SlideShare a Scribd company logo
ROBUSTNESS METRICS
How are they calculated and when should they be used?
C. McPhail, H.R. Maier, J.H. Kwakkel, M. Giuliani, A. Castelletti and S.Westra
How do we plan for an uncertain future?
How do we plan for an uncertain future?
Estimated
distribution of
future states
(Scenario #1)
Estimated
distribution of
future states
(Scenario #2)
System
state
Today Future
How do we quantify system performance
under uncertainty?
System performance
System performance
System
state
Today Future
Relative likelihood of
occurrence is unknown
How do we quantify system performance
under uncertainty?
System performance
System performance
Robustness
System
state
Today Future
Relative likelihood of
occurrence is unknown
Which metric should we use for
calculating robustness?
Maximin
Maximax
Hurwicz optimism-
pessimism rule
Laplace’s principle of
insufficient reason
Minimax regret
90th percentile
minimax regret
Mean-variance
Undesirable
deviations
Percentile-
based
skewnessPercentile-based
peakedness
Starr’s domain
criterion
Which metric should we use for
calculating robustness?
Maximin
Maximax
Hurwicz optimism-
pessimism rule
Laplace’s principle of
insufficient reason
Minimax regret
90th percentile
minimax regret
Mean-variance
Undesirable
deviations
Percentile-
based
skewnessPercentile-based
peakedness
Starr’s domain
criterion
Which metric should we use for
calculating robustness?
Maximin
Maximax
Hurwicz optimism-
pessimism rule
Laplace’s principle of
insufficient reason
Minimax regret
90th percentile
minimax regret
Mean-variance
Undesirable
deviations
Percentile-
based
skewnessPercentile-based
peakedness
Starr’s domain
criterion
Which metric should we use for
calculating robustness?
Maximin
Maximax
Hurwicz optimism-
pessimism rule
Laplace’s principle of
insufficient reason
Minimax regret
90th percentile
minimax regret
Mean-variance
Undesirable
deviations
Percentile-
based
skewnessPercentile-based
peakedness
Starr’s domain
criterion
Contributions of the research
1. A unified framework for the calculation of a wide range of robustness metrics.
Enabling a comparison of robustness metrics.
2. A taxonomy of robustness metrics.
Providing guidance to decision-makers.
Robustness value
Performance
metric (e.g.
cost,
reliability)
Decision
alternatives
(e.g. Policy
options, plans,
solutions)
Plausible
future
conditions
(Scenarios)
Robustness metric
Probabilityofoccurrencein
selectedscenarios
Transformed Performance
1 2 3 4 … n
Performance
Scenario #
1 2 4 …
TransformedPerformance
Scenario #
Performance over all
scenarios
Transformed
performance values over
all scenarios
Transformed
performance values over
selected scenarios
Robustness value
Mean
T1: Performance
value transformation
T2: Scenario subset
selection
T3: Robustness
metric calculation
1 2 3 4 … nTransformedPerformance
Scenario #
1 2 3 4 … n
TransformedPerformance
Scenario #
T1: Performance value transformation
Performance (identity)Cost of making wrong
decision (regret)
1 2 3 4 … n
Performance
Scenario #
1 2 3 4 … n
TransformedPerformance
Scenario #
1 2 3 4 … n
Performance
Scenario #
Performance values Pass/fail (satisficing)
OR OR
Threshold
T1: Performance value transformation
Robustness calculation based on
relative performance values
Robustness calculation based on
absolute performance values
Indication of whether system
performance is satisfactory or
not
- (MORE)
- (POMORE)
- (Decision Scaling)
- Starr’s domain criterion
- (Info Gap)
Indication of actual system
performance
- Minimax regret
- 90th percentile minimax regret
- Undesirable deviations
- Maximin (minimax)
- Maximax
- Hurwicz’s optimism-pessimism rule
- Laplace’s principle of insufficient
reason
- Mean-variance
- Percentile-based skewness
- Percentile-based peakedness
T2: Scenario subset selection
Worst half of scenariosBest-case scenario
1 2 3 4 … n
Performance
Scenario #
Transformed
performance values
Worst-case scenario
OR OR
1 2 3 4 … n
Performance
Scenario #
1 2 3 4 … n
Performance
Scenario #
1 2 3 4 … n
Performance
Scenario #
T2: Scenario subset selection
Less risk averse
More risk averse
Probabilityofoccurrencein
selectedscenarios
Transformed Performance
T3: Robustness metric calculation
SkewVariance
Transformed
performance values in
selected scenarios
Expected value
(e.g. mean)
OR OR
Mean
Probabilityofoccurrencein
selectedscenarios
Transformed Performance
Probabilityofoccurrencein
selectedscenarios
Transformed Performance
Variance
Probabilityofoccurrencein
selectedscenarios
Transformed Performance
Mean
Median
T3: Robustness metric calculation
Robustness metric
Robustness metric calculation
None Sum Mean Weighted mean Variance Skew Kurtosis
Maximin ✓
Maximax ✓
Hurwicz optimism-pessimism rule ✓
Laplace’s principle of insufficient reason ✓
Minimax regret ✓
90th percentile minimax regret ✓
Mean-variance ✓ ✓
Undesirable deviations ✓
Percentile-based skewness ✓
Percentile-based peakedness ✓
Starr’s domain criterion ✓
Probabilityofoccurrencein
selectedscenarios
Transformed Performance
1 2 3 4 … n
Performance
Scenario #
1 2 4 …
TransformedPerformance
Scenario #
Performance over all
scenarios
Transformed
performance values over
all scenarios
Transformed
performance values over
