
 
1 3
−
2
)
−
3
1 2
7
7 3
2
)
5
6
Section 2.5 The Chain Rule 117
f x =
4 3
2x3
− 6x
1 2 −7 2
22. ( ) ( ) 29. f (x) = = (x + 11)
f ′ x =
 4
2x3
− 6x
1 3
6x2
− 6
(x2
+ 11)
( )  ( ) ( )
 3
f ′(x) =

−
7 
(x2
+ 11)
−9 2
(2x)
f ′ x =
 4
2x3
− 6x
1 3
6 x2
− 1
 2
( )  ( ) ( )( )
 3
f ′(x) = −7x(x2
+ 11)
−9 2
f ′(x) = 8(2x3
− 6x) (x2
− 1) f ′(x) = −
7x
2
7x
9 2
= −
9
2
23. f (t) = t + 1 = (t + 1)
1 2
(x + 11) (x + 11)
4 3
y = 4 − x3
f ′(t) =
1
(t + 1)
−1 2
(1) =
2 2 1
t + 1
30. ( )
 4

3
−7 3
2 4x2
24. g(x) = 5 − 3x = (5 − 3x)
1 2
y′ = −

(4 − x ) (−3x ) =
3 3(4 − x2
)
g′(x) =
1
(5 − 3x)
−1 2
(−3) = −
3
2 2 5 − 3x 31. f ′(x) = 2(3)(x2
− 1) (2x) = 12x(x2
− 1)
25. s(t) = 2t2
+ 5t + 2 = (2t2 1 2
+ 5t + 2
f ′(2) = 24(32
) = 216
200
s′ t
1 −1 2
= 2t2
+ 5t + 2 4t + 5
4t + 5
=
f (2) = 54
(2, 54)
( ) ( ) ( )
2 2 2t2
+ 5t + 2
y − 54 = 216(x − 2) −2 4
y = 216x − 378
3 2 2
1 3
26. y = 9 4x
y′ = 9
1
+ 3 = 9(4x
2 3
4x2
+ 3 8x
+ 3)
−400
 
( ) ( )
 
32. f ′(x) = 12(9x − 4)
3
(9) = 108(9x − 4)
3
y′ = 24x(4x2
+ 3)
−2 3
f ′(2) = 12(14)
3
(9) = 296,352
y′ =
24x 4
(4x2
2 3
+ 3
f (2) = 3(14) = 115,248
27. f (x) = 2(2 − 9x)
−3
y − 115,248 = 296,352(x − 2)
y = 296,352x − 477,456
f ′(x) = 2(−3)(2 − 9x)
−4
(−9) =
54
(2 − 9x)
4
200,000
(2, 115,248)
g x =
3
= 3 7x2
+ 6x
−5
28. ( ) ( )
(7x2
+ 6x)
2
−6
−1 5
0
g′(x) = 3(−5)(7x
2
+ 6x) (14x + 6)
−6
33. f (x) = 4x2
− 7 = (4x2
− 7)
g′(x) = −15(7x + 6x) (14x + 6) f ′(x) =
1
(4x2
− 7)
−1 2
(8x) =
4x
2 4x2
− 7
g′(x) 15(14x + 6)
= −
(7x2
+ 6x) f ′(2) =
8
3
f (2) = 3
y − 3 =
8
(x − 2)3
y =
8
x −
7
3 3
10
(2, 3)
−1 4
−4
)

)
−
2
−2
−
−2
2
3
2 2
x +
4
( 3

(
−1
4
5 3
1
2
118 Chapter 2 Differentiation
34. f (x) = x x
1 22
+ 5 = x x2
+ 5 38. f ′(x) =
2
f ′ x = x
1
x2
+ 5
−1 2
2x

+
1 2
x2
+ 5 1
2 x(x + 1)
3 2
( ) ( ) ( )
2 
( ) ( ) f ′ is never 0. f
f ′
−1 3
= x2
(x2
+ 5)
−1 2 1 2
+ x2
+ 5
−1
= (x2
+ 5)
−1 2
x2
+ (x2
+ 5) 4 
2x2
+ 5
=
x2
+ 5
39.
(x + 1) x
f ′(x) = −
2x(x + 1) f
f ′ is never 0. −5 4
f ′(2) =
13 10
3
f (2) = 6
f ′
−3
2 − 5x2 4
y − 6 =
13
(x − 2)3 −1
40.
4
f ′(x) =
2 x
y =
13
x −
8 f has a horizontal tangent −1 4
3 3
2 2
1 2
when f ′ = 0. f
f ′
−4
35. f (x) = x − 2x + 1 = (x − 2x + 1) 1
y = 4 − x2
f ′ x
=
1
x2
− 2x + 1
−1 2
2x − 2 41. ( )( ) ( ) ( )
x − 1
=
( )( ) ( )
x2
− 2x + 1
x − 1
=
x − 1
3
f ′(2) = 1
y′ = −1 4 − x2
=
2x
(4 − x2
)
2
General Power Rule
−2x
(2, 1)
s t =
1
=
1
t2
+ 3t − 1f (2) = 1 −2
42. ( )
t2
+ 3t − 1
( )
y − 1 = 1(x − 2)
y = x − 1 −3
s′(t) = −1(t2
+ 3t − 1) (2t + 3)
= −
2t + 3
f ′ x
2
4 − 3x2
−5 3
−6x
4x
=
(t2
+ 3t − 1)
36. ( ) = − ( ) ( )
(4 − 3x2
) General Power Rule
4(2) 8 1
f ′(2) = = = − 43. y = −
5t
(−8)
5 3
−32 4 (t + 8)
2
f (2) = (−8)
−2 3
=
1
4
2
(2 , 1
y′ =
(t + 8)
2
(5) − (5t)(2)(t + 8)(1)
((t + 8) )y −
1 4
= − (x − 2) −2 4
4 4
y′ =
5(t + 8)(t + 8) − 2t
1 3
y = −
4 4 −2
1 − 3x2
− 4x3 2 2
(t2
+ 8)
5(t + 8)(−t + 8)y′ =
(t + 8)
4
5(t − 8)=
(t + 8)
3
37. f ′(x) =
2 x(x2
+ 1) f Quotient Rule and Chain Rule
f has a horizontal tangent −1 5
when f ′ = 0.
f ′
−2
−
 

) )
)
3
Section 2.5 The Chain Rule 119
2
f x = 3x x3
− 4 50. f (x) = x3
(x − 4)
2
44. ( ) ( )
 3
−3
2  3
−2 = x3
(x2
− 8x + 16)f ′(x) = 3x
(−2)(x − 4) (3x )
+ (x − 4) (3)  = x5
− 8x4
+ 16x3
= −18x3
(x3
−3
− 4 + 3(x3
−2
− 4 f ′(x) = 5x4
− 32x3
+ 48x2
= −3(x3 −3
− 4 6x3
− (x3
− 4) = x2
(5x2
− 32x + 48) 
−3(5x3
+ 4) = x2
(5x − 12)(x − 4)
=
(x3
− 4) Simple Power Rule
Product Rule and Chain Rule 51. y = x 2x + 3 = x(2x + 3)
1 2
45. f (x) = (2x − 1)(9 − 3x2
) y′ = x
1
(2x + 3)−1 2
(2)
+ (2x + 3)1 2
2 
f ′(x) = (2x − 1)(−6x) + (9 − 3x2
)(2)
 
= (2x + 3)
−1 2
x + (2x + 3)
= −12x2
+ 6x + 18 − 6x2
= 18 + 6x − 18x2
3(x + 1)=
2x + 3
= −6(3x2
− 2x − 3) Product and General Power Rule
Product Rule and Simple Power Rule 52. y = 2t t + 6 = 2t(t + 6)
1 2
46. y = (7x + 4)(x3
− 2x2
) y′ = 2t
1
(t + 6)−1 2
(1)
+ (t + 6)1 2
(2)2 
 
y′ = (7x + 4)(3x2
− 4x) + (x3
− 2x2
)(7)
= 21x3
− 16x2
− 16x + 7x3
− 14x2
= t(t + 6)
−1 2
( )
−1 2
+ 2(t + 6)
1 2
( )
= 28x3
− 30x2
− 16x
= t + 6 t + 2 t + 6 
−1 2
Product Rule and Simple Power Rule
= (t + 6) (3t + 12)
47. y =
1
= (x + 2)−1 2
=
3t + 12
=
t + 6
3(t + 4)
t + 6
x + 2
y′
1
(x 2)
−3 2 1
Product and General Power Rule
= − + = −
2 2(x + 2)3 2
53. y = t2
t − 2 = t2
(t − 2)
1 2
General Power Rule
48. g(x) =
3
= 3(x3
− 1)
−1 3
y′ = t2 1
2
1
(t − 2)−1 2
(1)
+ 2t(t − 2)1 2


−1 2 23
x3
− 1 = (t − 2)
2
t + 4t(t − 2)
 1 3
−4 3
2 3x2
2
g′(x) = 3− (x − 1) (3x ) = − 4 3
t + 4t(t − 2)
= 3 (x3
− 1) 2 t − 2
General Power Rule
=
t(5t − 8)
49. f (x) = x(3x − 9)
3
2 t − 2
f ′(x) = x(3)(3x − 9)
2
(3) + (3x − 9)
3
(1)
= (3x − 9)
2
9x + (3x − 9)
= 9(x − 3)
2
(12x − 9)
= 27(x − 3)
2
(4x − 3)
Product and General Power Rule
Product and General Power Rule
1 5
=
2
y =
6 5x
 
3
2 2
(
−3 2
2
)
2
)
3
2
−1
120 Chapter 2 Differentiation
54. y = x(x − 2)
2
= x1 2
(x − 2)
2
58. f (x) = (3x3
+ 4x)
y′ = x1 2 2(x − 2)
1
(1) + (x − 2)
2 1
x−1 2 
1 −4 5
  
2

f ′(x) = (3x3
+ 4x) (9x2
+ 4)  5
2
2
= 2 x(x − 2) +
(x − 2) 9x + 4=
2 x 5(3x3
4 5
+ 4x
4x(x− 2) + (x − 2)
2
= 1 4
2 x m = f ′(2) =
2
(x − 2)4x + (x − 2)
1 (2, 2)
2 x y − 2 = (x − 2)
2
=
(x − 2)(5x − 2)
y =
1
x + 1 −3 3
2 x 2
0
Product and General Power Rule
59. f (t) =
36
= 36(3 − t)
−2
55.
2
 − 
 x2
− 1 
 6 − 5x

(x2
− 1)(−5) − (6 − 5x)(2x)
′ =  
 
(3 − t)
f ′(t) = −72(3 − t)
−3
(−1) =
72 8
72
(3 − t)
3
y 2
x2
− 1 
2
2  ′ = =
 
 (x − 1) 
f (0)
12
27 3
2(6− 5x)(5x2
− 12x + 5) 8
=
(x2
− 1)
y − 4 = (t − 0)
3 (0, 4)
Quotient and General Power Rule
 4x2
− 5

y =
8
t + 4
3
1
−4 4
−2
−1 2
56. y =   60. s(x) = = (x2
− 3x + 4)
 2 − x  x2
− 3x + 4
 4x2
− 5 (2 − x)(8x) − (4x − 5)(−1)
y′ = 3   
s′(x)
1
x2
2
− 3x + 4) (2x − 3)
 2 − x   = −
(2 − x)
2
 
 4x2
− 5 16x − 8x2
+ 4x2
− 5
= 3   
=
2(x2
3 − 2x
3 2
− 3x + 4
 2 − x   (2 − x)
2

s′ 3 =
3 − 6
= −
3
 4x2
− 5 −4x2
+ 16x − 5
= 3   
( )
2(4)
3 2
16
 2 − x
2
 
2
(2 − x)
2

2
y −
1
= −
3
2 16
(x − 3)
3(4x − 5) (−4x + 16x − 5)=
(2 − x)3 y
3
x +
17
= −
Quotient and General Power Rule
16 16
3
57. y = (x3
− 2x2
− x + 1)
(3,
1
y′ = 2(x3
− 2x2
− x + 1)(3x2
− 4x − 1) 2
−1 5
m = y′(1) = 2((1)
3
− 2(1)
2
− (1) + 1)(3(1)
2
− 4(1) − 1)
= 2(−1)(−2) = 4
y − 1 = 4(x − 1)
y = 4x − 3
−4
4
5
(1, 1)
−2
2
 2 2
−
3
3 2
x +
1
5
)
8 8
Section 2.5 The Chain Rule 121
61. f (t) = (t2
− 9) t + 2 = (t2
− 9)(t + 2)1 2
63. f (x)
x + 1 x + 1
f ′(t) = (t2
− 9)1
(t + 2)
−1 2 
+ (t + 2)
1 2
(2t)
= =
2x − 3 (2x − 3)
1 2
2 

2x − 3
1 2
1 − x + 1 1 2x − 3
−1 2
2 
=
1
(t2
− 9)(t + 2)
−1 2
+ 2t(t + 2)
1 2
= (t + 2)
−1 2 1
(t2
− 9) + 2t(t + 2)
f ′(x) =
=
( ) ( ) ( )(2)( ) ( )
(2x − 3)
(2x − 3) − (x + 1)
(2x − 3)
3 2
2 
 
= (t + 2)−1 2 1
t2
−
9
+ 2t2
+ 4t
 x − 4
= 3 2
2 2  (2x − 3) 6
 
= (t + 2)
−1 2  5
t2
+ 4t −
9 
 
5t2
+ 4t − 9
= 2 2
t + 2 2
f ′(2) =
1 − 3
= −2
1
y − 3 = −2(x − 2)
y = −2x + 7
(2, 3)
−4 8
−2
f ′(−1) = −6
−4 4
y
x 1 2
x x2
y − (−8) = −6t − (−1) (−1, −8)
64. = =
25 + x2
(25 + )
y = −6t − 14
y′ = x− 1
(25 + x2
)
−3 2
(2x) + (25 + x2
)
−1 2
(1)−16 2
2 2
−3 2
2
−1 2
62. y = −
2x 2x
= − 1 2
= −x (25 + x ) + (25 + x )
1 − x (1 − x)
= (25 + x2
)
−3 2
−x2
+ (25 + x2
)

(1 − x)
1 2
(2) −
 1
(1 − x)
−1 2
(−1)(2x)
  
   
y′ = − 2 
1 2
2
=
25
2
3 2

((1 − x) ) 
y′ 0
(25 + x )
=
1
2(1− x)1 2
+ x(1 − x)−1 2
 ( )
= − 
1 − x
y − 0 =
1
(x − 0) −3 3
(1 − x)
−1 2
(2(1 − x) + x) 5
= −  1
 1 − x 
 y = x −1
 
(1 − x)
−1 2
(2 − 2x + x)
5
3 2 2
1 3
= −  65. f (x) = x + 4 = (x + 4)1 − x
f ′ x =
1
x2
+ 4
−2 3
2x(1 − x)
−1 2
(2 − x)
= − 
( ) ( ) ( )
1 − x
f ′(x) =
2x
 (2 − x) 
= − 
3(x2
2 3
+ 4
(1 − x)  Set f ′(x) =
2x
2 3
= 0.
x − 2
=
(1 − x)3 2
2x = 0
3(x2
+ 4)
y′(−3) =
(−3) − 2
=
−5
= −
5 x = 0 → y = f (0) = 3
4
(1 − (−3))
3 2
y − 3 = −
5
(x − (−3))8
y − 3 = −
5
x −
15
8 8
43 2
8
6
(−3, 3)
Horizontal tangent at: (0, 3
4)
5 9
y = − −7 1
−1
)
2
 
2
 

( ) 
 2 
f =
 
501

59
501

59
501
59

1 2
122 Chapter 2 Differentiation
66. f (x) = 5x2
+ x − 3 = (5x2
1 2
+ x − 3 68. f (x) =
5x
=
3x − 2
5x
(3x − 2)
1 2
f ′ x =
1
5x2
+ x − 3
−1 2
10x + 1( ) ( ) ( )
(3x − 2)
1 2
(5) − 5x
 1
(3x − 2)
−1 2
(3)
f ′(x) =
10x + 1
1 2
f ′(x) =  2 
1 2
2(5x2
+ x − 3) (3x − 2) 
Set f ′(x) =
10x + 1
1 2
= 0.
2(5x2
+ x − 3) f ′(x) =
 
5(3x − 2)
1 2
−
15
x(3x − 2)
−1 2
2
(2x + 1)
10x + 1 = 0
x
1
y f
 1  61
5
(3x − 2)−1 2
2(3 − x2) − 3x
f ′(x) = 2
= − → =
10 −
10 = −
20
f ′ x
(2x − 1)
5(3x − 4)
=
Because −
61
20
is not a real number, there is no point
( )
2(3x − 2)
3 2
67.
of horizontal tangency.
f (x) =
x
=
x
Set f ′(x) =
5(3x − 4) = 0.
2(3x − 2)3 2
2x − 1 (2x − 1) 5(3x − 4) = 0
f ′(x) =
(2x − 1)
1 2
(1) − x
 1
(2x − 1)
−1 2
(2)
 
1 2
2
2x + 1
 
3x − 4 = 0
x =
4
→ y =
3
 4
 
 3
20
3 2
1 2 −1 2  4 10 
f ′(x) =
(2x − 1) − x(2x − 1)
(2x + 1)
−1 2
Horizontal tangent at:  3
,
3 2

59 59
f ′(x) =
(2x − 1) (2x − 1) − x

69. A′ = 1000(60) 1 +
r 1
= 5000 1 +
r
     
(2x − 1) 
12
 
12
 
12

     
f ′(x) =
x − 1
(2x − 1)
3 2 (a) A′(0.08) =

+

0.08
12 
Set f ′(x) =
x − 1
3 2
= 0.
≈ $74.00 per percentage point
x − 1 = 0
(2x − 1)
(b) A′(0.10) =

+

0.10
12 
x = 1 → y = f (1) =
1
= 1
≈ $81.59 per percentage point
1
Horizontal tangent at: (1, 1)
(c) A′(0.12) =

+
0.12
12

 
≈ $89.94 per percentage point
2
2
2
3
dt
Section 2.6 Higher-Order Derivatives 123
70. N = 400

1 − 3(t + 2)
−2


71. V =
k
t + 1
dN 

2
−3


When t = 0, V = 10,000.= N′(t) = 400
(−3)(−2)(t + 2) (2t)dt  
=
4800t
(t2
+ 2)
10,000 =
k
 k
0 + 1
10,000
= 10,000
(a) N′(0) = 0 bacteria day
V =
t + 1
−1 2
(b) N′(1) ≈ 177.8 bacteria day V = 10,000(t + 1)
dV
5000 t 1
−3 2
1
5000
(c) N′(2) ≈ 44.4 bacteria day = − (
dt
+ ) ( ) = − 3 2
(t + 1)
(d) N′(3) ≈ 10.8 bacteria day
When t = 1,
(e) N′(4) ≈ 3.3 bacteria day dV 5000 2500
$1767.77 per year.= − 3 2
= − ≈ −
(f ) The rate of change of the population is decreasing as
time passes.
dt (2)
dV
2
5000
When t = 3,
dt
= − = −$625.00 per year.
(4)3 2
72. (a) From the graph, the tangent line at t = 4 is steeper than the tangent line at t = 1. So, the rate of change after
4 hours is greater.
(b) The cost function is a composite function of x units, which is a function of the number of hours, which is not a linear function.
4 3 2
1 2
73. (a) r = (0.3017t − 9.657t + 97.35t − 266.8t − 242)
dr
= r′ t =
1
0.3017t4
− 9.657t3
+ 97.35t2
− 266.8t − 242
−1 2
⋅ 1.2068t3
− 28.971t2
+ 194.7t − 266.8( ) ( ) ( )
(b)
=
Chain Rule
4
1.2068t3
− 28.971t2
+ 194.7t − 266.8
2 0.3017t4
− 9.657t3
+ 97.35t2
− 266.8t − 242
8 13
−2
(c) The rate of change appears to be the greatest when t = 8 or 2008.
The rate of change appears to be the least when t ≈ 9.60, or 2009, and when t ≈ 12.57, or 2012.
Section 2.6 Higher-Order Derivatives
Skills Warm Up
1. −16t2
+ 292 = 0 2. −16t2
+ 88t = 0
−16t2
t2
= −292
=
73
4
−8t(2t − 11) = 0
−8t = 0 → t = 0
2t − 11 = 0 → t = 11
t = ±
73
2
2
3
4
2
124 Chapter 2 Differentiation
Skills Warm Up —continued—
3. −16t2
+ 128t + 320 = 0
−16(t2
− 8t − 20) = 0
−16(t − 10)(t + 2) = 0
t − 10 = 0 → t = 10
t + 2 = 0 → t = −2
4. −16t2
+ 9t + 1440 = 0
7. y =
dy
=
dx
=
x2
2x + 7
(2x + 7)(2x) − (x2
)(2)
(2x + 7)
2
4x2
+ 14x − 2x2
(2x + 7)
2
2x2
+ 14x
−9 ±
t =
92
− 4(−16)(1440)
2(−16)
=
(2x + 7)2
=
−9 ± 92241
−32
2x(x+ 7)=
(2x + 7)2
=
9 ± 3 10249
32 8. y =
x2
+ 3x
2
t ≈ −9.21and t ≈ 9.77 2x − 5
5. y = x2
(2x + 7)
dy (2x2
− 5)(2x + 3) − (x2
+ 3x)(4x)
=
dx (2x2
− 5)
dy
= x2
(2) + 2x(2x + 7)
dx
4x3
+ 6x2
− 10x − 15 − 4x3
− 12x2
= 2
= 2x2
+ 4x2
+ 14x (2x2
− 5)
= 6x2
+ 14x −6x2
− 10x − 15
=
6. y = (x2
+ 3x)(2x2
− 5)
(2x2
− 5)
dy
= (x2
+ 3x)(4x) + (2x + 3)(2x2
− 5)
9. ( )
f x = x2
− 4
dx
= 4x3
+ 12x2
+ 4x3
− 10x + 6x2
− 15
= 8x3
+ 18x2
− 10x − 15
Domain: (−∞, ∞)
Range: [−4, ∞)
10. f (x) = x − 7
Domain: [7, ∞)
Range: [0, ∞)
1. f (x) = 9 − 2x
f ′(x) = −2
f ′′(x) = 0
2. f (x) = 4x + 15
f ′(x) = 4
f ′′(x) = 0
4. f (x) = 3x2
+ 4x
f ′(x) = 6x + 4
f ′′(x) = 6
5. g(t) = 1
t3
− 4t2
+ 2t
g′(t) = t2
− 8t + 2
g′′(t) = 2t − 8
3. f (x) = x2
+ 7x − 4 6. f (x) = − 5 x4
+ 3x2
− 6x
f ′(x) = 2x + 7
f ′′(x) = 2
f ′(x) = −5x3
+ 6x − 6
f ′′(x) = −15x2
+ 6
= −
4
3
= −
3
3
2
Section 2.6 Higher-Order Derivatives 125
7. f (t) =
2
= 2t−3 13. f (x) = x5
− 3x4
t
( ) 4 3
f ′(t) = −6t−4
f ′ x = 5x − 12x
f ′′(t) = 24t−5
=
24
f ′′(x) = 20x3
− 36x2
2
t5 f ′′′(x) = 60x − 72x
8. g(t) =
5
=
6t4
5
t−4
6 14. f (x) = x4
− 2x3
g′(t)
10
t−5
f ′(x) = 4x3
− 6x2
3
g′′(t) =
50
t−6
=
50
f ′′(x) = 12x2
− 12x
f ′′′(x) = 24x − 12 = 12(2x − 1)3 3t6
9. f (x) = 3(2 − x2
)
3
f ′(x) = 9(2 − x ) (−2x) = −18x(2 − x )
15. f (x) = 5x(x + 4)
3
= 5x(x3
+ 12x2
+ 48x + 64)
2
2
2
2
f ′′(x) = (−18x)2(2 − x2
)(−2x) + (2 − x2
)
2
(−18)
= 18(2 − x2
) 4x2
− (2 − x2
)
= 5x4
+ 60x3
+ 240x2
+ 320x
f ′(x) = 20x3
+ 180x2
+ 480x + 320
f ′′(x) = 60x2
+ 360x + 480
= 18(2 − x2
)(5x2
− 2) f ′′′(x) 120x 360= +
10. y = 4(x2
+ 5x)
2
2
16. f (x) = (x3
− 6)
y′ = 4(3)(x + 5x) (2x + 5) f ′(x) = 4(x3
− 6) (3x2
)
= (24x + 60)(x4
+ 10x3
+ 25x2
)
= 24x5
+ 300x4
+ 1200x3
+ 1500x2
y′′ = 120x4
+ 1200x3
+ 3600x2
+ 3000x
= 12x11
− 216x8
+ 1296x5
− 2592x2
f ′′(x) = 132x10
− 1728x7
+ 6480x4
− 5184x
f ′′′(x) = 1320x9
− 12,096x6
+ 25,920x3
− 5184
11. f (x) =
x + 1
17. f (x) =
3
=
3
x−4
x − 1
f ′(x) =
(x − 1)(1)− (x + 1)(1)
f ′(x)
8x4
8
3
x−5
(x − 1)
2 = −
15
= −
2
= −2(x − 1)
−2 f ′′(x) = x−6
(x − 1)
2
f ′′′ x
2
= −45x−7 45
12.
f ′′(x) = 4(x − 1)
−3
(1) =
4
(x − 1)3
g(x) =
1 − 4x
x − 3
18.
( ) = −
x7
f (x) = −
2
25x5
2
g′(x) =
(x − 3)(−4) − (1 − 4x)(1)
f (x) = −
25
x−5
(x − 3)2
f ′(x) =
2
x−6
5
=
−4x + 12 − 1 + 4x
(x − 3)
2
f ′′(x)
12
5
x−7
=
11
= 11(x − 3)
−2
(x − 3)
2
g′′(x) = −22(x − 3)−3
(1) = −
22
f ′′′(x) =
84
x−8
5
=
84
5x8
(x − 3)
3


