SlideShare a Scribd company logo
Factoring Out GCF
To factor means to rewrite a quantity as a product (without
using 1).
Factoring Out GCF
Example A. Factor 12 completely.
To factor means to rewrite a quantity as a product (without
using 1).
Factoring Out GCF
Example A. Factor 12 completely.
12 = 3 * 4
To factor means to rewrite a quantity as a product (without
using 1).
Factoring Out GCF
Example A. Factor 12 completely.
12 = 3 * 4
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime.
Factoring Out GCF
Example A. Factor 12 completely.
12 = 3 * 4
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime.
Factoring Out GCF
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
not prime
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
factored completelynot prime
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
Example B.
a. Since 6 = 2*3, 15 = 3*5,
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
Example B.
a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor.
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
Example B.
a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor.
b. The common factors of 4ab, 6a are
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
Example B.
a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor.
b. The common factors of 4ab, 6a are 2,
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
Example B.
a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor.
b. The common factors of 4ab, 6a are 2, a,
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
Example B.
a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor.
b. The common factors of 4ab, 6a are 2, a, 2a.
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
Example B.
a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor.
b. The common factors of 4ab, 6a are 2, a, 2a.
c. The common factors of 6xy2, 15x2y2 are
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
Example B.
a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor.
b. The common factors of 4ab, 6a are 2, a, 2a.
c. The common factors of 6xy2, 15x2y2 are 3,
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
Example B.
a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor.
b. The common factors of 4ab, 6a are 2, a, 2a.
c. The common factors of 6xy2, 15x2y2 are 3, x,
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
Example B.
a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor.
b. The common factors of 4ab, 6a are 2, a, 2a.
c. The common factors of 6xy2, 15x2y2 are 3, x, y2,
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
Example B.
a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor.
b. The common factors of 4ab, 6a are 2, a, 2a.
c. The common factors of 6xy2, 15x2y2 are 3, x, y2, xy2, ..
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
Example A. Factor 12 completely.
12 = 3 * 4 = 3 * 2 * 2
not prime factored completely
To factor means to rewrite a quantity as a product (without
using 1). A quantity x that can’t be written as product besides
as 1*x is said to be prime. To factor completely means each
factor in the product is prime.
Factoring Out GCF
Example B.
a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor.
b. The common factors of 4ab, 6a are 2, a, 2a.
c. The common factors of 6xy2, 15x2y2 are 3, x, y2, xy2, ..
d. The common factor of a(x+y), b(x+y) is (x+y).
A common factor of two or more quantities is a factor
belongs to all the quantities.
The numbers
2, 3, 5, 7,. . 11, . .
are prime.
The greatest common factor (GCF) is the common factor
that has the largest coefficient and highest degree of each
factor among all common factors.
Factoring Out GCF
The greatest common factor (GCF) is the common factor
that has the largest coefficient and highest degree of each
factor among all common factors.
Factoring Out GCF
Example C. Find the GCF of the given quantities.
a. GCF{24, 36}
The greatest common factor (GCF) is the common factor
that has the largest coefficient and highest degree of each
factor among all common factors.
Factoring Out GCF
Example C. Find the GCF of the given quantities.
a. GCF{24, 36} = 12.
The greatest common factor (GCF) is the common factor
that has the largest coefficient and highest degree of each
factor among all common factors.
Factoring Out GCF
Example C. Find the GCF of the given quantities.
a. GCF{24, 36} = 12.
b. GCF{4ab, 6a}
The greatest common factor (GCF) is the common factor
that has the largest coefficient and highest degree of each
factor among all common factors.
Factoring Out GCF
Example C. Find the GCF of the given quantities.
a. GCF{24, 36} = 12.
b. GCF{4ab, 6a} = 2a.
The greatest common factor (GCF) is the common factor
that has the largest coefficient and highest degree of each
factor among all common factors.
Factoring Out GCF
Example C. Find the GCF of the given quantities.
a. GCF{24, 36} = 12.
b. GCF{4ab, 6a} = 2a.
c. GCF {6xy2, 15 x2y2}
The greatest common factor (GCF) is the common factor
that has the largest coefficient and highest degree of each
factor among all common factors.
Factoring Out GCF
Example C. Find the GCF of the given quantities.
