Vertex form (standard form) for the equation of a parabolay = a(x – h)2 + kx = a(y – k)2 + hVertex: (h, k)Vertex: (h, k)Line of symmetry: x = hLine of symmetry: y = k
Graph x = 2y2 + 8y + 9x = (2y2 + 8y     ) + 9x = 2(y2 + 4y + 4) + 9 - 8x = 2(y+ 2)2 + 1Vertex: (1, -2)Axis of symmetry: y = -2Opens to the right
focuslatus rectumdirectrixAll points on the parabola are equidistant from the focus and the directrix.
y = a(x – h)2 + kfocus1 4asame distancedirectrix
y = a(x – h)2 + kfocuslatus rectum1  alength =directrix
Pg 422
4(y – 2) = (x + 3)24y – 8 = (x + 3)24y = (x + 3)2 + 8 4             4y = ¼ (x + 3)2 + 2a = ¼ h = -3k = 2y = a(x – h)2 + k
y = ¼ (x + 3)2 + 2vertex: (-3, 2)axis of symmetry: 	x = -3a = ¼distance from vertexto focus =         = 1 distance from vertexto directrix = 1   1_4(¼)Length of latus rectum:1  = 4 units¼
4x – 13 = y2 – 2y 4x – 13 = (y2 – 2y     )  4x = (y – 1)2 + 12 4             4x = ¼ (y – 1)2 + 3x = a(y – k)2 + h+1  – 1 +13                       +13
x = ¼ (y – 1)2 + 3vertex: (3, 1)axis of symmetry: 	y = 1a = ¼distance from vertexto focus =         = 1 distance from vertexto directrix = 1   1_4(¼)Length of latus rectum:1  = 4 units¼

Alg2 lesson 8-2

  • 1.
    Vertex form (standardform) for the equation of a parabolay = a(x – h)2 + kx = a(y – k)2 + hVertex: (h, k)Vertex: (h, k)Line of symmetry: x = hLine of symmetry: y = k
  • 2.
    Graph x =2y2 + 8y + 9x = (2y2 + 8y ) + 9x = 2(y2 + 4y + 4) + 9 - 8x = 2(y+ 2)2 + 1Vertex: (1, -2)Axis of symmetry: y = -2Opens to the right
  • 3.
    focuslatus rectumdirectrixAll pointson the parabola are equidistant from the focus and the directrix.
  • 4.
    y = a(x– h)2 + kfocus1 4asame distancedirectrix
  • 5.
    y = a(x– h)2 + kfocuslatus rectum1 alength =directrix
  • 6.
  • 7.
    4(y – 2)= (x + 3)24y – 8 = (x + 3)24y = (x + 3)2 + 8 4 4y = ¼ (x + 3)2 + 2a = ¼ h = -3k = 2y = a(x – h)2 + k
  • 8.
    y = ¼(x + 3)2 + 2vertex: (-3, 2)axis of symmetry: x = -3a = ¼distance from vertexto focus = = 1 distance from vertexto directrix = 1 1_4(¼)Length of latus rectum:1 = 4 units¼
  • 9.
    4x – 13= y2 – 2y 4x – 13 = (y2 – 2y ) 4x = (y – 1)2 + 12 4 4x = ¼ (y – 1)2 + 3x = a(y – k)2 + h+1 – 1 +13 +13
  • 10.
    x = ¼(y – 1)2 + 3vertex: (3, 1)axis of symmetry: y = 1a = ¼distance from vertexto focus = = 1 distance from vertexto directrix = 1 1_4(¼)Length of latus rectum:1 = 4 units¼