= −
f ′′
4
126 Chapter 2 Differentiation
19.
20.
g(t) = 5t4
+ 10t2
+ 3
g′(t) = 20t3
+ 20t
g′′(t) = 60t2
+ 20
g′′(2) = 60(4) + 20 = 260
f (x) = 9 − x2
26.
27.
f ′′(x) = 20x3
− 36x2
f ′′′(x) = 60x2
− 72x = 12x(5x − 6)
f ′′′(x) = 4x−4
f (4)
(x) = −16x−5
f ′(x) = −2x
f ′′(x) = −2
f (5)
(x) = 80x−6
=
80
x6
1 2
f ′′(− 5) = −2 28. f ′′(x) = 4 x − 2 = 4(x − 2)
f ′′′(x) = 4
1
(x − 2)−1 2
(1) = 2(x − 2)−1 2
21. f (x) = 4 − x

= (4 − x)
1 2 2
f 4
x  
= 2 −
1
x − 2
−3 2
1
= − x − 2
−3 2
f ′(x) 1
(4 − x)
−1 2 ( )
( )  ( ) ( ) ( )
= −
2
f 5
x
 2
=
3
x − 2
−5 2
1 =
3
f ′′(x) 1
(4 − x)
−3 2 ( )
( ) ( ) ( )= − 2 2(x − 2)
5 2
f ′′′(x)
3
(4 − x)
−5 2
=
−3
= −
8 8(4 − x)5 2
29. f (5)
(x) = 2(x2
+ 1)(2x)
3
f ′′′(−5) =
−3 1
5 2
= −
648
= 4x + 4x
22. f (t) =
8(9)
2t + 3 = (2t + 3)
1 2
30.
f (6)
(x) = 12x2
+ 4
f ′′′(x) = 4x + 7
f ′(t) =
1
(2t + 3)
−1 2
(2) = (2t + 3)
−1 2
2
f (4)
(x) = 4
f (5)
(x) = 0
f ′′(t)
1
(2t + 3)
−3 2
(2) = −(2t + 3)
−3 2
2
31. f ′(x) = 3x2
− 18x + 27
f ′′′(t) =
3
(2t + 3)
−5 2
(2) =
3
 1
′  =
 2
2
3
32
(2t + 3)
5 2 f ′′(x) = 6x − 18
f ′′(x) = 0  6x = 18
x = 3
f x =
3
x3
− 2x = x9
− 6x7
+ 12x5
− 8x3
23. ( ) ( )
f ′(x) = 9x8
− 42x6
+ 60x4
− 24x2
32. f (x) = (x + 2)(x − 2)(x + 3)(x − 3)
= (x2
− 4)(x2
− 9)
4 2
f ′′(x) = 72x7
− 252x5
+ 240x3
− 48x
f ′′(1) = 12
= x
f ′(x) = 4x
− 13x
3
− 26x
+ 36
g x =
4
x2
+ 3x = x8
+ 12x7
+ 54x6
+ 108x5
+ 81x4
f ′′(x) = 12x2
− 26
24. ( ) ( )
g′(x) = 8x7
+ 84x6
+ 324x5
+ 540x4
+ 324x3
f ′′(x) = 0  12x2
= 26
13 78
g′′(x) = 56x6
+ 504x5
+ 1620x4
+ 2160x3
+ 972x2
g′′(−1) = −16
x = ± = ±
6 6
25. f ′(x) = 2x2
f ′′(x) = 4x
)
)
1 2
 
)
(
1 2
)
−2
−3
3
3
Section 2.6 Higher-Order Derivatives 127
33. f (x) = x x
1 22
− 1 = x x2
− 1
1 −1 2 1 2 x2 1 2
f ′(x) = x (x2
− 1) (2x) + (x2
− 1) = + (x2
− 1)2 (x2
− 1
(x2
− 1) (2x) − x2  1
(x2
− 1)
−1 2
(2x)
f ′′ x =  2 +
1
x2
− 1
−1 2
2x
( )
x2
(x2
− 1)(2x) − x3
− 1 2
x x2
− 1
( ) ( )
= 3 2
+
2 2
1 2
⋅ 2
−
(x − 1) (x − 1) x 1
2x3
− 3x=
(x2 3 2
− 1
f ′′(x) = 0  2x3
− 3x = x(2x2
− 3) = 0
x = ±
3
= ±
6
2 2
x = 0 is not in the domain of f.
34. ( )
(x + 3)(1)− (x)(2x) 3 − x
( 2
)( 2
2 2
f ′ x =
2
2
=
2
2
= 3 − x x + 3
(x + 3) (x + 3)
2  2
−3


2
−2
f ′′(x) = (3 − x )
−2(x + 3) (2x)
+ (x + 3) (−2x)
= −2x(x2
+ 3) 2(3 − x2
) + (x2
+ 3)
 
−2x(9 − x2
)=
(x2
+ 3)
2x(x2
− 9)=
(x2
+ 3)
f ′′(x) = 0  2x(x2
− 9) = 0
x = 0, ±3
35. (a) s(t) = −4.9t2
+ 44.1t
v(t) = s′(t) = −9.8t + 44.1
a(t) = v′(t) = s′′(t) = −9.8
(d) s(t) = 0
−4.9t2
+ 44.1t = 0
−4.9t(t − 9) = 0
t = 0 sec t = 9 sec
(b)
(c)
s(3) = 88.2 m
v(3) = 14.7 m sec
a(3) = −9.8 m sec2
v(t) = 0
−9.8t + 44.1 = 0
v(9) = −9.8(9) + 44.1 = −44.1 m sec
This is the same speed as the initial velocity.
36. (a) s(t) = −4.9t2
+ 381
( ) ( )
v t = s′ t = −9.8t
−9.8t = −44.1
t = 4.5 sec
s(4.5) = 99.225 m
(b)
a(t) = v′(t) = −9.8
s(t) = 0 when 4.9t2
381
= 381, or
(c)
t = ≈ 8.8 sec.
4.9
v(8.8) = −86.42 m sec
f
128 Chapter 2 Differentiation
37.
dv (t + 10)(27.5) − (27.5t)(1)=
dt (t + 10)
2
=
275
(t + 10)
2
t 0 10 20 30 40 50 60
v 0 13.75 18.33 20.63 22 22.92 23.57
dv
dt
2.75 0.69 0.31 0.17 0.11 0.08 0.06
38.
As time increases, the acceleration decreases. After 1 minute, the automobile is traveling at about 23.57 meters per second.
s(t) = −2.5t2
+ 20t
v(t) = s′(t) = −5t + 20
a(t) = s′′(t) = −5
t 0 1 2 3 4
s(t) 0 17.5 30 37.5 40
v(t) 20 15 10 5 0
a(t) −5 −5 −5 −5 −5
It takes 4 seconds for the car to stop, at which time it has traveled 40 meters.
39. f (x) = x2
− 6x + 6
f ′(x) = 2x − 6
f ′′(x) = 2
41. (a)
(b)
y(t) = −21.944t3
+ 701.75t2
− 6969.4t + 27,164
y′(t) = −65.832t2
+ 1403.5t − 6969.4
y′′(t) = −131.664t + 1403.5
(a) 7 (c) Over the interval 8 ≤ t ≤ 13, y′(t) > 0; therefore,
f ″ f ′
−5 10
f
−3
(d)
y is increasing over 8 ≤ t ≤ 13, or from 2008 to
20013.
y′′(t) = 0
−131.664t + 1403.5 = 0
(b) The degree decreased by 1 for each successive
derivative.
−131.664t = −1403.5
t ≈ 10.66 or 2010
(c) f (x) = 3x2
− 9x 10
f ′
f ″
42. Let y = xf (x).
f ′(x) = 6x − 9
−4
f ′′(x) = 6
Then,
4
y′ = xf ′(x) +
y′′ = xf ′′(x) +
f (x)
f ′(x) + f ′(x)
= xf ′′(x) + 2 f ′(x)
−10 y′′′ = xf ′′′(x) + f ′′(x) + 2 f ′′(x)
(d) The degree decreases by 1 for each successive
derivative.
40. Graph A is the position function. Graph B is the
velocity function. Graph C is the acceleration function.
Explanations will vary. Sample explanation:
The position function appears to be a third-degree
function, while the velocity is a second-degree function,
= xf ′′′(x) + 3 f ′′(x).
In general y(n)
= xf (x)
(n)
= xf (n)
(x) + nf (n−1)
(x).
43. True. If y = (x + 1)(x + 2)(x + 3)(x + 4), then y is a
fourth-degree polynomial function and its fifth derivative
d5
y
and the acceleration is a linear function. dx5
equals 0.
2
Section 2.7 Implicit Differentiation 129
44. True. The second derivative represents the rate of change
of the first derivative, the same way that the first
derivative represents the rate of change of the function.
Section 2.7 Implicit Differentiation
45. Answers will vary.
Skills Warm Up
1. x −
y
= 2 6. x = ± 6 − y2
x
x2
− y = 2x
x2
= 6 − y2
−y = 2x − x2
x2
− 6 = −y2
y = x2
− 2x
6 − x2
= y2
± 6 − x2
= y
2.
4
=
1
x − 3 y
4y = x − 3
3x2
− 4
7.
3y2
, (2, 1)
y =
x − 3
4
3. xy − x + 6y = 6
3(22
) − 4 3(4)− 4 8
= =
3(12
) 3 3
x2
− 2xy + 6y = 6 + x
y(x + 6) = 6 + x
8.
1 − y
, (0, −3)
y =
6 + x 02
− 2 −2 1
x + 6
y = 1, x ≠ −6
= = −
1 − (−3) 4 2
4. 7 + 4y = 3x2
+ x2
y 9.
7x
,

−
1
, −2

4y2
+ 13y + 3

7

4y − x2
y = 3x2
− 7
y(4 − x2
) = 3x2
− 7
 
7

−
1
 
7
 −1 −1 1
3x2
− 7
  = = =
y = , x ≠ ±2
4 − x2 4(−2) + 13(−2) + 3 16 − 26 + 3 −7 7
5. x2
+ y2
y2
= 5
= 5 − x2
y = ± 5 − x2
1. x3
y = 6 2. 3x2
− y = 8x
x3 dy
+ 3x2
y = 0
dx
6x −
dy
= 8
dx
x3 dy
dx
dy
= −3x2
y
3x2
3
−
dy
dx
dy
= 8 − 6x
y y
dx x3
x
= 6x − 8
dx
= − = −
3. y2
2y
dy
dx
= 1 − x2
= −2x
dy x
= −
dx y
( )
2
2
2
( )
x
2
130 Chapter 2 Differentiation
4. y3
= 5x3
+ 8x
10.
xy − y2
= 1
3y2 dy
dx
= 15x2
+ 8
y − x
xy − y2
= y − x
dy
=
dx
15x2
+ 8
3y2
y(x − y) = −(x − y)
y = −1
5. y4
− y2
+ 7y − 6x = 9
4y3 dy
− 2y
dy
+ 7
dy
− 6 = 0
dy
= 0
dx
dx dx dx
(4y3
− 2y + 7)dy
= 6
11.
2y
y2
+ 3
= 4x
dx
dy
=
6
2y = 4x(y2
+ 3)
2
dx 4y3
− 2y + 7 2y = 4xy + 12x
2
dy
= 8xy
dy
+ 4y2
+ 12
6. 4y3
+ 5y2
− y − 3x3
= 8x dx dx
12y2 dy
+ 10y
dy
−
dy
− 9x2
= 8
dx dx dx
2
dy
− 8xy
dy
dx dx
= 4y2
+ 12
2
12y2
+ 10y − 1
dy
dx
dy
= 8 + 9x2
8 + 9x2
=
dy
=
dx
4y + 12
2 − 8xy
2
dx 12y2
+ 10y − 1 12.
4y
= x2
y2
− 9
7. xy2
+ 4xy = 10
( 2
) dy 
2  dy y − 9 8y  − 4y 2y 
y2
+ 2xy
dy
+ 4y + 4x
dy
= 0
dx dx
  dx   dx 
(y − 9)
= 2x
(2xy + 4x)
dy
= −y2
− 4y dy
( 2 2
)dx
dy y2
+ 4y
= −
8y y − 9 − y
dx
(y2
− 9)
= 2x
dx 2xy + 4x
−72y
dy
dx8. 2xy3
− x2
y = 2
(y2
− 9)
= 2x
2y3
+ 6xy2 dy
− 2xy − x2 dy
= 0
2
2
dx dx
6xy2
− x2 dy
dx
= 2xy − 2y3
dy 2x(y − 9)=
dx −72y
2
2
dy
=
dx
2xy − 2y3
6xy2
− x2
dy x(y − 9)= −
dx 36y
9.
2x + y
= 1
x − 5y
13. x2
+ y2
dy
= 16
2x + y = x − 5y
2x + 2y = 0
dx
6y = −x 2y
dy
dx
= −2x
1
y = −
6
dy 1
= −
dy x
= −
dx y
dx 6
At (0, 4),
dy
dx
0
= − = 0.
4
( )
−5 1
 
( )
=
3 3
.
= −
Section 2.7 Implicit Differentiation 131
14. x2
− y2
2x − 2y
dy
dx
−2y
dy
dx
= 25
= 0
= −2x
18. x2
y + y3
x = −6
x2 dy
+ 2xy + y3
+ 3y2 dy
x = 0
dx dx
dy
x2
+ 2xy = −2xy − y2
dx
dy
=
x dy −(2xy + y3
)
dx y
At (5, 0),
dy
is undefined.
dx
=
dx
dy
=
dx
x2
+ 3xy2
y(2x + y2
)
x(x + 3y2
)
15. y + xy = 4
dy (−1)(2(2) + (−1)
2
)dy
+ x
dy
+ y = 0
dx dx
dy
(1 + x) = −y
At (2, −1),
dx (2)((2) + 3(−1)
2
)
= − = .
10 2
dx
dy
= −
y
19. xy − x = y
x
dy
+ y − 1 =
dy
dx x + 1 dx dx
dy dy
At (−5, − 1),
dy
dx
= −
1
.
4
x −
dx dx
dy
= 1 − y
(x − 1) = 1 − y
dx
16. xy − 3y2
= 2
dy 1 y y 1
=
−
= −
−
x
dy
+ y − 6y
dy
= 0 dx x − 1 x − 1
dx dx  3  dy 3 − 1 2
dy
(x − 6y) = − y
dx
At 
2
, 3,
dx
= − = −
3
− 1
1
2 2
= −4.
dy
= −
y
dx x − 6y 20. x3
+ y3
2 2 dy
= 6xy
 dy dy
= −
2
=
2 3x + 3y
dx
= 6x
dx
+ yAt (7, 2),
dx
.
7 − 6(2) 5
3x2
+ 3y2 dy
 
= 6x
dy
+ 6y
17. x2
− xy + y2
= 4
dx dx
2x −

x
dy
+ y

+ 2y
dy
= 0
3y2
− 6x
dy
dx
= 6y − 3x2
 dx  dx 2
  dy 6y − 3x
2
2x − x
dy
− y + 2y
dy
= 0
dx 3y − 6x
dx dx
dy
(2y − x) =
dx
y − 2x
dy 3(2y − x2
)=
dx 3(y2
− 2x)
dy 2y − x2
dy y − 3x2
=
=
dx y2
− 2x
dx 2y − x
 4 8 dy 4
.
At (−2, −1),
dy
dx
(−1) − 3(−2)2
=
2(−1) − (−2)
=
−7
;
dy
is
0 dx
At  , , =
  dx 5
undefined. 21. x1 2
+ y1 2
= 9
1
x−1 2
+
1
y−1 2 dy
= 0
2 2 dx
x−1 2
+ y−1 2 dy
dx
dy
= 0
−x−1 2
y
= = −
At (16, 25),
dy
dx
dx y−1 2
x
5
= −
4
. ( )
 
( )
132 Chapter 2 Differentiation
22. x2 3
+ y2 3
= 5 25. y2
(x2
+ y2
) = 2x2
2
x−1 3
+
2
y−1 3 dy
= 0 y2 
2x + 2y
dy 
+ (x2
+ y2
)
2y
dy 
= 4x
3 3 dx 
dx
 
dx

dy −x−1 3
y1 3
y
   
dy dy dy= = − = − 3 2xy2
+ 2y3
+ 2x2
y + 2y3
= 4x
At (8, 1),
dy
dx
dx y−1 3
1
= −
2
x1 3
x dx dx dx
dy
4y3
+ 2x2
y = 4x − 2xy2
dx
dy 2x(2 − y2
)
23. xy = x − 2y
x y = x − 2y
x
 1
y−1 2 dy 
+ y
1
x−1 2 
= 1 − 2
dy
=
dx 2y(2y2
+ x2
)
dy x(2 − y2
)=
dx y(2y2
+ x2
)
2 dx
 
2

dx   
x dy dy
+ 2
y
= 1 −
At (1, 1),
dy
dx
=
1
.
3
2 y dx dx 2 x
2 2
2
2
1 −
y
dy
= 2 x ⋅
2 x y
26. (x
2 2 

+ y )
dy 

= 8x y
2 dy
dx x 2 x y
+ 2
2(x + y )2x + 2y  = 8x
 dx 
+ y(16x)
dx
2 y
4x3
+ 4x2
y
dy
+ 4xy2
+ 4y3 dy
= 8x2 dy
+ 16xy2 xy − y
=
x + 4 xy
dx dx dx
dy
(4x2
y + 4y3
− 8x2
) = 16xy − 4x3
− 4xy2
2(x − 2y) − y
=
x + 4(x − 2y)
dx
dy
=
4(4xy − x3
− xy2
)
2x − 5y
=
dx 4(x y + y − 2x )
At (4, 1),
dy
dx
=
1
.
4
5x − 8y
At (2, 2),
dy
= 0.
2 3 2
dy x(4y − x2
− y2
)=
dx x2
y + y3
− 2x2
24. (x + y)
3
= x3
+ y3
3(x + y)
2
1 +
dy
 = 3x2
+ 3y2 dy 27. 3x2
dx
− 2y + 5 = 0
 dx dx
6x − 2
dy
= 0
3(x + y)
2
+ 3(x + y)
2 dy
= 3x2
+ 3y2 dy
dx dx
(x + y)
2 dy
− y2 dy
= x2
− (x + y)
2
dx dx
dy (x + y)
2
− y2  = x2
− x2
+ 2xy + y2
dx 
dx
dy
= 3x
dx
At (1, 4),
dy
= 3.
dx
dy −(2xy + y2
)= = −
y(2x + y) 28. 4x2
+ 2y − 1 = 0
At (−1, 1),
dy
dx
= −1.
dx x2
+ 2xy x(x + 2y)
8x + 2
dy
dx
dy
= 0
8x
= −4x= −
dx 2
dy
(−1) = −4(−1) = 4
dx
)
= ±

4
.
.
= ± ( )
4

4
= −
( )
Section 2.7 Implicit Differentiation 133
29. x2
+ y2
= 4
2x + 2y
dy
= 0
dx
33. Implicitly: 1 − 2y
dy
dx
dy
= 0
=
1
dy x
= −
dx 2y
dx y Explicitly: y = ± x − 1
1 2
At ( 3, 1 ,
dy
= −
3
dx 1
= − 3.
= ±(x − 1)
dy 1
(x − 1)
−1 2
(1)
dx 2
30. 4x2
+ 9y2
8x + 18
dy
dx
dy
dx
= 36
= 0
4x
= −
9y
= ±
2
=
2(±
1
1
x − 1
y
1
x − 1) 2
1
y = x − 1
At
  dy
5, ,
3
4 5 5
= − = − .
=
2y 2
x
3 4
(2, −1)
  dx 9(4 3) 3
At (2, −1),
−1
dy 1
= − −2
31. x2
− y3
= 0 dx 2 y = − x − 1
2x − 3y2 dy
= 0
dx 34. Implicitly: 8y
dy
− 2x = 0
dx
dy
=
2x
dx 3y2
dy
=
x
dx 4y
At (−1, 1),
dy 2
dx 3 Explicitly:
1
y = ±
2
x2
+ 7
32. (4 − x)y2
= x3
1
x2
+ 7
1 2
2
x3
dy 1 −1 2
y2
=
4 − x
= ± x2
+ 7 (2x)dx
2y
dy
dx
dy
(4 − x)(3x2
) − x3
(−1)
=
(4 − x)2
12x2
− 3x3
+ x3
= ±
x
2 x2
+ 7
=
x
2y =
dx (4 − x)2
 1
4±
2
x2
+ 7

2y
dy
dx
dy
12x2
− 2x3
=
(4 − x)2
2x2
(x − 6)
 
=
x
4y
dy 3
= −
dx 2y(4 − x)2
dy x2
(x − 6)= −
At (3, 2),
2
= .
dx 8
y
dx y(4 − x)
2 y = x + 7
2
2
(3, 2)
At (2, 7),
dy
dx
= 2.
x
−4 −2 2 4
−2
y = − x2 + 7 −4
2
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th
Solutions manual for calculus an applied approach brief international metric edition 10th

More Related Content

What's hot

電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
Simen Li
 
Continuous functions
Continuous functionsContinuous functions
Continuous functions
sumanmathews
 
「にじたい」へのいざない #ロマンティック数学ナイト
「にじたい」へのいざない #ロマンティック数学ナイト「にじたい」へのいざない #ロマンティック数学ナイト
「にじたい」へのいざない #ロマンティック数学ナイト
Junpei Tsuji
 
Solution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuitySolution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and Continuity
Hareem Aslam
 
Trigonometric graphs
Trigonometric graphsTrigonometric graphs
Trigonometric graphs
Shaun Wilson
 
Arithmetic series
Arithmetic seriesArithmetic series
Arithmetic series
GERRY ABELLA
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
Simen Li
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
Simen Li
 
Residues in MATLAB
Residues in MATLABResidues in MATLAB
Residues in MATLAB
Patrick Trivilin Rodrigues
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Hareem Aslam
 
Ejercicio de fasores
Ejercicio de fasoresEjercicio de fasores
Ejercicio de fasores
dpancheins
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
Simen Li
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Factoring the difference of two squares
Factoring the difference of two squaresFactoring the difference of two squares
Factoring the difference of two squares
Lorie Jane Letada
 
Area between curves
Area between curvesArea between curves
Area between curves
Shaun Wilson
 
Calculo purcell 9 ed solucionario
Calculo  purcell  9 ed   solucionarioCalculo  purcell  9 ed   solucionario
Calculo purcell 9 ed solucionario
Luis Manuel Leon
 
EJERCISIOS PALAFOXC /7-21/
EJERCISIOS PALAFOXC /7-21/EJERCISIOS PALAFOXC /7-21/
EJERCISIOS PALAFOXC /7-21/Neftali Acosta
 
Equation of a Circle
Equation of a CircleEquation of a Circle
Equation of a Circle
Lily Maryati
 

What's hot (20)

電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路電路學 - [第五章] 一階RC/RL電路
電路學 - [第五章] 一階RC/RL電路
 
Continuous functions
Continuous functionsContinuous functions
Continuous functions
 
「にじたい」へのいざない #ロマンティック数学ナイト
「にじたい」へのいざない #ロマンティック数学ナイト「にじたい」へのいざない #ロマンティック数学ナイト
「にじたい」へのいざない #ロマンティック数学ナイト
 
Solution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and ContinuitySolution Manual : Chapter - 02 Limits and Continuity
Solution Manual : Chapter - 02 Limits and Continuity
 
Lesson 19: Related Rates
Lesson 19: Related RatesLesson 19: Related Rates
Lesson 19: Related Rates
 
Trigonometric graphs
Trigonometric graphsTrigonometric graphs
Trigonometric graphs
 
Arithmetic series
Arithmetic seriesArithmetic series
Arithmetic series
 
電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路電路學 - [第八章] 磁耦合電路
電路學 - [第八章] 磁耦合電路
 
電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析電路學 - [第七章] 正弦激勵, 相量與穩態分析
電路學 - [第七章] 正弦激勵, 相量與穩態分析
 
Residues in MATLAB
Residues in MATLABResidues in MATLAB
Residues in MATLAB
 
Capitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na EdicionCapitulo 4 Soluciones Purcell 9na Edicion
Capitulo 4 Soluciones Purcell 9na Edicion
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
 
Ejercicio de fasores
Ejercicio de fasoresEjercicio de fasores
Ejercicio de fasores
 
射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路射頻電子 - [第四章] 散射參數網路
射頻電子 - [第四章] 散射參數網路
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Factoring the difference of two squares
Factoring the difference of two squaresFactoring the difference of two squares
Factoring the difference of two squares
 
Area between curves
Area between curvesArea between curves
Area between curves
 
Calculo purcell 9 ed solucionario
Calculo  purcell  9 ed   solucionarioCalculo  purcell  9 ed   solucionario
Calculo purcell 9 ed solucionario
 
EJERCISIOS PALAFOXC /7-21/
EJERCISIOS PALAFOXC /7-21/EJERCISIOS PALAFOXC /7-21/
EJERCISIOS PALAFOXC /7-21/
 
Equation of a Circle
Equation of a CircleEquation of a Circle
Equation of a Circle
 

Similar to Solutions manual for calculus an applied approach brief international metric edition 10th

51542 0131469657 ism-1
51542 0131469657 ism-151542 0131469657 ism-1
51542 0131469657 ism-1
Ani_Agustina
 
Calculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manualCalculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manual
Reece1334
 
Math quota-cmu-g-455
Math quota-cmu-g-455Math quota-cmu-g-455
Math quota-cmu-g-455Rungroj Ssan
 
resposta do capitulo 15
resposta do capitulo 15resposta do capitulo 15
resposta do capitulo 15
silvio_sas
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Henrique Covatti
 
51542 0131469657 ism-1
51542 0131469657 ism-151542 0131469657 ism-1
51542 0131469657 ism-1
Joel Rodriguez Llamuca
 