a. GCF{24, 36} = 12.
b. GCF{4ab, 6a} = 2a.
c. GCF {6xy2, 15 x2y2} = 3xy2.
The greatest common factor (GCF) is the common factor
that has the largest coefficient and highest degree of each
factor among all common factors.
Factoring Out GCF
Example C. Find the GCF of the given quantities.
a. GCF{24, 36} = 12.
b. GCF{4ab, 6a} = 2a.
c. GCF {6xy2, 15 x2y2} = 3xy2.
d. GCF{x3y5, x4y6, x5y4} =
The greatest common factor (GCF) is the common factor
that has the largest coefficient and highest degree of each
factor among all common factors.
Factoring Out GCF
Example C. Find the GCF of the given quantities.
a. GCF{24, 36} = 12.
b. GCF{4ab, 6a} = 2a.
c. GCF {6xy2, 15 x2y2} = 3xy2.
d. GCF{x3y5, x4y6, x5y4} = x3y4.
The greatest common factor (GCF) is the common factor
that has the largest coefficient and highest degree of each
factor among all common factors.
Factoring Out GCF
Example C. Find the GCF of the given quantities.
a. GCF{24, 36} = 12.
b. GCF{4ab, 6a} = 2a.
c. GCF {6xy2, 15 x2y2} = 3xy2.
d. GCF{x3y5, x4y6, x5y4} = x3y4.
The Extraction Law
Distributive law interpreted backward gives the Extraction Law,
that is, common factors may be extracted from sums or
differences.
The greatest common factor (GCF) is the common factor
that has the largest coefficient and highest degree of each
factor among all common factors.
Factoring Out GCF
Example C. Find the GCF of the given quantities.
a. GCF{24, 36} = 12.
b. GCF{4ab, 6a} = 2a.
c. GCF {6xy2, 15 x2y2} = 3xy2.
d. GCF{x3y5, x4y6, x5y4} = x3y4.
The Extraction Law
Distributive law interpreted backward gives the Extraction Law,
that is, common factors may be extracted from sums or
differences.
AB ± AC  A(B±C)
The greatest common factor (GCF) is the common factor
that has the largest coefficient and highest degree of each
factor among all common factors.
Factoring Out GCF
Example C. Find the GCF of the given quantities.
a. GCF{24, 36} = 12.
b. GCF{4ab, 6a} = 2a.
c. GCF {6xy2, 15 x2y2} = 3xy2.
d. GCF{x3y5, x4y6, x5y4} = x3y4.
The Extraction Law
Distributive law interpreted backward gives the Extraction Law,
that is, common factors may be extracted from sums or
differences.
AB ± AC  A(B±C)
This procedure is also called “factoring out a common factor”.
To factor, the first step always is to factor out the GCF,
then factor the “left over” if it’s needed.
Factoring Out GCF
Example D. Factor out the GCF.
a. xy – 4y
(the GCF is y)
Factoring Out GCF
Example D. Factor out the GCF.
a. xy – 4y
(the GCF is y)
Factoring Out GCF
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
(the GCF is y)
Factoring Out GCF
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a
(the GCF is y)
Factoring Out GCF
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3)
(the GCF is y)
(the GCF is 2a)
Factoring Out GCF
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3)
(the GCF is y)
(the GCF is 2a)
Factoring Out GCF
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3)
(the GCF is y)
(the GCF is 2a)
Factoring Out GCF
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3)
c. 12x2y3 + 6x2y2
(the GCF is y)
(the GCF is 2a)
(the GCF is 6x2y2)
Factoring Out GCF
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3)
c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1)
(the GCF is y)
(the GCF is 2a)
(the GCF is 6x2y2)
Factoring Out GCF
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3)
c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
Factoring Out GCF
We may pull out common factors that are ( )'s.
(the GCF is y)
(the GCF is 2a)
(the GCF is 6x2y2)
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3)
c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
Factoring Out GCF
We may pull out common factors that are ( )'s.
Example E. Factor
a. a(x + y) – 4(x + y)
Pull out the common factor (x + y)
a(x + y) – 4(x + y) = (a – 4)(x + y)
b. Factor (2x – 3)3x – 2(2x – 3)
(the GCF is y)
(the GCF is 2a)
(the GCF is 6x2y2)
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3)
c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
Factoring Out GCF
We may pull out common factors that are ( )'s.
Example E. Factor
a. a(x + y) – 4(x + y)
Pull out the common factor (x + y)
a(x + y) – 4(x + y) = (a – 4)(x + y)
b. Factor (2x – 3)3x – 2(2x – 3)
(the GCF is y)
(the GCF is 2a)
(the GCF is 6x2y2)
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3)
c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
Factoring Out GCF
We may pull out common factors that are ( )'s.
Example E. Factor
a. a(x + y) – 4(x + y)
Pull out the common factor (x + y)
a(x + y) – 4(x + y) = (a – 4)(x + y)
b. Factor (2x – 3)3x – 2(2x – 3)
(the GCF is y)
(the GCF is 2a)
(the GCF is 6x2y2)
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3)
c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
Factoring Out GCF
We may pull out common factors that are ( )'s.
Example E. Factor
a. a(x + y) – 4(x + y)
Pull out the common factor (x + y)
a(x + y) – 4(x + y) = (a – 4)(x + y)
b. Factor (2x – 3)3x – 2(2x – 3)
Pull out the common factor (2x – 3),
(the GCF is y)
(the GCF is 2a)
(the GCF is 6x2y2)
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3)
