KELOMPOK = Adi Pambudi
Dio Visiasa Silaen
Syamsul Bahri
Widia Afridani
Exercise 5.2
For problem 1 – 10, use the rule for sums and differences to find the derivative of given
function.
Question!
1. f(x) = 𝑥7
+ 2𝑥10
2. h(x) = 30 – 5𝑥2
3. g(x) = 𝑥100
– 40𝑥5
4. C(x) = 1.000 + 200x – 40𝑥2
5. y =
− 15
𝑥
+ 25
6. s(t) = 16𝑡2
–
2𝑡
3
+ 10
7. g(x) =
𝑥100
25
– 20 𝑥
8. y = 12𝑥0.2
+ 0.45x
9. q(v) = 𝑣
2
5 + 7 – 15𝑣
3
5
10. f(x) =
5
2𝑥2
+
5
2𝑥−2
–
5
2
For problem 11-15, find the indicated numerical derivative.
11. h’(1
2
) when h(x) = 30 – 5𝑥2
12. C’(300) when C(x) = 1.000 + 200x – 40𝑥2
13. s’(0) when s(t) = 16𝑡2
–
2𝑡
3
+ 10
14. q’(32) when q(v) = 𝑣
2
5 + 7 – 15𝑣
3
5
15. f’(6) when f(x) =
5
2𝑥2
+
5
2𝑥−2
–
5
2
Answer!
1. f(x) = 𝑥7
+ 2𝑥10
f’(x) = 7𝑥6
+ 20𝑥9
2. h(x) = 30 – 5𝑥2
h’(x) = –10x
3. g(x) = 𝑥100
– 40𝑥5
g’(x) = 100𝑥99
– 200𝑥4
4. C(x) = 1.000 + 200x – 40𝑥2
C’(x) = 200 – 80x
5. y =
− 15
𝑥
+ 25
= – 15𝑥−1
+ 25
y’ = – 15𝑥−2
6. s(t) = 16𝑡2
–
2𝑡
3
+ 10
s’(t) = 32t –
2
3
7. g(x) =
𝑥100
25
– 20 𝑥
=
𝑥100
25
– 20𝑥
1
2
g’(x) = 4𝑥99
– 10𝑥−
1
2
8. y = 12𝑥0.2
+ 0.45x
y’ = 2.4𝑥−0.8
+ 0.45
9. q(v) = 𝑣
2
5 + 7 – 15𝑣
3
5
q’(v) =
2
5
𝑣−
3
5 – 9𝑣−
2
5
10. f(x) =
5
2𝑥2
+
5
2𝑥−2
–
5
2
=
5
2
𝑥−2
+
5
2
𝑥2
–
5
2
f’(x) = – 5𝑥−3
+ 5x
11. h(x) = 30 – 5x
h’(x) = –10x
h’(1
2
) = –10(1
2
)
h’(1
2
) = –5
12. C(x) = 1.000 + 200x – 40𝑥2
C’(x) = 200 – 80x
C’(300) = 200 – (80 . 300)
= 200 – 24.000
= –23.800
13. s(t) = 16𝑡2
–
2
3
𝑡 + 10
s’(t) = 32t –
2
3
s’(0) = –
2
3
14. q(v) = 𝑣
2
5 + 7 – 15𝑣
3
5
q’(v) =
2
5
𝑣−
3
5 – 9𝑣−
2
5
q’(32) =
2
5
.
1
8
– 9
1
4
q’(32) =
2
40
–
9
4
q’(32) =
1
20
–
9
4
15. f(x) =
5
2𝑥2
+
5
2𝑥−2
–
5
2
=
5
2
𝑥−2
+
5
2
𝑥2
–
5
2
f’(x) = – 5𝑥−3
+ 5x
f’(6) = – 5(6)−3
+ 5(6)
f’(6) = –
5
216
+ 30
Exercise 5.3
For problem 1 – 10, use the productruleto find the derivaative of given function.
Question!
1. f(x) = (2𝑥2
+ 3)(2x – 3)
2. h(x) = (4𝑥3
+ 1)( – 𝑥2
+ 2x + 5)
3. g(x) = (𝑥2
– 5)(3
𝑋
)
4. C(x) = (50 + 20x)(100 – 2x)
5. y = (−15
𝑥
+ 25)( 𝑥 + 5)
6. s(t) = (4𝑡 −
1
2
)(5t +
3
4
)
7. g(x) = (2𝑥3
+ 2𝑥2
)(2 𝑥
3
)
8. f(x) =
10
𝑥5
.
𝑥3 + 1
5
9. q(v) = (𝑣2
+ 7)(−5𝑣−2
+ 2)
10. f(x) = (2𝑥3
+ 3)(3 – 𝑥23
)
For problem 11-15, find the indicated numerical derivative.
11. f’(1.5) when f(x) = (2𝑥2
+ 3)(2x – 3)
12. g’(10) when g(x) = (𝑥2
– 5)(3
𝑋
)
13. C’(150) when C(x) = (50 + 20x)(100 – 2x)
14.
𝑑𝑦
𝑑𝑥
|x=25 when y = (−15
𝑥
+ 25)( 𝑥 + 5)
15. f’(2) when f(x) =
10
𝑥5
.
𝑥3 + 1
5
Answer!
1. f(x) = (2𝑥2
+ 3)(2x – 3)
f’(x) = (4x)(2x-3) + (2𝑥2
+ 3)(2)
= 8𝑥2
– 12x + 4𝑥2
+ 6
= 12𝑥2
– 12x + 6
2. h(x) = (4𝑥3
+ 1)( – 𝑥2
+ 2x + 5)
h’(x) = (12𝑥2
)( – 𝑥2
+ 2x + 5) + (4𝑥3
+ 1)( –2x +2)
= –12𝑥4
+ 24𝑥3
+ 60𝑥2
+ (– 8𝑥4
) + 8𝑥3
+ (–2x) + 2
= –20𝑥4
+ 32𝑥3
+ 60𝑥2
– 2x + 2
3. g(x) = (𝑥2
– 5)(3
𝑋
)
= (𝑥2
– 5) ( 3𝑥−1
)
g’(x) = (2x)(3𝑥−1
)+ (𝑥2
– 5)(−3𝑥−2
)
= 6 – 3 + 15𝑥−2
4. C(x) = (50 + 20x)(100 – 2x)
C’(x) = (20)(100 – 2x) + (50 + 20x)( –2)
= 2000 – 40x – 100 – 40x
= –80x + 1900
5. y = (−15
𝑥
+ 25)( 𝑥 + 5)
= (– 15𝑥−
1
2 + 25)(𝑥
1
2 + 5)
y’ = (15
2
𝑥−
3
2)( 𝑥 + 5) + (– 15𝑥−
1
2 + 25)(1
2
𝑥−
1
2)
=
15
2
𝑥−1
+
25
2
𝑥−
3
2 –
15
2
𝑥−1
+
25
2
𝑥−
1
2
=
75
2 . 𝑥 𝑥
+
25
2 𝑥
6. s(t) = (4𝑡 −
1
2
)(5t +
3
4
)
s’(t) = (4)(5t +
3
4
) + (4𝑡 −
1
2
)(5)
= 20t + 3 + 20t –
5
2
= 40t +
6
2
–
5
2
= 40t +
1
2
7. g(x) = (2𝑥3
+ 2𝑥2
)(2 𝑥
3
)
g’(x) = (6𝑥2
+4x)( 2𝑥
1
3) + (2𝑥3
+ 2𝑥2
)(2
3
𝑥−
2
3)
= 12𝑥2
1
3 + 8𝑥1
1
3 +
4
3
𝑥2
1
3 +
4
3
𝑥1
1
3
=
40
3
𝑥2
1
3 +
28
3
𝑥1
1
3
8. f(x) =
10
𝑥5
.