1. limits
1. limits1. limits
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 
Mathematical Modelling of Electro-Mechanical System in Matlab
Mathematical Modelling of Electro-Mechanical System in MatlabMathematical Modelling of Electro-Mechanical System in Matlab
Mathematical Modelling of Electro-Mechanical System in Matlab
COMSATS Abbottabad
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integrationdicosmo178
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integrationdicosmo178
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integrationdicosmo178
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
Chit Laplana
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manual
Larson2017
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13Carlos Fuentes
 
corripio
corripio corripio
corripio
Sabrina Amaral
 
Capitulo 2 corripio
Capitulo 2 corripioCapitulo 2 corripio
Capitulo 2 corripio
omardavid01
 

Similar to Solutions manual for calculus an applied approach brief international metric edition 10th (20)

51542 0131469657 ism-1
51542 0131469657 ism-151542 0131469657 ism-1
51542 0131469657 ism-1
 
Calculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manualCalculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manual
 
Math quota-cmu-g-455
Math quota-cmu-g-455Math quota-cmu-g-455
Math quota-cmu-g-455
 
resposta do capitulo 15
resposta do capitulo 15resposta do capitulo 15
resposta do capitulo 15
 
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]Cálculo ii   howard anton - capítulo 16 [tópicos do cálculo vetorial]
Cálculo ii howard anton - capítulo 16 [tópicos do cálculo vetorial]
 
Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008Maths 301 key_sem_1_2007_2008
Maths 301 key_sem_1_2007_2008
 
51542 0131469657 ism-1
51542 0131469657 ism-151542 0131469657 ism-1
51542 0131469657 ism-1
 
1. limits
1. limits1. limits
1. limits
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Mathematical Modelling of Electro-Mechanical System in Matlab
Mathematical Modelling of Electro-Mechanical System in MatlabMathematical Modelling of Electro-Mechanical System in Matlab
Mathematical Modelling of Electro-Mechanical System in Matlab
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
 
8.7 numerical integration
8.7 numerical integration8.7 numerical integration
8.7 numerical integration
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
Trigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manualTrigonometry 10th edition larson solutions manual
Trigonometry 10th edition larson solutions manual
 
51554 0131469657 ism-13
51554 0131469657 ism-1351554 0131469657 ism-13
51554 0131469657 ism-13
 
Basic m4-2-chapter1
Basic m4-2-chapter1Basic m4-2-chapter1
Basic m4-2-chapter1
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
corripio
corripio corripio
corripio
 
Capitulo 2 corripio
Capitulo 2 corripioCapitulo 2 corripio
Capitulo 2 corripio
 

Recently uploaded

1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
JosvitaDsouza2
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
timhan337
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
Peter Windle
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
Jisc
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
camakaiclarkmusic
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
Vivekanand Anglo Vedic Academy
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
EverAndrsGuerraGuerr
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
TechSoup
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
Jisc
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
BhavyaRajput3
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
Celine George
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
Jheel Barad
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
Jisc
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
kaushalkr1407
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
joachimlavalley1
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
Balvir Singh
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
GeoBlogs
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
Thiyagu K
 

Recently uploaded (20)

1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx1.4 modern child centered education - mahatma gandhi-2.pptx
1.4 modern child centered education - mahatma gandhi-2.pptx
 
Honest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptxHonest Reviews of Tim Han LMA Course Program.pptx
Honest Reviews of Tim Han LMA Course Program.pptx
 
Embracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic ImperativeEmbracing GenAI - A Strategic Imperative
Embracing GenAI - A Strategic Imperative
 
Supporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptxSupporting (UKRI) OA monographs at Salford.pptx
Supporting (UKRI) OA monographs at Salford.pptx
 
CACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdfCACJapan - GROUP Presentation 1- Wk 4.pdf
CACJapan - GROUP Presentation 1- Wk 4.pdf
 
The French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free downloadThe French Revolution Class 9 Study Material pdf free download
The French Revolution Class 9 Study Material pdf free download
 
Thesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.pptThesis Statement for students diagnonsed withADHD.ppt
Thesis Statement for students diagnonsed withADHD.ppt
 
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup   New Member Orientation and Q&A (May 2024).pdfWelcome to TechSoup   New Member Orientation and Q&A (May 2024).pdf
Welcome to TechSoup New Member Orientation and Q&A (May 2024).pdf
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
The approach at University of Liverpool.pptx
The approach at University of Liverpool.pptxThe approach at University of Liverpool.pptx
The approach at University of Liverpool.pptx
 
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCECLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
CLASS 11 CBSE B.St Project AIDS TO TRADE - INSURANCE
 
How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17How to Make a Field invisible in Odoo 17
How to Make a Field invisible in Odoo 17
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
Operation Blue Star - Saka Neela Tara
Operation Blue Star   -  Saka Neela TaraOperation Blue Star   -  Saka Neela Tara
Operation Blue Star - Saka Neela Tara
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
The geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideasThe geography of Taylor Swift - some ideas
The geography of Taylor Swift - some ideas
 
Unit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdfUnit 8 - Information and Communication Technology (Paper I).pdf
Unit 8 - Information and Communication Technology (Paper I).pdf
 

Solutions manual for calculus an applied approach brief international metric edition 10th