selected scenarios
Robustness value
Mean
T1: Performance
value transformation
T2: Scenario subset
selection
T3: Robustness
metric calculation
1 2 3 4 … nTransformedPerformance
Scenario #
Maximin
Maximax
Hurwicz optimism-pessimism rule
Laplace’s principle of insufficient
reason
Minimax regret
90th percentile minimax regret
Mean-variance
Undesirable deviations
Percentile-based skewness
Percentile-based peakedness
Starr’s domain criterion
Metric
T1: Performance value
transformation
T2: Scenario subset
selection
T3: Robustness
metric calculation
Maximin Identity Worst-case Identity
Maximax Identity Best-case Identity
Hurwicz optimism-pessimism rule Identity Worst- and best-cases Weighted mean
Laplace’s principle of insufficient
reason
Identity All Mean
Minimax regret
Regret from best decision
alternative
Worst-case Identity
90th percentile minimax regret
Regret from best decision
alternative
90th percentile Identity
Mean-variance Identity All Mean-variance
Undesirable deviations
Regret from median
performance
Worst-half Sum
Percentile-based skewness Identity
10th, 50th and 90th
percentiles
Skew
Percentile-based peakedness Identity
10th, 25th, 75th and 90th
percentiles
Kurtosis
Starr’s domain criterion Satisfaction of constraints All Mean
Maximin
Maximax
Hurwicz optimism-pessimism rule
Laplace’s principle of insufficient
reason
Minimax regret
90th percentile minimax regret
Mean-variance
Undesirable deviations
Percentile-based skewness
Percentile-based peakedness
Starr’s domain criterion
Metric
T1: Performance value
transformation
T2: Scenario subset
selection
T3: Robustness
metric calculation
Maximin Identity Worst-case Identity
Maximax Identity Best-case Identity
Hurwicz optimism-pessimism rule Identity Worst- and best-cases Weighted mean
Laplace’s principle of insufficient
reason
Identity All Mean
Minimax regret
Regret from best decision
alternative
Worst-case Identity
90th percentile minimax regret
Regret from best decision
alternative
90th percentile Identity
Mean-variance Identity All Mean-variance
Undesirable deviations
Regret from median
performance
Worst-half Sum
Percentile-based skewness Identity
10th, 50th and 90th
percentiles
Skew
Percentile-based peakedness Identity
10th, 25th, 75th and 90th
percentiles
Kurtosis
Starr’s domain criterion Satisfaction of constraints All Mean
Future work
A conceptual framework for understanding when robustness metrics agree or
disagree.
Paper under revision
C. McPhail, H.R. Maier, J.H. Kwakkel, M. Giuliani, A. Castelletti and S.Westra
(under revision), Robustness metrics: How are they calculated, when should
they be used and why do they give different results?, Earth’s Future.
Contact
Cameron McPhail
University of Adelaide
cameron.mcphail@adelaide.edu.au
T1: Performance value transformation
Description Equation
Identity transformation 𝑓′ 𝑥𝑖, 𝑠𝑗 = 𝑓 𝑥𝑖, 𝑠𝑗
Regret from best decision
alternative
𝑓′ 𝑥𝑖, 𝑠𝑗 =
max
𝑥
𝑓 𝑥, 𝑠𝑗 − 𝑓 𝑥𝑖, 𝑠𝑗 , maximisation
𝑓 𝑥𝑖, 𝑠𝑗 − min
𝑥
𝑓 𝑥, 𝑠𝑗 , minimisation
Regret from median
𝑓′ 𝑥𝑖, 𝑠𝑗 =
𝑞50 − 𝑓 𝑥𝑖, 𝑠𝑗 , maximisation
𝑓 𝑥𝑖, 𝑠𝑗 − 𝑞50, minimisation
where 𝑞50 is the median performance for decision alternative 𝑥𝑖. i.e.
𝑃 𝑓 𝑥𝑖, 𝑆 ≤ 𝑞50 =
1
2
Satisfaction of constraints
𝑓′ 𝑥𝑖, 𝑠𝑗 =
1 if 𝑓 𝑥𝑖, 𝑠𝑗 ≥ 𝑐
0 if 𝑓 𝑥𝑖, 𝑠𝑗 < 𝑐
, maximisation
1 if 𝑓 𝑥𝑖, 𝑠𝑗 ≤ 𝑐
0 if 𝑓 𝑥𝑖, 𝑠𝑗 > 𝑐
, minimisation
where 𝑐 is a constraint
T2: Scenario subset selection
Description Equation
Worst-case 𝑆′
=
arg min
𝑠
𝑓′ 𝑥𝑖, 𝑠 , maximisation
arg max
𝑠
𝑓′ 𝑥𝑖, 𝑠 , minimisation
Best-case 𝑆′
=
arg max
𝑠
𝑓′ 𝑥𝑖, 𝑠 , maximisation
arg min
𝑠
𝑓′ 𝑥𝑖, 𝑠 , minimisation
Worst- and best-cases 𝑆′
= arg max
𝑠
𝑓′ 𝑥𝑖, 𝑠 , arg min
𝑠
𝑓′ 𝑥𝑖, 𝑠
All 𝑆′
= 𝑆
Worst-half
𝑆′
=
𝑠 ∈ 𝑆: 𝑓′ 𝑥𝑖, 𝑠 ≤ 𝑞50 , maximisation
𝑠 ∈ 𝑆: 𝑓′ 𝑥𝑖, 𝑠 ≥ 𝑞50 , minimisation
where 𝑞50 is the 50th percentile (median) value of 𝑓′ 𝑥𝑖, 𝑆
Percentile
𝑆′
= 𝑓′ 𝑥𝑖, 𝑠 = 𝑞 𝑘
where 𝑞 𝑘 is the kth percentile value of 𝑓′ 𝑥𝑖, 𝑆
Note that the scenario 𝑠 that produces the value of 𝑓′ 𝑥𝑖, 𝑠 closest to 𝑞 𝑘 is the scenario that
is used.
T3: Robustness metric calculation
Description Equation
Identity
transformation
𝑅 𝑥𝑖, 𝑆 = 𝑓′ 𝑥𝑖, 𝑆′
Mean
𝑅 𝑥𝑖, 𝑆 =
1
𝑛′
𝑗=1
𝑛′
𝑓′ 𝑥𝑖, 𝑠𝑗
where 𝑛′ is the number of scenarios in 𝑆′
Sum 𝑅 𝑥𝑖, 𝑆 =
𝑗=1
𝑛′
𝑓′ 𝑥𝑖, 𝑠𝑗
Weighted mean (two
scenarios)
𝑅 𝑥𝑖, 𝑆 = 𝛼𝑓′ 𝑥𝑖, 𝑠 𝑎 + 1 − 𝛼 𝑓′ 𝑥𝑖, 𝑠 𝑏
where 𝑠 𝑎 and 𝑠 𝑏 are two scenarios and 𝛼 is the preference of the decision maker towards using 𝑠 𝑎 and 0 <
𝛼 < 1
(Also see next slide…)
T3: Robustness metric calculation
Description Equation
Variance-based (i.e.
the standard
deviation)
𝑅 𝑥𝑖, 𝑆 =
1
𝑛′ − 1
𝑗=1
𝑛′
𝑓′ 𝑥𝑖, 𝑠𝑗 − 𝜇
2
where 𝜇 is the mean (see the equation earlier in this table)
Mean-variance
𝑅 𝑥𝑖, 𝑆 =
𝜇 + 1 𝜎 + 1 , maximisation
− 𝜇 + 1 𝜎 + 1 , minimisation
where 𝜇 is the mean and 𝜎 is the standard deviation (given by equations above)
Skew
𝑅 𝑥𝑖, 𝑆 =
𝑓′ 𝑥𝑖, 𝑠90 + 𝑓′ 𝑥𝑖, 𝑠10 2 − 𝑓′ 𝑥𝑖, 𝑠50
𝑓′ 𝑥𝑖, 𝑠90 − 𝑓′ 𝑥𝑖, 𝑠10 2
, maximisation
−
𝑓′ 𝑥𝑖, 𝑠90 + 𝑓′ 𝑥𝑖, 𝑠10 2 − 𝑓′ 𝑥𝑖, 𝑠50
𝑓′ 𝑥𝑖, 𝑠90 − 𝑓′ 𝑥𝑖, 𝑠10 2
, minimisation
where 𝑠10, 𝑠50 and 𝑠90 are scenarios that represent the 10th, 50th and 90th percentiles for 𝑓′ 𝑥𝑖, 𝑆
Kurtosis
𝑅 𝑥𝑖, 𝑆 =
𝑓′ 𝑥𝑖, 𝑠90 − 𝑓′ 𝑥𝑖, 𝑠10
𝑓′ 𝑥𝑖, 𝑠75 − 𝑓′ 𝑥𝑖, 𝑠25
where 𝑠10, 𝑠25, 𝑠75 and 𝑠90 are scenarios that represent the 10th, 25th, 75th and 90th percentiles for
𝑓′ 𝑥𝑖, 𝑆