c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
Factoring Out GCF
We may pull out common factors that are ( )'s.
Example E. Factor
a. a(x + y) – 4(x + y)
Pull out the common factor (x + y)
a(x + y) – 4(x + y) = (a – 4)(x + y)
b. Factor (2x – 3)3x – 2(2x – 3)
Pull out the common factor (2x – 3),
(2x – 3)3x – 2(2x – 3) = (2x – 3) (3x – 2)
(the GCF is y)
(the GCF is 2a)
(the GCF is 6x2y2)
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3)
c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
Factoring Out GCF
We may pull out common factors that are ( )'s.
Example E. Factor
a. a(x + y) – 4(x + y)
Pull out the common factor (x + y)
a(x + y) – 4(x + y) = (a – 4)(x + y)
b. Factor (2x – 3)3x – 2(2x – 3)
Pull out the common factor (2x – 3),
(2x – 3)3x – 2(2x – 3) = (2x – 3) (3x – 2)
(the GCF is y)
(the GCF is 2a)
(the GCF is 6x2y2)
Example D. Factor out the GCF.
a. xy – 4y = y(x – 4)
b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3)
c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
Note the order
of the “( )’s”
doesn’t matter
because AB=BA.
Factoring Out GCF
There are special four–term formulas where we have to
separate the terms into two pairs,
Factoring Out GCF
There are special four–term formulas where we have to
separate the terms into two pairs,
Example F. Factor by pulling out twice.
a. 3x – 3y + ax – ay
Factoring Out GCF
There are special four–term formulas where we have to
separate the terms into two pairs,
Example F. Factor by pulling out twice.
a. 3x – 3y + ax – ay Group them into two groups.
= (3x – 3y) + (ax – ay)
Factoring Out GCF
There are special four–term formulas where we have to
separate the terms into two pairs, factor out each pair’s GCF
to reveal a common parenthesis–factor, then we pull out this
common parenthesis.
Example F. Factor by pulling out twice.
a. 3x – 3y + ax – ay Group them into two groups.
= (3x – 3y) + (ax – ay) Factor out the GCF of each group.
= 3(x – y) + a(x – y)
Factoring Out GCF
There are special four–term formulas where we have to
separate the terms into two pairs, factor out each pair’s GCF
to reveal a common parenthesis–factor, then we pull out this
common parenthesis.
Example F. Factor by pulling out twice.
a. 3x – 3y + ax – ay Group them into two groups.
= (3x – 3y) + (ax – ay) Factor out the GCF of each group.
= 3(x – y) + a(x – y) Pull the factor (x – y) again.
= (3 + a)(x – y)
Factoring Out GCF
We may need to pull out the negative sign
e.g. writing –4x + 10 as –(2x – 5),
in the expression to reveal the common factor.
b. x(2x – 5) – 4x + 10
There are special four–term formulas where we have to
separate the terms into two pairs, factor out each pair’s GCF
to reveal a common parenthesis–factor, then we pull out this
common parenthesis.
Example F. Factor by pulling out twice.
a. 3x – 3y + ax – ay Group them into two groups.
= (3x – 3y) + (ax – ay) Factor out the GCF of each group.
= 3(x – y) + a(x – y) Pull the factor (x – y) again.
= (3 + a)(x – y)
Factoring Out GCF
We may need to pull out the negative sign
e.g. writing –4x + 10 as –(2x – 5),
in the expression to reveal the common factor.
b. x(2x – 5) – 4x + 10
= y(2x – 5) – 2(2x – 5)
There are special four–term formulas where we have to
separate the terms into two pairs, factor out each pair’s GCF
to reveal a common parenthesis–factor, then we pull out this
common parenthesis.
Example F. Factor by pulling out twice.
a. 3x – 3y + ax – ay Group them into two groups.
= (3x – 3y) + (ax – ay) Factor out the GCF of each group.
= 3(x – y) + a(x – y) Pull the factor (x – y) again.
= (3 + a)(x – y)
Factoring Out GCF
We may need to pull out the negative sign
e.g. writing –4x + 10 as –(2x – 5),
in the expression to reveal the common factor.
b. x(2x – 5) – 4x + 10
= y(2x – 5) – 2(2x – 5)
= (y – 2) (2x – 5)
There are special four–term formulas where we have to
separate the terms into two pairs, factor out each pair’s GCF
to reveal a common parenthesis–factor, then we pull out this
common parenthesis.
Example F. Factor by pulling out twice.
a. 3x – 3y + ax – ay Group them into two groups.
= (3x – 3y) + (ax – ay) Factor out the GCF of each group.
= 3(x – y) + a(x – y) Pull the factor (x – y) again.
= (3 + a)(x – y)
Trinomials (three-term) are polynomials of the form
ax2 + bx + c where a, b, and c are numbers.
Factoring Trinomials and Making Lists
Trinomials (three-term) are polynomials of the form
ax2 + bx + c where a, b, and c are numbers.
The product of two binomials is a trinomials:
(#x + #)(#x + #)  ax2 + bx + c
Factoring Trinomials and Making Lists
Factoring Trinomials and Making Lists
Trinomials (three-term) are polynomials of the form
ax2 + bx + c where a, b, and c are numbers.
The product of two binomials is a trinomials:
(#x + #)(#x + #)  ax2 + bx + c
Hence, to factor a trinomial, we write the trinomial as a
product of two binomials, if possible,
Trinomials (three-term) are polynomials of the form
ax2 + bx + c where a, b, and c are numbers.
The product of two binomials is a trinomials:
(#x + #)(#x + #)  ax2 + bx + c
Hence, to factor a trinomial, we write the trinomial as a
product of two binomials, if possible, that is:
ax2 + bx + c  (#x + #)(#x + #)
Factoring Trinomials and Making Lists
Trinomials (three-term) are polynomials of the form
ax2 + bx + c where a, b, and c are numbers.
The product of two binomials is a trinomials:
(#x + #)(#x + #)  ax2 + bx + c
Hence, to factor a trinomial, we write the trinomial as a
product of two binomials, if possible, that is:
ax2 + bx + c  (#x + #)(#x + #)
We start with the case a = 1, trinomials of the form x2 + bx + c.
Factoring Trinomials and Making Lists
Trinomials (three-term) are polynomials of the form
ax2 + bx + c where a, b, and c are numbers.
The product of two binomials is a trinomials:
(#x + #)(#x + #)  ax2 + bx + c
Hence to “factor a trinomial” means, if possible,
to write the trinomial as a product of two binomials, that is:
ax2 + bx + c  (#x + #)(#x + #)
Factoring Trinomials and Making Lists
Example A.
a. Factor x2 + 5x + 6
Factoring Trinomials and Making Lists
Factoring the trinomial x2 + bx + c
Example A.
a. Factor x2 + 5x + 6
Factoring Trinomials and Making Lists
Factoring the trinomial x2 + bx + c
To factor the trinomial x2 + bx + c, search for a pair of numbers
u and v such that uv = c, and u + v = b.
Example A.
a. Factor x2 + 5x + 6
We want (x + u)(x + v) = x2 + 5x + 6,
so we need u and v where uv = 6 and u + v = 5.
Factoring Trinomials and Making Lists
Factoring the trinomial x2 + bx + c
To factor the trinomial x2 + bx + c, search for a pair of numbers
u and v such that uv = c, and u + v = b.
Example A.
a. Factor x2 + 5x + 6
We want (x + u)(x + v) = x2 + 5x + 6,
so we need u and v where uv = 6 and u + v = 5.
Factoring Trinomials and Making Lists
Factoring the trinomial x2 + bx + c
To factor the trinomial x2 + bx + c, search for a pair of numbers
u and v such that uv = c, and u + v = b.
To carry this out, make a list of all the possible u and v
such that uv = c,
Example A.
a. Factor x2 + 5x + 6
We want (x + u)(x + v) = x2 + 5x + 6,
so we need u and v where uv = 6 and u + v = 5.
List all such u and v where uv = 6:
(1)(6) = (2)(3) = (-1)(-6) = (-2)(-3) = 6
Factoring Trinomials and Making Lists
Factoring the trinomial x2 + bx + c
To factor the trinomial x2 + bx + c, search for a pair of numbers
u and v such that uv = c, and u + v = b.
To carry this out, make a list of all the possible u and v
such that uv = c,
Example A.
a. Factor x2 + 5x + 6
We want (x + u)(x + v) = x2 + 5x + 6,
so we need u and v where uv = 6 and u + v = 5.
List all such u and v where uv = 6:
(1)(6) = (2)(3) = (-1)(-6) = (-2)(-3) = 6
Factoring Trinomials and Making Lists
Factoring the trinomial x2 + bx + c
To factor the trinomial x2 + bx + c, search for a pair of numbers
u and v such that uv = c, and u + v = b.
To carry this out, make a list of all the possible u and v
such that uv = c, then search for the pair that satisfies u + v = b.
Such a pair of u and v may or may not exist.
Example A.
a. Factor x2 + 5x + 6
We want (x + u)(x + v) = x2 + 5x + 6,
so we need u and v where uv = 6 and u + v = 5.
List all such u and v where uv = 6:
(1)(6) = (2)(3) = (-1)(-6) = (-2)(-3) = 6
Factoring Trinomials and Making Lists
Factoring the trinomial x2 + bx + c
To factor the trinomial x2 + bx + c, search for a pair of numbers
u and v such that uv = c, and u + v = b.
To carry this out, make a list of all the possible u and v
such that uv = c, then search for the pair that satisfies u + v = b.
Such a pair of u and v may or may not exist.
2, 3 is the pair where u + v = 5.
Example A.
a. Factor x2 + 5x + 6
We want (x + u)(x + v) = x2 + 5x + 6,
so we need u and v where uv = 6 and u + v = 5.
List all such u and v where uv = 6:
(1)(6) = (2)(3) = (-1)(-6) = (-2)(-3) = 6
so x2 + 5x + 6 = (x + 2)(x + 3).
Factoring Trinomials and Making Lists
Factoring the trinomial x2 + bx + c
To factor the trinomial x2 + bx + c, search for a pair of numbers
u and v such that uv = c, and u + v = b.
To carry this out, make a list of all the possible u and v
such that uv = c, then search for the pair that satisfies u + v = b.
Such a pair of u and v may or may not exist.
2, 3 is the pair where u + v = 5.
c. Factor x2 + 5x – 6
We want (x + u)(x + v) = x2 + 5x – 6, so we need uv = –6 and
u + v = 5.
Since -6 = (–1)(6) = (1)(–6) = (–2)(3) =(2)(–3) and –1 + 6 = 5,
so x2 + 5x – 6 = (x – 1)(x + 6).
b. Factor x2 – 5x + 6
We want (x + u)(x + v) = x2 – 5x + 6, so we need u and v
where uv = 6 and u + v = –5.
Since 6 = (1)(6) = (2)(3) = (-1)(-6) = (-2)(-3) and –2 – 3 = –5,
so x2 – 5x + 6 = (x – 2)(x – 3).
Example A.
a. Factor x2 + 5x + 6
We want (x + u)(x + v) = x2 + 5x + 6, so we need u and v
where uv = 6 and u + v = 5.
Since 6 = (1)(6) = (2)(3) = (-1)(-6) = (-2)(-3) and 2x + 3x = 5x,
so x2 + 5x + 6 = (x + 2)(x + 3)
Factoring Trinomials and Making Lists
Observations About Signs
Factoring Trinomials and Making Lists
Observations About Signs
Given that x2 + bx + c = (x + u)(x + v) so that uv = c,
we observe the following.
Factoring Trinomials and Making Lists
Observations About Signs
Given that x2 + bx + c = (x + u)(x + v) so that uv = c,
we observe the following.
1. If c is positive, then u and v have same sign.
In particular,
if b is also positive, then both are positive.