  • 1. Solutions Manual for Calculus An Applied Approach Brief International Metric Edition 10th Edition by Larson IBSN 9781337290579 Full download: http://downloadlink.org/p/solutions-manual-for-calculus-an-applied-approach- brief-international-metric-edition-10th-edition-by-larson-ibsn-9781337290579/ C H A P T E R 2 Differentiation Section 2.1 The Derivative and the Slope of a Graph............................................72 Section 2.2 Some Rules for Differentiation............................................................89 Section 2.3 Rates of Change: Velocity and Marginals...........................................96 Section 2.4 The Product and Quotient Rules........................................................102 Quiz Yourself .............................................................................................................113 Section 2.5 The Chain Rule...................................................................................115 Section 2.6 Higher-Order Derivatives...................................................................123 Section 2.7 Implicit Differentiation.......................................................................129 Section 2.8 Related Rates ......................................................................................137 Review Exercises ........................................................................................................141 Test Yourself .............................................................................................................154
  • 2. 72 © 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. C H A P T E R 2 Differentiation Section 2.1 The Derivative and the Slope of a Graph Skills Warm Up 1. P(3, 1), Q(3, 6) 2 2 3 m = 6 − 1 ; m is undefined. 3 − 3 6. lim Δx → 0 3x Δx + 3x(Δx) + (Δx) Δx Δx3x2 + 3xΔx + (Δx)2  x = 3 = lim    Δx → 0 Δx 2. P(2, 2), Q = (−5, 2) = lim 3x2 + 3xΔx + (Δx) 2 Δx → 0 m = 2 − 2 = 0 −5 − 2 = 3x2 m 1 = 1 y − 2 = 0(x − 2) 7. li 0 ( ) 2 y = 2 Δx → x x + Δx x 2 2 3. P(1, 5), Q(4, −1) 8. lim Δx → 0 (x +Δx) − x Δx m = −1 − 5 = −6 = −2 x2 + 2xΔx + (Δx) 2 − x2 4 − 1 3 y − 5 = −2(x − 1) y − 5 = −2x + 2 y = −2x + 7 4. P(3, 5), Q(−1, −7) = lim Δx → 0 = lim Δx → 0 = lim Δx → 0 Δx 2xΔx + (Δx) 2 Δx Δx(2x + Δx) Δx m = −7 − 5 = −1 − 3 −12 = 3 −4 = 2x 9. f (x) = 3x y − 5 = 3(x − 3) y = 3x − 4 2 10. Domain: (−∞, ∞) f (x) = 1 x − 1 5. lim Δx → 0 2xΔx + (Δx) = Δx lim Δx → 0 Δx(2x + Δx) Δx Domain: (−∞, 1) ∪ (1, ∞) = lim 2x + Δx Δx → 0 11. f (x) = 1 x3 − 2x2 + 1 x − 1 = 2x 5 3 Domain: (−∞, ∞) 12. f (x) = 6x x3 + x Domain: (−∞, 0) ∪ (0, ∞) 1. y 2. y x x
  • 3. . . 3 3 4 Section 2.1 The Derivative and the Slope of a Graph 73 y 3. 14. 2010: m ≈ 500 2012: m ≈ 500 The slope is the rate of change in millions of dollars per year of sales for the years 2010 and 2012 for Fossil. x 4. y 15. t = 3: m ≈ 8 t = 7: m ≈ 1 t = 10: m ≈ −10 The slope is the rate of change of the average temperature in degrees Fahrenheit per month in Bland, Virginia, for March, July, and October. 16. (a) At t1, f ′(t1) > g′(t1), so the runner given by f is running faster. (b) At t2, g′(t2) > f ′(t2), so the runner given by g is 5. y x 17. running faster. The runner given by f has traveled farther. (c) At t3, the runners are at the same location, but the runner given by g is running faster. (d) The runner given by g will finish first because that runner finishes the distance at a lesser value of t. f (x) = −1 at (0, −1) 6. y msec f (0 +Δx) − f (0) = Δx = −1 − (−1) Δx = 0 Δx = 0 m = lim Δx → 0 msec = lim 0 = 0 Δx → 0 7. The slope is m = 1. 18. f (x) = 6 at (−2, 6) 8. The slope is m = 4 msec = f (−2 + Δx) − f (−2) Δx 9. The slope is m = 0. = 6 − 6 10. The slope is m = 1 Δx = 0 Δx 11. The slope is m = − 1. = 0 m = m m = lim 0 = 0 12. The slope is m = −3. li sec 0 0 Δx→ Δx→ 13. 2009: m ≈ 118 2011: m ≈ 375 The slope is the rate of change in millions of dollars per year of revenue for the years 2009 and 2011 for Under Armour.
  • 4. = =   ( )   2 3 ( ) x 74 Chapter 2 Differentiation 19. f (x) = 13 − 4x at (3, 1) 22. f (x) = 11 − x2 at (3, 2) f (3 +Δx) − f (3) m = ( ) ( ) m = sec Δ sec f 3 + Δx − f 3 Δx 11 − 3 + Δx 2 − 11 − 3 2  13 − 4(3 + Δx)− 1 Δx = 13 − 12 − 4Δx − 1 ( )  ( )  Δx 11 − (9 + 6Δx + Δx2 ) − 2 = Δx = −4Δx Δx Δx 11 − 9 − 6Δx + (Δx)2 − 2 = Δx = −4 m = lim msec Δx→ 0 = lim Δx→ 0 (−4) = −4 −6Δx − (Δx)2 = Δx Δx(−6 − Δx)= 20. f (x) = 6x + 3 at (1, 9) Δx = −6 − Δx msec f (1 +Δx) − f (1)= Δx m = lim Δx→0 msec = lim Δx→0 (−6 − Δx) = −6 = 6(1+Δx) + 3 − 9 Δx 23. f (x) = x3 − 4x at (−1, 3) = 6 + 6Δx + 3 − 9 Δx msec f (−1 + Δx) − f (−1)= Δx 3 3 = 6Δx (−1 + Δx) − 4(−1 + Δx) − (−1) − 4(−1) Δx =    Δx = 6 2 3 m = lim Δx → 0 msec = lim 6 = 6 Δx → 0 = −1 + 3Δx − 3(Δx) + (Δx) + 4 − 4Δx − 3 Δx 2 3 21. f (x) = 2x2 − 3 at (2, 5) = −Δx − 3(Δx) + (Δx) Δx msec f (2 +Δx) − f (2) = Δx 2(2 + Δx) 2 − 3 − 5 Δx(−1 − 3Δx + (Δx) 2 )= Δx 2 =   = −1 − 3Δx + (Δx) Δx 2(4+ 4Δx + (Δx) 2 ) − 3 − 5 = m = lim Δx → 0 msec = lim Δx → 0 (−1 − 3Δx + (Δx)2 ) = −1 Δx 24. f (x) = 7x − x3 at (−3, 6) 8 + 8Δx + 2 Δx 2 − 3 − 5 =   Δx msec f (−3 + Δx) − f (−3) = Δx 3  3  2Δx(4 + Δx) = Δx 7(−3 + Δx) − (−3 + Δx) − 7(−3) − (−3) = Δx = 2(4 + Δx) −21 + 7Δx − (−27 + 27Δx − 9(Δx) 2 + (Δx) 3 ) − 6 = m = lim msec Δx→ 0 = lim Δx→ 0 (2(4 + Δx)) = 8 Δx −20Δx + 9(Δx) − (Δx) = Δx Δx(−20 + 9Δx − (Δx) 2 )= Δx = −20 + 9Δx − (Δx) 2 m = lim Δx → 0 msec = lim −20 + 9Δx − (Δx) 2 = −20 Δx → 0
  • 5. Section 2.1 The Derivative and the Slope of a Graph 75 25. f (x) = 2 x at (4, 4) 27. f (x) = 3 msec f (4 +Δx) − f (4) = Δx f ′(x) = lim Δx → 0 f (x +Δx) − f (x) Δx = 2 4 +Δx − 2 4 Δx = 2 4 + Δx − 4 ⋅ 2 4 + Δx + 4 = lim Δx → 0 = lim Δx → 0 3 − 3 Δx 0 ΔxΔx 2 4 + Δx + 4 = lim 0 4(4+Δx) − 16 = Δx(2 4 + Δx + 4) = 16 + 4Δx − 16 Δx(2 4 + Δx + 4) 28. Δx → 0 = 0 f (x) = −2 f x +Δx − f x = 4Δx Δx(2 4 + Δx + 4) = 4 2 4 + Δx + 4 f ′(x) = = = lim Δx → 0 lim Δx → 0 lim Δx → 0 ( ) ( ) Δx −2 − (−2) Δx 0 Δx m = lim msec = lim 4 = lim 0 Δx → 0 Δx→ 0 Δx→0 2 4 + Δx + 4 = 0 = 4 = 1 2 4 + 4 2 29. f (x) = −5x 26. f (x) = x + 1 at (8, 3) f ′(x) = lim 0 f (x +Δx) − f (x) Δx msec f (8 +Δx) − f (8)= Δx = 8 +Δx + 1 − 8 + 1 Δx Δx→ = lim Δx → 0 = lim Δx → 0 = lim −5(x + Δx) − (−5x) Δx −5x − 5Δx + 5x Δx −5Δx = 9 + Δx − 3 Δx Δx → 0 Δx = lim −5 = 9 +Δx − 3 ⋅ 9 + Δx + 3 Δx → 0 Δx = 9 +Δx − 9 9 + Δx + 3 30. = −5 f (x) = 4x + 1 Δx( 9 + Δx + 3) ′ m f (x +Δx) − f (x) = Δx f (x) = li 0 Δx Δx( 9 + Δx + 3) Δx→ = lim 4(x +Δx) + 1 − (4x + 1) = 1 9 + Δx + 3 Δx → 0 = lim Δx → 0 Δx 4x + 4Δx + 1 − 4x − 1 Δxm = lim Δx → 0 = lim msec 1 = lim Δx → 0 4Δx Δx Δx → 0 9 + Δx + 3 = lim 4 Δx → 0 = 1 = 4 9 + 3 = 1 6
  • 6. 3 2 3 3 Δs 3 3 3 2 2 − Δt 2 2 2         76 Chapter 2 Differentiation 31. g(s) = 1 s + 2 32. h(t) = 6 − 1t g′(s) = = = = = lim Δs → 0 lim Δs → 0 lim Δs → 0 lim Δs → 0 lim g(s+Δs) − g(s) Δs 1 (s +Δs) + 2 − (1 s + 2) Δs 1 s + 1Δs + 2 − 1 s − 2 Δs 1 3 Δs 1 h′(t) = = = = lim Δt → 0 lim Δt → 0 lim Δt → 0 lim Δt → 0 h(t+Δt) − h(t) Δt 6 − 1 (t + Δt) − (6 − 1t) Δt 6 − 1t − 1 Δt − 6 + 1t Δt 1 2 Δt 1Δs → 0 3 = 1 = lim − Δt → 0 2 13 = − 2 33. f (x) = 4x2 − 5x f ′(x) = = lim Δx→ 0 lim Δx→ 0 f (x +Δx) − f (x) Δx 4(x + Δx)2 − 5(x + Δx) − (4x2 − 5x) Δx 4(x2 + 2xΔx + (Δx) 2 ) − 5x − 5Δx − 4x2 + 5x = lim Δx→ 0 Δx = lim Δx→ 0 = lim Δx→ 0 4x2 + 8xΔx + 4(Δx) 2 − 5x − 5Δx − 4x2 + 5x Δx 4Δx  2x + Δx − 5    4   Δx  5 = lim 42x + Δx −  = 8x − 5 Δx→ 0  4 34. f (x) = 2x2 + 7x f ′(x) = = lim Δx→ 0 lim Δx→ 0 f (x +Δx) − f (x) Δx 2(x + Δx)2 + 7(x + Δx) − (2x2 + 7x) Δx 2(x2 + 2xΔx + (Δx) 2 ) + 7x + 7Δx − 2x2 − 7x = lim Δx→ 0 Δx = lim Δx→ 0 = lim Δx→ 0 2x2 + 4xΔx + 2(Δx) 2 + 7x + 7Δx − 2x2 − 7x Δx 2Δx  2x + Δx + 7    2   Δx  7 = lim 22x + Δx +  = 4x + 7 Δx→ 0  2
  • 7. Section 2.1 The Derivative and the Slope of a Graph 77 35. h(t) = t − 3 h′(t) = = = lim Δt → 0 lim Δt → 0 lim h(t+Δt) − h(t) t t +Δt − 3 − t − 3 Δt t +Δt − 3 − t − 3 ⋅ t + Δt − 3 + t − 3 Δt → 0 = lim Δt t + Δt − 3 + t +Δt − 3 − (t − 3) t − 3 Δt → 0 Δt( t + Δt − 3 + t − 3) = lim Δt Δt → 0 Δt( t + Δt − 3 + t − 3) = lim 1 Δt → 0 t + Δt − 3 + t − 3 = 1 2 t − 13 = t − 3 2(t − 3) 36. f (x) = x + 2 f ′(x) = = = lim Δx → 0 lim Δx → 0 lim f (x +Δx) − f (x) Δx x +Δx + 2 − x + 2 Δx x +Δx + 2 − x + 2 ⋅ x + Δx + 2 + x + 2 Δx → 0 = lim Δx x + Δx + 2 + x +Δx + 2 − (x + 2) x + 2 Δx → 0 Δx( x + Δx + 2 + x + 2) = lim Δx Δx → 0 Δx( x + Δx + 2 + x + 2) = lim 1 Δx → 0 x + Δx + 2 + x + 2 = 1 2 x + 2
  • 8. 78 Chapter 2 Differentiation 37. f (t) = t3 − 12t f ′(t) = = = = = = lim Δt → 0 lim Δt → 0 lim Δt → 0 lim Δt → 0 lim Δt → 0 lim Δt → 0 f (t +Δt) − f (t) Δt (t +Δt) 3 − 12(t + Δt) − (t3 − 12t) Δt t3 + 3t2 Δt + 3t(Δt) 2 + (Δt) 3 − 12t − 12Δt − t3 + 12t Δt 3t2 Δt + 3t(Δt) 2 + (Δt) 3 − 12Δt Δt Δt(3t2 + 3tΔt + (Δt) 2 − 12) Δt (3t2 + 3tΔt + (Δt) 2 − 12) = 3t2 − 12 38. f (t) = t3 + t2 f ′(t) = = = = = = lim Δt → 0 lim Δt → 0 lim Δt → 0 lim Δt → 0 lim Δt → 0 lim Δt → 0 f (t +Δt) − f (t) Δt (t +Δt) 3 + (t + Δt) 2 − (t3 + t2 ) Δt t3 + 3t2 Δt + 3t(Δt) 2 + (Δt) 3 + t2 + 2tΔt + (Δt) 2 − t3 − t2 Δt 3t2 Δt + 3t(Δt) 2 + (Δt) 3 + 2tΔt + (Δt) 2 Δt Δt(3t2 + 3tΔt + (Δt) 2 + 2t + Δt) Δt (3t2 + 3tΔt + (Δt) 2 + 2t + Δt) 39. = 3t2 + 2t f (x) = 1 x + 2 f ′(x) = = = = = lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim f (x +Δx) − f (x) Δx 1 − 1 x +Δx + 2 x + 2 Δx 1 ⋅ x + 2 − 1 ⋅ x + Δx + 2 x + Δx + 2 x + 2 x + 2 x + Δx + 2 Δx x + 2 − (x + Δx + 2) (x +Δx + 2)(x + 2) Δx −Δx Δx → 0 Δx(x + Δx + 2)(x + 2) = lim −1 Δx → 0 (x + Δx + 2)(x + 2) 1 = − (x + 2)2
  • 9. 2 2 2 2 8 8 8 8 8 4 8 4 8 4 8 − − Δ − (Δ ) + 4 4 Section 2.1 The Derivative and the Slope of a Graph 79 40. g(s) = 1 41. ( ) 1 2 ( ) s − 4 f x = 2 x at 2, 2 f (x +Δx) − f (x) g′(s) = lim g(s+Δs) − g(s) f ′(x) = lim 0 Δx Δs → 0 = lim Δs → 0 = lim Δs → 0 = lim Δs 1 − 1 s +Δs − 4 s − 4 Δs s − 4 − (s + Δs − 4) (s +Δs − 4)(s − 4) Δs s − 4 − (s + Δs − 4) (s +Δs − 4)(s − 4) 1 ⋅ Δx→ = lim Δx → 0 = lim Δx → 0 = lim Δx → 0 = lim Δx → 0 1 (x + Δx) 2 − 1 x2 Δx 1 (x2 + 2xΔx + (Δx) 2 ) − 1 x2 Δx xΔx + (Δx) 2 Δx Δx(x+ Δx) ΔxΔs → 0 = lim (s + Δs − 4)(s − 4) Δs −Δs = lim Δx → 0 (x + Δx) Δs → 0 Δs(s + Δs − 4)(s − 4) = x = lim −1 m = f ′(2) = 2 Δs → 0 (s + Δs − 4)(s − 4) y − 2 = 2(x − 2) = − 1 y = 2x − 2 (s − 4) 2 4 (2, 2) −6 6 42. −4 f (x) = − 1 x2 at (−4, −2) f ′(x) = = = = = = = lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 f (x +Δx) − f (x) Δx − 1 (x + Δx) 2 − (− 1 x2 ) Δx − 1 (x2 + 2xΔx + (Δx) 2 ) + 1 x2 Δx 1 x2 1 x x 1 x 2 1 x2 8 4 8 8 Δx − 1 xΔx − 1 (Δx) 2 Δx Δx(− 1 x − 1 Δx) Δx (− 1 x − 1 Δx) = − 1 x m = f ′(−4) = − 1 (−4) = 1 3 −9 9 (−4, −2) y − (−2) = 1x − (−4) y + 2 = x + 4 y = x + 2 −9
  • 10. 80 Chapter 2 Differentiation 43. f (x) = (x − 1) 2 at (−2, 9) f ′(x) = = = = = = lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 f (x +Δx) − f (x) Δx (x +Δx − 1) 2 − (x − 1) 2 Δx x2 + 2xΔx − 2x + (Δx) 2 − 2Δx + 1 − x2 + 2x − 1 Δx 2xΔx + (Δx) 2 − 2Δx Δx Δx(2x + Δx − 2) Δx (2x + Δx − 2) 11 = 2x − 2 m = f ′(−2) = 2(−2) − 2 = −6 (−2, 9) y − 9 = −6x − (−2) y = −6x − 3 −12 12 −5 44. f (x) = 2x2 − 5 at (−1, −3) f ′(x) = = = = = = lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 f (x +Δx) − f (x) Δx 2(x +Δx) 2 − 5 − (2x2 − 5) Δx 2x2 + 4xΔx + 2(Δx) 2 − 5 − 2x2 + 5 Δx 4xΔx + 2(Δx) 2 Δx Δx(4x + 2Δx) Δx (4x + 2Δx) = 4x m = f ′(−1) = 4(−1) = −4 2 −6 6 y − (−3) = −4(x − (−1)) y + 3 = −4x − 4 y = −4x − 7 (−1, −3) −6
  • 11. −1 Section 2.1 The Derivative and the Slope of a Graph 81 45. f (x) = x + 1 at (4, 3) f ′(x) = = = lim Δx → 0 lim Δx → 0 lim f (x +Δx) − f (x) Δx x +Δx + 1 − ( x + 1) Δx x +Δx − x ⋅ x + Δx + x Δx → 0 = lim Δx x + Δx + x x +Δx − x Δx → 0 Δx( x + Δx + x) = lim Δx Δx → 0 Δx( x + Δx + x) = lim 1 Δx → 0 = 1 x + Δx + x 2 x m = f ′(4) = 1 = 1 5 2 4 4 y − 3 = 1 (x − 4)4 −2 y = 1 x + 2 4 (4, 3) 7 46. f (x) = x + 3 at (6, 3) f ′(x) = = = lim Δx → 0 lim Δx → 0 lim f (x +Δx) − f (x) Δx x +Δx + 3 − x + 3 Δx x +Δx + 3 − x + 3 ⋅ x + Δx + 3 + x + 3 Δx → 0 = lim Δx x + Δx + 3 + x +Δx + 3 − (x + 3) x + 3 Δx → 0 Δx( x + Δx + 3 + x + 3) = lim Δx Δx → 0 Δx( x + Δx + 3 + x + 3) = lim 1 Δx → 0 x + Δx + 3 + x + 3 = 1 2 x + 3 = x + 3 2(x + 3) m = f ′(6) = 1 = 1 2 6 + 3 6 y − 3 = 1 (x − 6)6 y − 3 = 1 x − 1 6 y = 1 x + 2 6 7 (6, 3) −4 8 −1
  • 12. (2, −1)  2 5 25 5 ( 82 Chapter 2 Differentiation 47. f (x) = 1 at  − 1 , −1 5x  5  f ′(x) = = = = lim Δx → 0 lim Δx → 0 lim Δx → 0 lim   f (x +Δx) − f (x) Δx 1 − 1 5(x +Δx) 5x Δx x − (x + Δx) 5x(x+Δx) Δx x − (x + Δx) ⋅ 1 Δx → 0 5x(x + Δx) Δx = lim −Δx Δx → 0 5x ⋅ Δx ⋅ (x + Δx) = lim −1 Δx → 0 5x(x + Δx) = − 1 5x2 m f  1 1 1 5= ′−  = − = − = −  5  1 5−     1  5        y − (−1) = −5x − − 1  1   5 −3 3 48.  1 y + 1 = −5x +    y + 1 = −5x − 1 y = −5x − 2 f (x) = 1 at (2, −1)x − 3 − 1 , −15 −3 f ′(x) = = = = = lim Δx→ 0 lim Δx→ 0 lim Δx→ 0 lim Δx→ 0 lim f (x +Δx) − f (x) Δx 1 − 1 x +Δx − 3 x − 3 Δx 1 ⋅ x − 3 − 1 ⋅ x + Δx − 3 x + Δx − 3 x − 3 x − 3 x + Δx − 3 Δx x − 3 − (x + Δx − 3) (x +Δx − 3)(x − 3) Δx −Δx Δx→ 0 (x + Δx − 3)(x − 3)Δx = lim −1 = − 1 Δx→ 0 (x + Δx − 3)(x − 3) (x − 3) 2 1 3 m = f ′(2) = − (2 − 3) 2 = −1 y − (−1) = −1(x − 2) y + 1 = − x + 2 y = −x + 1 −2 7 −3
  • 13. x2 4 4 2 4 2 4 4 2 4 4   x 1 3 3 3 3 3 3 3 3 3 = − Section 2.1 The Derivative and the Slope of a Graph 83 49. f (x) 1 4 50. f (x) = x2 − 7 f ′(x) = lim Δx → 0 f (x + Δx) − Δx f (x) f ′(x) = lim Δx→ 0 f (x +Δx) − f (x) Δx = lim Δx → 0 = lim Δx → 0 = lim Δx → 0 = lim Δx → 0 − 1 (x + Δx)2 − (− 1 x2 ) Δx − 1 x2 − 1 xΔx − 1 (Δx) 2 + 1 x2 Δx − 1 xΔx − 1 (Δx) 2 Δx Δx(− 1 x − 1 Δx) Δx = lim Δx→ 0 = lim Δx→ 0 = lim Δx→ 0 = lim Δx→ 0 (x +Δx) 2 − 7 − (x2 − 7) Δx x2 + 2xΔx + (Δx) 2 − 7 − x2 + 7 Δx Δx(2x + Δx) Δx (2x + Δx) = 2x = lim  − 1 x − 1 Δx  Since the slope of the given line is −2,   Δx → 0 2 4  1 = − 2 Since the slope of the given line is −1, − 2 x = −1 2x = −2 x = −1 and f (−1) = −6. At the point (−1, −6), the tangent line parallel to 2x + y = 0 is x = 2 and f (2) = −1. y − (−6) = −2(x − (−1)) At the point (2, −1), the tangent line parallel to x + y = 0 is y − (−1) = −1(x − 2) y = −x + 1. y = −2x − 8. 51. f (x) 1 x3= − 3 f ′(x) = = = = = = lim Δx→ 0 lim Δx→ 0 lim Δx→ 0 lim Δx→ 0 lim Δx→ 0 lim Δx→ 0 f (x +Δx) − f (x) Δx − 1 (x + Δx)3 − (−1 x3 ) Δx − 1 (x3 + 3x2 Δx + 3x(Δx) 2 + (Δx) 3 ) + 1 x3 Δx − 1 x3 − x2 Δx − x(Δx) 2 − 1 (Δx) 3 + 1 x3 Δx Δx(−x2 − xΔx − 1 (Δx) 2 ) Δx (− x2 − xΔx − 1 (Δx) 2 ) = −x2 Since the slope of the given line is −9, − x2 x2 = −9 = 9 x = ±3 and f (3) = −9 and f (−3) = 9. At the point (3, −9), the tangent line parallel to 9x + y − 6 = 0 is y − (−9) = −9(x − 3) y = −9x + 18. At the point (−3, 9), the tangent line parallel to 9x + y − 6 = 0 is y − 9 = −9(x − (−3)) y = −9x − 18.
  • 14. 2 2 84 Chapter 2 Differentiation 52. f (x) = x3 + 2 f ′(x) = = = = = = lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 f (x +Δx) − f (x) Δx (x +Δx) 3 + 2 − (x3 + 2) Δx x3 + 3x2 Δx + 3x(Δx) 2 + (Δx) 3 + 2 − x3 − 2 Δx 3x2 Δx + 3(Δx) 2 + (Δx) 3 Δx Δx(3x2 + 3xΔx + (Δx) 2 ) Δx (3x2 + 3xΔx + (Δx) 2 ) = 3x2 The slope of the given line is 3x − y − 4 = 0 y = 3x − 4 m = 3. 3x2 = 3 x2 = 1 x = ±1 x = 1 and f (1) = 3 x = −1 and f (−1) = 1 At the point (1, 3), the tangent line parallel to 3x − y − 4 = 0 is y − 3 = 3(x − 1) y − 3 = 3x − 3 y = 3x. At the point (−1, 1), the tangent line parallel to 3x − y − 4 = 0 is y − 1 = 3(x − (−1)) y − 1 = 3(x + 1) y − 1 = 3x + 3 y = 3x + 4. 53. y is differentiable for all x ≠ −3. At (−3, 0), the graph has a node. 54. y is differentiable for all x ≠ ±3. At (±3, 0), the graph has a cusp. 55. y is differentiable for all x ≠ − 1. At (− 1, 0), the graph has a vertical tangent line. 56. y is differentiable for all x > 1. The derivative does not exist at endpoints. 57. y is differentiable for all x ≠ ± 2. The function is not defined at x = ±2. 58. y is differentiable for all x ≠ 0. The function is discontinuous at x = 0.
  • 15. x −2 − 3 −1 − 1 0 1 2 1 3 2 2 f (x) 1 0.5625 0.25 0.0625 0 0.0625 0.25 0.5625 1 f ′(x) −1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1   4 2 4 2 Section 2.1 The Derivative and the Slope of a Graph 85 59. Since y f ′(x) = −3 for all x, f is a line of the form 5 f (x) = −3x + b. f (0) = 2, so 2 = (−3)(0) + b, or b = 2. 2 1 Thus, f (x) = −3x + 2. −4 −3 −2 −1 x 2 3 4 60. Sample answer: Since f (−2) = f (4) = 0, −2 −3 (x + 2)(x − 4) = 0. A function with these zeros is f (x) = x2 − 2x − 8. Then f ′(x) = = = = lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 f (x +Δx) − f (x) Δx (x + Δx) 2 − 2(x + Δx) − 8 − (x2 − 2x − 8) Δx x2 + 2xΔx + (Δx) 2 − 2x − 2Δx − 8 − x2 + 2x + 8 Δx 2xΔx + (Δx) 2 − 2Δx Δx y 1 −3 −1 x 1 2 3 5 6 = lim 2x + Δx − 2 −2 Δx → 0 = 2x − 2. So f ′(1) = 2(1) − 2 = 0.Sketching f (x) shows that −8 f ′(x) < 0 for x < 1 and f ′(0) > 0 for x > 1. −9 61. 2 −2 2 −2 2 2 Analytically, the slope of f (x) = 1 x2 is f (x +Δx) − f (x)m = lim Δx → 0 Δx 1 (x + Δx)2 − 1 x2 = lim 4 4 Δx → 0 Δx 1 x2 + 2x(Δx)2 + (Δx)2  − 1 x2 = lim 4   4 Δx → 0 Δx 1 x2 + 1 xΔx + 1 (Δx)2 − 1 x2 = lim 4 2 4 4 Δx → 0 Δx 1 xΔx + 1 (Δx)2 = lim 2 4 Δx → 0 = lim Δx → 0 Δx Δx(1 xΔx + 1 Δx) Δx = lim (1 x + 1 Δx)Δx → 0 2 4 = 1 x.