𝑥3 + 1
5
= 10𝑥−5
.
𝑥
5
3
+
1
5
f’(x) = −50𝑥−6
. (𝑥
5
3
+
1
5
) + 10𝑥−5
.
3
5
𝑥2
= −10𝑥−3
– 10𝑥−6
+ 6𝑥−3
= −4𝑥−3
– 10𝑥−6
9. q(v) = (𝑣2
+ 7)(−5𝑣−2
+ 2)
q’(v) = 2x(−5𝑥−2
+ 2) + (𝑣2
+ 7)(10𝑥−3
)
= −10𝑣−1
+ 4𝑣 + 10𝑥−1
+ 70𝑥−3
= 4v + 70𝑣−3
10. f(x) = (2𝑥3
+ 3)(3 – 𝑥23
)
f’(x) = 6𝑥2
(3 - 𝑥
2
3) −
2
3
𝑥−
1
3(2𝑥3
+ 3)
= 18𝑥2
– 𝑥
2
3 –
4
3
𝑥2
2
3 – 2𝑥−
1
3
11. f(x) = (2𝑥2
+ 3)(2x – 3)
f’(x) = (4x)(2x-3) + (2𝑥2
+ 3)(2)
= 8𝑥2
– 12x + 4𝑥2
+ 6
= 12𝑥2
– 12x + 6
f’(1.5) = 12(1.5)2
– 12(1.5) + 6
= 27 – 18 + 6
= 15
12. g(x) = (𝑥2
– 5)(3
𝑋
)
g’(x) = (2x)(3𝑥−1
)+ (𝑥2
– 5)(−3𝑥−2
)
= 6 – 3 + 15𝑥−2
g’(10) = 6 – 3 +
15
100
= 3 +
15
100
13. C(x) = (50 + 20x)(100 – 2x)
C’(x) = (20)(100 – 2x) + (50 + 20x)( –2)
= 2000 – 40x – 100 – 40x
= –80x + 1900
C’(150) = –80(150) + 1900
= –1200 +1900
= 700
14. y = (−15
𝑥
+ 25)( 𝑥 + 5)
= (– 15𝑥−
1
2 + 25)(𝑥
1
2 + 5)
y’ = (15
2
𝑥−
3
2)( 𝑥 + 5) + (– 15𝑥−
1
2 + 25)(1
2
𝑥−
1
2)
=
15
2
𝑥−1
+
25
2
𝑥−
3
2 –
15
2
𝑥−1
+
25
2
𝑥−
1
2
=
75
2 . 𝑥 𝑥
+
25
2 𝑥
𝑑𝑦
𝑑𝑥
|x=25 =
75
2 . 25 25
+
25
2 25
=
3
10
+
5
2
=
3+25
10
=
28
10
15. f(x) =
10
𝑥5 .
𝑥3 + 1
5
= 10𝑥−5
.
𝑥
5
3
+
1
5
f’(x) = −50𝑥−6
. (𝑥
5
3
+
1
5
) + 10𝑥−5
.
3
5
𝑥2
= −10𝑥−3
– 10𝑥−6
+ 6𝑥−3
= −4𝑥−3
– 10𝑥−6
f’(2) = –
4
23 –
10
26
= –
4
8
–
10
64
= – (4
8
+
10
64
)
= – (32 + 10
64
)
= –
42
64
Exercise 5.4
For problem 1 – 10, use the quotient rule to find the derivative of given function.
Question!
1. f(x) =
5𝑥 + 2
3𝑥 − 1
2. h(x) =
4 − 5𝑥2
8𝑥
3. g(x) =
5
𝑥
4. f(x) =
3𝑥
3
2 − 1
2𝑥
1
2 + 6
5. y =
−15
𝑥
6. s(t) =
2𝑡
3
2 − 3
4𝑡
1
2 + 6
7. g(x) =
𝑥100
𝑥−5 + 10
8. y(x) =
4 − 5𝑥3
8𝑥2 − 7
9. q(v) =
𝑣3+ 2
𝑣2 −
1
𝑣3
10. f(x) =
−4𝑥2
4
𝑥2 + 8
For problem 11-15, find the indicated numerical derivative.
11. f’(25) when f(x) =
5𝑥 + 2
3𝑥 − 1
12. h’(0.2) when h(x) =
4 − 5𝑥2
8𝑥
13. g’(0.25) when g(x) =
5
𝑥
14.
𝑑𝑦
𝑑𝑥
|10 when y =
−15
𝑥
15. g’(10) when g(x) =
𝑥100
𝑥−5 + 10
Answer!
1. f(x) =
5𝑥 + 2
3𝑥 − 1
f’(x) =
5 3𝑥−1 – 3(5𝑥+3)
(3𝑥−1)2
=
15𝑥 – 5 − 15𝑥 − 6
9𝑥 − 6𝑥 + 1
=
−11
9𝑥 − 6𝑥 + 1
2. h(x) =
4 − 5𝑥2
8𝑥
h’(x) =
−10𝑥 8𝑥 – 8(4−5𝑥2)
64𝑥2
=
−80𝑥2 + 40𝑥2 − 32
64𝑥2
=
−40𝑥2 − 32
64𝑥2
=
−5𝑥2 − 4
8𝑥2
3. g(x) =
5
𝑥
= 5𝑥−
1
2
g’(x) = −
5
2
𝑥−
3
2
4. f(x) =
3𝑥
3
2 − 1
2𝑥
1
2 + 6
f’(x) =
9
2
𝑥
1
2 2𝑥
1
2+6 − 𝑥
−
1
2 3𝑥
3
2−1
(2𝑥
1
2+6)2
=
9𝑥 + 27𝑥
1
2 − 3𝑥 + 𝑥
−
1
2
4𝑥 + 24𝑥
1
2 + 36
=
6𝑥 + 27 𝑥 + 𝑥
−
1
2
4𝑥 + 24 𝑥 + 36
5. y =
−15
𝑥
=−15𝑥−1
y’ = 15𝑥−2
6. s(t) =
2𝑡
3
2 − 3
4𝑡
1
2 + 6
s’(t) =
3𝑡
1
2 4𝑡
1
2+6 − 2𝑡
−
1
2 2𝑡
3
2−3
(4𝑡
1
2+6)2
=
12𝑡 + 18𝑡
1
2 − 4𝑡 + 6𝑡
−
1
2
16𝑡 + 48𝑡
1
2 + 36
=
8𝑡 + 18𝑡
1
2 − 6𝑦
−
1
2
16 + 48𝑡
1
2 + 36
7. g(x) =
𝑥100
𝑥−5 + 10
g’(x) =
100𝑥99 𝑥−5+10 + 5𝑥−6(𝑥100
(𝑥−5 + 10)2
=
100𝑥94 + 1000 𝑥99 + 5𝑥94
𝑥−10 + 20𝑥−5 + 100
8. y(x) =
4 − 5𝑥3
8𝑥2 − 7
y’(x) =
−15𝑥2 8𝑥2−7 − 16𝑥(4−5𝑥3)
(8𝑥2 – 7)2
𝑑𝑦
𝑑𝑥
=
−120𝑥4 − 105𝑥2 − 64𝑥 + 80𝑥4
64𝑥4 − 112𝑥2 + 39
=
−40𝑥4 − 105𝑥2 − 64𝑥
64𝑥4 − 112𝑥2 + 39
9. q(v) =
𝑣3+ 2
𝑣2 −
1
𝑣3
=
𝑣3+ 2
𝑣2 − 𝑣−3
q’(v) =