More Related Content

What's hot

TUBERÍAS EN SERIE Y EN PARALELO.pptx
TUBERÍAS EN SERIE Y EN PARALELO.pptxTUBERÍAS EN SERIE Y EN PARALELO.pptx
TUBERÍAS EN SERIE Y EN PARALELO.pptxRaulEmmanuelCienegaO
 
Flow analysis in micro channel2
Flow analysis in micro channel2Flow analysis in micro channel2
Flow analysis in micro channel2vishal kumar
 
Stochastic Hydrology Lecture 1: Introduction
Stochastic Hydrology Lecture 1: Introduction Stochastic Hydrology Lecture 1: Introduction
Stochastic Hydrology Lecture 1: Introduction Amro Elfeki
 
Assessment of Water Supply–Demand for a Watershed using WEAP Model
Assessment of Water Supply–Demand  for a Watershed using WEAP Model Assessment of Water Supply–Demand  for a Watershed using WEAP Model
Assessment of Water Supply–Demand for a Watershed using WEAP Model dipesh thakur
 
Chapter1 fm-introduction to fluid mechanics-converted
Chapter1  fm-introduction to fluid mechanics-convertedChapter1  fm-introduction to fluid mechanics-converted
Chapter1 fm-introduction to fluid mechanics-convertedSatishkumarP9
 
Fluid mech. lec midterm coverage
Fluid mech. lec   midterm coverageFluid mech. lec   midterm coverage
Fluid mech. lec midterm coverageShobbbe
 
Module4 rajesh sir
Module4 rajesh sirModule4 rajesh sir
Module4 rajesh sirSHAMJITH KM
 
Beam Analysis using Finite Element Method by anujajape
Beam Analysis using Finite Element Method by anujajapeBeam Analysis using Finite Element Method by anujajape
Beam Analysis using Finite Element Method by anujajapeanujajape
 
Unit ii Flow through circular pipes
Unit ii Flow through circular pipesUnit ii Flow through circular pipes
Unit ii Flow through circular pipesAsha A
 
Fluid Mechanics Course - Civil Engineering -Lec 02
Fluid Mechanics Course - Civil Engineering -Lec 02Fluid Mechanics Course - Civil Engineering -Lec 02
Fluid Mechanics Course - Civil Engineering -Lec 02Ahmed Saleh, Ph.D
 
Unit 5 - deflection of beams and columns
Unit  5 - deflection of beams and columnsUnit  5 - deflection of beams and columns
Unit 5 - deflection of beams and columnskarthi keyan
 
Open channel flow
Open channel flowOpen channel flow
Open channel flowAdnan Aslam
 
Properties of Fluids, Fluid Static, Buoyancy and Dimensional Analysis
Properties of Fluids, Fluid Static, Buoyancy and Dimensional AnalysisProperties of Fluids, Fluid Static, Buoyancy and Dimensional Analysis
Properties of Fluids, Fluid Static, Buoyancy and Dimensional AnalysisSatish Taji
 
Living machine: The Ecological Wastewater Treatment
Living machine: The Ecological Wastewater TreatmentLiving machine: The Ecological Wastewater Treatment
Living machine: The Ecological Wastewater TreatmentSagar Patel
 
Experimental conceptualisation of the Flow Net system construction inside the...
Experimental conceptualisation of the Flow Net system construction inside the...Experimental conceptualisation of the Flow Net system construction inside the...
Experimental conceptualisation of the Flow Net system construction inside the...Dr.Costas Sachpazis
 
Fluid & Fluid properties
Fluid & Fluid propertiesFluid & Fluid properties
Fluid & Fluid propertiesShubhamSatarkar
 
Salto hidraulico monica
Salto hidraulico monicaSalto hidraulico monica
Salto hidraulico monicamozacaja
 

What's hot (20)

TUBERÍAS EN SERIE Y EN PARALELO.pptx
TUBERÍAS EN SERIE Y EN PARALELO.pptxTUBERÍAS EN SERIE Y EN PARALELO.pptx
TUBERÍAS EN SERIE Y EN PARALELO.pptx
 
Flow analysis in micro channel2
Flow analysis in micro channel2Flow analysis in micro channel2
Flow analysis in micro channel2
 