  • 16. x −2 − 3 −1 − 1 0 1 2 1 3 2 2 f (x) −6 −2.53 −0.75 −0.1 0 0.1 0.75 2.53 6 f ′(x) 9 5.0625 2.25 0.5625 0 0.5625 2.25 5.0625 9 x −2 − 3 −1 − 1 0 1 2 1 3 2 2 f (x) 4 1.6875 0.5 0.0625 0 −0.0625 −0.5 −1.6875 −4 f ′(x) −6 −3.375 −1.5 −0.375 0 −0.375 −1.5 −3.375 −6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 2 ( ) ( ) = − 86 Chapter 2 Differentiation 62. 4 −6 6 −4 2 2 Analytically, the slope of f (x) = 3 x3 is m = lim Δx→ 0 = lim Δx→ 0 = lim Δx→ 0 = lim Δx→ 0 = lim Δx→ 0 = lim Δx→ 0 = lim f (x +Δx) − f (x) Δx 3 (x + Δx) 3 − 3 x3 Δx 3 (x3 + 3x2 Δx + 3x(Δx) 2 + (Δx) 3 ) − 3 x3 Δx 3 x3 + 9 x2 Δx + 9 x(Δx) 2 + 3 (Δx) 3 − 3 x3 Δx 9 x2 Δx + 9 x(Δx) 2 + 3 x(Δx) 3 Δx Δx(9 x2 + 9 xΔx + 3 (Δx) 2 ) Δx (9 x2 + 9 xΔx + 3 (Δx) 2 )Δx→ 0 4 4 4 9 2 = 4 x . 63. 2 −2 2 −2 2 2 Analytically, the slope of f (x) = − 1 x3 is f (x +Δx) − f (x)m = lim Δx → 0 Δx − 1 (x + Δx)3 + 1 x3 = lim 2 2 Δx → 0 = lim Δx → 0 Δx − 1 x3 + 3x2 Δx + 3x Δx 2 + Δx 3  + 1 x3 2   2 Δx − 1 3x2 Δx + 3x(Δx)2 + (Δx)3  = lim 2   Δx → 0 Δx = lim − 13x2 + 3x(Δx) + (Δx)2  Δx → 0 3 x2 . 2 2 
  • 17. x −2 − 3 −1 − 1 0 1 2 1 3 2 2 f (x) −6 −3.375 −1.5 −0.375 0 −0.375 −1.5 −3.375 −6 f ′(x) 6 4.5 3 1.5 0 −1.5 −3 −4.5 −6 2 2 2 −4 Section 2.1 The Derivative and the Slope of a Graph 87 64. 2 −2 2 − 8 2 2 Analytically, the slope of f (x) = − 3 x2 is f (x +Δx) − f (x)m = lim Δx → 0 = lim Δx → 0 Δx − 3 (x + Δx) 2 − (− 3 x2 ) Δx − 3 x2 + 2xΔx + (Δx)2  + 3 x2 = lim 2   2 Δx → 0 Δx − 3 2xΔx + (Δx)2  = lim 2   Δx → 0 Δx = lim − 3 (2x + Δx)Δx → 0 2 = −3x. 65. f ′(x) = f (x +Δx) − f (x) 8 lim Δx → 0 = lim Δx → 0 = lim Δx → 0 Δx (x +Δx) 2 − 4(x + Δx) − (x2 − 4x) −6 12 Δx 2xΔx + (Δx) 2 − 4Δx Δx = lim (2x + Δx − 4)Δx → 0 = 2x − 4 The x-intercept of the derivative indicates a point of horizontal tangency for f. 66. f ′(x) = lim Δx → 0 f (x +Δx) − f (x) Δx = lim Δx → 0 2 2 + 6(x + Δx) − (x + Δx)2 − (2 + 6x − x2 ) Δx = lim Δx → 0 6Δx − 2xΔx − (Δx) = Δx lim (6 − 2x − Δx) = 6 − 2x Δx → 0 13 −7 14 −1 The x-intercept of the derivative indicates a point of horizontal tangency for f.
  • 18. ( ) ( ) 88 Chapter 2 Differentiation 67. f ′(x) = f (x +Δx) − f (x)lim Δx → 0 = lim Δx → 0 = lim Δx → 0 = lim Δx → 0 Δx (x +Δx) 3 − 3(x + Δx) − (x3 − 3x) Δx x3 + 3x2 Δx + 3x(Δx) 2 + (Δx) 3 − 3x − 3Δx − x3 + 3x Δx 3x2 Δx + 3x(Δx) 2 + (Δx) 3 − 3Δx Δx = lim 3x2 + 3xΔx + (Δx) 2 − 3 Δx → 0 = 3x2 − 3 4 −6 6 −4 The x-intercepts of the derivative indicate points of horizontal tangency for f. 68. f ′(x) = f (x +Δx) − f (x)lim Δx → 0 = lim Δx → 0 = lim Δx → 0 Δx (x +Δx) 3 − 6(x + Δx) 2 − (x3 − 6x2 ) Δx x3 − 3x2 Δx + 3x(Δx) 2 + (Δx) 3 − 6(x2 + 2xΔx + (Δx) 2 ) − x3 + 6x2 Δx = lim 3x2 + 3xΔx + (Δx) 2 − 12x − 6Δx Δx → 0 = 3x2 − 12x 4 −4 8 −36 The x-intercepts of the derivative indicate points of horizontal tangency for f. 69. True. The slope of the graph is given by f ′(x) = 2x, 73. The graph of f (x) = x2 + 1 is smooth at (0, 1), but the which is different for each different x value. graph of g(x) = x + 1 has a node at (0, 1). The 70. False. x = 0. f (x) = x is continuous, but not differentiable at function g is not differentiable at (0, 1). 6 71. True. See page 122. 72. True. See page 115. −4 4 −1
  • 19. 4 4 3 −3 2 Section 2.2 Some Rules for Differentiation 89 Section 2.2 Some Rules for Differentiation Skills Warm Up 1. (a) 2x2 , x = 2 2(22 ) = 2(4) = 8 1  5.  x   −3 4 = 1 4x3 4 (b) (5x) 2 , x = 2 6. 1 (3)x2  1 − 2 x−1 2 + 1 x−2 3 = x2 − x−1 2 + 1 x−2 3 5(2) 2 = 102 = 100 3  2 3 3 = x2 − 1 + 1 (c) 6x−2 , x = 2 7. 3x2 + 2x = 0 x 3 3 x2 6(2)−2 = 6(1 ) = 3 x(3x + 2) = 0 x = 0 2. (a) 1 , x = 2 (3x)2 3x + 2 = 0 → x = − 2 1 1 1 8. x3 − x = 0 2 = 2 = 3(2) 1 6 36 x(x2 − 1) = 0 x(x + 1)(x − 1) = 0(b) , x = 2 4x3 1 = 1 = 1 x = 0 x + 1 = 0 → x = −1 4(23 ) 4(8) 32 x 1 0 x 1 (c) (2x) , x = 2 9. x2 − = → = + 8x − 20 = 0 4x−2 −3 −3 2 (x + 10)(x − 2) = 0 2(2) = 4 = 2 = 1 x + 10 = 0 → x = −10 4(2) −2 4(2) −2 4(43 ) 64 10. x − 2 = 0 → x = 2 3x2 − 10x + 8 = 0 3. 4(3)x3 + 2(2)x = 12x3 + 4x = 4x(3x2 + 1) ( )( )3x − 4 x − 2 = 0 4 4. 1 ( ) 2 3 1 2 3 2 3 3 1 2 ( 3 2 ) 3x − 4 = 0 → x = 3 2 3 x − 2 x = 2 x − 2 x = 2 x x − 1 x − 2 = 0 → x = 2 1. y = 3 y′ = 0 2. f (x) = −8 6. h(x) = 6x5 h′(x) = 30x4 5x4 f ′(x) = 0 3. y = x5 7. y = y′ = 3 20 x3 = 10 x3 y′ = 5x4 4. f (x) = 1 = x−6 x6 6 3 3t2 8. g(t) = 4 3 f ′(x) = −6x−7 6 = − x7 g′(t) = t 2 5. h(x) = 3x3 h′(x) = 9x2 9. f (x) = 4x f ′(x) = 4
  • 20. 3 3 ( ) x = − = − 2 4 2 90 Chapter 2 Differentiation 10. g(x) = x = 1 x 17. s(t) = 4t4 − 2t + t + 3 11. 3 3 g′(x) = 1 3 y = 8 − x3 y = −3x2 18. 19. s′(t) = 16t2 − 4t + 1 y = 2x3 − x2 + 3x − 1 y′ = 6x2 − 2x + 3 g(x) = x2 3 12. y = t2 − 6 y′ = 2t g′(x) = 2 x−1 3 = 2 3 3x1 3 13. f (x) = 4x2 − 3x 20. h(x) = x5 2 f ′(x) = 8x − 3 h′(x) = 5 x3 2 2 14. g(x) = 3x2 + 5x3 g′(x) = 6x + 15x2 = 15x2 + 6x 21. y = 4t4 3 y′ = 4(4 )t1 3 = 16 t1 3 15. f (t) = −3t2 + 2t − 4 f ′(t) = −6t + 2 22. f (x) = 10x1 6 f ′(x) = 5 x−5 6 = 5 = 5 16. y = 7x3 − 9x2 + 8 y′ = 21x2 − 18x 23. y = 4x 3 3x5 6 −2 + 2x2 36 x5 y′ = −8x−3 + 4x1 = − 8 + 4x x3 24. s(t) = 8t−4 + t s′(t) = 8 −4t−6 + 1 = − 32 + 1 t6 Function Rewrite Differentiate Simplify 25. y = 2 7x4 y = 2 x−4 7 y′ = −8 x−5 7 8 y′ = − 7x5 26. y = 2 3x2 y = 2 x−2 3 4 y′ = − −3 3 4 y′ = − 3x3 27. 28. y = 1 (4x)3 y = π (2x)6 y = 1 x−3 64 y = π x−6 64 y′ 3 x−4 64 y′ 6π x−7 64 y′ = − 3 64x4 y′ = − 3π 32x7 29. y = 4 (2x)−5 4x y = 128x5 4 y′ = 128(5)x4 3 y′ = 640x4 3 30. y = x−3 y = 4x y′ = 4(4)x y′ = 16x 31. y = 6 x y = 6x1 2 y′ = 6(1 )x−1 2 y′ = 3 x 32. y = 3 x y = 3 x1 2 y′ = 31 x−1 2 y′ = 3   4 4   8 x
  • 21. 2 2 2 4 2 = − Section 2.2 Some Rules for Differentiation 91 Function Rewrite Differentiate Simplify 33. y = 1 y = 1 x−1 6 y′ = 1 − 1 x−7 6 y′ = − 1 7 6 x 7 7  6  6 7  42 x 34. y = 3 y = 3 x−3 4 y′ = 3 − 3 x−7 4 y′ = − 9 2 4 x3 2 2  4  4 7  8 x 35. y = 5 8x y = (8x) 1 5 = 81 5 x1 5 y′ = 81 5 1 x−4 5  1 5 8 5 8 y′ = 81 5 = = 5  5x4 5 5 4 5x  5 x 36. y = 3 6x2 y = 3 6(x) 2 3 y′ = 3 6  2 x−1 3  3 y′ = 2 3 6 3   3 x 37. y = x3 2 43. f (x) = − 1 x(1 + x2 ) = − 1 x − 1 x3 y′ = 3 x1 2 1 3 2 2 f ′(x) = − 2 − 2 x At the point (1, 1), y′ = 3 (1) 1 2 = 3 = m. f ′(1) = − 1 − 3 = −22 2 2 2 38. y = x−1 y′ = x−2 1 = − 44. f (x) = 3(5 − x) 2 f ′(x) = −30 + 6x = 75 − 30x + 3x2 x2  3 4 1 16 f ′(5) = −30 + (6)(5) = 0 At the point  , , y′ = − 2 = − = m.  4 3 (3 ) 9 45. (a) y = −2x4 + 5x2 − 3 y′ = −8x3 + 10x 39. f (t) = t−4 m y′(1) 8 10 2 f ′(t) = −4t−5 4 t5 At the point = = − + = The equation of the tangent line is y − 0 = 2(x − 1) y = 2x − 2. 1 , 16, f  1 = − 4 4 = −128 = m.   ′  = −  2   2  1 5     1 32 (b) and (c) 3.1 40. f (x) = x−1 3 −4.7 4.7 f ′(x) 1 x−4 3 = − 1 = − 3 3x4 3 −3.1  1 ′ 1 1 46. (a) y = x3 + x + 4At the point 8, 2 , f (8) = − = − = m. 4 3 48  3(8) y′ = 3x2 + 1 41. f (x) = 2x3 + 8x2 − x − 4 m = y′(−2) = 3(−2) 2 + 1 = 13 42. f ′(x) = 6x2 + 16x − 1 At the point (−1, 3), f ′(−1) = 6(−1) 2 + 16(−1) − 1 = −11 = m. f (x) = x4 − 2x3 + 5x2 − 7x The equation of the tangent line is y − (−6) = 13x − (−2) y + 6 = 13x + 26 y = 13x + 20. f ′(x) = 4x3 − 6x2 + 10x − 7 At the point (−1, 15), f ′(−1) = 4(−1) 3 − 6(−1) 2 + 10(−1) − 7 = −4 − 6 − 10 − 7 = −27 = m. (b) and (c) −5 50 5 −50
  • 22. 3 92 Chapter 2 Differentiation 47. (a) f (x) = 3 x + 5 x = x1 3 + x1 5 50. (a) y = (2x + 1) 2 f ′(x) = 1 x−2 3 + 1 x−4 5 = 1 + 1 y = 4x2 + 4x + 1 3 5 3x2 3 5x4 5 y′ = 8x + 4 m = f ′(1) = 1 + 1 = 8 3 5 15 m = y′ = 8(0) + 4 = 4 The equation of the tangent line is y − 2 = 8 (x − 1) 15 The equation of the tangent line is y − 1 = 4(x − 0) y = 4x + 1. y = 8 x + 22 . 15 15 (b) and (c) 3.1 (b) and (c) 3 −4 2 −4.7 4.7 −1 −3.1 51. f (x) = x2 − 4x−1 − 3x−2 f ′ x = 2x + 4x−2 + 6x−3 = 2x + 4 + 6 48. (a) f (x) = 1 − x = x−2 3 − x 3 x2 ( ) x2 x3 f ′(x) 2 x−5 3 − 1 52. f (x) = 6x2 − 5x−2 + 7x−3 = − 3 10 21 m = f ′(−1) = 2 1 − 1 = − ( ) x x4 f ′ x 3 3 = 12x + 10x−3 − 21x−4 = 12x + 3 − The equation of the tangent line is y − 2 = − 1 (x + 1) 53. f (x) = x2 − 2x − 2 = x2 − 2x − 2x−4 x4 8 y = − 1 x + 5. ′( ) 2 2 8 −5 2 2 x3 3 (b) and (c) 4 f x = x − + x = x − + 5 1 54. f (x) = x2 + 4x + = x2 + 4x + x−1 x −5 4 −2 55. f ′(x) = 2x + 4 − x−2 f (x) = x4 5 + x = 2x + 4 − 1 x2 f ′ x = 4 x−1 5 + 1 = 4 + 1 49. (a) y = 3x  x2 − 2 ( ) 5 5x1 5  x    y = 3x3 − 6 56. f (x) = x1 3 − 1 y′ = 9x2 f ′(x) 1 x−2 3 1 m = y′ = 9(2) 2 = 36 = = 3 3x2 3 The equation of the tangent line is y − 18 = 36(x − 2) y = 36x − 54. 57. 58. f (x) = x(x2 + 1) = x3 + x f ′(x) = 3x2 + 1 f (x) = (x2 + 2x)(x + 1) = x3 + 3x2 + 2x (b) and (c) 50 f ′(x) = 3x2 + 6x + 2 −5 5 −50
  • 23. 3 2 Section 2.2 Some Rules for Differentiation 93 59. 2x3 − 4x2 + 3 f (x) = = 2x − 4 + 3x−2 x2 f ′(x) = 2 − 6x−3 = 2 − 6 = 2x − 6 = 2(x3 − 3) x3 x3 x3 60. 2x2 − 3x + 1 f (x) = = 2x − 3 + x−1 x f ′(x) = 2 − x−2 1 2x2 − 1 = 2 − = x2 x2 61. 4x3 − 3x2 + 2x + 5 f (x) = = 4x − 3 + 2x−1 + 5x−2 x2 2 10 4x3 − 2x − 10 f ′(x) = 4 − 2x−2 − 10x−3 = 4 − − = x2 x3 x3 62. 63. −6x3 + 3x2 − 2x + 1 f (x) = = −6x2 + 3x − 2 + x−1 x f ′(x) = −12x + 3 − x−2 = −12x + 3 − 1 x2 y = x4 − 2x + 3 y′ = 4x3 − 4x = 4x(x2 − 1) = 0 when x = 0, ±1 If x = ±1, then y = (±1) 4 − 2(±1) 2 + 3 = 2. The function has horizontal tangent lines at the points (0, 3), (1, 2), and (−1, 2). 67. 68. y = x2 + 3 y′ = 2x Set y′ = 4. 2x = 4 x = 2 If x = 2, y = (2) 2 + 3 = 7 → (2, 7). The graph of y = x2 + 3 has a tangent line with slope m = 4 at the point (2, 7). y = x2 + 2x 64. y = x3 + 3x2 y′ = 2x + 2 y′ = 3x2 + 6x = 3x(x + 2) = 0 when x = 0, −2. The function has horizontal tangent lines at the points (0, 0) and (−2, 4). Set y′ = 10. 2x + 2 = 10 x = 4 x = 4, y = 4 2 + 2 4 = 24 → 4, 24 . 65. y = 1 x2 + 5x If ( ) ( ) ( ) 2 y′ = x + 5 = 0 when x = −5. The graph of y = x + 2x has a tangent line with slope The function has a horizontal tangent line at the point m = 10 at the point (4, 24). ( 25 )−5, − 2 . 66. y = x2 + 2x y′ = 2x + 2 = 0when x = −1. The function has a horizontal tangent line at the point (−1, −1).
  • 24. 94 Chapter 2 Differentiation 69. (a) y 4 2 70. (a) y 5 g f 4 g f x −4 −2 2 4 −2 −4 3 2 −3 −2 −1 −1 x 1 2 3 (b) f ′(x) = g′(x) = 3x2 f ′(1) = g′(1) = 3 (b) f ′(x) = 2x f ′(1) = 2 g′(x) = 6x (c) Tangent line to f at x = 1: f (1) = 1 y − 1 = 3(x − 1) y = 3x − 2 Tangent line to g at x = 1: g(1) = 4 y − 4 = 3(x − 1) y = 3x + 1 y 4 2 g f x g′(1) = 6 (c) Tangent line to f at x = 1: f (1) = 1 y − 1 = 2(x − 1) y = 2x − 1 Tangent line to g at x = 1: g(1) = 3 y − 3 = 6(x − 1) y = 6x − 3 y 5 g f 4 −4 −2 2 4 3 −2 2 −4 (d) f ′ and g′ are the same. −3 −2 −1 −1 x 1 2 3 (d) g′is 3 times f ′. 71. If g(x) = f (x) + 6, then g′(x) = f ′(x) because the derivative of a constant is 0, g′(x) = f ′(x). 72. If g(x) = 2 f (x), then g′(x) = 2 f ′(x) because of the Constant Multiple Rule. 73. If g(x) = −5 f (x), then g′(x) = −5 f ′(x) because of the Constant Multiple Rule. 74. If g(x) = 3 f (x) − 1, then g′(x) = 3 f ′(x) because of the Constant Multiple Rule and the derivative of a constant is 0. 75. (a) R = −4.1685t3 + 175.0372 − 1950.88t + 7265.3 R′ = −12.5055t2 + 350.074t − 1950.88 2009: R′(9) = −12.5055(9) 2 + 350.074(9) − 1950.88 ≈ $186.8 million per year 2011: R′(11) = −12.5055(11) 2 + 350.074(1) − 1950.88 ≈ $386.8 million per year (b) These results are close to the estimates in Exercise 13 in Section 2.1. (c) The slope of the graph at time t is the rate at which sales are increasing in millions of dollars per year.
  • 25. Section 2.2 Some Rules for Differentiation 95 76. (a) R = −2.67538t4 + 94.0568t3 − 1155.203t2 + 6002.42t − 9794.2 R′ = −10.70152t3 + 282.1704t2 − 2310.406t + 6002.42 2010: R′(10) = −10.70152(10) 3 + 282.1704(10) 2 − 2310.406(10) + 6002 ≈ $413.88 million per year 2012: R′(12) = −10.70152(12) 3 + 282.1704(12) 2 − 2310.406(12) + 6002 ≈ $417.86 million per year (b) These results are close to the estimates in Exercise 14 in Section 2.1. (c) The slope of the graph at time t is the rate at which sales are increasing in millions of dollars per year. 77. (a) More men and women seem to suffer from migraines between 30 and 40 years old. More females than males suffer from migraines. Fewer people whose income is greater than or equal to $30,000 suffer from migraines than people whose income is less than $10,000. 81. f (x) = 4.1x3 − 12x2 + 2.5x f ′(x) = 12.3x2 − 24x + 2.5 12 f ′ (b) The derivatives are positive up to approximately 37 years old and negative after about 37 years of age. The percent of adults suffering from migraines increases up to about 37 years old, then decreases. 0 3 f −12 The units of the derivative are percent of adults suffering from migraines per year. 78. (a) The attendance rate for football games, g′(t), is greater at game 1. 82. f has horizontal tangents at (0.110, 0.135)and (1.841, −10.486). f (x) = x3 − 1.4x2 − 0.96x + 1.44 f ′(x) = 3x2 − 2.8x − 0.96 (b) The attendance rate for basketball games, f ′(t), 5 is greater than the rate for football games, g′(t), at game 3. f ′ −2 2 (c) The attendance rate for basketball games, f ′(t), f is greater than the rate for football games, g′(t), at game 4. In addition, the attendance rate for football games is decreasing at game 4. (d) At game 5, the attendance rate for football continues −5 f has horizontal tangents at (1.2, 0) and (−0.267, 1.577). to increase, while the attendance rate for basketball continues to decrease. 83. False. Let f (x) = x and g(x) = x + 1. 79. C = 7.75x + 500 Then f ′(x) = g′(x) = 1, but f (x) ≠ g(x). C′ = 7.75, which equals the variable cost. 84. True. c is a constant. 80. C = 150x + 7000 P = R − C P = 500x − (150x + 7000) P = 350x − 7000 P′ = 350, which equals the profit on each dinner sold.
  • 26. 10 10 5 5 2 9 96 Chapter 2 Differentiation Section 2.3 Rates of Change: Velocity and Marginals Skills Warm Up −63 − (−105) 42 8. y = −16x2 + 54x + 70 1. = 21 − 7 14 = 3 y′ = −32x + 54 9. A = 1 (−2r3 + 3r2 + 5r) 2. −43 − 35 = 6 − (−7) −78 13 A′ = 1 (−6r2 + 6r + 5) = −6 A′ = − 3r2 + 3r + 1 3. 24 − 33 = −9 = −3 10. y = 1 (6x3 − 18x2 + 63x − 15)9 − 6 3 9 y′ = 1 (18x2 − 36x + 63) 4. 40 − 16 = 24 12 = y′ = 2x2 − 4x + 7 18 − 8 10 5 5. y = 4x2 − 2x + 7 y′ = 8x − 2 6. s = −2t3 + 8t2 − 7t s′ = −6t2 + 16t − 7 7. s = −16t2 + 24t + 30 s′ = −32t + 24 11. 12. x2 y = 12x − 5000 y′ = 12 − 2x 5000 y′ = 12 − x 2500 y = 138 + 74x − 3x2 x3 10,000 y′ = 74 − 10,000 1. (a) 1980–1986: 120 − 63 = $9.5 billion yr 6 − 0 (e) 2004–2010: 408 − 305 ≈ $17.2 billion yr 30 − 24 (b) 1986–1992: 165 − 120 12 − 6 = $7.5 billion yr (f ) 1980–2012: 453 − 63 ≈ $12.2 billion yr 32 − 0 (c) 1992–1998: 226 − 165 ≈ $10.2 billion yr 18 − 12 (d) 1998–2004: 305 − 226 ≈ $13.2 billion yr 24 − 18 (g) 1990–2012: 453 − 152 32 − 10 (h) 2000–2012: 453 − 269 32 − 20 ≈ $13.7 billion yr ≈ $15.3 billion yr
  • 27. = − = − Section 2.3 Rates of Change: Velocity and Marginals 97 2. (a) Imports: 1980–1990: 495 − 245 = $25 billion yr 10 − 0 6. f (x) = −x2 − 6x − 5; [−3, 1] Average rate of change: Δf = f (1)− f (−3) = −12 − 4 = −4(b) Exports: 1980–1990: 394 − 226 10 − 0 = $16.8 billion yr Δx f ′(x) 1 − (−3) 4 = −2x − 6 (c) Imports: 1990–2000: 1218 − 495 ≈ $72.3 billion yr 20 − 10 (d) Exports: Instantaneous rates of change: 7. f (x) = 3x4 3 ; [1, 8] Average rate of change: f ′(−3) = 0, f ′(1) = −8 1990–2000: 782 − 394 = $38.8 billion yr Δy f (8)− f (1)= = 48 − 3 = 45 20 − 10 Δx 8 − 1 7 7 (e) Imports: 2000–2010: 1560 − 1218 = $38.0 billion yr 29 − 20 f ′(x) = 4x1 3 Instantaneous rates of change: f '(1) = 4, f ′(8) = 8 (f ) Exports: 8. f (x) = x3 2 ; [1, 4] 2000–2010: 1056 − 782 29 − 20 = $30.4 billion yr Average rate of change: (g) Imports: Δy f (4)− f (1)= = 8 − 1 = 7 1980–2013: 2268 − 245 ≈ $61.3 billion yr 33 − 0 (h) Exports: Δx f ′(x) = 4 − 1 3 3 3 x1 2 2 3 1980–2013: 1580 − 226 33 − 0 3. f (t) = 3t + 5; [1, 2] Average rate of change: ≈ $41.0 billion yr Instantaneous rates of change: 9. f (x) = 1 ; [1, 5]x Average rate of change: f ′(1) = , 2 f ′(4) = 3 Δy f (2)− f (1) = = 11 − 8 = 3 ( ) ( ) 1 − − 4 Δy = f 5 − f 1 1 = 5 = 5 = − 1 Δt f ′(t) = 3 2 − 1 1 Δx f ′(x) 5 − 1 3 4 5 1 x2 Instantaneous rates of change: f ′(1) = 3, f ′(2) = 3 = − Instantaneous rates of change: 4. h(x) = 7 − 2x; [1, 3] Average rate of change: f ′(1) = −1, f ′(5) 1 25 Δh = h(3)− h(1) = 1 − 5 = −2 10. f (x) = 1 ; [1, 9]Δt 3 − 1 2 x h′(t) = −2 Average rate of change: Instantaneous rates of change: h(1) = −2, h(3) = −2 Δy ( ) ( ) 1 2 1f 9 − f 1 = = 3 − 1 = − 3 = − 5. h(x) = x2 − 4x + 2; [−2, 2] Average rate of change: Δx f ′(x) = 9 − 1 8 4 6 1 2x3 2 Δh = h(2)− h(−2) = −2 − 14 = −4 Instantaneous rates of change: Δx 2 − (−2) 4 f ′(1) 1 , 2 f ′(9) = 1 54 h′(x) = 2x − 4 Instantaneous rates of change: h′(−2) = −8, h′(2) = 0