3𝑣2 𝑣2−𝑣−3 − 2𝑣 − 3𝑣−4(𝑣3+2)
(𝑣2 − 𝑣−3)2
=
3𝑣4 − 3𝑣−1 − 2𝑣4 − 2𝑣 − 3𝑣−1 −6𝑣
𝑣4− 2𝑣−1 + 𝑣−6
=
𝑣4 − 6𝑣−1 − 8𝑣
𝑣4− 2𝑣−1 + 𝑣−6
10. f(x) =
−4𝑥2
4
𝑥2 + 8
=
−4𝑥2
4𝑥−2 + 8
= (−4𝑥2
)(
1
4
𝑥2
+
1
8
)
= −𝑥4
−
1
2
𝑥2
f’(x) = −4𝑥3
– 𝑥
11. f(x) =
5𝑥 + 2
3𝑥 − 1
= 5x + 2 (
1
3
𝑥−1
− 1) =
5
3
− 5𝑥 +
2
3
𝑥−1
− 2
f’(x) = −5 −
2
3
𝑥−2
f’(25) = −5 −
2
3.(25)2
−2
=
−5 − 2
625 . 3
12. h(x) =
4 − 5𝑥
8𝑥
= 4 − 5𝑥(
1
8
𝑥−1
) =
𝑥
2
−1
−
5
8
h’(x) = −
𝑥
2
−2
h’(0.2) =
−(0.2)
2
−2
=
0.04
2
= 0.02
13. g(x) =
5
𝑥
= 5𝑥−
1
2
g’(x) = −
5
2
𝑥−
3
2
g’(0.25) =
−5
2 0.25 . 0.25
=
−5
2 0.25 . (−0.5)
= 20
14. y =
−15
𝑥
=−15𝑥−1
𝑑𝑦
𝑑𝑥
= 15𝑥−2
𝑑𝑦
𝑑𝑥
|10 =
15
(10)2
= 0,15
15. g(x) =
𝑥100
𝑥−5 + 10
=𝑥100
(𝑥5
+
1
10
) = 𝑥105
+
𝑥
10
100
g’(x) = 105𝑥104
+ 10𝑥99
g’(1) = 105 + 10
= 115
Exercise 5.5
For problem 1 – 10, use the chain rule to find the derivative of given function.
Question!
1. f(x) = (3𝑥2
− 10)3
2. g(x) = 40(3𝑥2
− 10)3
3. h(x) = 10(3𝑥2
− 10)−3
4. h(x) = ( 𝑥 + 3)2
5. f(u) = (
1
𝑢2
− 𝑢)3
6. y =
1
(𝑥2−8)3
7. y = 2𝑥3 + 5𝑥 + 1
8. s(t) = (2𝑡3
+ 5𝑡)
1
3
9. f(x) =
10
(2𝑥−6)5
10. C(t) =
50
15𝑡+120
For problem 11 – 15, find the indicated numerical derivative.
11. f’(10) when f(x) = (3𝑥2
− 10)3
12. h’(3) when h(x) = 10(3𝑥2
− 10)−3
13. f’(144) when h(x) = ( 𝑥 + 3)2
14. f’(2) when f(u) = (
1
𝑢2
− 𝑢)3
15.
𝑑𝑦
𝑑𝑥
|4 when y =
1
(𝑥2−8)3
Answer!
1. f(x) = (3𝑥2
− 10)3
f’(x) = 3(3𝑥2
− 10)2
. (6𝑥)
= 18𝑥(3𝑥2
− 10)2
2. g(x) = 40(3𝑥2
− 10)3
g’(x) = 120(3𝑥2
− 10)2
. (6𝑥)
= 720𝑥(3𝑥2
− 10)2
3. h(x) = 10(3𝑥2
− 10)−3
h’(x) = −30(3𝑥2
− 10)−4
. (6𝑥)
= −180(3𝑥2
− 10)−4
4. h(x) = ( 𝑥 + 3)2
h’(x) = 2 𝑥 + 3 . (
1
2
𝑥−
1
2)
= 𝑥−
1
2( 𝑥 + 3)
5. f(u) = (
1
𝑢2
− 𝑢)3
f’(u) = 3(
1
𝑢2
− 𝑢)2
. (−2𝑢−3
− 1)
= 3 −2𝑢−3
− 1 . (
1
𝑢2
− 𝑢)2
= 3
2
𝑢3
− 1 .
1
𝑢2
− 𝑢 2
6. y =
1
(𝑥2−8)3
= (𝑥2
− 8)−3
𝑑𝑦
𝑑𝑥
= −3(𝑥2
− 8)−4
. (2𝑥)
=
−6𝑥
(𝑥2−8)4
7. y = 2𝑥3 + 5𝑥 + 1
= 2𝑥3
+ 5𝑥 + 1
1
2
𝑑𝑦
𝑑𝑥
=
1
2
2𝑥3
+ 5𝑥 + 1 −
1
2 . (6𝑥 + 5)
=
1
2
6𝑥 + 5 . 2𝑥3
+ 5𝑥 + 1 −
1
2
=
1
2
.
6𝑥+5
2𝑥3+5𝑥+1
8. s(t) = (2𝑡3
+ 5𝑡)
1
3
s’(t) =
1
3
2𝑡3
+ 5𝑡 −
2
3 . (4𝑡 + 5)
=
1
3
2𝑡3
+ 5𝑡 −
2
3 . (4𝑡 + 5)
=
1
3
4𝑡 + 5 . 2𝑡3
+ 5𝑥 + 1 −
2
3
9. f(x) =
10
(2𝑥−6)5
= 10(2𝑥 − 6)−5
f’(x) = −50(2𝑥 − 6)−6
. (2)
=
−100
(2𝑥−6)6
10. C(t) =
50
15𝑡+120
=
50
15𝑡+120
1
2
= 50 15𝑡 + 120 −
1
2
C’(t) = −25 15𝑡 + 120 −
3
2 . 15
= −375 15𝑡 + 120 −
3
2
=
−375
15𝑡+120
3
2
=
−375
15𝑡+120 . 15𝑡+120
11. f(x) = (3𝑥2
− 10)3
f’(x) = 3(3𝑥2
− 10)2
. (6𝑥)
= 18𝑥(3𝑥2
− 10)2
f’(10) = 18 10 (3 10 2
− 10)2
= 180(3 100 − 10)2
= 180(300 − 10)2
= 180(290)2
= 15.138.000
12. h(x) = 10(3𝑥2
− 10)−3
h’(x) = −30(3𝑥2
− 10)−4
. (6𝑥)
= −180(3𝑥2
− 10)−4
=
−180𝑥
(3𝑥2−10)4
h’(3) =
−180(3)
(3(3)2−10)4
=
−540
(27−10)4
=
−540
(17)4
=
−540
4913
13. h(x) = ( 𝑥 + 3)2
h’(x) = 2 𝑥 + 3 . (
1
2
𝑥−
1
2)
= 𝑥−
1
2( 𝑥 + 3)
=
( 𝑥+3)
𝑥
h’(144) =
( 144+3)
144
=
12+3
12
=
15
12
14. f(u) =
1
𝑢2
− 𝑢
3
f’(u) = 3
1
𝑢2
− 𝑢
2
. −2𝑢−3
− 1
= 3 −2𝑢−3
− 1 .
1
𝑢2
− 𝑢
2
= 3
2
𝑢3
− 1 .