Stochastic Hydrology Lecture 1: Introduction
Stochastic Hydrology Lecture 1: Introduction Stochastic Hydrology Lecture 1: Introduction
Stochastic Hydrology Lecture 1: Introduction
 
Fluid Kinematics
Fluid KinematicsFluid Kinematics
Fluid Kinematics
 
Assessment of Water Supply–Demand for a Watershed using WEAP Model
Assessment of Water Supply–Demand  for a Watershed using WEAP Model Assessment of Water Supply–Demand  for a Watershed using WEAP Model
Assessment of Water Supply–Demand for a Watershed using WEAP Model
 
Chapter1 fm-introduction to fluid mechanics-converted
Chapter1  fm-introduction to fluid mechanics-convertedChapter1  fm-introduction to fluid mechanics-converted
Chapter1 fm-introduction to fluid mechanics-converted
 
Fluid mech. lec midterm coverage
Fluid mech. lec   midterm coverageFluid mech. lec   midterm coverage
Fluid mech. lec midterm coverage
 
Module4 rajesh sir
Module4 rajesh sirModule4 rajesh sir
Module4 rajesh sir
 
Beam Analysis using Finite Element Method by anujajape
Beam Analysis using Finite Element Method by anujajapeBeam Analysis using Finite Element Method by anujajape
Beam Analysis using Finite Element Method by anujajape
 
Unit ii Flow through circular pipes
Unit ii Flow through circular pipesUnit ii Flow through circular pipes
Unit ii Flow through circular pipes
 
Fluid Mechanics Course - Civil Engineering -Lec 02
Fluid Mechanics Course - Civil Engineering -Lec 02Fluid Mechanics Course - Civil Engineering -Lec 02
Fluid Mechanics Course - Civil Engineering -Lec 02
 
Unit 5 - deflection of beams and columns
Unit  5 - deflection of beams and columnsUnit  5 - deflection of beams and columns
Unit 5 - deflection of beams and columns
 
Open channel flow
Open channel flowOpen channel flow
Open channel flow
 
Properties of Fluids, Fluid Static, Buoyancy and Dimensional Analysis
Properties of Fluids, Fluid Static, Buoyancy and Dimensional AnalysisProperties of Fluids, Fluid Static, Buoyancy and Dimensional Analysis
Properties of Fluids, Fluid Static, Buoyancy and Dimensional Analysis
 
Living machine: The Ecological Wastewater Treatment
Living machine: The Ecological Wastewater TreatmentLiving machine: The Ecological Wastewater Treatment
Living machine: The Ecological Wastewater Treatment
 
Experimental conceptualisation of the Flow Net system construction inside the...
Experimental conceptualisation of the Flow Net system construction inside the...Experimental conceptualisation of the Flow Net system construction inside the...
Experimental conceptualisation of the Flow Net system construction inside the...
 
Open channel
Open channel  Open channel
Open channel
 
Fluid kinematics
Fluid kinematics Fluid kinematics
Fluid kinematics
 
Fluid & Fluid properties
Fluid & Fluid propertiesFluid & Fluid properties
Fluid & Fluid properties
 
Salto hidraulico monica
Salto hidraulico monicaSalto hidraulico monica
Salto hidraulico monica
 

Similar to Robustness metrics: How are they calculated and when should they be used?

L1 statistics
L1 statisticsL1 statistics
L1 statisticsdapdai
 
Intro to Quant Trading Strategies (Lecture 10 of 10)
Intro to Quant Trading Strategies (Lecture 10 of 10)Intro to Quant Trading Strategies (Lecture 10 of 10)
Intro to Quant Trading Strategies (Lecture 10 of 10)Adrian Aley
 
Catching the most with high-throughput screening
Catching the most with high-throughput screeningCatching the most with high-throughput screening
Catching the most with high-throughput screeningErin Shellman
 
2008 implementation of va r in financial institutions
2008   implementation of va r in financial institutions2008   implementation of va r in financial institutions
2008 implementation of va r in financial institutionscrmbasel
 
The Dark Art of Production Alerting
The Dark Art of Production AlertingThe Dark Art of Production Alerting
The Dark Art of Production AlertingAlois Reitbauer
 
SAMPLING MEAN DEFINITION The term sampling mean .docx
SAMPLING MEAN DEFINITION The term sampling mean .docxSAMPLING MEAN DEFINITION The term sampling mean .docx
SAMPLING MEAN DEFINITION The term sampling mean .docxanhlodge
 
Sriram seminar on introduction to statistics
Sriram seminar on introduction to statisticsSriram seminar on introduction to statistics
Sriram seminar on introduction to statisticsSriram Chakravarthy
 
Intro to Quant Trading Strategies (Lecture 2 of 10)
Intro to Quant Trading Strategies (Lecture 2 of 10)Intro to Quant Trading Strategies (Lecture 2 of 10)
Intro to Quant Trading Strategies (Lecture 2 of 10)Adrian Aley
 
Six Sigma Confidence Interval Analysis (CIA) Training Module
Six Sigma Confidence Interval Analysis (CIA) Training ModuleSix Sigma Confidence Interval Analysis (CIA) Training Module
Six Sigma Confidence Interval Analysis (CIA) Training ModuleFrank-G. Adler
 
Ch3_Statistical Analysis and Random Error Estimation.pdf
Ch3_Statistical Analysis and Random Error Estimation.pdfCh3_Statistical Analysis and Random Error Estimation.pdf
Ch3_Statistical Analysis and Random Error Estimation.pdfVamshi962726
 
Classification modelling review
Classification modelling reviewClassification modelling review
Classification modelling reviewJaideep Adusumelli
 
Basic statistics 1
Basic statistics  1Basic statistics  1
Basic statistics 1Kumar P
 
Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...
Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...
Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...Daniel Katz
 

Similar to Robustness metrics: How are they calculated and when should they be used? (20)

L1 statistics
L1 statisticsL1 statistics
L1 statistics
 
hypothesis.pptx
hypothesis.pptxhypothesis.pptx
hypothesis.pptx
 
QT1 - 07 - Estimation
QT1 - 07 - EstimationQT1 - 07 - Estimation
QT1 - 07 - Estimation
 
Intro to Quant Trading Strategies (Lecture 10 of 10)
Intro to Quant Trading Strategies (Lecture 10 of 10)Intro to Quant Trading Strategies (Lecture 10 of 10)
Intro to Quant Trading Strategies (Lecture 10 of 10)
 