  • 28.   98 Chapter 2 Differentiation 11. f (t) = t4 − 2t2 ; [−2, −1] (c) Average: [2, 3]: Average rate of change: s(3)− s(2) 58.9 − 74.4 = = −15.5 m sec Δy f (−1) − f (−2)= = Δx −1 − (−2) −1 − 8 = −9 1 3 − 2 1 v(2) = s′(2) = −10.6 m sec f ′(t) = 4t3 − 4t Instantaneous rates of change: v(3) = s′(3) = −20.4 m sec (d) Average: [3, 4]: f ′(−2) = −24, f ′(−1) = 0 s(4)− s(3) 33.6 − 58.9 = = −25.3 m sec 12. g(x) = x3 − 1; [−1, 1] Average rate of change: 4 − 3 1 v(3) = s′(3) = −20.4 m sec v(4) = s′(4) = −30.2 m sec Δy = g(1)− g(−1) = 0 − (−2) = 1         Δx 1 − (−1) 2 16. (a) H′(v) = 3310 1 v−1 2 5 − 1 = 33  − 1   2    v  g′(x) = 3x2 Rate of change of heat loss with respect to wind speed. Instantaneous rates of change: (b) H′(2) = 33  5  − 1 g′(−1) = 3, g′(1) = 3  2  kcal m2 hr 13. (a) ≈ 0 − 1400 3 ≈ −467 ≈ 83.673 = 83.673 m sec kcal ⋅ sec The number of visitors to the park is decreasing at an average rate of 467 people per month from m3 hr kcal 1 September to December. = 83.673 m3 ⋅ 3600 (b) Answers will vary. Sample answer: [4, 11] = 0.023 kcal m3 Both the instantaneous rate of change at t = 8 and ′  5  the average rate of change on [4, 11]are about zero. H (5) = 33 − 1 5 14. (a) ΔM = 800 − 200 = 600 = 300 mg hr   kcal m2 hr ≈ 40.790 m sec Δt 3 − 1 2 (b) Answers will vary. Sample answer: [2, 5] = 40.790 kcal ⋅ sec m3 hr Both the instantaneous rate of change at t = 4 and kcal 1 15. the average rate of change on [2, 5] is about zero. s = −4.9t2 + 9t + 76 Instantaneous: v(t) = s′(t) = −9.8t + 9 (a) Average: [0, 1]: 17. = 40.790 m3 = 0.11 kcal m s = −4.9t2 + 170 ⋅ 3600 3 s(1)− s(0) 80.1 − 76 = = 4.1 m sec (a) Average velocity = s(3)− s(2) 3 − 2 1 − 0 1 v(0) = s′(0) = 9 m sec v(1) = s′(1) = −0.8 m sec 125.9 − 150.4 = 1 = −24.5 m sec (b) v = s′(t) = −9.8t, v(2) = −19.6 m sec, (b) Average: [1, 2]: v(3) = −29.4 m sec s(2)− s(1) 74.4 − 80.1 = = −5.7 m sec (c) s = −4.9t2 + 170 = 0 2 − 1 1 v(1) = s′(1) = −0.8 m sec 4.9t2 = 170 1702 v(2) = s′(2) = −10.6 m sec t = 4.9 (d) t ≈ 5.89 seconds v(5.89) ≈ −57.7 m sec
  • 29. Section 2.3 Rates of Change: Velocity and Marginals 99 18. (a) s(t) = −4.9t2 − 5.5t + 64 v(t) = s′(t) = −9.8t − 5.5 s(2)− s(1)(b) [1, 2]: 33.4 − 53.6 = = −20.2 m sec (c) 2 − 1 1 v(1) = −15.3 m sec v(2) = −25.1 m sec (d) Set s(t) = 0. −4.9t2 − 5.5t + 64 = 0 −49t2 − 55t + 640 = 0 −(−55) ± (−55) 2 − 4(−49)(640) 55 ± 128,465 t = = ≈ 3.10 sec (e) v(3.10) = −35.88 m sec 2(−49) −98 19. C = 205,000 + 9800x 26. R = 50(20x − x3 2 ) dC = 9800 dR  3 1 2  dx dx = 5020 − 2 x  = 1000 − 75 x 20. C = 150,000 + 7x3 27.   P = −2x2 + 72x − 145 dC = 21x2 dx dP = −4x + 72 dx 21. C = 55,000 + 470x − 0.25x2 , 0 ≤ x ≤ 940 28. P = −0.25x2 + 2000x − 1,250,000 dC = 470 − 0.5x dx dP = −0.5x + 2000 dx 22. C = 100(9 + 3   x)    29. P = 0.0013x3 + 12x dP dC 1 150 = 1000 + 3 x−1 2  = = 0.0039x2 + 12 dx    2  x dx 23. R = 50x − 0.5x2 30. P = −0.5x3 + 30x2 − 164.25x − 1000 dR = 50 − x dx dP = −1.5x2 + 60x − 164.25 dx 24. R = 30x − x2 31. C = 3.6 x + 500 dR = 30 − 2x (a) C′(x) = 1.8 x 25. dx R = −6x3 + 8x2 + 200x (b) C′(9) = $0.60 per unit. C(10) − C(9) ≈ $0.584 dR = −18x2 + 16x + 200 dx (c) The answers are close. 32. R = 2x(900 + 32x − x2 ) (a) (b) R = 1800x + 64x2 − 2x3 R′(x) = 1800 + 128x − 6x2 R′(14) = $2416 R(15) − R(14) = 2(15)900 + 32(15) − 152  = 34,650 − 32,256 = $2394 − 2(14)900 + 32(14) − 142 (c) The answers are close.
  • 30.   100 Chapter 2 Differentiation 33. P = −0.04x2 + 25x − 1500 (a) dP = −0.08x + 25 = P′(x)dx P′(150) = $13 (b) ΔP = P(151) − P(150) 1362.96 − 1350 = = $12.96 Δx 151 − 150 1 (c) The results are close. 34. P = 36,000 + 2048 x − 1 , 150 ≤ x ≤ 275 8x2 dP 1 = 2048 x−1 2 − 1 (−2x−3 )dx 2  8  = 1024 + 1 x 4x3 (a) When x = 150, dP dx (d) When x = 225, dP dx ≈ $83.61. ≈ $68.27. (b) When x = 175, dP dx (e) When x = 250, dP dx ≈ $77.41. ≈ $64.76. (c) When x = 200, dP dx (f ) When x = 275, dP dx ≈ $72.41. ≈ $61.75. 35. P = 1.73t2 + 190.6t + 16,994 36. (a) 103 (a) P(0) = 16,994 thousand people P(3) = 17,581.37 thousand people P(6) = 18,199.88 thousand people 0 15 98 P(9) = 18,849.53 thousand people P(12) = 19,530.32 thousand people P(15) = 20,242.25 thousand people (b) For t < 4, the slopes are positive, and the fever is increasing. For t > 4, the slopes are negative, and the fever is decreasing. P(18) = 20,985.32 thousand people P(21) = 21,759.53 thousand people The population is increasing from 1990 to 2011. (c) T(0) = 100.4°F T′(4) = 101°F T(8) = 100.4°F T(12) = 98.6°F (b) (c) dP = P′(t) = 3.46t + 190.6 dt dP represents the population growth rate. dt P′(0) = 190.6 thousand people per year P′(3) = 200.98 thousand people per year P′(6) = 211.36 thousand people per year P′(9) = 221.74 thousand people per year P′(12) = 232.12 thousand people per year P′(15) = 242.5 thousand people per year P′(18) = 252.88 thousand people per year P′(21) = 263.26 thousand people per year The rate of growth is increasing. (d) (e) dT = −0.075t + 0.3; the rate of change of dt temperature with respect to time T′(0) = 0.3°F per hour T′(4) = 0°F per hour T′(8) = −0.3°F per hour T(12) = −0.6°F per hour For 0 ≤ t < 4, the rate of change of the temperature is positive; therefore, the temperature is increasing. For 4 < t ≤ 12, the rate of change of the temperature is decreasing; therefore, the temperature is decreasing back to a normal temperature of 98.6°F.
  • 31. Q 0 2 4 6 8 10 Model 160 120 80 40 0 −40 Table − 130 90 50 10 −30 x 600 1200 1800 2400 3000 dR dx 3.8 2.6 1.4 0.2 −1.0 dP dx 2.3 1.1 −0.1 −1.3 −2.5 P 1705 2725 3025 2605 1465 Section 2.3 Rates of Change: Velocity and Marginals 101 37. (a) TR = −10Q2 + 160Q 39. (a) (400, 1.75), (500, 1.50) (b) (TR)′ = MR = −20Q + 160 (c) Slope = 1.50 − 1.75 = −0.0025 500 − 400 p − 1.75 = −0.0025(x − 400) p = −0.0025x + 2.75 P = R − C = xp − c = x(−0.0025x + 2.75) − (0.1x + 25) 38. (a) R = xp = x(5 − 0.001x) = 5x − 0.001x2 0.0025x2 2.65x 25 (b) P = R − C = (5x − 0.001x2 ) − (35 + 1.5x) = −0.001x2 + 3.5x − 35 (b) 800 = − + − (c) dR = 5 − 0.002x dx dP = 3.5 − 0.002x dx 0 1200 0 (c) At x = 300, P has a positive slope. At x = 530, P has a 0 slope. At x = 700, P has a negative slope. P′(x) = −0.005x + 2.65 P′(300) = $1.15 per unit P′(530) = $0 per unit P′(700) = −$.85 per unit 40. (36,000, 30), (32,000, 35) Slope = 35 − 30 = − 5 = 1 32,000 − 36,000 4000 800 p − 30 = − 1 (x − 36,000)800 (a) p = − 1 800 P = R − C x + 75 (demand function) = xp − C = x  − 1 x + 75  − (5x + 700,000) = − 1 x2 + 70x − 700,000 800  800 (b) 400,000   At x = 18,000, P has a positive slope. At x = 28,000, P has a 0 slope. At x = 36,000, P has a negative slope. 0 50,000 0 (c) P′(x) = − 1 400 x + 70 P′(18,000) = $25 per ticket P′(28,000) = $0 per ticket P′(36,000) = −$20 per ticket
  • 32. x 10 15 20 25 30 35 40 C 1750 1166.67 875 700 583.33 500 437.5 dC dx −175 −77.78 −43.75 −28 −19.44 −14.29 −10.94 102 Chapter 2 Differentiation 41. (a) C(x) =  25,000 km 1 L  0.70 dollar   yr  x km  1 L      C(x) = 17,500 dollars x yr dollars dC 17,500 yr (b) = − dx x2 km L (c) The marginal cost is the change of savings for a 1-kilometer per liter increase in fuel efficiency. (d) The driver who gets 15 kilometers per liter would benefit more than the driver who gets 35 kilometers per liter. The value of dC dx is a greater savings for x = 15 than for x = 35. 42. (a) f ′(0.789)is the rate of change of the number of liters of gasoline sold when the price is $0.789 liter. (b) In general, it should be negative. Demand tends to decrease as price increases. Answers will vary. 43. (a) Average rate of change from 2000 to 2013: Δ p Δt = 16,576.66 − 10,786.85 ≈ $445.37 yr 13 − 0 (b) Average rate of change from 2003 to 2007: Δ p Δt = 13,264.82 − 10,453.92 7 − 3 ≈ $702.73 yr So, the instantaneous rate of change for 2005 is p′(5) ≈ $702.73 yr. (c) Average rate of change from 2004 to 2006: Δ p Δt = 12,463.15 − 10,783.01 ≈ $840.07 yr 6 − 4 So, the instantaneous rate of change for 2005 is p′(5) ≈ $840.07 yr. (d) The average rate of change from 2004 to 2006 is a better estimate because the data is closer to the years in question. 44. Answers will vary. Sample answer: The rate of growth in the lag phase is relatively slow when compared with the rapid growth in the acceleration phase. The population grows slower in the deceleration phase, and there is no growth at equilibrium. These changes could be explained by food supply or seasonal growth. Section 2.4 The Product and Quotient Rules Skills Warm Up 1. (x2 + 1)(2) + (2x + 7)(2x) = 2x2 + 2 + 4x2 + 14x = 6x2 + 14x + 2 = 2(3x2 + 7x + 1) 2. (2x − x3 )(8x) + (4x2 )(2 − 3x2 ) = 16x2 − 8x4 + 8x2 − 12x4 = 24x2 − 20x4 = 4x2 (6 − 5x2 ) 3 x 4 x2 + 2 2x + x2 + 4 1 3 = 8x2 x2 + 2 x2 + 43. ( )( ) ( ) ( )( ) ( ) ( )
  • 33.   2 2 2 2 2 Section 2.4 The Product and Quotient Rules 103 Skills Warm Up —continued— 4. x2 (2)(2x + 1)(2) + (2x + 1) 4 (2x) = 4x2 (2x + 1) + 2x(2x + 1) 4 = 2x(2x + 1)2x + (2x + 1) 3  5. (2x + 7)(5) − (5x + 6)(2) (2x + 7) 2 = 10x + 35 − 10x − 12 (2x + 7)2 = 23 (2x + 7)2 (x2 − 4)(2x + 1) − (x2 + x)(2x) 6. 2 = 2x3 + x2 − 8x − 4 − 2x3 − 2x2 2 (x2 − 4) (x2 − 4) −x2 − 8x − 4 = (x2 − 4) (x2 + 1)(2)− (2x + 1)(2x) 7. 2 = 2x2 + 2 − 4x2 − 2x 2 (x2 + 1) (x2 + 1) −2x2 − 2x + 2 = (x2 + 1) −2(x2 + x − 1)= (x2 + 1) (1 − x4 )(4)− (4x − 1)(−4x3 )8. 2 = 4 − 4x4 + 16x4 − 4x3 2 (1 − x4 ) (1 − x4 ) 12x4 − 4x3 + 4 = (1 − x4 ) 2 4(3x4 − x3 + 1)= (1 − x4 ) 2 9. (x−1 + x)(2) + (2x − 3)(−x−2 + 1) = 2x−1 + 2x + (−2x−1 + 2x + 3x−2 − 3) = 4x + 3x−2 − 3 = 4x + 3 − 3 x2 4x3 − 3x2 + 3 = x2 (1 − x−1 )(1)− (x − 4)(x−2 ) 1 − x−1 − x−1 + 4x−2  x2  10. (1 − x−1 ) =   1 − 2x−1 + x−2    x  x2 − 2x + 4 = x2 − 2x + 1 x2 − 2x + 4 = (x − 1)2
  • 34. 104 Chapter 2 Differentiation Skills Warm Up —continued— 11. f (x) = 3x2 − x + 4 f ′(x) = 6x − 1 13. f (x) = 2 = 7x 2 x−1 7 2 2 f ′(2) = 6(2) − 1 f ′(x) = − x−2 = − = 12 − 1 7 7x2 2 f ′(2) = − 2 12. = 11 f (x) = −x3 + x2 + 8x f ′(x) = −3x2 + 2x + 8 7(2) 1 = − 14 f ′(2) = −3(22 ) + 2(2) + 8 14. f (x) = x2 − 1 x2 = −3(4) + 4 + 8 = 0 f ′(x) = 2x + 2 x3 2 f ′(2) = 2(2) + 23 = 4 + 2 8 = 4 + 1 4 = 17 4 1. f (x) = (2x − 3)(1 − 5x) f ′(x) = (2x − 3)(−5) + (1 − 5x)(2) = −10x + 15 + 2 − 10x = −20x + 17 2. g(x) = (4x − 7)(3x + 1) g′(x) = (4x − 7)(3) + (3x + 1)(4) = 12x − 21 + 12x + 4 = 24x − 17 3. f (x) = (6x − x2 )(4 + 3x) f ′(x) = (6x − x2 )(3) + (4 + 3x)(6 − 2x) 5. f (x) = x(x2 + 3) f ′(x) = x(2x) + (x2 + 3)(1) = 2x2 + x2 + 3 = 3x2 + 3 6. f (x) = x2 (3x3 − 1) f ′(x) = x2 (9x2 ) + (3x3 − 1)(2x) = 9x4 + 6x4 − 2x = 15x4 − 2x 7. h(x) =  2 − 3  (x2 + 7) = (2x−1 − 3)(x2 + 7) x  = 18x − 3x2 + 24 − 8x + 18x − 6x2 = −9x2 + 28x + 24 4. f (x) = (5x − x3 )(2x + 9) f ′(x) = (5x − x3 )(2) + (2x + 9)(5 − 3x2 ) = 10x − 2x3 + 10 − 6x3 + 45 − 27x2   h′(x) = (2x−1 − 3)(2x) + (x2 + 7)(−2x−2 ) = 4 − 6x − 2 − 14x−2 = −6x + 2 − 14 x2 8. f (x) = (3 − x)  4 − 5  = (3 − x)(4x−2 − 5) x2    = −8x3 − 27x2 + 20x + 45 ( ) ( )( 3 ) ( 2 )( )f ′ x = 3 − x −8x− + 4x− − 5 −1 = − 24x−3 + 8x−2 − 4x−2 + 5 24 4 = − + + 5 x3 x2
  • 35. 2 2 2 2 2 2 Section 2.4 The Product and Quotient Rules 105 9. g(x) = (x2 − 4x + 3)(x − 2) g′(x) = (x2 − 4x + 3)(1) + (x − 2)(2x − 4) = x2 − 4x + 3 + 2x2 − 4x − 4x + 8 15. f (t) = t + 6 t2 − 8 f ′(t) = ( )( ) ( )( ) t2 − 8 1 − 2 t + 6 2t 2 = 3x2 − 12x + 11 (t − 8) 10. g(x) = (x2 − 2x + 1)(x3 − 1) g′(x) = (x2 − 2x + 1)(3x2 ) + (x3 − 1)(2x − 2) t2 − 8t − 2t2 − 12t = (t2 − 8) −t2 − 12t − 8 = 3x4 − 6x3 + 3x2 + 2x4 − 2x3 − 2x + 2 = 5x4 − 8x3 + 3x2 − 2x + 2 = (t2 − 8) 11. h(x) = x x − 5 h′(x) = (x − 5)(1)− x(1) = x − 5 − x 5 = − 16. g(x) = g′(x) = 4x − 5 x2 − 1 (x2 − 1)(4)− (4x − 5)(2x) 2 (x − 5) 2 (x − 5) 2 (x − 5) 2 (x2 − 1) 4x2 − 4 − 8x2 + 10x 12. h(x) = x2 x + 3 = (x2 − 1) −4x2 + 10x − 4 (x) (x + 3)(2x) − x (1) = ( 2 ) h′ = (x + 3) 2 x − 1 13. = = f (t) = 2x2 + 6x − x2 (x + 3) 2 x2 + 6x (x + 3) 2 2t2 − 3 3t + 1 17. f (x) = f ′(x) = = x2 + 6x + 5 2x − 1 (2x − 1)(2x + 6) − (x2 + 6x + 5)(2) (2x − 1) 2 4x2 + 12x − 2x − 6 − 2x2 − 12x − 10 (2x − 1) 2 ( ) (3t + 1)(4t) − (2t − 3)(3) 2x2 − 2x − 16 f ′ t = (3t + 1) 2 = (2x − 1) 2 12t2 + 4t − 6t2 + 9 = (3t + 1)2 6t2 + 4t + 9 = (3t + 1) 2 18. f (x) = f ′(x) = 4x2 − x + 2 3 − 4x (3 − 4x)(8x − 1) − (4x2 − x + 2)(−4) (3 − 4x) 2 24x − 3 − 32x2 + 4x + 16x2 − 4x + 8 14. f (x) = 7x + 3 4x − 9 f ′(x) = (4x − 9)(7)− (7x + 3)(4) (4x − 9) 2 = (3 − 4x)2 −16x2 + 24x + 5 = (3 − 4x)2 = 28x − 63 − 28x − 12 (x − 1)2 = − 75 (4x − 9) 2
  • 36. x 106 Chapter 2 Differentiation 19. f (x) = 6 + 2x−1 3x − 1 20. f (x) = 5 − x−2 x + 2 ′(x) = (3x − 1)(−2x ) − (6 + 2x )(3) (x + 2)(2x ) − (5 − x )(1)−2 −1 f (3x 1) 2 f ′(x) = −3 −2 x + 2− −2 −3 −2 −6x−1 + 2x−2 − 18 − 6x−1 = (3x − 1)2 = 2x + 4x − 5 + x (x + 2)2 −3 −2 2x−2 − 12x−1 − 18 = (3x − 1)2 = 4x + 3x − 5 (x + 2)2 4 + 3 − 52 − 12 − 18 3 2 = x2 x = (3x − 1)2 2 − 12x − 18x2 x2 (3x − 1) 2 = x x (x + 2) 2 4 + 2x − 5x3 = x3 (x + 2)2 Function Rewrite Differentiate Simplify 21. f (x) = x3 + 6x 3 f (x) = 1 x3 + 2x 3 f ′(x) = x2 + 2 f ′(x) = x2 + 2 22. f (x) = x3 + 2x2 10 f (x) = 1 x3 + 1 x2 10 5 f ′(x) = 3 x2 + 2 x 10 5 f ′(x) = 3 x2 + 2 x 10 5 23. 7x2 y = 5 2x4 y = 7 x2 5 2 y' = 7 ⋅ 2x 5 2 y′ = 14 x 5 8 24. y = 9 7 y = x4 9 7 −3 y′ = ⋅ 4x3 9 −4 y′ = x3 9 7 25. y = 3x3 y = x 3 y' = −7x y′ = − x4 26. y = 4 5x2 y = 4 x−2 5 8 y′ = − −3 5 8 y′ = − 5x3 27. 4x2 − 3x y = y = 1 x3 2 − 3 x1 2 , x ≠ 0 y′ = 3 x1 2 − 3 x−1 2 y′ = 3 x − 3 8 x 2 8 4 16 4 16 x 5(3x2 + 2x) 25 10 28. y = y = 5 x5 3 + 5 x5 3 , x ≠ 0 y′ = 25 x2 3 + 10 x−1 3 , x ≠ 0 y′ = 3 x2 + 29. 6 3 x x2 − 4x + 3 y = 2(x − 1) 2 3 y = 1 (x − 3), x ≠ 1 2 y′ = 6 9 1 (1), x ≠ 1 2 y′ = 6 9 3 x 1 , x ≠ 1 2 30. x2 − 4 y = 4(x + 2) y = 1 4 (x − 2), x ≠ −2 y′ = 1 (1), x ≠ −2 4 y′ = 1 , x ≠ −2 4 31. f ′(x) = (x3 − 3x)(4x + 3) + (3x2 − 3)(2x2 + 3x + 5) = 4x4 + 3x3 − 12x2 − 9x + 6x4 + 9x3 + 9x2 − 9x − 15 = 10x4 + 12x3 − 3x2 − 18x − 15 Product Rule and Simple Power Rule
  • 37. 3 2 3 2 2 2 2 2 2 Section 2.4 The Product and Quotient Rules 107 32. h′(t) = (t5 − 1)(8t − 7) + (5t4 )(4t2 − 7t − 3) 35. (x2 − 1)(3x2 + 3) − (x3 + 3x + 2)(2x) f ′(x) = = 8t6 − 7t5 − 8t + 7 + 20t6 − 35t5 − 15t4 (x2 − 1) 33. = 28t6 − 42t5 − 15t4 − 8t + 7 Product Rule and Simple Power Rule h(t) = 1 (6t − 4) 3x4 − 3 − 2x4 − 6x2 − 4x = (x2 − 1) x4 − 6x2 − 4x − 3= h′(t) = 1 (6) = 2 (x2 − 1) Constant Multiple and Simple Power Rules Quotient Rule and Simple Power Rule 34. f (x) = 1 (3x − 8) 2x3 − 4x2 − 9 f x = f ′(x) = 2 1 (3) = 3 36. ( ) x3 − 5 2 2 Constant Multiple and Simple Power Rules (x3 − 5)(3x2 − 8x) − (2x3 − 4x2 − 9)(3x2 )f ′(x) = (x3 − 5) 3x5 − 8x4 − 15x2 + 40x − 6x5 + 12x4 − 27x2 = (x3 − 5) −3x5 + 4x4 − 42x2 + 40x= (x3 − 5) 37. f (x) = 20 = ( )( ) = x − 5, x ≠ −4 Quotient Rule and Simple Power Rule x2 − x − x − 5 x + 4 f ′(x) = 1 x + 4 (x + 4) 38. Simple Power Rule h(t) = 3 22 7 = ( )( ) = 3t + 1, t ≠ −7 t2 + t + t + 7 3t + 1 1 + 7 t + 7 h′(t) = 3, t ≠ −7 Simple Power Rule 39. g(t) = (2t3 − 1) = (2t3 − 1)(2t3 − 1) g′(t) = (2t3 − 1)(6t2 ) + (2t3 − 1)(6t2 ) = 12t2 (2t3 − 1) Product Rule and Simple Power Rule f x = 2 4x3 − 2x − 3 = 4x3 − 2x − 3 4x3 − 2x − 340. ( ) ( ) ( )( ) f ′(x) = (4x3 − 2x − 3)(12x2 − 2) + (4x3 − 2x − 3)(12x2 − 2) = 48x5 − 24x3 − 36x2 − 8x3 + 4x + 6 + 48x5 − 24x3 − 36x2 − 8x3 + 4x + 6 = 96x5 − 48x3 − 72x2 − 16x3 + 8x + 12 Product Rule and Simple Power Rule
  • 38. 2 2 108 Chapter 2 Differentiation 41. g(s) = s2 − 2s + 5 = s s2 − 2s + 5 s1 2 45. f (x) = (x + 4)(2x + 9)(x − 3) ( ) s1 2 (2s − 2) − (s2 − 2s + 5)(1 s−1 2 ) = 2x2 + 17x + 36 (x − 3) g′(s) = 2 s f ′(x) = (2x2 + 17x + 36)(1) + (x − 3)(4x + 17) 2s3 2 − 2s1 2 − 1 s3 2 + s1 2 − 5 s−1 2 = 2 2 s 3 5 3s2 − 2s − 5 = (2x2 + 17x + 36) + (4x2 + 5x − 51) = 6x2 + 22x − 15 = s1 2 − s−1 2 − s−3 2 = Product Rule and Simple Power Rule 2 2 2s3 2 Quotient Rule and Simple Power Rule x3 − 5x2 − 6x x3 − 5x2 − 6x 46. f (x) = (3x3 + 4x)(x − 5)(x + 1) = (3x3 + 4x)(x2 − 4x − 5) 3 2 2 42. f (x) = = x x1 2 f ′(x) = (3x + 4x)(2x − 4) + (x − 4x − 5)(9x + 4) = x5 2 − 5x3 2 − 6x1 2 = (6x4 − 12x3 + 8x2 − 16x) f ′(x) = 5 x3 2 − 15 x1 2 − 3x−1 2 + (9x − 36x − 41x − 16x − 20) 2 2 = 5 x3 2 − 15 x1 2 − 3 4 3 2 = 15x4 − 48x3 − 33x2 − 32x − 20 Product Rule and Simple Power Rule2 2 5x2 − 15x − 6 = 2x1 2 x1 2 47. f (x) = (5x + 2)(x2 + x) Constant Multiple and Simple Power Rules f ′(x) = (5x + 2)(2x + 1) + (x2 + x)(5) = 10x2 + 9x + 2 + 5x2 + 5x 43. f (x) = (x − 2)(3x + 1) 3x2 − 5x − 2 = 10 = 15x2 + 14x + 2 4x + 2 4x + 2 ( ) (4x + 2)(6x − 5) − (3x − 5x − 2)(4) m = f ′(−1) = 3 (−1, 0) −5 5 f ′ x = (4x + 2) 2 y − 0 = 3(x − (−1)) 24x2 − 8x − 10 − 12x2 + 20x + 8 = (4x + 2)2 12x2 + 12x − 2 = 48. y = 3x + 3 f (x) = (x2 − 1)(x3 − 3x) −10 4(2x + 1) 2 ( ) ( 2 )( 2 ) ( 2 )( )f ′ x = x − 1 3x − 3 + x − 3x 2x 2(6x2 + 6x − 1)= 2(2x + 1) 2 = 3x4 − 6x2 + 3 + 2x4 − 6x2 4 2 6x2 + 6x − 1 = 5x − 12x + 3 = 2(2x + 1)2 m = f ′(−2) = 5(−2) 4 − 12(−2) 2 + 3 = 35 Quotient Rule and Simple Power Rule y − (−6) = 35(x − (−2)) y + 6 = 35x + 70 44. f (x) = (x + 1)(2x − 7) = 2x2 − 5x − 7 y = 35x + 64 2x + 1 2x + 1 ( ) (2x + 1)(4x − 5) − (2x − 5x − 7)(2) 2 −6 6 f ′ x = (2x + 1) 2 8x2 − 6x − 5 − 4x2 + 10x + 14 = (2x + 1)2 4x2 + 4x + 9 = (2x + 1) 2 (−2, −6) −8 Quotient Rule and Simple Power Rule
  • 39. (9, 18) 2 2 2 − 2 10 = Section 2.4 The Product and Quotient Rules 109 49. f (x) = x3 (x2 − 4) 50. f (x) = x(x − 3) = x1 2 (x − 3) f ′(x) = x2 (2x) + (x2 − 4)(3x2 ) = 2x4 + 3x4 − 12x2 f ′(x) = x1 2 (1) + (x − 3)(1 x−1 2 ) = x1 2 + 1 x1 2 − 3 x−1 2 = 5x4 − 12x2 m = f ′(1) = −7 −5 3 x1 2 3 x−1 2 2 2 5 (1, −3) m = f ′(9) = 3 (9)1 2 − 3 (9)−1 2 = 9 − 1 = 4 y − (−3) = −7(x − 1) y = −7x + 4 −10 2 2 2 2 y − 18 = 4(x − 9) y = 4x − 18 10 51. f (x) = 3x − 2 x + 1 f ′(x) = (x + 1)(3) − (3x − 2)(1) 0 20 0 = 3x + 3 − 3x + 2 = 5 f ′(4) = 1 5 (x + 1) 2 (x + 1) 2 (x + 1) 2 y − 2 = 1 (x − 4)5 y − 2 = 1 x − 4 5 5 y = 1 x + 6 5 5 4 (4, 2) −2 10 −4 52. f ′(x) = (x − 1)2− (2x + 1) = −3 53. (x) (3x − 2)(6x + 5) 18x2 + 3x − 10 f = = (x − 1) 2 (x − 1) 2 2x − 3 2x − 3 f ′(2) = −3 ( ) (2x − 3)(36x + 3) − (18x + 3x − 10)(2) y − 5 = −3(x − 2) f ′ x = (2x − 3) 2 y = −3x + 11 8 (2, 5) 72x2 − 102x − 9 − 36x2 − 6x − 20 = (2x − 3)2 36x2 − 108x + 11 = (2x − 3) 2 −7 8 36(−1) 2 − 108(−1) + 11 31 m = f ′(−1) = = −2 (2(−1) − 3) 2 5 y − (−1) = 31 (x − (−1)) 10 5 y = 31 x + 26 5 5 −5 (−1, −1) 5 −10