Factoring Trinomials and Making Lists
Observations About Signs
Given that x2 + bx + c = (x + u)(x + v) so that uv = c,
we observe the following.
1. If c is positive, then u and v have same sign.
In particular,
if b is also positive, then both are positive.
From the examples above
x2 + 5x + 6 = (x + 2)(x + 3)
Factoring Trinomials and Making Lists
Observations About Signs
Given that x2 + bx + c = (x + u)(x + v) so that uv = c,
we observe the following.
1. If c is positive, then u and v have same sign.
In particular,
if b is also positive, then both are positive.
if b is negative, then both are negative.
From the examples above
x2 + 5x + 6 = (x + 2)(x + 3)
Factoring Trinomials and Making Lists
{
Observations About Signs
Given that x2 + bx + c = (x + u)(x + v) so that uv = c,
we observe the following.
1. If c is positive, then u and v have same sign.
In particular,
if b is also positive, then both are positive.
if b is negative, then both are negative.
From the examples above
x2 + 5x + 6 = (x + 2)(x + 3)
x2 – 5x + 6 = (x – 2)(x – 3)
Factoring Trinomials and Making Lists
{
Observations About Signs
Given that x2 + bx + c = (x + u)(x + v) so that uv = c,
we observe the following.
1. If c is positive, then u and v have same sign.
In particular,
if b is also positive, then both are positive.
if b is negative, then both are negative.
From the examples above
x2 + 5x + 6 = (x + 2)(x + 3)
x2 – 5x + 6 = (x – 2)(x – 3)
2. If c is negative, then u and v have opposite signs.
Factoring Trinomials and Making Lists
{
Observations About Signs
Given that x2 + bx + c = (x + u)(x + v) so that uv = c,
we observe the following.
1. If c is positive, then u and v have same sign.
In particular,
if b is also positive, then both are positive.
if b is negative, then both are negative.
From the examples above
x2 + 5x + 6 = (x + 2)(x + 3)
x2 – 5x + 6 = (x – 2)(x – 3)
2. If c is negative, then u and v have opposite signs. The
one with larger absolute value has the same sign as b.
Factoring Trinomials and Making Lists
{
Observations About Signs
Given that x2 + bx + c = (x + u)(x + v) so that uv = c,
we observe the following.
1. If c is positive, then u and v have same sign.
In particular,
if b is also positive, then both are positive.
if b is negative, then both are negative.
From the examples above
x2 + 5x + 6 = (x + 2)(x + 3)
x2 – 5x + 6 = (x – 2)(x – 3)
2. If c is negative, then u and v have opposite signs. The
one with larger absolute value has the same sign as b.
From the example above
x2 – 5x – 6 = (x – 6)(x + 1)
Factoring Trinomials and Making Lists
Example B.
a. Factor x2 + 4x – 12
We need u and v having opposite signs such that uv = –12,
u + v = +4. Since -12 = (-1)(12) = (-2)(6) = (-3)(4)…
They must be –2 and 6 hence x2 + 4x – 12 = (x – 2)(x + 6).
b. Factor x2 – 8x – 12
We need u and v such that uv = –12, u + v = –8 with
u and v having opposite signs. This is impossible.
Hence x2 – 8x – 12 is prime.
Factoring Trinomials and Making Lists
Exercise. A. Factor. If it’s prime, state so.
1. x2 – x – 2 2. x2 + x – 2 3. x2 – x – 6 4. x2 + x – 6
5. x2 – x + 2 6. x2 + 2x – 3 7. x2 + 2x – 8 8. x2 – 3x – 4
9. x2 + 5x + 6 10. x2 + 5x – 6
13. x2 – x – 20
11. x2 – 5x – 6
12. x2 – 5x + 6
17. x2 – 10x – 24
14. x2 – 8x – 20
15. x2 – 9x – 20 16. x2 – 9x + 20
18. x2 – 10x + 24 19. x2 – 11x + 24 20. x2 – 11x – 24
21. x2 – 12x – 36 22. x2 – 12x + 36 23. x2 – 13x – 36
24. x2 – 13x + 36
B. Factor. Factor out the GCF, the “–”, and arrange the
terms in order first if necessary.
29. 3x2 – 30x – 7227. –x2 – 5x + 14 28. 2x3 – 18x2 + 40x
30. –2x3 + 20x2 – 24x
25. x2 – 36 26. x2 + 36
31. –2x4 + 18x2
32. –3x – 24x3 + 22x2 33. 5x4 + 10x5 – 5x3
Factoring Trinomials and Making Lists
35. –3x3 – 30x2 – 48x34. –yx2 + 4yx + 5y
36. –2x3 + 20x2 – 24x
40. 4x2 – 44xy + 96y2
37. –x2 + 11xy + 24y2
38. x4 – 6x3 + 36x2 39. –x2 + 9xy + 36y2
C. Factor. Factor out the GCF, the “–”, and arrange the
terms in order first.
D. Factor. If not possible, state so.
41. x2 + 1 42. x2 + 4 43. x2 + 9 43. 4x2 + 25
44. What can you conclude from 41–43?
Factoring Trinomials and Making Lists
Factoring Out GCF
Exercise. A. Find the GCF of the listed quantities.
Factoring Out GCF
1. {4, 6 } 2. {12, 18 } 3. {32, 20, 12 } 4. {25, 20, 30 }
5. {4x, 6x2 } 6. {12x2y, 18xy2 }
7. {32A2B3, 20A3B3, 12 A2B2}
8. {25x7y6z6, 20y7z5x6, 30z8x7y6 }
B. Factor out the GCF.
9. 4 – 6y 10. 12x + 18y 11. 32A + 20B – 12C
12. 25x + 20y – 30 13. –4x + 6x2
14. –12x2y – 18xy2 15. 32A2B3 – 20A3B3 – 12A2B2}
16. 25x7y6z6 – 20y7z5x6 + 30z8x7y6
17. 4x4 – 8x3 + 2x2 18. 20x4 – 5x2
19. x(x – 2) + 3(x – 2) 20. 4x(2x – 3) – 5(2x – 3)
C. Factor out the “–”.
21. –2y + 4 22. –3x + 18 23. –5x + 15 24. –8x + 16
Factoring Out GCF
D. Factor, use grouping if it’s necessary.
25. y2 – 2y + 3y – 6 26. x2 + 3x + 6x + 18
27. y2 – 2y – 3y + 6 28. x2 + 3x – 6x – 18
29. y2 – y + 4y – 4 30. x2 – 5x – 2x + 10
31. 2y2 – y – 6y + 3 32. 3x2 + 2x – 6x – 4
33. 4x2 + 6x – 6x – 9 34. –3x2 + 4x – 6x + 8
35. –5y2 + 10y – 3y + 6 36. –x2 + 3x – 7x + 21
37. 2y2 – xy – 6xy + 3x2 38. 3x2 + 2xy – 6xy – 4y2
39. –5x2 + 2xy – 20xy + 8y2 40. –14x2 + 21xy – 8xy + 12y2