Catching the most with high-throughput screening
Catching the most with high-throughput screeningCatching the most with high-throughput screening
Catching the most with high-throughput screening
 
Chapter_9.pptx
Chapter_9.pptxChapter_9.pptx
Chapter_9.pptx
 
BIIntro.ppt
BIIntro.pptBIIntro.ppt
BIIntro.ppt
 
2008 implementation of va r in financial institutions
2008   implementation of va r in financial institutions2008   implementation of va r in financial institutions
2008 implementation of va r in financial institutions
 
The Dark Art of Production Alerting
The Dark Art of Production AlertingThe Dark Art of Production Alerting
The Dark Art of Production Alerting
 
SAMPLING MEAN DEFINITION The term sampling mean .docx
SAMPLING MEAN DEFINITION The term sampling mean .docxSAMPLING MEAN DEFINITION The term sampling mean .docx
SAMPLING MEAN DEFINITION The term sampling mean .docx
 
Sriram seminar on introduction to statistics
Sriram seminar on introduction to statisticsSriram seminar on introduction to statistics
Sriram seminar on introduction to statistics
 
Intro to Quant Trading Strategies (Lecture 2 of 10)
Intro to Quant Trading Strategies (Lecture 2 of 10)Intro to Quant Trading Strategies (Lecture 2 of 10)
Intro to Quant Trading Strategies (Lecture 2 of 10)
 
Statistics excellent
Statistics excellentStatistics excellent
Statistics excellent
 
Six Sigma Confidence Interval Analysis (CIA) Training Module
Six Sigma Confidence Interval Analysis (CIA) Training ModuleSix Sigma Confidence Interval Analysis (CIA) Training Module
Six Sigma Confidence Interval Analysis (CIA) Training Module
 
Ch3_Statistical Analysis and Random Error Estimation.pdf
Ch3_Statistical Analysis and Random Error Estimation.pdfCh3_Statistical Analysis and Random Error Estimation.pdf
Ch3_Statistical Analysis and Random Error Estimation.pdf
 
Or ppt,new
Or ppt,newOr ppt,new
Or ppt,new
 
Classification modelling review
Classification modelling reviewClassification modelling review
Classification modelling review
 
Basic statistics 1
Basic statistics  1Basic statistics  1
Basic statistics 1
 
Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...
Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...
Quantitative Methods for Lawyers - Class #7 - Probability & Basic Statistics ...
 
Statistics
StatisticsStatistics
Statistics
 

Recently uploaded

ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdfAhmedHussein950959
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.PrashantGoswami42
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwoodseandesed
 
Laundry management system project report.pdf
Laundry management system project report.pdfLaundry management system project report.pdf
Laundry management system project report.pdfKamal Acharya
 
Explosives Industry manufacturing process.pdf
Explosives Industry manufacturing process.pdfExplosives Industry manufacturing process.pdf
Explosives Industry manufacturing process.pdf884710SadaqatAli
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdfPratik Pawar
 
Online blood donation management system project.pdf
Online blood donation management system project.pdfOnline blood donation management system project.pdf
Online blood donation management system project.pdfKamal Acharya
 
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES  INTRODUCTION UNIT-IENERGY STORAGE DEVICES  INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES INTRODUCTION UNIT-IVigneshvaranMech
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdfKamal Acharya
 
Online resume builder management system project report.pdf
Online resume builder management system project report.pdfOnline resume builder management system project report.pdf
Online resume builder management system project report.pdfKamal Acharya
 
Toll tax management system project report..pdf
Toll tax management system project report..pdfToll tax management system project report..pdf
Toll tax management system project report..pdfKamal Acharya
 
shape functions of 1D and 2 D rectangular elements.pptx
shape functions of 1D and 2 D rectangular elements.pptxshape functions of 1D and 2 D rectangular elements.pptx
shape functions of 1D and 2 D rectangular elements.pptxVishalDeshpande27
 
Fruit shop management system project report.pdf
Fruit shop management system project report.pdfFruit shop management system project report.pdf
Fruit shop management system project report.pdfKamal Acharya
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234AafreenAbuthahir2
 
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptxCloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptxMd. Shahidul Islam Prodhan
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Electivekarthi keyan
 
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...Amil baba
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptssuser9bd3ba
 
Introduction to Casting Processes in Manufacturing
Introduction to Casting Processes in ManufacturingIntroduction to Casting Processes in Manufacturing
Introduction to Casting Processes in Manufacturingssuser0811ec
 
Arduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectArduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectRased Khan
 

Recently uploaded (20)

ASME IX(9) 2007 Full Version .pdf
ASME IX(9)  2007 Full Version       .pdfASME IX(9)  2007 Full Version       .pdf
ASME IX(9) 2007 Full Version .pdf
 
Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.Quality defects in TMT Bars, Possible causes and Potential Solutions.
Quality defects in TMT Bars, Possible causes and Potential Solutions.
 
Architectural Portfolio Sean Lockwood
Architectural Portfolio Sean LockwoodArchitectural Portfolio Sean Lockwood
Architectural Portfolio Sean Lockwood
 
Laundry management system project report.pdf
Laundry management system project report.pdfLaundry management system project report.pdf
Laundry management system project report.pdf
 
Explosives Industry manufacturing process.pdf
Explosives Industry manufacturing process.pdfExplosives Industry manufacturing process.pdf
Explosives Industry manufacturing process.pdf
 
weather web application report.pdf
weather web application report.pdfweather web application report.pdf
weather web application report.pdf
 
Online blood donation management system project.pdf
Online blood donation management system project.pdfOnline blood donation management system project.pdf
Online blood donation management system project.pdf
 
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES  INTRODUCTION UNIT-IENERGY STORAGE DEVICES  INTRODUCTION UNIT-I
ENERGY STORAGE DEVICES INTRODUCTION UNIT-I
 
Event Management System Vb Net Project Report.pdf
Event Management System Vb Net  Project Report.pdfEvent Management System Vb Net  Project Report.pdf
Event Management System Vb Net Project Report.pdf
 
Online resume builder management system project report.pdf
Online resume builder management system project report.pdfOnline resume builder management system project report.pdf
Online resume builder management system project report.pdf
 