1
𝑢2
− 𝑢 2
f’(2) = 3
2
23
− 1 .
1
22
− 2 2
= 3
2
8
−
8
8
.
1
4
−
8
4
2
= 3 −
6
8
. −
7
4
2
=−
18
8
49
16
= −
882
128
= −
441
64
15. y =
1
(𝑥2−8)3
= (𝑥2
− 8)−3
𝑑𝑦
𝑑𝑥
= −3(𝑥2
− 8)−4
. (2𝑥)
=
−6𝑥
(𝑥2−8)4
𝑑𝑦
𝑑𝑥
|4 =
−6(4)
(42−8)4
=
−24
(16−8)4
=
−24
(8)4
= −
24
4096
Exercise 5.6
For problem 1 – 5, use implicit differentiation to find
𝑑𝑦
𝑑𝑥
.
Question!
1. 𝑥2
𝑦 = 1
2. 𝑥𝑦3
= 3𝑥2
𝑦 + 5𝑦
3. 𝑥 + 𝑦 = 25
4.
1
𝑥
+
1
𝑦
= 9
5. 𝑥2
+ 𝑦2
= 16
For problem 6 – 10, find the indicated numerical derivative.
6.
𝑑𝑦
𝑑𝑥
|(3,1) when 𝑥2
𝑦 = 1
7.
𝑑𝑦
𝑑𝑥
|(5,2) when 𝑥𝑦3
= 3𝑥2
𝑦 + 5𝑦
8.
𝑑𝑦
𝑑𝑥
|(4,9) when 𝑥 + 𝑦 = 25
9.
𝑑𝑦
𝑑𝑥
|(5,10) when
1
𝑥
+
1
𝑦
= 9
10.
𝑑𝑦
𝑑𝑥
|(2,1) when 𝑥2
+ 𝑦2
= 16
Answer!
1. 𝑥2
𝑦 = 1
2𝑥
𝑑𝑥
𝑑𝑥
𝑦 + 𝑥2 𝑑𝑦
𝑑𝑥
= 0
2𝑥𝑦 + 𝑥2 𝑑𝑦
𝑑𝑥
= 0
2𝑥𝑦 = −𝑥2 𝑑𝑦
𝑑𝑥
𝑑𝑦
𝑑𝑥
= −
2𝑥𝑦
𝑥2
2. 𝑥𝑦3
= 3𝑥2
𝑦 + 5𝑦
𝑥𝑦3
− 3𝑥2
𝑦 − 5𝑦 = 0
𝑦3 𝑑𝑥
𝑑𝑥
+ 3𝑦2
𝑥
𝑑𝑦
𝑑𝑥
− 6𝑥𝑦
𝑑𝑥
𝑑𝑥
− 3𝑥2 𝑑𝑦
𝑑𝑥
− 5𝑦
𝑑𝑦
𝑑𝑥
= 0
3𝑦2
𝑥 − 3𝑥2
− 5
𝑑𝑦
𝑑𝑥
= 6𝑥𝑦 − 𝑦3
𝑑𝑦
𝑑𝑥
=
6𝑥𝑦 −𝑦3
3𝑦2 𝑥−3𝑥2−5
3. 𝑥 + 𝑦 = 25
1
2
𝑥−
1
2
𝑑𝑥
𝑑𝑥
+
1
2
𝑦−
1
2
𝑑𝑦
𝑑𝑥
= 0
1
2
𝑦−
1
2
𝑑𝑦
𝑑𝑥
= −
1
2
𝑥−
1
2
𝑑𝑥
𝑑𝑥
𝑑𝑦
𝑑𝑥
=
−
1
2
𝑥
−
1
2
−
1
2
𝑦
−
1
2
4.
1
𝑥
+
1
𝑦
= 9
𝑥−1
+ 𝑦−1
= 9
−𝑥−2 𝑑𝑥
𝑑𝑥
− 𝑦−2 𝑑𝑦
𝑑𝑥
= 0
−𝑦−2 𝑑𝑦
𝑑𝑥
= 𝑥−2
𝑑𝑦
𝑑𝑥
= −
𝑥−2
𝑦−2
5. 𝑥2
+ 𝑦2
= 16
2𝑥
𝑑𝑥
𝑑𝑥
+ 2𝑦
𝑑𝑦
𝑑𝑥
= 0
2𝑦
𝑑𝑦
𝑑𝑥
= −2𝑥
𝑑𝑦
𝑑𝑥
=
−2𝑥
2𝑦
6. 𝑥2
𝑦 = 1
2𝑥
𝑑𝑥
𝑑𝑥
𝑦 + 𝑥2 𝑑𝑦
𝑑𝑥
= 0
2𝑥𝑦 + 𝑥2 𝑑𝑦
𝑑𝑥
= 0
2𝑥𝑦 = −𝑥2 𝑑𝑦
𝑑𝑥
2𝑥𝑦
𝑥2 =
𝑑𝑦
𝑑𝑥
𝑑𝑦
𝑑𝑥
|(3,1) =
2 3 (1)
(3)2
=
6
9
=
2
3
7. 𝑥𝑦3
= 3𝑥2
𝑦 + 5𝑦
𝑥𝑦3
− 3𝑥2
𝑦 − 5𝑦 = 0
𝑦3 𝑑𝑥
𝑑𝑥
+ 3𝑦2
𝑥
𝑑𝑦
𝑑𝑥
− 6𝑥𝑦
𝑑𝑥
𝑑𝑥
− 3𝑥2 𝑑𝑦
𝑑𝑥
− 5𝑦
𝑑𝑦
𝑑𝑥
= 0
3𝑦2
𝑥 − 3𝑥2
− 5
𝑑𝑦
𝑑𝑥
= 6𝑥𝑦 − 𝑦3
𝑑𝑦
𝑑𝑥
=
6𝑥𝑦 −𝑦3
3𝑦2 𝑥−3𝑥2−5
𝑑𝑦
𝑑𝑥
|(5,2) =
6 5 (2)−(2)3
3 2 2(5)−3(5)2−5
=
60−8
60−75−5
=
52
−20
=
26
−10
8. 𝑥 + 𝑦 = 25
1
2
𝑥−
1
2
𝑑𝑥
𝑑𝑥
+
1
2
𝑦−
1
2
𝑑𝑦
𝑑𝑥
= 0
1
2
𝑦−
1
2
𝑑𝑦
𝑑𝑥
= −
1
2
𝑥−
1
2
𝑑𝑥
𝑑𝑥
𝑑𝑦
𝑑𝑥
=
−
1
2
𝑥
−
1
2
−
1
2
𝑦
−
1
2
𝑑𝑦
𝑑𝑥
|(4,9) =
4
−
1
2
9
−
1
2
=
1
2
1
3
=
3
2
9.
1
𝑥
+
1
𝑦
= 9
𝑥−1
+ 𝑦−1
= 9
−𝑥−2
− 𝑦−2 𝑑𝑦
𝑑𝑥
= 0
𝑑𝑦
𝑑𝑥
|(5,10) = −(5)−2
− (10)−2
= 0
= −
1
25
−
1
100
=
3
100
10. 𝑥2
+ 𝑦2
= 16
2𝑥
𝑑𝑥
𝑑𝑥
+ 2𝑦
𝑑𝑦
𝑑𝑥
= 0
2𝑦
𝑑𝑦
𝑑𝑥
= −2𝑥
𝑑𝑦
𝑑𝑥
=
−2𝑥
2𝑦
𝑑𝑦
𝑑𝑥
|(2,1) =
−2(2)
2(1)
=
−4
2
= −2

Tugas blog-matematika

  • 1.