More Related Content

What's hot

MIT Math Syllabus 10-3 Lesson 3: Rational expressions
MIT Math Syllabus 10-3 Lesson 3: Rational expressionsMIT Math Syllabus 10-3 Lesson 3: Rational expressions
MIT Math Syllabus 10-3 Lesson 3: Rational expressionsLawrence De Vera
 
Alg2 lesson 10-4 and 10-5
Alg2 lesson 10-4 and 10-5Alg2 lesson 10-4 and 10-5
Alg2 lesson 10-4 and 10-5Carol Defreese
 
10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulaselem-alg-sample
 
Lecture rational expressions
Lecture rational expressionsLecture rational expressions
Lecture rational expressionsHazel Joy Chong
 
Rational expressions and equations
Rational expressions and equationsRational expressions and equations
Rational expressions and equationsJessica Garcia
 
Kyle Galli PowerPoint
Kyle Galli PowerPointKyle Galli PowerPoint
Kyle Galli PowerPointgalli1kj
 

What's hot (19)

Calc 4.1a
Calc 4.1aCalc 4.1a
Calc 4.1a
 
Calc 4.1a
Calc 4.1aCalc 4.1a
Calc 4.1a
 
Unit 2.3
Unit 2.3Unit 2.3
Unit 2.3
 
Unit 2.7
Unit 2.7Unit 2.7
Unit 2.7
 
MIT Math Syllabus 10-3 Lesson 3: Rational expressions
MIT Math Syllabus 10-3 Lesson 3: Rational expressionsMIT Math Syllabus 10-3 Lesson 3: Rational expressions
MIT Math Syllabus 10-3 Lesson 3: Rational expressions
 
Ch 06
Ch 06Ch 06
Ch 06
 
Ch06 se
Ch06 seCh06 se
Ch06 se
 
Alg2 lesson 10-4 and 10-5
Alg2 lesson 10-4 and 10-5Alg2 lesson 10-4 and 10-5
Alg2 lesson 10-4 and 10-5
 
10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas
 
Unit 7.4
Unit 7.4Unit 7.4
Unit 7.4
 
Lecture rational expressions
Lecture rational expressionsLecture rational expressions
Lecture rational expressions
 
Rational expressions and equations
Rational expressions and equationsRational expressions and equations
Rational expressions and equations
 
Factoring
FactoringFactoring
Factoring
 
Unit 3.1
Unit 3.1Unit 3.1
Unit 3.1
 
P
PP
P
 
Unit 7.1
Unit 7.1Unit 7.1
Unit 7.1
 
adalah
adalahadalah
adalah
 
Unit 7.5
Unit 7.5Unit 7.5
Unit 7.5
 
Kyle Galli PowerPoint
Kyle Galli PowerPointKyle Galli PowerPoint
Kyle Galli PowerPoint
 

Viewers also liked

Geometrycal figures
Geometrycal figuresGeometrycal figures
Geometrycal figuresachu5010
 
Examples of gcf and lcm to practice in class
Examples of gcf and lcm to practice in classExamples of gcf and lcm to practice in class
Examples of gcf and lcm to practice in classMartha Ardila Ibarra
 
Workbook in Polygons and Space figures
Workbook in Polygons and Space figuresWorkbook in Polygons and Space figures
Workbook in Polygons and Space figuresJezreel A, Revellame
 
Discovering the Formula for Volume of a Sphere
Discovering the Formula for Volume of a SphereDiscovering the Formula for Volume of a Sphere
Discovering the Formula for Volume of a SphereKyle Pearce
 
Understanding negative numbers
Understanding negative numbersUnderstanding negative numbers
Understanding negative numbersWorserbay
 