Toll tax management system project report..pdf
Toll tax management system project report..pdfToll tax management system project report..pdf
Toll tax management system project report..pdf
 
shape functions of 1D and 2 D rectangular elements.pptx
shape functions of 1D and 2 D rectangular elements.pptxshape functions of 1D and 2 D rectangular elements.pptx
shape functions of 1D and 2 D rectangular elements.pptx
 
Fruit shop management system project report.pdf
Fruit shop management system project report.pdfFruit shop management system project report.pdf
Fruit shop management system project report.pdf
 
WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234WATER CRISIS and its solutions-pptx 1234
WATER CRISIS and its solutions-pptx 1234
 
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptxCloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
Cloud-Computing_CSE311_Computer-Networking CSE GUB BD - Shahidul.pptx
 
CME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional ElectiveCME397 Surface Engineering- Professional Elective
CME397 Surface Engineering- Professional Elective
 
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
NO1 Pandit Amil Baba In Bahawalpur, Sargodha, Sialkot, Sheikhupura, Rahim Yar...
 
LIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.pptLIGA(E)11111111111111111111111111111111111111111.ppt
LIGA(E)11111111111111111111111111111111111111111.ppt
 
Introduction to Casting Processes in Manufacturing
Introduction to Casting Processes in ManufacturingIntroduction to Casting Processes in Manufacturing
Introduction to Casting Processes in Manufacturing
 
Arduino based vehicle speed tracker project
Arduino based vehicle speed tracker projectArduino based vehicle speed tracker project
Arduino based vehicle speed tracker project
 

Robustness metrics: How are they calculated and when should they be used?