    KELOMPOK = AdiPambudi Dio Visiasa Silaen Syamsul Bahri Widia Afridani Exercise 5.2 For problem 1 – 10, use the rule for sums and differences to find the derivative of given function. Question! 1. f(x) = 𝑥7 + 2𝑥10 2. h(x) = 30 – 5𝑥2 3. g(x) = 𝑥100 – 40𝑥5 4. C(x) = 1.000 + 200x – 40𝑥2 5. y = − 15 𝑥 + 25 6. s(t) = 16𝑡2 – 2𝑡 3 + 10 7. g(x) = 𝑥100 25 – 20 𝑥 8. y = 12𝑥0.2 + 0.45x 9. q(v) = 𝑣 2 5 + 7 – 15𝑣 3 5 10. f(x) = 5 2𝑥2 + 5 2𝑥−2 – 5 2 For problem 11-15, find the indicated numerical derivative. 11. h’(1 2 ) when h(x) = 30 – 5𝑥2 12. C’(300) when C(x) = 1.000 + 200x – 40𝑥2 13. s’(0) when s(t) = 16𝑡2 – 2𝑡 3 + 10 14. q’(32) when q(v) = 𝑣 2 5 + 7 – 15𝑣 3 5 15. f’(6) when f(x) = 5 2𝑥2 + 5 2𝑥−2 – 5 2
  • 2.
    Answer! 1. f(x) =𝑥7 + 2𝑥10 f’(x) = 7𝑥6 + 20𝑥9 2. h(x) = 30 – 5𝑥2 h’(x) = –10x 3. g(x) = 𝑥100 – 40𝑥5 g’(x) = 100𝑥99 – 200𝑥4 4. C(x) = 1.000 + 200x – 40𝑥2 C’(x) = 200 – 80x 5. y = − 15 𝑥 + 25 = – 15𝑥−1 + 25 y’ = – 15𝑥−2 6. s(t) = 16𝑡2 – 2𝑡 3 + 10 s’(t) = 32t – 2 3 7. g(x) = 𝑥100 25 – 20 𝑥 = 𝑥100 25 – 20𝑥 1 2 g’(x) = 4𝑥99 – 10𝑥− 1 2 8. y = 12𝑥0.2 + 0.45x y’ = 2.4𝑥−0.8 + 0.45 9. q(v) = 𝑣 2 5 + 7 – 15𝑣 3 5 q’(v) = 2 5 𝑣− 3 5 – 9𝑣− 2 5 10. f(x) = 5 2𝑥2 + 5 2𝑥−2 – 5 2 = 5 2 𝑥−2 + 5 2 𝑥2 – 5 2 f’(x) = – 5𝑥−3 + 5x 11. h(x) = 30 – 5x h’(x) = –10x h’(1 2 ) = –10(1 2 ) h’(1 2 ) = –5
  • 3.
    12. C(x) =1.000 + 200x – 40𝑥2 C’(x) = 200 – 80x C’(300) = 200 – (80 . 300) = 200 – 24.000 = –23.800 13. s(t) = 16𝑡2 – 2 3 𝑡 + 10 s’(t) = 32t – 2 3 s’(0) = – 2 3 14. q(v) = 𝑣 2 5 + 7 – 15𝑣 3 5 q’(v) = 2 5 𝑣− 3 5 – 9𝑣− 2 5 q’(32) = 2 5 . 1 8 – 9 1 4 q’(32) = 2 40 – 9 4 q’(32) = 1 20 – 9 4 15. f(x) = 5 2𝑥2 + 5 2𝑥−2 – 5 2 = 5 2 𝑥−2 + 5 2 𝑥2 – 5 2 f’(x) = – 5𝑥−3 + 5x f’(6) = – 5(6)−3 + 5(6) f’(6) = – 5 216 + 30
  • 4.
    Exercise 5.3 For problem1 – 10, use the productruleto find the derivaative of given function. Question! 1. f(x) = (2𝑥2 + 3)(2x – 3) 2. h(x) = (4𝑥3 + 1)( – 𝑥2 + 2x + 5) 3. g(x) = (𝑥2 – 5)(3 𝑋 ) 4. C(x) = (50 + 20x)(100 – 2x) 5. y = (−15 𝑥 + 25)( 𝑥 + 5) 6. s(t) = (4𝑡 − 1 2 )(5t + 3 4 ) 7. g(x) = (2𝑥3 + 2𝑥2 )(2 𝑥 3 ) 8. f(x) = 10 𝑥5 . 𝑥3 + 1 5 9. q(v) = (𝑣2 + 7)(−5𝑣−2 + 2) 10. f(x) = (2𝑥3 + 3)(3 – 𝑥23 ) For problem 11-15, find the indicated numerical derivative. 11. f’(1.5) when f(x) = (2𝑥2 + 3)(2x – 3) 12. g’(10) when g(x) = (𝑥2 – 5)(3 𝑋 ) 13. C’(150) when C(x) = (50 + 20x)(100 – 2x) 14. 𝑑𝑦 𝑑𝑥 |x=25 when y = (−15 𝑥 + 25)( 𝑥 + 5) 15. f’(2) when f(x) = 10 𝑥5 . 𝑥3 + 1 5
  • 5.
    Answer! 1. f(x) =(2𝑥2 + 3)(2x – 3) f’(x) = (4x)(2x-3) + (2𝑥2 + 3)(2) = 8𝑥2 – 12x + 4𝑥2 + 6 = 12𝑥2 – 12x + 6 2. h(x) = (4𝑥3 + 1)( – 𝑥2 + 2x + 5) h’(x) = (12𝑥2 )( – 𝑥2 + 2x + 5) + (4𝑥3 + 1)( –2x +2) = –12𝑥4 + 24𝑥3 + 60𝑥2 + (– 8𝑥4 ) + 8𝑥3 + (–2x) + 2 = –20𝑥4 + 32𝑥3 + 60𝑥2 – 2x + 2 3. g(x) = (𝑥2 – 5)(3 𝑋 ) = (𝑥2 – 5) ( 3𝑥−1 ) g’(x) = (2x)(3𝑥−1 )+ (𝑥2 – 5)(−3𝑥−2 ) = 6 – 3 + 15𝑥−2 4. C(x) = (50 + 20x)(100 – 2x) C’(x) = (20)(100 – 2x) + (50 + 20x)( –2) = 2000 – 40x – 100 – 40x = –80x + 1900 5. y = (−15 𝑥 + 25)( 𝑥 + 5) = (– 15𝑥− 1 2 + 25)(𝑥 1 2 + 5) y’ = (15 2 𝑥− 3 2)( 𝑥 + 5) + (– 15𝑥− 1 2 + 25)(1 2 𝑥− 1 2) = 15 2 𝑥−1 + 25 2 𝑥− 3 2 – 15 2 𝑥−1 + 25 2 𝑥− 1 2 = 75 2 . 𝑥 𝑥 + 25 2 𝑥 6. s(t) = (4𝑡 − 1 2 )(5t + 3 4 ) s’(t) = (4)(5t + 3 4 ) + (4𝑡 − 1 2 )(5) = 20t + 3 + 20t – 5 2 = 40t + 6 2 – 5 2 = 40t + 1 2
  • 6.