  • 40. 2 3 2 2 2 2 3 4 −2 2 2 2 110 Chapter 2 Differentiation 54. f (x) = (x + )(x + x) = 2 2 x3 + 3x2 + 2x x − 4 x − 4 ( ) (x − 4)(3x + 6x + 2) − (x + 3x + 2x)(1) f ′ x = (x − 4)2 3x3 − 12x2 + 6x2 − 24x + 2x − 8 − x3 − 3x2 − 2x = (x − 4)2 2x3 − 9x2 − 24x − 8 = (x − 4) 2 m = f ′(1) = 2(1)3 − 9(1)2 − 24(1)− 8 13 = − 4 (1 − 4) 2 y − (−2) = − 13 (x − 1)3 y = 13 x + 7 3 3 3 −8 4 (1, −2) −4 55. ( ) (x − 1)(2x) − x (1) x − 2x 59. f (x) = x(x + 1) = x + x 2 2 2 f ′ x = = (x − 1) 2 (x − 1) 2 f ′(x) = 2x + 1 f ′(x) = 0 when x2 − 2x = x(x − 2) = 0, which implies that x = 0 or x = 2. Thus, the horizontal tangent lines occur at (0, 0) and (2, 4). 6 f −2 2 56. ( ) (x + 1)(2x) − (x )(2x) f ′ 2x −3 f ′ x = 2 2 = 2 2 (x + 1) (x + 1) 60. f (x) = x2 (x + 1) = x3 + x2 f ′(x) = 0 when 2x = 0, which implies that x = 0. Thus, the horizontal tangent line occurs at (0, 0). f ′(x) = 3x2 + 2x = x(3x + 2) 3 f ′ f 57. ( ) (x + 1)(4x ) − x (3x ) x + 4x −2 2 3 3 4 2 6 3 f ′ x = 2 = 2 (x3 + 1) (x3 + 1) f ′(x) = 0 when x6 + 4x3 implies that x = 0 or x = = x3 (x3 + 4) = 0, which 3 −4. Thus, the horizontal 61. −1 f (x) = x(x + 1)(x − 1) 11 3 tangent lines occur at (0, 0) and (3 −4, −2.117). 58. ( ) (x + 1)(4x ) − (x + 3)(2x) = x − x f ′ f ′(x) = 3x2 − 1 f f ′ x = (x2 −6 + 1) 2x(x2 + 3)(x2 − 1) 62. f (x) = x2 (x + 1)(x − 1) = x4 − x2 = (x2 + 1) f ′(x) = 4x3 − 2x = 2x(2x2 3 − 1) f ′(x) = 0 when 2x(x2 + 3)(x2 − 1) = 0, which implies that x = 0 or x = ±1.Thus, the horizontal tangent lines occur at (0, 3), (1, 2), and (−1, 2). f ′ f −2 2 −1
  • 41. 2 2 2 2 2 2 2 2 Section 2.4 The Product and Quotient Rules 111 63.  3p  x = 2751 −  66. dP 50(t + 2)(1) − (t + 1750)(50)= 2  5p + 1 dt 50(t + 2) dx (5p + 1)3 − (3p)(5) 275  3  275 50(t + 2) − (t + 1750) = −   = −   = dp (5p + 1) 2 (5p + 1) 2500(t + 2) 2 = −1748 When p = 4, dx  3  = −275 2  ≈ −1.87 units dp (21)  50(t + 2) 2 = −874 64. per dollar. dx = 0 − 1 − dp (p + 1)(2) − (2p)(1) (p + 1) 2 25(t + 2) 2 (a) When t = 1, dP dt = −874 ≈ −3.88 percent day. 225 = −1 − 2 (p + 1)2 −(p + 1) 2 − 2 (b) When t = 10, dP dt = −874 3600 437 = (p + 1)2 −p2 − 2p − 3 = (p + 1)2 67. t2 − t + 1 P = t2 + 1 = − 1800 ≈ −0.24 percent day. When p = 3, dx = −9 − 6 − 3 ≈ −1.13 units (t2 1)(2t 1) (t2 t 1)(2t)dp 16 P′ = + − − − + t2 − 1 = per dollar. (t2 + 1) (t2 + 1)  (50 + t2 )(4) − (4t)(2t)  200 − 4t2  (a) P′(0.5) = −0.480 week 65. P′ = 500  = 500   (50 + t2 )   (50 + t2 )  (b) P′(2) = 0.120 week      184  When t = 2, P′ = 500  ≈ 31.55 bacteria hour. (c) P′(8) = 0.015 week (54) Each rate in parts (a), (b), and (c) is the rate at which the level of oxygen in the pond is changing at that particular time. 68. T  4t2 + 16t + 75 = 10   t2 + 4t + 10  Initial temperature: T(0) = 75°F  2 2  ′( ) (t + 4t + 10)(8t + 16) − (4t + 16t + 75)(2t + 4)  −700(t + 2)T t = 10  (t2 + 4t + 10) =  (t2 + 4t + 10) (a) (b) (c) (d)   T ′(1) ≈ −9.33°F hr T′(3) ≈ −3.64°F hr T′(5) ≈ −1.62°F hr T′(10) ≈ −0.37°F hr Each rate in parts (a), (b), (c), and (d) is the rate at which the temperature of the food in the refrigerator is changing at that particular time.
  • 42. 8 75 8 4 4 4    2 x 112 Chapter 2 Differentiation 69. C = x3 − 15x2 + 87x − 73, 4 ≤ x ≤ 9 72. (a) P = ax2 + bx + c Marginal cost: dC dx = 3x2 − 30x + 87 When x = 10, P = 50: 50 = 100a + 10b + c. When x = 12, P = 60: 60 = 144a + 12b + c. Average cost: C = x2 − 15x + 87 − 73 When x = 14, P = 65: 65 = 196a + 14b + c. x x Solving this system, we have (a) 60 dC dx a = − 5, b = 4 , and c = −75. Thus, P = − 5 x2 + 75 x − 75. C (b) 80 4 9 0 (b) Point of intersection: 3x2 − 30x + 87 = x2 − 15x + 87 − 73 x 0 20 0 2x2 − 15x + 73 = 0 x (c) Marginal profit: P′ = − 5 x + 75 = 0  x = 15 2x3 − 15x2 + 73 = 0 x ≈ 6.683 73. This is the maximum point on the graph of P, so selling 15 units will maximize the profit. f (x) = 2g(x) + h(x) When x = 6.683, C = dC ≈ 20.50. x dx Thus, the point of intersection is (6.683, 20.50). At this point average cost is at a minimum. 70. (a) As time passes, the percent of people aware of the product approaches approximately 95%. (b) As time passes, the rate of change of the percent of people aware of the product approaches zero. 74. 75. f ′(x) = 2g′(x) + h′(x) f ′(2) = 2(−2) + 4 = 0 f (x) = 3 − g(x) f ′(x) = −g′(x) f ′(2) = −(−2) = 2 f (x) = g(x)h(x)  200 x 71. C = 100 x2 + , x + 30 x ≥ 1 f ′(x) = g(x)h′(x) + h(x)g′(x)   C′ 100 2(200x−3 ) (x + 30) − x f ′(2) = g(2)h′(2) + h(2)g′(2) = − +    (x + 30) 2   = (3)(4) + (−1)(−2)  = 14 100 400 30  = − +   x3 ′ (x + 30) 2   400 30   76. f (x) = g(x) h(x) (a) C (10) = 100− 103 + = −38.125 402   f ′ x h(x)g′(x)− g(x)h′(x) = (b) C′(15) ≈ −10.37 ( ) h(x) (c) C′(20) ≈ −3.8 Increasing the order size reduces the cost per item. An order size of 2000 should be chosen since the cost per item is the smallest at x = 20. f ′(2) = (−1)(−2) − (3)(4) (−1) 2 77. Answers will vary. = −10
  • 43.   Chapter 2 Quiz Yourself 113 Chapter 2 Quiz Yourself 1. f (x) = 5x + 3 2. f (x) = x + 3 f ′(x) = lim f (x +Δx) − f (x) f ′(x) = f (x +Δx) − f (x) lim Δx → 0 Δx Δx → 0 Δx = lim 5(x +Δx) + 3 − (5x + 3) = lim x +Δx + 3 − x + 3 Δx → 0 Δx Δx → 0 Δx = lim 5x + 5Δx + 3 − 5x − 3 = lim ( ) x + Δx + 3 − x + 3 Δx → 0 Δx Δx → 0 Δx( x + Δx + 3 + x + 3) = lim 5Δx = lim 1 Δx → 0 Δx Δx → 0 x + Δx + 3 + x + 3 = lim 5 = 5 1Δx → 0 = At (−2, −7): m = 5 2 x + 3 At (1, 2): m = 1 = 1 2 1 + 3 4 3. f (x) = 3x − x2 f ′(x) = = = = = = = lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 lim Δx → 0 f (x +Δx) − f (x) Δx 3(x + Δx) − (x + Δx) 2  − (3x − x2 ) Δx 3x + 3Δx − (x2 + 2x(Δx) + (Δx) 2 ) − (3x − x2 ) Δx 3x + 3Δx − x2 − 2x(Δx) − (Δx) 2 − 3x + x2 Δx 3x − 2x(Δx) − (Δx) 2 Δx Δx(3 − 2x − Δx) Δx (3 − 2x − Δ) = 3 − 2x At (4, −4): m = 3 − 2(4) = 3 − 8 = −5 4. f (x) = 12 f ′(x) = 0 5. f (x) = 19x + 9 f ′(x) = 19 8. f (x) = 4x−2 f ′(x) = −8x−3 9. f (x) = 10x−1 5 8= − x3 + x−3 6. f (x) = x4 − 3x3 − 5x2 + 8 f ′(x) = 4x3 − 9x2 − 10x f ′(x) = −2x−6 5 − 3x−4 = − 2 − 3 x−6 5 x4 7. f (x) = 12x1 4 f ′(x) = 3x−3 4 = 3 x3 4
  • 44. 2 2 2 2 114 Chapter 2 Differentiation 10. f (x) = 2x + 3 3x + 2 16. f (x) = 1 ; [−5, −2]3x f ′(x) = (3x + 2)(2) − (2x + 3)(3) (3x + 2) 2 Average rate of change: 1  1  3 − − − − −  − = 6x + 4 − 6x − 9 ( ) ( ) Δy = f 2 f 5 = 6  15 = 30 = − 1 (3x + 2) 2 5 Δx −2 − (−5) 3 3 30 1 = − (3x + 2)2 f ′(x) = − 3x2 Instantaneous rates of change: 11. f (x) = (x2 + 1)(−2x + 4) f ′(x) = (x2 + 1)(−2) + (−2x + 4)(2x) f ′(−2) = − 1 , 12 f ′(−5) = − 1 75 = −6x2 + 8x − 2 17. ( ) [ ] f x = 3 x; 8, 27 Average rate of change: 12. f (x) = (x2 + 3x + 4)(5x − 2) y f (27) − f (8) 3 2 1Δ = = − = f ′(x) = (x2 + 3x + 4)(5) + (5x − 2)(2x + 3) Δx 27 − 8 19 19 = 5x2 + 15x + 20 + 10x2 + 11x − 6 f (x) = x = x = 15x2 + 26x + 14 4x 3 1 3 f ′(x) = 1 x−2 3 = 1 3 3x2 3 113. f (x) = x2 + 3 Instantaneous rates of change: f ′(8) = , 12 2 f ′ 27 = 1 f ′(x) = (x + 3)(4) − 4x(2x) ( ) 27 ( 2 ) x + 3 4x2 + 12 − 8x2 18. P = −0.0125x2 + 16x − 600 = (x2 + 3) (a) dP = −0.025x + 16 dx −4x2 + 12 = (x2 + 3) When x = 175, dP = $11.625. dx −4(x2 − 3) (b) P(176) − P(175) = 1828.8 − 1817.1875 = (x2 + 3) = $11.6125 (c) The results are approximately equal. 14. f (x) = x2 − 3x + 1; [0, 3] Average rate of change: 19. f (x) = 5x2 + 6x − 1 Δy f (3)− f (0) = 1 − 1 ( ) = = 0 f ′ x = 10x + 6 Δx 3 − 0 3 At (−1, −2), m = −4. f ′(x) = 2x − 3 Instantaneous rates of change: f ′(0) = −3, f ′(3) = 3 y + 2 = −4(x + 1) y = −4x − 6 15. f (x) = 2x3 + x3 − x + 4; [−1, 1] Average rate of change: 2 −5 4 Δy f (1)− f (−1)= Δx 1 − (−1)
  • 45. 6 − 4 = = 1 2 (−1, −2) −4 f ′(x) = 6x2 + 2x − 1 Instantaneous rates of change: f ′(−1) = 3, f ′(1) = 7
  • 46. = − x + −1 3 2 8 2 Section 2.5 The Chain Rule 115 20. f (x) = 8 = 8x−3 2 x3 21. f (x) = (x2 + 1)(4x − 3) f ′(x) = (x2 + 1)(4) + (4x − 3)(2x) f ′(x) = −12x−5 2 12 12 = − x5 2 x2 x 12 3 = 4x2 + 4 + 8x2 − 6x = 12x2 − 6x + 4 m = f ′(4) = − = − (4)2 4 8 m = f ′(1) = 12(1) 2 − 6(1) + 4 = 10 y − 1 = − 3 (x − 4)8 y − 1 = − 3 x + 3 8 2 5 (4, 1) y − 2 = 10(x − 1) y = 10x − 8 −5 10 (1, 2) 5 3 5 −1 8 y = − −1 −10 22. f (x) = 5x + 4 2 − 3x f ′(x) = (2 − 3x)(5) − (5x + 4)(−3) (2 − 3x) 2 22 = 10 − 15x + 15x + 12 (2 − 3x) 2 = 22 (2 − 3x) 2 1 m = f ′(1) = (2 − 3(1)) 2 = 22 0 8 y − (−9) = 22(x − 1) y + 9 = 22x − 22 y = 22x − 31 −15 (1, −9) 23. S = −0.01722t3 + 0.7333t2 − 7.657t + 45.47, 7 ≤ t ≤ 13 (a) dS = S′(t) = −0.051666t2 + 1.4666t − 7.657 dt (b) 2008: S′(8) ≈ $0.77 yr 2011: S′(11) ≈ $2.22 yr 2012: S′(12) ≈ $2.50 yr Section 2.5 The Chain Rule Skills Warm Up 1. 5 (1 − 5x) 2 = (1 − 5x) 2 5 x 1 2 −1 3 2. 4 (2x − 1)3 = (2x − 1)3 4 5. = x3 1 − 2x (1 − 2x) 3. 1 4x2 + 1 = (4x2 + 1) −1 2 (3 − 7x) 3 6. 2x (3 − 7x) 3 2 = = (2x) (3 − 7x) 2x 4. 1 6 2x3 + 9 = (2x3 + 9) −1 6 7. 3x3 − 6x2 + 5x − 10 = 3x2 (x − 2) + 5(x − 2) = (3x2 + 5)(x − 2)
  • 47. 2 3   −1 3  3 2 2 2 1 2 3 4 ( ) ( ) 3 2 116 Chapter 2 Differentiation Skills Warm Up —continued— 8. 5x x − x − 5 x + 1 = x(5 x − 1) − 1(5 x − 1) 10. −x5 + 6x3 + 7x2 − 42 = − x3 (x2 − 6) + 7(x2 − 6) 2 2 2 = (x − 1)(5 3 2 2 x − 1) 2 = (− x3 + 7)(x2 − 6) = −(x3 − 7)(x2 − 6) 9. 4(x + 1) − x(x + 1) = (x + 1) 4 − x(x + 1)   2 2 3 = (x + 1) (4 − x − x) y = f (g(x)) u = g(x) y = f (u) 11. y = (5x4 − 2x) 1. y = (6x − 5) 4 2 u = 6x − 5 3 2 y = u4 3 y′ =  2 (5x4  3  2  − 2x) (20x3 − 2) −1 3 2. y = (x − 2x + 3) u = x − 2x + 3 y = u y′ =  (5x4 − 2x) (2)(10x3 − 1) 3 3. y = 4. y = 5x − 2 3 9 − x2 u = 5x − 2 u = 9 − x2 y = u y = 3 u y′ =  4 (5x4 − 2x) −1 3 (10x3 − 1)  4(10x3 − 1) 40x3 − 4 ′ = = y 4 1 3 3 x4 x5. y = (3x + 1) −1 u = 3x + 1 y = u−1 3(5x − 2x) 3 5 − 2 6. y = (x2 − 3) −1 2 u = x2 − 3 y = u−1 2 12. y = (x3 + 2x2 ) −1 3 2 −2 2 7. y = (4x + 7) 2 y′ = 2(4x + 7) 1 (4) y′ = (−1)(x 3x2 y′ = − + 2x ) (3x + 4x + 4x) y′ = 8(4x + 7) = 32x + 56 (x3 + 2x2 ) 2 f x = 2 = 2 1 − x3 −1 ; (c) General Power Rule 8. y = (3x2 − 2) 13. ( ) 1 − x3 ( ) y′ = 3(3x2 − 2) (6x) 14. f (x) = 7 (1 − x) 3 = 7(1 − x) −3 ; (c) General Power Rule y′ = 18x(3x2 − 2) 15. f (x) = 3 82 ; (b) Constant Rule 9. y = 3 − x2 = (3 − x2 ) 1 2 16. f (x) = 3 x2 = x2 3 ; (a) Simple Power Rule y′ = 1 (3 − x2 ) −1 2 (−2x) 2 −1 2 x 17. f (x) = x2 + 9 ; (d) Quotient Ruley′ = −x(3 − x ) = − (3 − x ) x3 + 4x2 − 6 1 2 y′ = − x 18. f (x) = x ; (d) Quotient Rule 3 − x2 x + 2x − 5 y′ = 3 2x − 7 2 2 = 6 2x − 7 2 10. y = 4 4 6x + 5 = 4(6x + 5) 1 4 19. ( ) ( ) ( ) 1  −5 4 y′ = 4  6x + 5 6   20. y = (3 − 5x) 4 3 3 y′ = 6(6x + 5) −5 4 = 6 (6x + 5) 5 4 21. y′ = 4(3 − 5x) (−5) = −20(3 − 5x) h′(x) = 2(6x − x3 )(6 − 3x2 ) = 6x(6 − x2 )(2 − x2 )
  • 48.   1 3 − 2 ) − 3 1 2 7 7 3 2 ) 5 6 Section 2.5 The Chain Rule 117 f x = 4 3 2x3 − 6x 1 2 −7 2 22. ( ) ( ) 29. f (x) = = (x + 11) f ′ x =  4 2x3 − 6x 1 3 6x2 − 6 (x2 + 11) ( )  ( ) ( )  3 f ′(x) =  − 7  (x2 + 11) −9 2 (2x) f ′ x =  4 2x3 − 6x 1 3 6 x2 − 1  2 ( )  ( ) ( )( )  3 f ′(x) = −7x(x2 + 11) −9 2 f ′(x) = 8(2x3 − 6x) (x2 − 1) f ′(x) = − 7x 2 7x 9 2 = − 9 2 23. f (t) = t + 1 = (t + 1) 1 2 (x + 11) (x + 11) 4 3 y = 4 − x3 f ′(t) = 1 (t + 1) −1 2 (1) = 2 2 1 t + 1 30. ( )  4  3 −7 3 2 4x2 24. g(x) = 5 − 3x = (5 − 3x) 1 2 y′ = −  (4 − x ) (−3x ) = 3 3(4 − x2 ) g′(x) = 1 (5 − 3x) −1 2 (−3) = − 3 2 2 5 − 3x 31. f ′(x) = 2(3)(x2 − 1) (2x) = 12x(x2 − 1) 25. s(t) = 2t2 + 5t + 2 = (2t2 1 2 + 5t + 2 f ′(2) = 24(32 ) = 216 200 s′ t 1 −1 2 = 2t2 + 5t + 2 4t + 5 4t + 5 = f (2) = 54 (2, 54) ( ) ( ) ( ) 2 2 2t2 + 5t + 2 y − 54 = 216(x − 2) −2 4 y = 216x − 378 3 2 2 1 3 26. y = 9 4x y′ = 9 1 + 3 = 9(4x 2 3 4x2 + 3 8x + 3) −400   ( ) ( )   32. f ′(x) = 12(9x − 4) 3 (9) = 108(9x − 4) 3 y′ = 24x(4x2 + 3) −2 3 f ′(2) = 12(14) 3 (9) = 296,352 y′ = 24x 4 (4x2 2 3 + 3 f (2) = 3(14) = 115,248 27. f (x) = 2(2 − 9x) −3 y − 115,248 = 296,352(x − 2) y = 296,352x − 477,456 f ′(x) = 2(−3)(2 − 9x) −4 (−9) = 54 (2 − 9x) 4 200,000 (2, 115,248) g x = 3 = 3 7x2 + 6x −5 28. ( ) ( ) (7x2 + 6x) 2 −6 −1 5 0 g′(x) = 3(−5)(7x 2 + 6x) (14x + 6) −6 33. f (x) = 4x2 − 7 = (4x2 − 7) g′(x) = −15(7x + 6x) (14x + 6) f ′(x) = 1 (4x2 − 7) −1 2 (8x) = 4x 2 4x2 − 7 g′(x) 15(14x + 6) = − (7x2 + 6x) f ′(2) = 8 3 f (2) = 3 y − 3 = 8 (x − 2)3 y = 8 x − 7 3 3 10 (2, 3) −1 4 −4
  • 49. )  ) − 2 −2 − −2 2 3 2 2 x + 4 ( 3  ( −1 4 5 3 1 2 118 Chapter 2 Differentiation 34. f (x) = x x 1 22 + 5 = x x2 + 5 38. f ′(x) = 2 f ′ x = x 1 x2 + 5 −1 2 2x  + 1 2 x2 + 5 1 2 x(x + 1) 3 2 ( ) ( ) ( ) 2  ( ) ( ) f ′ is never 0. f f ′ −1 3 = x2 (x2 + 5) −1 2 1 2 + x2 + 5 −1 = (x2 + 5) −1 2 x2 + (x2 + 5) 4  2x2 + 5 = x2 + 5 39. (x + 1) x f ′(x) = − 2x(x + 1) f f ′ is never 0. −5 4 f ′(2) = 13 10 3 f (2) = 6 f ′ −3 2 − 5x2 4 y − 6 = 13 (x − 2)3 −1 40. 4 f ′(x) = 2 x y = 13 x − 8 f has a horizontal tangent −1 4 3 3 2 2 1 2 when f ′ = 0. f f ′ −4 35. f (x) = x − 2x + 1 = (x − 2x + 1) 1 y = 4 − x2 f ′ x = 1 x2 − 2x + 1 −1 2 2x − 2 41. ( )( ) ( ) ( ) x − 1 = ( )( ) ( ) x2 − 2x + 1 x − 1 = x − 1 3 f ′(2) = 1 y′ = −1 4 − x2 = 2x (4 − x2 ) 2 General Power Rule −2x (2, 1) s t = 1 = 1 t2 + 3t − 1f (2) = 1 −2 42. ( ) t2 + 3t − 1 ( ) y − 1 = 1(x − 2) y = x − 1 −3 s′(t) = −1(t2 + 3t − 1) (2t + 3) = − 2t + 3 f ′ x 2 4 − 3x2 −5 3 −6x 4x = (t2 + 3t − 1) 36. ( ) = − ( ) ( ) (4 − 3x2 ) General Power Rule 4(2) 8 1 f ′(2) = = = − 43. y = − 5t (−8) 5 3 −32 4 (t + 8) 2 f (2) = (−8) −2 3 = 1 4 2 (2 , 1 y′ = (t + 8) 2 (5) − (5t)(2)(t + 8)(1) ((t + 8) )y − 1 4 = − (x − 2) −2 4 4 4 y′ = 5(t + 8)(t + 8) − 2t 1 3 y = − 4 4 −2 1 − 3x2 − 4x3 2 2 (t2 + 8) 5(t + 8)(−t + 8)y′ = (t + 8) 4 5(t − 8)= (t + 8) 3 37. f ′(x) = 2 x(x2 + 1) f Quotient Rule and Chain Rule f has a horizontal tangent −1 5 when f ′ = 0. f ′ −2
  • 50. −    ) ) ) 3 Section 2.5 The Chain Rule 119 2 f x = 3x x3 − 4 50. f (x) = x3 (x − 4) 2 44. ( ) ( )  3 −3 2  3 −2 = x3 (x2 − 8x + 16)f ′(x) = 3x (−2)(x − 4) (3x ) + (x − 4) (3)  = x5 − 8x4 + 16x3 = −18x3 (x3 −3 − 4 + 3(x3 −2 − 4 f ′(x) = 5x4 − 32x3 + 48x2 = −3(x3 −3 − 4 6x3 − (x3 − 4) = x2 (5x2 − 32x + 48)  −3(5x3 + 4) = x2 (5x − 12)(x − 4) = (x3 − 4) Simple Power Rule Product Rule and Chain Rule 51. y = x 2x + 3 = x(2x + 3) 1 2 45. f (x) = (2x − 1)(9 − 3x2 ) y′ = x 1 (2x + 3)−1 2 (2) + (2x + 3)1 2 2  f ′(x) = (2x − 1)(−6x) + (9 − 3x2 )(2)   = (2x + 3) −1 2 x + (2x + 3) = −12x2 + 6x + 18 − 6x2 = 18 + 6x − 18x2 3(x + 1)= 2x + 3 = −6(3x2 − 2x − 3) Product and General Power Rule Product Rule and Simple Power Rule 52. y = 2t t + 6 = 2t(t + 6) 1 2 46. y = (7x + 4)(x3 − 2x2 ) y′ = 2t 1 (t + 6)−1 2 (1) + (t + 6)1 2 (2)2    y′ = (7x + 4)(3x2 − 4x) + (x3 − 2x2 )(7) = 21x3 − 16x2 − 16x + 7x3 − 14x2 = t(t + 6) −1 2 ( ) −1 2 + 2(t + 6) 1 2 ( ) = 28x3 − 30x2 − 16x = t + 6 t + 2 t + 6  −1 2 Product Rule and Simple Power Rule = (t + 6) (3t + 12) 47. y = 1 = (x + 2)−1 2 = 3t + 12 = t + 6 3(t + 4) t + 6 x + 2 y′ 1 (x 2) −3 2 1 Product and General Power Rule = − + = − 2 2(x + 2)3 2 53. y = t2 t − 2 = t2 (t − 2) 1 2 General Power Rule 48. g(x) = 3 = 3(x3 − 1) −1 3 y′ = t2 1 2 1 (t − 2)−1 2 (1) + 2t(t − 2)1 2   −1 2 23 x3 − 1 = (t − 2) 2 t + 4t(t − 2)  1 3 −4 3 2 3x2 2 g′(x) = 3− (x − 1) (3x ) = − 4 3 t + 4t(t − 2) = 3 (x3 − 1) 2 t − 2 General Power Rule = t(5t − 8) 49. f (x) = x(3x − 9) 3 2 t − 2 f ′(x) = x(3)(3x − 9) 2 (3) + (3x − 9) 3 (1) = (3x − 9) 2 9x + (3x − 9) = 9(x − 3) 2 (12x − 9) = 27(x − 3) 2 (4x − 3) Product and General Power Rule Product and General Power Rule
  • 51. 1 5 = 2 y = 6 5x   3 2 2 ( −3 2 2 ) 2 ) 3 2 −1 120 Chapter 2 Differentiation 54. y = x(x − 2) 2 = x1 2 (x − 2) 2 58. f (x) = (3x3 + 4x) y′ = x1 2 2(x − 2) 1 (1) + (x − 2) 2 1 x−1 2  1 −4 5    2  f ′(x) = (3x3 + 4x) (9x2 + 4)  5 2 2 = 2 x(x − 2) + (x − 2) 9x + 4= 2 x 5(3x3 4 5 + 4x 4x(x− 2) + (x − 2) 2 = 1 4 2 x m = f ′(2) = 2 (x − 2)4x + (x − 2) 1 (2, 2) 2 x y − 2 = (x − 2) 2 = (x − 2)(5x − 2) y = 1 x + 1 −3 3 2 x 2 0 Product and General Power Rule 59. f (t) = 36 = 36(3 − t) −2 55. 2  −   x2 − 1   6 − 5x  (x2 − 1)(−5) − (6 − 5x)(2x) ′ =     (3 − t) f ′(t) = −72(3 − t) −3 (−1) = 72 8 72 (3 − t) 3 y 2 x2 − 1  2 2  ′ = =    (x − 1)  f (0) 12 27 3 2(6− 5x)(5x2 − 12x + 5) 8 = (x2 − 1) y − 4 = (t − 0) 3 (0, 4) Quotient and General Power Rule  4x2 − 5  y = 8 t + 4 3 1 −4 4 −2 −1 2 56. y =   60. s(x) = = (x2 − 3x + 4)  2 − x  x2 − 3x + 4  4x2 − 5 (2 − x)(8x) − (4x − 5)(−1) y′ = 3    s′(x) 1 x2 2 − 3x + 4) (2x − 3)  2 − x   = − (2 − x) 2    4x2 − 5 16x − 8x2 + 4x2 − 5 = 3    = 2(x2 3 − 2x 3 2 − 3x + 4  2 − x   (2 − x) 2  s′ 3 = 3 − 6 = − 3  4x2 − 5 −4x2 + 16x − 5 = 3    ( ) 2(4) 3 2 16  2 − x 2   2 (2 − x) 2  2 y − 1 = − 3 2 16 (x − 3) 3(4x − 5) (−4x + 16x − 5)= (2 − x)3 y 3 x + 17 = − Quotient and General Power Rule 16 16 3 57. y = (x3 − 2x2 − x + 1) (3, 1 y′ = 2(x3 − 2x2 − x + 1)(3x2 − 4x − 1) 2 −1 5 m = y′(1) = 2((1) 3 − 2(1) 2 − (1) + 1)(3(1) 2 − 4(1) − 1) = 2(−1)(−2) = 4 y − 1 = 4(x − 1) y = 4x − 3 −4 4 5 (1, 1) −2