  • 1. ROBUSTNESS METRICS How are they calculated and when should they be used? C. McPhail, H.R. Maier, J.H. Kwakkel, M. Giuliani, A. Castelletti and S.Westra
  • 2. How do we plan for an uncertain future?
  • 3. How do we plan for an uncertain future? Estimated distribution of future states (Scenario #1) Estimated distribution of future states (Scenario #2) System state Today Future
  • 4. How do we quantify system performance under uncertainty? System performance System performance System state Today Future Relative likelihood of occurrence is unknown
  • 5. How do we quantify system performance under uncertainty? System performance System performance Robustness System state Today Future Relative likelihood of occurrence is unknown
  • 6. Which metric should we use for calculating robustness? Maximin Maximax Hurwicz optimism- pessimism rule Laplace’s principle of insufficient reason Minimax regret 90th percentile minimax regret Mean-variance Undesirable deviations Percentile- based skewnessPercentile-based peakedness Starr’s domain criterion
  • 7. Which metric should we use for calculating robustness? Maximin Maximax Hurwicz optimism- pessimism rule Laplace’s principle of insufficient reason Minimax regret 90th percentile minimax regret Mean-variance Undesirable deviations Percentile- based skewnessPercentile-based peakedness Starr’s domain criterion
  • 8. Which metric should we use for calculating robustness? Maximin Maximax Hurwicz optimism- pessimism rule Laplace’s principle of insufficient reason Minimax regret 90th percentile minimax regret Mean-variance Undesirable deviations Percentile- based skewnessPercentile-based peakedness Starr’s domain criterion
  • 9. Which metric should we use for calculating robustness? Maximin Maximax Hurwicz optimism- pessimism rule Laplace’s principle of insufficient reason Minimax regret 90th percentile minimax regret Mean-variance Undesirable deviations Percentile- based skewnessPercentile-based peakedness Starr’s domain criterion
  • 10. Contributions of the research 1. A unified framework for the calculation of a wide range of robustness metrics. Enabling a comparison of robustness metrics. 2. A taxonomy of robustness metrics. Providing guidance to decision-makers.
  • 11. Robustness value Performance metric (e.g. cost, reliability) Decision alternatives (e.g. Policy options, plans, solutions) Plausible future conditions (Scenarios) Robustness metric
  • 12. Probabilityofoccurrencein selectedscenarios Transformed Performance 1 2 3 4 … n Performance Scenario # 1 2 4 … TransformedPerformance Scenario # Performance over all scenarios Transformed performance values over all scenarios Transformed performance values over selected scenarios Robustness value Mean T1: Performance value transformation T2: Scenario subset selection T3: Robustness metric calculation 1 2 3 4 … nTransformedPerformance Scenario #
  • 13. 1 2 3 4 … n TransformedPerformance Scenario # T1: Performance value transformation Performance (identity)Cost of making wrong decision (regret) 1 2 3 4 … n Performance Scenario # 1 2 3 4 … n TransformedPerformance Scenario # 1 2 3 4 … n Performance Scenario # Performance values Pass/fail (satisficing) OR OR Threshold
  • 14. T1: Performance value transformation Robustness calculation based on relative performance values Robustness calculation based on absolute performance values Indication of whether system performance is satisfactory or not - (MORE) - (POMORE) - (Decision Scaling) - Starr’s domain criterion - (Info Gap) Indication of actual system performance - Minimax regret - 90th percentile minimax regret - Undesirable deviations - Maximin (minimax) - Maximax - Hurwicz’s optimism-pessimism rule - Laplace’s principle of insufficient reason - Mean-variance - Percentile-based skewness - Percentile-based peakedness
  • 15. T2: Scenario subset selection Worst half of scenariosBest-case scenario 1 2 3 4 … n Performance Scenario # Transformed performance values Worst-case scenario OR OR 1 2 3 4 … n Performance Scenario # 1 2 3 4 … n Performance Scenario # 1 2 3 4 … n Performance Scenario #
  • 16. T2: Scenario subset selection Less risk averse More risk averse
  • 17. Probabilityofoccurrencein selectedscenarios Transformed Performance T3: Robustness metric calculation SkewVariance Transformed performance values in selected scenarios Expected value (e.g. mean) OR OR Mean Probabilityofoccurrencein selectedscenarios Transformed Performance Probabilityofoccurrencein selectedscenarios Transformed Performance Variance Probabilityofoccurrencein selectedscenarios Transformed Performance Mean Median
  • 18. T3: Robustness metric calculation Robustness metric Robustness metric calculation None Sum Mean Weighted mean Variance Skew Kurtosis Maximin ✓ Maximax ✓ Hurwicz optimism-pessimism rule ✓ Laplace’s principle of insufficient reason ✓ Minimax regret ✓ 90th percentile minimax regret ✓ Mean-variance ✓ ✓ Undesirable deviations ✓ Percentile-based skewness ✓ Percentile-based peakedness ✓ Starr’s domain criterion ✓
  • 19. Probabilityofoccurrencein selectedscenarios Transformed Performance 1 2 3 4 … n Performance Scenario # 1 2 4 … TransformedPerformance Scenario # Performance over all scenarios Transformed performance values over all scenarios Transformed performance values over selected scenarios Robustness value Mean T1: Performance value transformation T2: Scenario subset selection T3: Robustness metric calculation 1 2 3 4 … nTransformedPerformance Scenario #
  • 20. Maximin Maximax Hurwicz optimism-pessimism rule Laplace’s principle of insufficient reason Minimax regret 90th percentile minimax regret Mean-variance Undesirable deviations Percentile-based skewness Percentile-based peakedness Starr’s domain criterion
  • 21. Metric T1: Performance value transformation T2: Scenario subset selection T3: Robustness metric calculation Maximin Identity Worst-case Identity Maximax Identity Best-case Identity Hurwicz optimism-pessimism rule Identity Worst- and best-cases Weighted mean Laplace’s principle of insufficient reason Identity All Mean Minimax regret Regret from best decision alternative Worst-case Identity 90th percentile minimax regret Regret from best decision alternative 90th percentile Identity Mean-variance Identity All Mean-variance Undesirable deviations Regret from median performance Worst-half Sum Percentile-based skewness Identity 10th, 50th and 90th percentiles Skew Percentile-based peakedness Identity 10th, 25th, 75th and 90th percentiles Kurtosis Starr’s domain criterion Satisfaction of constraints All Mean Maximin Maximax Hurwicz optimism-pessimism rule Laplace’s principle of insufficient reason Minimax regret 90th percentile minimax regret Mean-variance Undesirable deviations Percentile-based skewness Percentile-based peakedness Starr’s domain criterion
  • 22. Metric T1: Performance value transformation T2: Scenario subset selection T3: Robustness metric calculation Maximin Identity Worst-case Identity Maximax Identity Best-case Identity Hurwicz optimism-pessimism rule Identity Worst- and best-cases Weighted mean Laplace’s principle of insufficient reason Identity All Mean Minimax regret Regret from best decision alternative Worst-case Identity 90th percentile minimax regret Regret from best decision alternative 90th percentile Identity Mean-variance Identity All Mean-variance Undesirable deviations Regret from median performance Worst-half Sum Percentile-based skewness Identity 10th, 50th and 90th percentiles Skew Percentile-based peakedness Identity 10th, 25th, 75th and 90th percentiles Kurtosis Starr’s domain criterion Satisfaction of constraints All Mean
  • 23. Future work A conceptual framework for understanding when robustness metrics agree or disagree. Paper under revision C. McPhail, H.R. Maier, J.H. Kwakkel, M. Giuliani, A. Castelletti and S.Westra (under revision), Robustness metrics: How are they calculated, when should they be used and why do they give different results?, Earth’s Future. Contact Cameron McPhail University of Adelaide cameron.mcphail@adelaide.edu.au
  • 24. T1: Performance value transformation Description Equation Identity transformation 𝑓′ 𝑥𝑖, 𝑠𝑗 = 𝑓 𝑥𝑖, 𝑠𝑗 Regret from best decision alternative 𝑓′ 𝑥𝑖, 𝑠𝑗 = max 𝑥 𝑓 𝑥, 𝑠𝑗 − 𝑓 𝑥𝑖, 𝑠𝑗 , maximisation 𝑓 𝑥𝑖, 𝑠𝑗 − min 𝑥 𝑓 𝑥, 𝑠𝑗 , minimisation Regret from median 𝑓′ 𝑥𝑖, 𝑠𝑗 = 𝑞50 − 𝑓 𝑥𝑖, 𝑠𝑗 , maximisation 𝑓 𝑥𝑖, 𝑠𝑗 − 𝑞50, minimisation where 𝑞50 is the median performance for decision alternative 𝑥𝑖. i.e. 𝑃 𝑓 𝑥𝑖, 𝑆 ≤ 𝑞50 = 1 2 Satisfaction of constraints 𝑓′ 𝑥𝑖, 𝑠𝑗 = 1 if 𝑓 𝑥𝑖, 𝑠𝑗 ≥ 𝑐 0 if 𝑓 𝑥𝑖, 𝑠𝑗 < 𝑐 , maximisation 1 if 𝑓 𝑥𝑖, 𝑠𝑗 ≤ 𝑐 0 if 𝑓 𝑥𝑖, 𝑠𝑗 > 𝑐 , minimisation where 𝑐 is a constraint
  • 25. T2: Scenario subset selection Description Equation Worst-case 𝑆′ = arg min 𝑠 𝑓′ 𝑥𝑖, 𝑠 , maximisation arg max 𝑠 𝑓′ 𝑥𝑖, 𝑠 , minimisation Best-case 𝑆′ = arg max 𝑠 𝑓′ 𝑥𝑖, 𝑠 , maximisation arg min 𝑠 𝑓′ 𝑥𝑖, 𝑠 , minimisation Worst- and best-cases 𝑆′ = arg max 𝑠 𝑓′ 𝑥𝑖, 𝑠 , arg min 𝑠 𝑓′ 𝑥𝑖, 𝑠 All 𝑆′ = 𝑆 Worst-half 𝑆′ = 𝑠 ∈ 𝑆: 𝑓′ 𝑥𝑖, 𝑠 ≤ 𝑞50 , maximisation 𝑠 ∈ 𝑆: 𝑓′ 𝑥𝑖, 𝑠 ≥ 𝑞50 , minimisation where 𝑞50 is the 50th percentile (median) value of 𝑓′ 𝑥𝑖, 𝑆 Percentile 𝑆′ = 𝑓′ 𝑥𝑖, 𝑠 = 𝑞 𝑘 where 𝑞 𝑘 is the kth percentile value of 𝑓′ 𝑥𝑖, 𝑆 Note that the scenario 𝑠 that produces the value of 𝑓′ 𝑥𝑖, 𝑠 closest to 𝑞 𝑘 is the scenario that is used.
  • 26. T3: Robustness metric calculation Description Equation Identity transformation 𝑅 𝑥𝑖, 𝑆 = 𝑓′ 𝑥𝑖, 𝑆′ Mean 𝑅 𝑥𝑖, 𝑆 = 1 𝑛′ 𝑗=1 𝑛′ 𝑓′ 𝑥𝑖, 𝑠𝑗 where 𝑛′ is the number of scenarios in 𝑆′ Sum 𝑅 𝑥𝑖, 𝑆 = 𝑗=1 𝑛′ 𝑓′ 𝑥𝑖, 𝑠𝑗 Weighted mean (two scenarios) 𝑅 𝑥𝑖, 𝑆 = 𝛼𝑓′ 𝑥𝑖, 𝑠 𝑎 + 1 − 𝛼 𝑓′ 𝑥𝑖, 𝑠 𝑏 where 𝑠 𝑎 and 𝑠 𝑏 are two scenarios and 𝛼 is the preference of the decision maker towards using 𝑠 𝑎 and 0 < 𝛼 < 1 (Also see next slide…)
  • 27. T3: Robustness metric calculation Description Equation Variance-based (i.e. the standard deviation) 𝑅 𝑥𝑖, 𝑆 = 1 𝑛′ − 1 𝑗=1 𝑛′ 𝑓′ 𝑥𝑖, 𝑠𝑗 − 𝜇 2 where 𝜇 is the mean (see the equation earlier in this table) Mean-variance 𝑅 𝑥𝑖, 𝑆 = 𝜇 + 1 𝜎 + 1 , maximisation − 𝜇 + 1 𝜎 + 1 , minimisation where 𝜇 is the mean and 𝜎 is the standard deviation (given by equations above) Skew 𝑅 𝑥𝑖, 𝑆 = 𝑓′ 𝑥𝑖, 𝑠90 + 𝑓′ 𝑥𝑖, 𝑠10 2 − 𝑓′ 𝑥𝑖, 𝑠50 𝑓′ 𝑥𝑖, 𝑠90 − 𝑓′ 𝑥𝑖, 𝑠10 2 , maximisation − 𝑓′ 𝑥𝑖, 𝑠90 + 𝑓′ 𝑥𝑖, 𝑠10 2 − 𝑓′ 𝑥𝑖, 𝑠50 𝑓′ 𝑥𝑖, 𝑠90 − 𝑓′ 𝑥𝑖, 𝑠10 2 , minimisation where 𝑠10, 𝑠50 and 𝑠90 are scenarios that represent the 10th, 50th and 90th percentiles for 𝑓′ 𝑥𝑖, 𝑆 Kurtosis 𝑅 𝑥𝑖, 𝑆 = 𝑓′ 𝑥𝑖, 𝑠90 − 𝑓′ 𝑥𝑖, 𝑠10 𝑓′ 𝑥𝑖, 𝑠75 − 𝑓′ 𝑥𝑖, 𝑠25 where 𝑠10, 𝑠25, 𝑠75 and 𝑠90 are scenarios that represent the 10th, 25th, 75th and 90th percentiles for 𝑓′ 𝑥𝑖, 𝑆