Perimeter, Area, & Volume of a square/rectange/ cube
Perimeter, Area, & Volume of a square/rectange/ cubePerimeter, Area, & Volume of a square/rectange/ cube
Perimeter, Area, & Volume of a square/rectange/ cubedevincje
 
Direct, indirect and partitive proportion
Direct, indirect and partitive proportionDirect, indirect and partitive proportion
Direct, indirect and partitive proportionmhera gabayoyo
 
3D Figures- volume and surface area
3D Figures- volume and surface area3D Figures- volume and surface area
3D Figures- volume and surface areaRenegarmath
 
Factoring the greatest common monomial factor
Factoring the greatest common monomial factorFactoring the greatest common monomial factor
Factoring the greatest common monomial factorNara Cocarelli
 
surface area and volume class 10
surface area and volume class 10surface area and volume class 10
surface area and volume class 10lashika madaan
 
Surface area and volume powerpoint
Surface area and volume powerpointSurface area and volume powerpoint
Surface area and volume powerpointSantosh Kumar
 
Surface area and volume for 9th class maths
Surface area and volume for 9th class mathsSurface area and volume for 9th class maths
Surface area and volume for 9th class mathsAyush Vashistha
 
Unit conversion for Civil Engineers
Unit conversion for Civil EngineersUnit conversion for Civil Engineers
Unit conversion for Civil EngineersPrakash Kumar Sekar
 
surface area and volume ppt for class 10
surface area and volume ppt for class 10surface area and volume ppt for class 10
surface area and volume ppt for class 107232
 

Viewers also liked (18)

Conversion
ConversionConversion
Conversion
 
Geometrycal figures
Geometrycal figuresGeometrycal figures
Geometrycal figures
 
Examples of gcf and lcm to practice in class
Examples of gcf and lcm to practice in classExamples of gcf and lcm to practice in class
Examples of gcf and lcm to practice in class
 
Workbook in Polygons and Space figures
Workbook in Polygons and Space figuresWorkbook in Polygons and Space figures
Workbook in Polygons and Space figures
 
Discovering the Formula for Volume of a Sphere
Discovering the Formula for Volume of a SphereDiscovering the Formula for Volume of a Sphere
Discovering the Formula for Volume of a Sphere
 
Understanding negative numbers
Understanding negative numbersUnderstanding negative numbers
Understanding negative numbers
 
Perimeter, Area, & Volume of a square/rectange/ cube
Perimeter, Area, & Volume of a square/rectange/ cubePerimeter, Area, & Volume of a square/rectange/ cube
Perimeter, Area, & Volume of a square/rectange/ cube
 
Units conversion CBSE UGC JRF/NET
Units conversion CBSE UGC JRF/NET Units conversion CBSE UGC JRF/NET
Units conversion CBSE UGC JRF/NET
 
Units of measurement
Units of measurementUnits of measurement
Units of measurement
 
Direct, indirect and partitive proportion
Direct, indirect and partitive proportionDirect, indirect and partitive proportion
Direct, indirect and partitive proportion
 
3D Figures- volume and surface area
3D Figures- volume and surface area3D Figures- volume and surface area
3D Figures- volume and surface area
 
Factoring the greatest common monomial factor
Factoring the greatest common monomial factorFactoring the greatest common monomial factor
Factoring the greatest common monomial factor
 
surface area and volume class 10
surface area and volume class 10surface area and volume class 10
surface area and volume class 10
 
Volume Powerpoint
Volume PowerpointVolume Powerpoint
Volume Powerpoint
 
Surface area and volume powerpoint
Surface area and volume powerpointSurface area and volume powerpoint
Surface area and volume powerpoint
 
Surface area and volume for 9th class maths
Surface area and volume for 9th class mathsSurface area and volume for 9th class maths
Surface area and volume for 9th class maths
 
Unit conversion for Civil Engineers
Unit conversion for Civil EngineersUnit conversion for Civil Engineers
Unit conversion for Civil Engineers
 
surface area and volume ppt for class 10
surface area and volume ppt for class 10surface area and volume ppt for class 10
surface area and volume ppt for class 10
 

Similar to 48 factoring out the gcf and the grouping method

1 pulling out the gcf and the grouping method xc
1 pulling out the gcf and the grouping method xc1 pulling out the gcf and the grouping method xc
1 pulling out the gcf and the grouping method xcTzenma
 
Algebra 7 Point 1
Algebra 7 Point 1Algebra 7 Point 1
Algebra 7 Point 1herbison
 
Factoring polynomials with common monomial factor
Factoring polynomials with common monomial factorFactoring polynomials with common monomial factor
Factoring polynomials with common monomial factorGauben Malicsi
 
1 1 review on factoring
1 1 review on factoring1 1 review on factoring
1 1 review on factoringmath123b
 
Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomialsitutor
 
5 addition and subtraction i x
5 addition and subtraction i x5 addition and subtraction i x
5 addition and subtraction i xTzenma
 
Lecture 03 factoring polynomials good one
Lecture 03 factoring polynomials good oneLecture 03 factoring polynomials good one
Lecture 03 factoring polynomials good oneHazel Joy Chong
 
1 whole numbers and arithmetic operations
1 whole numbers and arithmetic operations1 whole numbers and arithmetic operations
1 whole numbers and arithmetic operationselem-alg-sample
 
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptxLesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptxErlenaMirador1
 