    7. g(x) =(2𝑥3 + 2𝑥2 )(2 𝑥 3 ) g’(x) = (6𝑥2 +4x)( 2𝑥 1 3) + (2𝑥3 + 2𝑥2 )(2 3 𝑥− 2 3) = 12𝑥2 1 3 + 8𝑥1 1 3 + 4 3 𝑥2 1 3 + 4 3 𝑥1 1 3 = 40 3 𝑥2 1 3 + 28 3 𝑥1 1 3 8. f(x) = 10 𝑥5 . 𝑥3 + 1 5 = 10𝑥−5 . 𝑥 5 3 + 1 5 f’(x) = −50𝑥−6 . (𝑥 5 3 + 1 5 ) + 10𝑥−5 . 3 5 𝑥2 = −10𝑥−3 – 10𝑥−6 + 6𝑥−3 = −4𝑥−3 – 10𝑥−6 9. q(v) = (𝑣2 + 7)(−5𝑣−2 + 2) q’(v) = 2x(−5𝑥−2 + 2) + (𝑣2 + 7)(10𝑥−3 ) = −10𝑣−1 + 4𝑣 + 10𝑥−1 + 70𝑥−3 = 4v + 70𝑣−3 10. f(x) = (2𝑥3 + 3)(3 – 𝑥23 ) f’(x) = 6𝑥2 (3 - 𝑥 2 3) − 2 3 𝑥− 1 3(2𝑥3 + 3) = 18𝑥2 – 𝑥 2 3 – 4 3 𝑥2 2 3 – 2𝑥− 1 3 11. f(x) = (2𝑥2 + 3)(2x – 3) f’(x) = (4x)(2x-3) + (2𝑥2 + 3)(2) = 8𝑥2 – 12x + 4𝑥2 + 6 = 12𝑥2 – 12x + 6 f’(1.5) = 12(1.5)2 – 12(1.5) + 6 = 27 – 18 + 6 = 15 12. g(x) = (𝑥2 – 5)(3 𝑋 ) g’(x) = (2x)(3𝑥−1 )+ (𝑥2 – 5)(−3𝑥−2 ) = 6 – 3 + 15𝑥−2 g’(10) = 6 – 3 + 15 100 = 3 + 15 100
  • 7.
    13. C(x) =(50 + 20x)(100 – 2x) C’(x) = (20)(100 – 2x) + (50 + 20x)( –2) = 2000 – 40x – 100 – 40x = –80x + 1900 C’(150) = –80(150) + 1900 = –1200 +1900 = 700 14. y = (−15 𝑥 + 25)( 𝑥 + 5) = (– 15𝑥− 1 2 + 25)(𝑥 1 2 + 5) y’ = (15 2 𝑥− 3 2)( 𝑥 + 5) + (– 15𝑥− 1 2 + 25)(1 2 𝑥− 1 2) = 15 2 𝑥−1 + 25 2 𝑥− 3 2 – 15 2 𝑥−1 + 25 2 𝑥− 1 2 = 75 2 . 𝑥 𝑥 + 25 2 𝑥 𝑑𝑦 𝑑𝑥 |x=25 = 75 2 . 25 25 + 25 2 25 = 3 10 + 5 2 = 3+25 10 = 28 10 15. f(x) = 10 𝑥5 . 𝑥3 + 1 5 = 10𝑥−5 . 𝑥 5 3 + 1 5 f’(x) = −50𝑥−6 . (𝑥 5 3 + 1 5 ) + 10𝑥−5 . 3 5 𝑥2 = −10𝑥−3 – 10𝑥−6 + 6𝑥−3 = −4𝑥−3 – 10𝑥−6 f’(2) = – 4 23 – 10 26 = – 4 8 – 10 64 = – (4 8 + 10 64 ) = – (32 + 10 64 ) = – 42 64
  • 8.
    Exercise 5.4 For problem1 – 10, use the quotient rule to find the derivative of given function. Question! 1. f(x) = 5𝑥 + 2 3𝑥 − 1 2. h(x) = 4 − 5𝑥2 8𝑥 3. g(x) = 5 𝑥 4. f(x) = 3𝑥 3 2 − 1 2𝑥 1 2 + 6 5. y = −15 𝑥 6. s(t) = 2𝑡 3 2 − 3 4𝑡 1 2 + 6 7. g(x) = 𝑥100 𝑥−5 + 10 8. y(x) = 4 − 5𝑥3 8𝑥2 − 7 9. q(v) = 𝑣3+ 2 𝑣2 − 1 𝑣3 10. f(x) = −4𝑥2 4 𝑥2 + 8 For problem 11-15, find the indicated numerical derivative. 11. f’(25) when f(x) = 5𝑥 + 2 3𝑥 − 1 12. h’(0.2) when h(x) = 4 − 5𝑥2 8𝑥 13. g’(0.25) when g(x) = 5 𝑥 14. 𝑑𝑦 𝑑𝑥 |10 when y = −15 𝑥 15. g’(10) when g(x) = 𝑥100 𝑥−5 + 10
  • 9.
    Answer! 1. f(x) = 5𝑥+ 2 3𝑥 − 1 f’(x) = 5 3𝑥−1 – 3(5𝑥+3) (3𝑥−1)2 = 15𝑥 – 5 − 15𝑥 − 6 9𝑥 − 6𝑥 + 1 = −11 9𝑥 − 6𝑥 + 1 2. h(x) = 4 − 5𝑥2 8𝑥 h’(x) = −10𝑥 8𝑥 – 8(4−5𝑥2) 64𝑥2 = −80𝑥2 + 40𝑥2 − 32 64𝑥2 = −40𝑥2 − 32 64𝑥2 = −5𝑥2 − 4 8𝑥2 3. g(x) = 5 𝑥 = 5𝑥− 1 2 g’(x) = − 5 2 𝑥− 3 2 4. f(x) = 3𝑥 3 2 − 1 2𝑥 1 2 + 6 f’(x) = 9 2 𝑥 1 2 2𝑥 1 2+6 − 𝑥 − 1 2 3𝑥 3 2−1 (2𝑥 1 2+6)2 = 9𝑥 + 27𝑥 1 2 − 3𝑥 + 𝑥 − 1 2 4𝑥 + 24𝑥 1 2 + 36 = 6𝑥 + 27 𝑥 + 𝑥 − 1 2 4𝑥 + 24 𝑥 + 36 5. y = −15 𝑥 =−15𝑥−1 y’ = 15𝑥−2
  • 10.
    6. s(t) = 2𝑡 3 2− 3 4𝑡 1 2 + 6 s’(t) = 3𝑡 1 2 4𝑡 1 2+6 − 2𝑡 − 1 2 2𝑡 3 2−3 (4𝑡 1 2+6)2 = 12𝑡 + 18𝑡 1 2 − 4𝑡 + 6𝑡 − 1 2 16𝑡 + 48𝑡 1 2 + 36 = 8𝑡 + 18𝑡 1 2 − 6𝑦 − 1 2 16 + 48𝑡 1 2 + 36 7. g(x) = 𝑥100 𝑥−5 + 10 g’(x) = 100𝑥99 𝑥−5+10 + 5𝑥−6(𝑥100 (𝑥−5 + 10)2 = 100𝑥94 + 1000 𝑥99 + 5𝑥94 𝑥−10 + 20𝑥−5 + 100 8. y(x) = 4 − 5𝑥3 8𝑥2 − 7 y’(x) = −15𝑥2 8𝑥2−7 − 16𝑥(4−5𝑥3) (8𝑥2 – 7)2 𝑑𝑦 𝑑𝑥 = −120𝑥4 − 105𝑥2 − 64𝑥 + 80𝑥4 64𝑥4 − 112𝑥2 + 39 = −40𝑥4 − 105𝑥2 − 64𝑥 64𝑥4 − 112𝑥2 + 39 9. q(v) = 𝑣3+ 2 𝑣2 − 1 𝑣3 = 𝑣3+ 2 𝑣2 − 𝑣−3 q’(v) = 3𝑣2 𝑣2−𝑣−3 − 2𝑣 − 3𝑣−4(𝑣3+2) (𝑣2 − 𝑣−3)2 = 3𝑣4 − 3𝑣−1 − 2𝑣4 − 2𝑣 − 3𝑣−1 −6𝑣 𝑣4− 2𝑣−1 + 𝑣−6 = 𝑣4 − 6𝑣−1 − 8𝑣 𝑣4− 2𝑣−1 + 𝑣−6 10. f(x) = −4𝑥2 4 𝑥2 + 8 = −4𝑥2 4𝑥−2 + 8 = (−4𝑥2 )( 1 4 𝑥2 + 1 8 ) = −𝑥4 − 1 2 𝑥2 f’(x) = −4𝑥3 – 𝑥
  • 11.