Editor's Notes

  1. Environmental decision-making has long required planning for an uncertain future An example is a water supply system: large-scale infrastructure, large costs, long planning period (decades)
  2. DMs are increasingly considering multiple plausible futures (scenarios) to represent futures where the relative likelihoods are unknown (example could be RCP4.5 and RPC8.5)
  3. For each of the projected futures (scenarios) we can calculate the system performance as per before (e.g. reliability) But we don’t know the likelihood of each of these futures
  4. So we consider the concept of robustness: the greatest performance, across as many futures as possible
  5. The literature for robustness is full of these different metrics But they are all reflecting different aspects of what it means to have the greatest performance over as many scenarios as possible Some focus on maximising performance for some scenarios Others focus on having consistent performance across as many scenarios as possible So it’s difficult for DMs to know which one to use, because they are all telling you different things
  6. One of the oldest metrics is the Maximin metric Wald, 1950 Economics Looking at maximising the worst-case performance
  7. Starr, 1963
  8. Kwakkel, 2016
  9. To begin the unifying framework, need to look at what all metrics have in common They all take the decision alternatives, …, …, and they filter this through the robustness metric to produce the robustness value
  10. The unifying framework allows the categorisation of the metrics according to 3 transformations, T1, T2, T3 All of the metrics use these transformations to get from the performance in each scenario, to the value of robustness We start with all of the performance values and apply the performance value transformation From these transformed values, we select a subset of scenarios From the subset, we calculate some value based on the distribution of performance values, and this gives us the robustness
  11. The performance values are transformed depending on the needs of the DM If there is an important threshold (e.g. supply > demand, see dotted line) then it may make sense to use a satisficing metric, where we only care about whether the decision alternative passes or fails. Otherwise you might be most interested in minimising the regret (cost of making the wrong choice). E.g. in a water supply system you want to minimise unnecessary overexpenditure You might just want to maximise the performance itself, in which case the Identity transform is fine. E.g. if you’re looking at a stream restoration with a fixed budget, it might be best to just consider maximising performance
  12. Second transformation is the scenario subset selection This is asking which performance values should be used? The worst-case? The best-case? Some subset? Or all values?
  13. This transformation is related to the level of risk aversion that the DM has At the bottom you have the maximin metric which represents a very risk averse metric, assuming that the worst-case scenario will happen This might be most relevant when considering the design of a dam, where failure could kill 1000s of residents At the top you have the maximax metric which represents a lower level of risk aversion This might be more relevant for something such as the design of a stormwater system, which will be unlikely to kill 1000s of people
  14. We have a distribution of transformed performance values in the selected scenarios Generally DMs are interested in the expected value. E.g. cost or reliability. And therefore use the sum or mean of the performance values For supplemental info, a DM might use variance or some higher-order statistic from the distribution to understand the difference between decision alternatives with similar expected value: Variance – spread of performance Skew – difference in performance under extreme conditions Kurtosis – consistency in performance
  15. We’ve developed this unifying framework with three transformations T1: Is there some important threshold such as supply > demand? Are you interested in minimising the cost of making a wrong decision? Are you interested just in maximising performance? T2: How risk averse do you need to be for this problem? This effects the scenarios that are selected. T3: Are you interested in the expected value of performance? Or are you interested in looking at how the performance varies across scenarios?