  • 52. 2  2 2 − 3 3 2 x + 1 5 ) 8 8 Section 2.5 The Chain Rule 121 61. f (t) = (t2 − 9) t + 2 = (t2 − 9)(t + 2)1 2 63. f (x) x + 1 x + 1 f ′(t) = (t2 − 9)1 (t + 2) −1 2  + (t + 2) 1 2 (2t) = = 2x − 3 (2x − 3) 1 2 2   2x − 3 1 2 1 − x + 1 1 2x − 3 −1 2 2  = 1 (t2 − 9)(t + 2) −1 2 + 2t(t + 2) 1 2 = (t + 2) −1 2 1 (t2 − 9) + 2t(t + 2) f ′(x) = = ( ) ( ) ( )(2)( ) ( ) (2x − 3) (2x − 3) − (x + 1) (2x − 3) 3 2 2    = (t + 2)−1 2 1 t2 − 9 + 2t2 + 4t  x − 4 = 3 2 2 2  (2x − 3) 6   = (t + 2) −1 2  5 t2 + 4t − 9    5t2 + 4t − 9 = 2 2 t + 2 2 f ′(2) = 1 − 3 = −2 1 y − 3 = −2(x − 2) y = −2x + 7 (2, 3) −4 8 −2 f ′(−1) = −6 −4 4 y x 1 2 x x2 y − (−8) = −6t − (−1) (−1, −8) 64. = = 25 + x2 (25 + ) y = −6t − 14 y′ = x− 1 (25 + x2 ) −3 2 (2x) + (25 + x2 ) −1 2 (1)−16 2 2 2 −3 2 2 −1 2 62. y = − 2x 2x = − 1 2 = −x (25 + x ) + (25 + x ) 1 − x (1 − x) = (25 + x2 ) −3 2 −x2 + (25 + x2 )  (1 − x) 1 2 (2) −  1 (1 − x) −1 2 (−1)(2x)        y′ = − 2  1 2 2 = 25 2 3 2  ((1 − x) )  y′ 0 (25 + x ) = 1 2(1− x)1 2 + x(1 − x)−1 2  ( ) = −  1 − x y − 0 = 1 (x − 0) −3 3 (1 − x) −1 2 (2(1 − x) + x) 5 = −  1  1 − x   y = x −1   (1 − x) −1 2 (2 − 2x + x) 5 3 2 2 1 3 = −  65. f (x) = x + 4 = (x + 4)1 − x f ′ x = 1 x2 + 4 −2 3 2x(1 − x) −1 2 (2 − x) = −  ( ) ( ) ( ) 1 − x f ′(x) = 2x  (2 − x)  = −  3(x2 2 3 + 4 (1 − x)  Set f ′(x) = 2x 2 3 = 0. x − 2 = (1 − x)3 2 2x = 0 3(x2 + 4) y′(−3) = (−3) − 2 = −5 = − 5 x = 0 → y = f (0) = 3 4 (1 − (−3)) 3 2 y − 3 = − 5 (x − (−3))8 y − 3 = − 5 x − 15 8 8 43 2 8 6 (−3, 3) Horizontal tangent at: (0, 3 4) 5 9 y = − −7 1 −1
  • 53. ) 2   2    ( )   2  f =   501  59 501  59 501 59  1 2 122 Chapter 2 Differentiation 66. f (x) = 5x2 + x − 3 = (5x2 1 2 + x − 3 68. f (x) = 5x = 3x − 2 5x (3x − 2) 1 2 f ′ x = 1 5x2 + x − 3 −1 2 10x + 1( ) ( ) ( ) (3x − 2) 1 2 (5) − 5x  1 (3x − 2) −1 2 (3) f ′(x) = 10x + 1 1 2 f ′(x) =  2  1 2 2(5x2 + x − 3) (3x − 2)  Set f ′(x) = 10x + 1 1 2 = 0. 2(5x2 + x − 3) f ′(x) =   5(3x − 2) 1 2 − 15 x(3x − 2) −1 2 2 (2x + 1) 10x + 1 = 0 x 1 y f  1  61 5 (3x − 2)−1 2 2(3 − x2) − 3x f ′(x) = 2 = − → = 10 − 10 = − 20 f ′ x (2x − 1) 5(3x − 4) = Because − 61 20 is not a real number, there is no point ( ) 2(3x − 2) 3 2 67. of horizontal tangency. f (x) = x = x Set f ′(x) = 5(3x − 4) = 0. 2(3x − 2)3 2 2x − 1 (2x − 1) 5(3x − 4) = 0 f ′(x) = (2x − 1) 1 2 (1) − x  1 (2x − 1) −1 2 (2)   1 2 2 2x + 1   3x − 4 = 0 x = 4 → y = 3  4    3 20 3 2 1 2 −1 2  4 10  f ′(x) = (2x − 1) − x(2x − 1) (2x + 1) −1 2 Horizontal tangent at:  3 , 3 2  59 59 f ′(x) = (2x − 1) (2x − 1) − x  69. A′ = 1000(60) 1 + r 1 = 5000 1 + r       (2x − 1)  12   12   12        f ′(x) = x − 1 (2x − 1) 3 2 (a) A′(0.08) =  +  0.08 12  Set f ′(x) = x − 1 3 2 = 0. ≈ $74.00 per percentage point x − 1 = 0 (2x − 1) (b) A′(0.10) =  +  0.10 12  x = 1 → y = f (1) = 1 = 1 ≈ $81.59 per percentage point 1 Horizontal tangent at: (1, 1) (c) A′(0.12) =  + 0.12 12    ≈ $89.94 per percentage point
  • 54. 2 2 2 3 dt Section 2.6 Higher-Order Derivatives 123 70. N = 400  1 − 3(t + 2) −2   71. V = k t + 1 dN   2 −3   When t = 0, V = 10,000.= N′(t) = 400 (−3)(−2)(t + 2) (2t)dt   = 4800t (t2 + 2) 10,000 = k  k 0 + 1 10,000 = 10,000 (a) N′(0) = 0 bacteria day V = t + 1 −1 2 (b) N′(1) ≈ 177.8 bacteria day V = 10,000(t + 1) dV 5000 t 1 −3 2 1 5000 (c) N′(2) ≈ 44.4 bacteria day = − ( dt + ) ( ) = − 3 2 (t + 1) (d) N′(3) ≈ 10.8 bacteria day When t = 1, (e) N′(4) ≈ 3.3 bacteria day dV 5000 2500 $1767.77 per year.= − 3 2 = − ≈ − (f ) The rate of change of the population is decreasing as time passes. dt (2) dV 2 5000 When t = 3, dt = − = −$625.00 per year. (4)3 2 72. (a) From the graph, the tangent line at t = 4 is steeper than the tangent line at t = 1. So, the rate of change after 4 hours is greater. (b) The cost function is a composite function of x units, which is a function of the number of hours, which is not a linear function. 4 3 2 1 2 73. (a) r = (0.3017t − 9.657t + 97.35t − 266.8t − 242) dr = r′ t = 1 0.3017t4 − 9.657t3 + 97.35t2 − 266.8t − 242 −1 2 ⋅ 1.2068t3 − 28.971t2 + 194.7t − 266.8( ) ( ) ( ) (b) = Chain Rule 4 1.2068t3 − 28.971t2 + 194.7t − 266.8 2 0.3017t4 − 9.657t3 + 97.35t2 − 266.8t − 242 8 13 −2 (c) The rate of change appears to be the greatest when t = 8 or 2008. The rate of change appears to be the least when t ≈ 9.60, or 2009, and when t ≈ 12.57, or 2012. Section 2.6 Higher-Order Derivatives Skills Warm Up 1. −16t2 + 292 = 0 2. −16t2 + 88t = 0 −16t2 t2 = −292 = 73 4 −8t(2t − 11) = 0 −8t = 0 → t = 0 2t − 11 = 0 → t = 11 t = ± 73 2
  • 55. 2 3 4 2 124 Chapter 2 Differentiation Skills Warm Up —continued— 3. −16t2 + 128t + 320 = 0 −16(t2 − 8t − 20) = 0 −16(t − 10)(t + 2) = 0 t − 10 = 0 → t = 10 t + 2 = 0 → t = −2 4. −16t2 + 9t + 1440 = 0 7. y = dy = dx = x2 2x + 7 (2x + 7)(2x) − (x2 )(2) (2x + 7) 2 4x2 + 14x − 2x2 (2x + 7) 2 2x2 + 14x −9 ± t = 92 − 4(−16)(1440) 2(−16) = (2x + 7)2 = −9 ± 92241 −32 2x(x+ 7)= (2x + 7)2 = 9 ± 3 10249 32 8. y = x2 + 3x 2 t ≈ −9.21and t ≈ 9.77 2x − 5 5. y = x2 (2x + 7) dy (2x2 − 5)(2x + 3) − (x2 + 3x)(4x) = dx (2x2 − 5) dy = x2 (2) + 2x(2x + 7) dx 4x3 + 6x2 − 10x − 15 − 4x3 − 12x2 = 2 = 2x2 + 4x2 + 14x (2x2 − 5) = 6x2 + 14x −6x2 − 10x − 15 = 6. y = (x2 + 3x)(2x2 − 5) (2x2 − 5) dy = (x2 + 3x)(4x) + (2x + 3)(2x2 − 5) 9. ( ) f x = x2 − 4 dx = 4x3 + 12x2 + 4x3 − 10x + 6x2 − 15 = 8x3 + 18x2 − 10x − 15 Domain: (−∞, ∞) Range: [−4, ∞) 10. f (x) = x − 7 Domain: [7, ∞) Range: [0, ∞) 1. f (x) = 9 − 2x f ′(x) = −2 f ′′(x) = 0 2. f (x) = 4x + 15 f ′(x) = 4 f ′′(x) = 0 4. f (x) = 3x2 + 4x f ′(x) = 6x + 4 f ′′(x) = 6 5. g(t) = 1 t3 − 4t2 + 2t g′(t) = t2 − 8t + 2 g′′(t) = 2t − 8 3. f (x) = x2 + 7x − 4 6. f (x) = − 5 x4 + 3x2 − 6x f ′(x) = 2x + 7 f ′′(x) = 2 f ′(x) = −5x3 + 6x − 6 f ′′(x) = −15x2 + 6
  • 56. = − 4 3 = − 3 3 2 Section 2.6 Higher-Order Derivatives 125 7. f (t) = 2 = 2t−3 13. f (x) = x5 − 3x4 t ( ) 4 3 f ′(t) = −6t−4 f ′ x = 5x − 12x f ′′(t) = 24t−5 = 24 f ′′(x) = 20x3 − 36x2 2 t5 f ′′′(x) = 60x − 72x 8. g(t) = 5 = 6t4 5 t−4 6 14. f (x) = x4 − 2x3 g′(t) 10 t−5 f ′(x) = 4x3 − 6x2 3 g′′(t) = 50 t−6 = 50 f ′′(x) = 12x2 − 12x f ′′′(x) = 24x − 12 = 12(2x − 1)3 3t6 9. f (x) = 3(2 − x2 ) 3 f ′(x) = 9(2 − x ) (−2x) = −18x(2 − x ) 15. f (x) = 5x(x + 4) 3 = 5x(x3 + 12x2 + 48x + 64) 2 2 2 2 f ′′(x) = (−18x)2(2 − x2 )(−2x) + (2 − x2 ) 2 (−18) = 18(2 − x2 ) 4x2 − (2 − x2 ) = 5x4 + 60x3 + 240x2 + 320x f ′(x) = 20x3 + 180x2 + 480x + 320 f ′′(x) = 60x2 + 360x + 480 = 18(2 − x2 )(5x2 − 2) f ′′′(x) 120x 360= + 10. y = 4(x2 + 5x) 2 2 16. f (x) = (x3 − 6) y′ = 4(3)(x + 5x) (2x + 5) f ′(x) = 4(x3 − 6) (3x2 ) = (24x + 60)(x4 + 10x3 + 25x2 ) = 24x5 + 300x4 + 1200x3 + 1500x2 y′′ = 120x4 + 1200x3 + 3600x2 + 3000x = 12x11 − 216x8 + 1296x5 − 2592x2 f ′′(x) = 132x10 − 1728x7 + 6480x4 − 5184x f ′′′(x) = 1320x9 − 12,096x6 + 25,920x3 − 5184 11. f (x) = x + 1 17. f (x) = 3 = 3 x−4 x − 1 f ′(x) = (x − 1)(1)− (x + 1)(1) f ′(x) 8x4 8 3 x−5 (x − 1) 2 = − 15 = − 2 = −2(x − 1) −2 f ′′(x) = x−6 (x − 1) 2 f ′′′ x 2 = −45x−7 45 12. f ′′(x) = 4(x − 1) −3 (1) = 4 (x − 1)3 g(x) = 1 − 4x x − 3 18. ( ) = − x7 f (x) = − 2 25x5 2 g′(x) = (x − 3)(−4) − (1 − 4x)(1) f (x) = − 25 x−5 (x − 3)2 f ′(x) = 2 x−6 5 = −4x + 12 − 1 + 4x (x − 3) 2 f ′′(x) 12 5 x−7 = 11 = 11(x − 3) −2 (x − 3) 2 g′′(x) = −22(x − 3)−3 (1) = − 22 f ′′′(x) = 84 x−8 5 = 84 5x8 (x − 3) 3
  • 57.   = − f ′′ 4 126 Chapter 2 Differentiation 19. 20. g(t) = 5t4 + 10t2 + 3 g′(t) = 20t3 + 20t g′′(t) = 60t2 + 20 g′′(2) = 60(4) + 20 = 260 f (x) = 9 − x2 26. 27. f ′′(x) = 20x3 − 36x2 f ′′′(x) = 60x2 − 72x = 12x(5x − 6) f ′′′(x) = 4x−4 f (4) (x) = −16x−5 f ′(x) = −2x f ′′(x) = −2 f (5) (x) = 80x−6 = 80 x6 1 2 f ′′(− 5) = −2 28. f ′′(x) = 4 x − 2 = 4(x − 2) f ′′′(x) = 4 1 (x − 2)−1 2 (1) = 2(x − 2)−1 2 21. f (x) = 4 − x  = (4 − x) 1 2 2 f 4 x   = 2 − 1 x − 2 −3 2 1 = − x − 2 −3 2 f ′(x) 1 (4 − x) −1 2 ( ) ( )  ( ) ( ) ( ) = − 2 f 5 x  2 = 3 x − 2 −5 2 1 = 3 f ′′(x) 1 (4 − x) −3 2 ( ) ( ) ( ) ( )= − 2 2(x − 2) 5 2 f ′′′(x) 3 (4 − x) −5 2 = −3 = − 8 8(4 − x)5 2 29. f (5) (x) = 2(x2 + 1)(2x) 3 f ′′′(−5) = −3 1 5 2 = − 648 = 4x + 4x 22. f (t) = 8(9) 2t + 3 = (2t + 3) 1 2 30. f (6) (x) = 12x2 + 4 f ′′′(x) = 4x + 7 f ′(t) = 1 (2t + 3) −1 2 (2) = (2t + 3) −1 2 2 f (4) (x) = 4 f (5) (x) = 0 f ′′(t) 1 (2t + 3) −3 2 (2) = −(2t + 3) −3 2 2 31. f ′(x) = 3x2 − 18x + 27 f ′′′(t) = 3 (2t + 3) −5 2 (2) = 3  1 ′  =  2 2 3 32 (2t + 3) 5 2 f ′′(x) = 6x − 18 f ′′(x) = 0  6x = 18 x = 3 f x = 3 x3 − 2x = x9 − 6x7 + 12x5 − 8x3 23. ( ) ( ) f ′(x) = 9x8 − 42x6 + 60x4 − 24x2 32. f (x) = (x + 2)(x − 2)(x + 3)(x − 3) = (x2 − 4)(x2 − 9) 4 2 f ′′(x) = 72x7 − 252x5 + 240x3 − 48x f ′′(1) = 12 = x f ′(x) = 4x − 13x 3 − 26x + 36 g x = 4 x2 + 3x = x8 + 12x7 + 54x6 + 108x5 + 81x4 f ′′(x) = 12x2 − 26 24. ( ) ( ) g′(x) = 8x7 + 84x6 + 324x5 + 540x4 + 324x3 f ′′(x) = 0  12x2 = 26 13 78 g′′(x) = 56x6 + 504x5 + 1620x4 + 2160x3 + 972x2 g′′(−1) = −16 x = ± = ± 6 6 25. f ′(x) = 2x2 f ′′(x) = 4x
  • 58. ) ) 1 2   ) ( 1 2 ) −2 −3 3 3 Section 2.6 Higher-Order Derivatives 127 33. f (x) = x x 1 22 − 1 = x x2 − 1 1 −1 2 1 2 x2 1 2 f ′(x) = x (x2 − 1) (2x) + (x2 − 1) = + (x2 − 1)2 (x2 − 1 (x2 − 1) (2x) − x2  1 (x2 − 1) −1 2 (2x) f ′′ x =  2 + 1 x2 − 1 −1 2 2x ( ) x2 (x2 − 1)(2x) − x3 − 1 2 x x2 − 1 ( ) ( ) = 3 2 + 2 2 1 2 ⋅ 2 − (x − 1) (x − 1) x 1 2x3 − 3x= (x2 3 2 − 1 f ′′(x) = 0  2x3 − 3x = x(2x2 − 3) = 0 x = ± 3 = ± 6 2 2 x = 0 is not in the domain of f. 34. ( ) (x + 3)(1)− (x)(2x) 3 − x ( 2 )( 2 2 2 f ′ x = 2 2 = 2 2 = 3 − x x + 3 (x + 3) (x + 3) 2  2 −3   2 −2 f ′′(x) = (3 − x ) −2(x + 3) (2x) + (x + 3) (−2x) = −2x(x2 + 3) 2(3 − x2 ) + (x2 + 3)   −2x(9 − x2 )= (x2 + 3) 2x(x2 − 9)= (x2 + 3) f ′′(x) = 0  2x(x2 − 9) = 0 x = 0, ±3 35. (a) s(t) = −4.9t2 + 44.1t v(t) = s′(t) = −9.8t + 44.1 a(t) = v′(t) = s′′(t) = −9.8 (d) s(t) = 0 −4.9t2 + 44.1t = 0 −4.9t(t − 9) = 0 t = 0 sec t = 9 sec (b) (c) s(3) = 88.2 m v(3) = 14.7 m sec a(3) = −9.8 m sec2 v(t) = 0 −9.8t + 44.1 = 0 v(9) = −9.8(9) + 44.1 = −44.1 m sec This is the same speed as the initial velocity. 36. (a) s(t) = −4.9t2 + 381 ( ) ( ) v t = s′ t = −9.8t −9.8t = −44.1 t = 4.5 sec s(4.5) = 99.225 m (b) a(t) = v′(t) = −9.8 s(t) = 0 when 4.9t2 381 = 381, or (c) t = ≈ 8.8 sec. 4.9 v(8.8) = −86.42 m sec
  • 59. f 128 Chapter 2 Differentiation 37. dv (t + 10)(27.5) − (27.5t)(1)= dt (t + 10) 2 = 275 (t + 10) 2 t 0 10 20 30 40 50 60 v 0 13.75 18.33 20.63 22 22.92 23.57 dv dt 2.75 0.69 0.31 0.17 0.11 0.08 0.06 38. As time increases, the acceleration decreases. After 1 minute, the automobile is traveling at about 23.57 meters per second. s(t) = −2.5t2 + 20t v(t) = s′(t) = −5t + 20 a(t) = s′′(t) = −5 t 0 1 2 3 4 s(t) 0 17.5 30 37.5 40 v(t) 20 15 10 5 0 a(t) −5 −5 −5 −5 −5 It takes 4 seconds for the car to stop, at which time it has traveled 40 meters. 39. f (x) = x2 − 6x + 6 f ′(x) = 2x − 6 f ′′(x) = 2 41. (a) (b) y(t) = −21.944t3 + 701.75t2 − 6969.4t + 27,164 y′(t) = −65.832t2 + 1403.5t − 6969.4 y′′(t) = −131.664t + 1403.5 (a) 7 (c) Over the interval 8 ≤ t ≤ 13, y′(t) > 0; therefore, f ″ f ′ −5 10 f −3 (d) y is increasing over 8 ≤ t ≤ 13, or from 2008 to 20013. y′′(t) = 0 −131.664t + 1403.5 = 0 (b) The degree decreased by 1 for each successive derivative. −131.664t = −1403.5 t ≈ 10.66 or 2010 (c) f (x) = 3x2 − 9x 10 f ′ f ″ 42. Let y = xf (x). f ′(x) = 6x − 9 −4 f ′′(x) = 6 Then, 4 y′ = xf ′(x) + y′′ = xf ′′(x) + f (x) f ′(x) + f ′(x) = xf ′′(x) + 2 f ′(x) −10 y′′′ = xf ′′′(x) + f ′′(x) + 2 f ′′(x) (d) The degree decreases by 1 for each successive derivative. 40. Graph A is the position function. Graph B is the velocity function. Graph C is the acceleration function. Explanations will vary. Sample explanation: The position function appears to be a third-degree function, while the velocity is a second-degree function, = xf ′′′(x) + 3 f ′′(x). In general y(n) = xf (x) (n) = xf (n) (x) + nf (n−1) (x). 43. True. If y = (x + 1)(x + 2)(x + 3)(x + 4), then y is a fourth-degree polynomial function and its fifth derivative d5 y and the acceleration is a linear function. dx5 equals 0.
  • 60. 2 Section 2.7 Implicit Differentiation 129 44. True. The second derivative represents the rate of change of the first derivative, the same way that the first derivative represents the rate of change of the function. Section 2.7 Implicit Differentiation 45. Answers will vary. Skills Warm Up 1. x − y = 2 6. x = ± 6 − y2 x x2 − y = 2x x2 = 6 − y2 −y = 2x − x2 x2 − 6 = −y2 y = x2 − 2x 6 − x2 = y2 ± 6 − x2 = y 2. 4 = 1 x − 3 y 4y = x − 3 3x2 − 4 7. 3y2 , (2, 1) y = x − 3 4 3. xy − x + 6y = 6 3(22 ) − 4 3(4)− 4 8 = = 3(12 ) 3 3 x2 − 2xy + 6y = 6 + x y(x + 6) = 6 + x 8. 1 − y , (0, −3) y = 6 + x 02 − 2 −2 1 x + 6 y = 1, x ≠ −6 = = − 1 − (−3) 4 2 4. 7 + 4y = 3x2 + x2 y 9. 7x ,  − 1 , −2  4y2 + 13y + 3  7  4y − x2 y = 3x2 − 7 y(4 − x2 ) = 3x2 − 7   7  − 1   7  −1 −1 1 3x2 − 7   = = = y = , x ≠ ±2 4 − x2 4(−2) + 13(−2) + 3 16 − 26 + 3 −7 7 5. x2 + y2 y2 = 5 = 5 − x2 y = ± 5 − x2 1. x3 y = 6 2. 3x2 − y = 8x x3 dy + 3x2 y = 0 dx 6x − dy = 8 dx x3 dy dx dy = −3x2 y 3x2 3 − dy dx dy = 8 − 6x y y dx x3 x = 6x − 8 dx = − = − 3. y2 2y dy dx = 1 − x2 = −2x dy x = − dx y
  • 61. ( ) 2 2 2 ( ) x 2 130 Chapter 2 Differentiation 4. y3 = 5x3 + 8x 10. xy − y2 = 1 3y2 dy dx = 15x2 + 8 y − x xy − y2 = y − x dy = dx 15x2 + 8 3y2 y(x − y) = −(x − y) y = −1 5. y4 − y2 + 7y − 6x = 9 4y3 dy − 2y dy + 7 dy − 6 = 0 dy = 0 dx dx dx dx (4y3 − 2y + 7)dy = 6 11. 2y y2 + 3 = 4x dx dy = 6 2y = 4x(y2 + 3) 2 dx 4y3 − 2y + 7 2y = 4xy + 12x 2 dy = 8xy dy + 4y2 + 12 6. 4y3 + 5y2 − y − 3x3 = 8x dx dx 12y2 dy + 10y dy − dy − 9x2 = 8 dx dx dx 2 dy − 8xy dy dx dx = 4y2 + 12 2 12y2 + 10y − 1 dy dx dy = 8 + 9x2 8 + 9x2 = dy = dx 4y + 12 2 − 8xy 2 dx 12y2 + 10y − 1 12. 4y = x2 y2 − 9 7. xy2 + 4xy = 10 ( 2 ) dy  2  dy y − 9 8y  − 4y 2y  y2 + 2xy dy + 4y + 4x dy = 0 dx dx   dx   dx  (y − 9) = 2x (2xy + 4x) dy = −y2 − 4y dy ( 2 2 )dx dy y2 + 4y = − 8y y − 9 − y dx (y2 − 9) = 2x dx 2xy + 4x −72y dy dx8. 2xy3 − x2 y = 2 (y2 − 9) = 2x 2y3 + 6xy2 dy − 2xy − x2 dy = 0 2 2 dx dx 6xy2 − x2 dy dx = 2xy − 2y3 dy 2x(y − 9)= dx −72y 2 2 dy = dx 2xy − 2y3 6xy2 − x2 dy x(y − 9)= − dx 36y 9. 2x + y = 1 x − 5y 13. x2 + y2 dy = 16 2x + y = x − 5y 2x + 2y = 0 dx 6y = −x 2y dy dx = −2x 1 y = − 6 dy 1 = − dy x = − dx y dx 6 At (0, 4), dy dx 0 = − = 0. 4
  • 62. ( ) −5 1   ( ) = 3 3 . = − Section 2.7 Implicit Differentiation 131 14. x2 − y2 2x − 2y dy dx −2y dy dx = 25 = 0 = −2x 18. x2 y + y3 x = −6 x2 dy + 2xy + y3 + 3y2 dy x = 0 dx dx dy x2 + 2xy = −2xy − y2 dx dy = x dy −(2xy + y3 ) dx y At (5, 0), dy is undefined. dx = dx dy = dx x2 + 3xy2 y(2x + y2 ) x(x + 3y2 ) 15. y + xy = 4 dy (−1)(2(2) + (−1) 2 )dy + x dy + y = 0 dx dx dy (1 + x) = −y At (2, −1), dx (2)((2) + 3(−1) 2 ) = − = . 10 2 dx dy = − y 19. xy − x = y x dy + y − 1 = dy dx x + 1 dx dx dy dy At (−5, − 1), dy dx = − 1 . 4 x − dx dx dy = 1 − y (x − 1) = 1 − y dx 16. xy − 3y2 = 2 dy 1 y y 1 = − = − − x dy + y − 6y dy = 0 dx x − 1 x − 1 dx dx  3  dy 3 − 1 2 dy (x − 6y) = − y dx At  2 , 3, dx = − = − 3 − 1 1 2 2 = −4. dy = − y dx x − 6y 20. x3 + y3 2 2 dy = 6xy  dy dy = − 2 = 2 3x + 3y dx = 6x dx + yAt (7, 2), dx . 7 − 6(2) 5 3x2 + 3y2 dy   = 6x dy + 6y 17. x2 − xy + y2 = 4 dx dx 2x −  x dy + y  + 2y dy = 0 3y2 − 6x dy dx = 6y − 3x2  dx  dx 2   dy 6y − 3x 2 2x − x dy − y + 2y dy = 0 dx 3y − 6x dx dx dy (2y − x) = dx y − 2x dy 3(2y − x2 )= dx 3(y2 − 2x) dy 2y − x2 dy y − 3x2 = = dx y2 − 2x dx 2y − x  4 8 dy 4 . At (−2, −1), dy dx (−1) − 3(−2)2 = 2(−1) − (−2) = −7 ; dy is 0 dx At  , , =   dx 5 undefined. 21. x1 2 + y1 2 = 9 1 x−1 2 + 1 y−1 2 dy = 0 2 2 dx x−1 2 + y−1 2 dy dx dy = 0 −x−1 2 y = = − At (16, 25), dy dx dx y−1 2 x 5 = − 4
  • 63. . ( )   ( ) 132 Chapter 2 Differentiation 22. x2 3 + y2 3 = 5 25. y2 (x2 + y2 ) = 2x2 2 x−1 3 + 2 y−1 3 dy = 0 y2  2x + 2y dy  + (x2 + y2 ) 2y dy  = 4x 3 3 dx  dx   dx  dy −x−1 3 y1 3 y     dy dy dy= = − = − 3 2xy2 + 2y3 + 2x2 y + 2y3 = 4x At (8, 1), dy dx dx y−1 3 1 = − 2 x1 3 x dx dx dx dy 4y3 + 2x2 y = 4x − 2xy2 dx dy 2x(2 − y2 ) 23. xy = x − 2y x y = x − 2y x  1 y−1 2 dy  + y 1 x−1 2  = 1 − 2 dy = dx 2y(2y2 + x2 ) dy x(2 − y2 )= dx y(2y2 + x2 ) 2 dx   2  dx    x dy dy + 2 y = 1 − At (1, 1), dy dx = 1 . 3 2 y dx dx 2 x 2 2 2 2 1 − y dy = 2 x ⋅ 2 x y 26. (x 2 2   + y ) dy   = 8x y 2 dy dx x 2 x y + 2 2(x + y )2x + 2y  = 8x  dx  + y(16x) dx 2 y 4x3 + 4x2 y dy + 4xy2 + 4y3 dy = 8x2 dy + 16xy2 xy − y = x + 4 xy dx dx dx dy (4x2 y + 4y3 − 8x2 ) = 16xy − 4x3 − 4xy2 2(x − 2y) − y = x + 4(x − 2y) dx dy = 4(4xy − x3 − xy2 ) 2x − 5y = dx 4(x y + y − 2x ) At (4, 1), dy dx = 1 . 4 5x − 8y At (2, 2), dy = 0. 2 3 2 dy x(4y − x2 − y2 )= dx x2 y + y3 − 2x2 24. (x + y) 3 = x3 + y3 3(x + y) 2 1 + dy  = 3x2 + 3y2 dy 27. 3x2 dx − 2y + 5 = 0  dx dx 6x − 2 dy = 0 3(x + y) 2 + 3(x + y) 2 dy = 3x2 + 3y2 dy dx dx (x + y) 2 dy − y2 dy = x2 − (x + y) 2 dx dx dy (x + y) 2 − y2  = x2 − x2 + 2xy + y2 dx  dx dy = 3x dx At (1, 4), dy = 3. dx dy −(2xy + y2 )= = − y(2x + y) 28. 4x2 + 2y − 1 = 0 At (−1, 1), dy dx = −1. dx x2 + 2xy x(x + 2y) 8x + 2 dy dx dy = 0 8x = −4x= − dx 2 dy (−1) = −4(−1) = 4 dx
  • 64. ) = ±  4 . . = ± ( ) 4  4 = − ( ) Section 2.7 Implicit Differentiation 133 29. x2 + y2 = 4 2x + 2y dy = 0 dx 33. Implicitly: 1 − 2y dy dx dy = 0 = 1 dy x = − dx 2y dx y Explicitly: y = ± x − 1 1 2 At ( 3, 1 , dy = − 3 dx 1 = − 3. = ±(x − 1) dy 1 (x − 1) −1 2 (1) dx 2 30. 4x2 + 9y2 8x + 18 dy dx dy dx = 36 = 0 4x = − 9y = ± 2 = 2(± 1 1 x − 1 y 1 x − 1) 2 1 y = x − 1 At   dy 5, , 3 4 5 5 = − = − . = 2y 2 x 3 4 (2, −1)   dx 9(4 3) 3 At (2, −1), −1 dy 1 = − −2 31. x2 − y3 = 0 dx 2 y = − x − 1 2x − 3y2 dy = 0 dx 34. Implicitly: 8y dy − 2x = 0 dx dy = 2x dx 3y2 dy = x dx 4y At (−1, 1), dy 2 dx 3 Explicitly: 1 y = ± 2 x2 + 7 32. (4 − x)y2 = x3 1 x2 + 7 1 2 2 x3 dy 1 −1 2 y2 = 4 − x = ± x2 + 7 (2x)dx 2y dy dx dy (4 − x)(3x2 ) − x3 (−1) = (4 − x)2 12x2 − 3x3 + x3 = ± x 2 x2 + 7 = x 2y = dx (4 − x)2  1 4± 2 x2 + 7  2y dy dx dy 12x2 − 2x3 = (4 − x)2 2x2 (x − 6)   = x 4y dy 3 = − dx 2y(4 − x)2 dy x2 (x − 6)= − At (3, 2), 2 = . dx 8 y dx y(4 − x) 2 y = x + 7 2 2 (3, 2) At (2, 7), dy dx = 2. x −4 −2 2 4 −2 y = − x2 + 7 −4 2