    11. f(x) = 5𝑥+ 2 3𝑥 − 1 = 5x + 2 ( 1 3 𝑥−1 − 1) = 5 3 − 5𝑥 + 2 3 𝑥−1 − 2 f’(x) = −5 − 2 3 𝑥−2 f’(25) = −5 − 2 3.(25)2 −2 = −5 − 2 625 . 3 12. h(x) = 4 − 5𝑥 8𝑥 = 4 − 5𝑥( 1 8 𝑥−1 ) = 𝑥 2 −1 − 5 8 h’(x) = − 𝑥 2 −2 h’(0.2) = −(0.2) 2 −2 = 0.04 2 = 0.02 13. g(x) = 5 𝑥 = 5𝑥− 1 2 g’(x) = − 5 2 𝑥− 3 2 g’(0.25) = −5 2 0.25 . 0.25 = −5 2 0.25 . (−0.5) = 20 14. y = −15 𝑥 =−15𝑥−1 𝑑𝑦 𝑑𝑥 = 15𝑥−2 𝑑𝑦 𝑑𝑥 |10 = 15 (10)2 = 0,15 15. g(x) = 𝑥100 𝑥−5 + 10 =𝑥100 (𝑥5 + 1 10 ) = 𝑥105 + 𝑥 10 100 g’(x) = 105𝑥104 + 10𝑥99 g’(1) = 105 + 10 = 115
  • 12.
    Exercise 5.5 For problem1 – 10, use the chain rule to find the derivative of given function. Question! 1. f(x) = (3𝑥2 − 10)3 2. g(x) = 40(3𝑥2 − 10)3 3. h(x) = 10(3𝑥2 − 10)−3 4. h(x) = ( 𝑥 + 3)2 5. f(u) = ( 1 𝑢2 − 𝑢)3 6. y = 1 (𝑥2−8)3 7. y = 2𝑥3 + 5𝑥 + 1 8. s(t) = (2𝑡3 + 5𝑡) 1 3 9. f(x) = 10 (2𝑥−6)5 10. C(t) = 50 15𝑡+120 For problem 11 – 15, find the indicated numerical derivative. 11. f’(10) when f(x) = (3𝑥2 − 10)3 12. h’(3) when h(x) = 10(3𝑥2 − 10)−3 13. f’(144) when h(x) = ( 𝑥 + 3)2 14. f’(2) when f(u) = ( 1 𝑢2 − 𝑢)3 15. 𝑑𝑦 𝑑𝑥 |4 when y = 1 (𝑥2−8)3
  • 13.
    Answer! 1. f(x) =(3𝑥2 − 10)3 f’(x) = 3(3𝑥2 − 10)2 . (6𝑥) = 18𝑥(3𝑥2 − 10)2 2. g(x) = 40(3𝑥2 − 10)3 g’(x) = 120(3𝑥2 − 10)2 . (6𝑥) = 720𝑥(3𝑥2 − 10)2 3. h(x) = 10(3𝑥2 − 10)−3 h’(x) = −30(3𝑥2 − 10)−4 . (6𝑥) = −180(3𝑥2 − 10)−4 4. h(x) = ( 𝑥 + 3)2 h’(x) = 2 𝑥 + 3 . ( 1 2 𝑥− 1 2) = 𝑥− 1 2( 𝑥 + 3) 5. f(u) = ( 1 𝑢2 − 𝑢)3 f’(u) = 3( 1 𝑢2 − 𝑢)2 . (−2𝑢−3 − 1) = 3 −2𝑢−3 − 1 . ( 1 𝑢2 − 𝑢)2 = 3 2 𝑢3 − 1 . 1 𝑢2 − 𝑢 2 6. y = 1 (𝑥2−8)3 = (𝑥2 − 8)−3 𝑑𝑦 𝑑𝑥 = −3(𝑥2 − 8)−4 . (2𝑥) = −6𝑥 (𝑥2−8)4 7. y = 2𝑥3 + 5𝑥 + 1 = 2𝑥3 + 5𝑥 + 1 1 2 𝑑𝑦 𝑑𝑥 = 1 2 2𝑥3 + 5𝑥 + 1 − 1 2 . (6𝑥 + 5) = 1 2 6𝑥 + 5 . 2𝑥3 + 5𝑥 + 1 − 1 2 = 1 2 . 6𝑥+5 2𝑥3+5𝑥+1
  • 14.
    8. s(t) =(2𝑡3 + 5𝑡) 1 3 s’(t) = 1 3 2𝑡3 + 5𝑡 − 2 3 . (4𝑡 + 5) = 1 3 2𝑡3 + 5𝑡 − 2 3 . (4𝑡 + 5) = 1 3 4𝑡 + 5 . 2𝑡3 + 5𝑥 + 1 − 2 3 9. f(x) = 10 (2𝑥−6)5 = 10(2𝑥 − 6)−5 f’(x) = −50(2𝑥 − 6)−6 . (2) = −100 (2𝑥−6)6 10. C(t) = 50 15𝑡+120 = 50 15𝑡+120 1 2 = 50 15𝑡 + 120 − 1 2 C’(t) = −25 15𝑡 + 120 − 3 2 . 15 = −375 15𝑡 + 120 − 3 2 = −375 15𝑡+120 3 2 = −375 15𝑡+120 . 15𝑡+120 11. f(x) = (3𝑥2 − 10)3 f’(x) = 3(3𝑥2 − 10)2 . (6𝑥) = 18𝑥(3𝑥2 − 10)2 f’(10) = 18 10 (3 10 2 − 10)2 = 180(3 100 − 10)2 = 180(300 − 10)2 = 180(290)2 = 15.138.000 12. h(x) = 10(3𝑥2 − 10)−3 h’(x) = −30(3𝑥2 − 10)−4 . (6𝑥) = −180(3𝑥2 − 10)−4 = −180𝑥 (3𝑥2−10)4 h’(3) = −180(3) (3(3)2−10)4 = −540 (27−10)4 = −540 (17)4 = −540 4913
  • 15.
    13. h(x) =( 𝑥 + 3)2 h’(x) = 2 𝑥 + 3 . ( 1 2 𝑥− 1 2) = 𝑥− 1 2( 𝑥 + 3) = ( 𝑥+3) 𝑥 h’(144) = ( 144+3) 144 = 12+3 12 = 15 12 14. f(u) = 1 𝑢2 − 𝑢 3 f’(u) = 3 1 𝑢2 − 𝑢 2 . −2𝑢−3 − 1 = 3 −2𝑢−3 − 1 . 1 𝑢2 − 𝑢 2 = 3 2 𝑢3 − 1 . 1 𝑢2 − 𝑢 2 f’(2) = 3 2 23 − 1 . 1 22 − 2 2 = 3 2 8 − 8 8 . 1 4 − 8 4 2 = 3 − 6 8 . − 7 4 2 =− 18 8 49 16 = − 882 128 = − 441 64 15. y = 1 (𝑥2−8)3 = (𝑥2 − 8)−3 𝑑𝑦 𝑑𝑥 = −3(𝑥2 − 8)−4 . (2𝑥) = −6𝑥 (𝑥2−8)4 𝑑𝑦 𝑑𝑥 |4 = −6(4) (42−8)4 = −24 (16−8)4 = −24 (8)4 = − 24 4096
  • 16.
    Exercise 5.6 For problem1 – 5, use implicit differentiation to find 𝑑𝑦 𝑑𝑥 . Question! 1. 𝑥2 𝑦 = 1 2. 𝑥𝑦3 = 3𝑥2 𝑦 + 5𝑦 3. 𝑥 + 𝑦 = 25 4. 1 𝑥 + 1 𝑦 = 9 5. 𝑥2 + 𝑦2 = 16 For problem 6 – 10, find the indicated numerical derivative. 6. 𝑑𝑦 𝑑𝑥 |(3,1) when 𝑥2 𝑦 = 1 7. 𝑑𝑦 𝑑𝑥 |(5,2) when 𝑥𝑦3 = 3𝑥2 𝑦 + 5𝑦 8. 𝑑𝑦 𝑑𝑥 |(4,9) when 𝑥 + 𝑦 = 25 9. 𝑑𝑦 𝑑𝑥 |(5,10) when 1 𝑥 + 1 𝑦 = 9 10. 𝑑𝑦 𝑑𝑥 |(2,1) when 𝑥2 + 𝑦2 = 16
  • 17.
    Answer! 1. 𝑥2 𝑦 =1 2𝑥 𝑑𝑥 𝑑𝑥 𝑦 + 𝑥2 𝑑𝑦 𝑑𝑥 = 0 2𝑥𝑦 + 𝑥2 𝑑𝑦 𝑑𝑥 = 0 2𝑥𝑦 = −𝑥2 𝑑𝑦 𝑑𝑥 𝑑𝑦 𝑑𝑥 = − 2𝑥𝑦 𝑥2 2. 𝑥𝑦3 = 3𝑥2 𝑦 + 5𝑦 𝑥𝑦3 − 3𝑥2 𝑦 − 5𝑦 = 0 𝑦3 𝑑𝑥 𝑑𝑥 + 3𝑦2 𝑥 𝑑𝑦 𝑑𝑥 − 6𝑥𝑦 𝑑𝑥 𝑑𝑥 − 3𝑥2 𝑑𝑦 𝑑𝑥 − 5𝑦 𝑑𝑦 𝑑𝑥 = 0 3𝑦2 𝑥 − 3𝑥2 − 5 𝑑𝑦 𝑑𝑥 = 6𝑥𝑦 − 𝑦3 𝑑𝑦 𝑑𝑥 = 6𝑥𝑦 −𝑦3 3𝑦2 𝑥−3𝑥2−5 3. 𝑥 + 𝑦 = 25 1 2 𝑥− 1 2 𝑑𝑥 𝑑𝑥 + 1 2 𝑦− 1 2 𝑑𝑦 𝑑𝑥 = 0 1 2 𝑦− 1 2 𝑑𝑦 𝑑𝑥 = − 1 2 𝑥− 1 2 𝑑𝑥 𝑑𝑥 𝑑𝑦 𝑑𝑥 = − 1 2 𝑥 − 1 2 − 1 2 𝑦 − 1 2 4. 1 𝑥 + 1 𝑦 = 9 𝑥−1 + 𝑦−1 = 9 −𝑥−2 𝑑𝑥 𝑑𝑥 − 𝑦−2 𝑑𝑦 𝑑𝑥 = 0 −𝑦−2 𝑑𝑦 𝑑𝑥 = 𝑥−2 𝑑𝑦 𝑑𝑥 = − 𝑥−2 𝑦−2 5. 𝑥2 + 𝑦2 = 16 2𝑥 𝑑𝑥 𝑑𝑥 + 2𝑦 𝑑𝑦 𝑑𝑥 = 0 2𝑦 𝑑𝑦 𝑑𝑥 = −2𝑥 𝑑𝑦 𝑑𝑥 = −2𝑥 2𝑦
  • 18.
    6. 𝑥2 𝑦 =1 2𝑥 𝑑𝑥 𝑑𝑥 𝑦 + 𝑥2 𝑑𝑦 𝑑𝑥 = 0 2𝑥𝑦 + 𝑥2 𝑑𝑦 𝑑𝑥 = 0 2𝑥𝑦 = −𝑥2 𝑑𝑦 𝑑𝑥 2𝑥𝑦 𝑥2 = 𝑑𝑦 𝑑𝑥 𝑑𝑦 𝑑𝑥 |(3,1) = 2 3 (1) (3)2 = 6 9 = 2 3 7. 𝑥𝑦3 = 3𝑥2 𝑦 + 5𝑦 𝑥𝑦3 − 3𝑥2 𝑦 − 5𝑦 = 0 𝑦3 𝑑𝑥 𝑑𝑥 + 3𝑦2 𝑥 𝑑𝑦 𝑑𝑥 − 6𝑥𝑦 𝑑𝑥 𝑑𝑥 − 3𝑥2 𝑑𝑦 𝑑𝑥 − 5𝑦 𝑑𝑦 𝑑𝑥 = 0 3𝑦2 𝑥 − 3𝑥2 − 5 𝑑𝑦 𝑑𝑥 = 6𝑥𝑦 − 𝑦3 𝑑𝑦 𝑑𝑥 = 6𝑥𝑦 −𝑦3 3𝑦2 𝑥−3𝑥2−5 𝑑𝑦 𝑑𝑥 |(5,2) = 6 5 (2)−(2)3 3 2 2(5)−3(5)2−5 = 60−8 60−75−5 = 52 −20 = 26 −10 8. 𝑥 + 𝑦 = 25 1 2 𝑥− 1 2 𝑑𝑥 𝑑𝑥 + 1 2 𝑦− 1 2 𝑑𝑦 𝑑𝑥 = 0 1 2 𝑦− 1 2 𝑑𝑦 𝑑𝑥 = − 1 2 𝑥− 1 2 𝑑𝑥 𝑑𝑥 𝑑𝑦 𝑑𝑥 = − 1 2 𝑥 − 1 2 − 1 2 𝑦 − 1 2 𝑑𝑦 𝑑𝑥 |(4,9) = 4 − 1 2 9 − 1 2 = 1 2 1 3 = 3 2 9. 1 𝑥 + 1 𝑦 = 9 𝑥−1 + 𝑦−1 = 9 −𝑥−2 − 𝑦−2 𝑑𝑦 𝑑𝑥 = 0 𝑑𝑦 𝑑𝑥 |(5,10) = −(5)−2 − (10)−2 = 0 = − 1 25 − 1 100 = 3 100
  • 19.
    10. 𝑥2 + 𝑦2 =16 2𝑥 𝑑𝑥 𝑑𝑥 + 2𝑦 𝑑𝑦 𝑑𝑥 = 0 2𝑦 𝑑𝑦 𝑑𝑥 = −2𝑥 𝑑𝑦 𝑑𝑥 = −2𝑥 2𝑦 𝑑𝑦 𝑑𝑥 |(2,1) = −2(2) 2(1) = −4 2 = −2