Primes & Composites, GCF
Primes & Composites, GCFPrimes & Composites, GCF
Primes & Composites, GCFKathy Favazza
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomialsMark Ryder
 
ch13powerpoint.ppt
ch13powerpoint.pptch13powerpoint.ppt
ch13powerpoint.pptJasminNarag2
 
Factoring by grouping ppt
Factoring by grouping pptFactoring by grouping ppt
Factoring by grouping pptDoreen Mhizha
 
Primes & Composites, GCF
Primes & Composites, GCFPrimes & Composites, GCF
Primes & Composites, GCFKathy Favazza
 
1.3 variables and expressions 1
1.3 variables and expressions 11.3 variables and expressions 1
1.3 variables and expressions 1bweldon
 
CollegeAlgebra_02_PolynomialandRational_.pptx
CollegeAlgebra_02_PolynomialandRational_.pptxCollegeAlgebra_02_PolynomialandRational_.pptx
CollegeAlgebra_02_PolynomialandRational_.pptxKarenGardose
 
Algebra unit 8.8
Algebra unit 8.8Algebra unit 8.8
Algebra unit 8.8Mark Ryder
 
Factoring with a gcf (1)
Factoring with a gcf (1)Factoring with a gcf (1)
Factoring with a gcf (1)laila_barrera
 

Similar to 48 factoring out the gcf and the grouping method (20)

8 factoring out gcf
8 factoring out gcf8 factoring out gcf
8 factoring out gcf
 
1 pulling out the gcf and the grouping method xc
1 pulling out the gcf and the grouping method xc1 pulling out the gcf and the grouping method xc
1 pulling out the gcf and the grouping method xc
 
Algebra 7 Point 1
Algebra 7 Point 1Algebra 7 Point 1
Algebra 7 Point 1
 
Factoring polynomials with common monomial factor
Factoring polynomials with common monomial factorFactoring polynomials with common monomial factor
Factoring polynomials with common monomial factor
 
1 1 review on factoring
1 1 review on factoring1 1 review on factoring
1 1 review on factoring
 
Factoring Polynomials
Factoring PolynomialsFactoring Polynomials
Factoring Polynomials
 
5 addition and subtraction i x
5 addition and subtraction i x5 addition and subtraction i x
5 addition and subtraction i x
 
Lecture 03 factoring polynomials good one
Lecture 03 factoring polynomials good oneLecture 03 factoring polynomials good one
Lecture 03 factoring polynomials good one
 
1 whole numbers and arithmetic operations
1 whole numbers and arithmetic operations1 whole numbers and arithmetic operations
1 whole numbers and arithmetic operations
 
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptxLesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
Lesson 4- Math 10 - W4Q1_General Form of a Polynomial Function.pptx
 
Primes & Composites, GCF
Primes & Composites, GCFPrimes & Composites, GCF
Primes & Composites, GCF
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 
ch13powerpoint.ppt
ch13powerpoint.pptch13powerpoint.ppt
ch13powerpoint.ppt
 
factoring polynomials
factoring polynomialsfactoring polynomials
factoring polynomials
 
Factoring by grouping ppt
Factoring by grouping pptFactoring by grouping ppt
Factoring by grouping ppt
 
Primes & Composites, GCF
Primes & Composites, GCFPrimes & Composites, GCF
Primes & Composites, GCF
 
1.3 variables and expressions 1
1.3 variables and expressions 11.3 variables and expressions 1
1.3 variables and expressions 1
 
CollegeAlgebra_02_PolynomialandRational_.pptx
CollegeAlgebra_02_PolynomialandRational_.pptxCollegeAlgebra_02_PolynomialandRational_.pptx
CollegeAlgebra_02_PolynomialandRational_.pptx
 
Algebra unit 8.8
Algebra unit 8.8Algebra unit 8.8
Algebra unit 8.8
 
Factoring with a gcf (1)
Factoring with a gcf (1)Factoring with a gcf (1)
Factoring with a gcf (1)
 

More from alg1testreview

56 system of linear equations
56 system of linear equations56 system of linear equations
56 system of linear equationsalg1testreview
 
54 the least common multiple
54 the least common multiple54 the least common multiple
54 the least common multiplealg1testreview
 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressionsalg1testreview
 
52 rational expressions
52 rational expressions52 rational expressions
52 rational expressionsalg1testreview
 
51 basic shapes and formulas
51 basic shapes and formulas51 basic shapes and formulas
51 basic shapes and formulasalg1testreview
 
59 constructing linea equations of lines
59 constructing linea equations of lines59 constructing linea equations of lines
59 constructing linea equations of linesalg1testreview
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equationsalg1testreview
 
55 inequalities and comparative statements
55 inequalities and comparative statements55 inequalities and comparative statements
55 inequalities and comparative statementsalg1testreview
 
56 the rectangular coordinate system
56 the rectangular coordinate system56 the rectangular coordinate system
56 the rectangular coordinate systemalg1testreview
 
53 pythagorean theorem and square roots
53 pythagorean theorem and square roots53 pythagorean theorem and square roots
53 pythagorean theorem and square rootsalg1testreview
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoringalg1testreview
 
49 factoring trinomials the ac method and making lists
49 factoring trinomials  the ac method and making lists49 factoring trinomials  the ac method and making lists
49 factoring trinomials the ac method and making listsalg1testreview
 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulasalg1testreview
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressionsalg1testreview
 

More from alg1testreview (20)

56 system of linear equations
56 system of linear equations56 system of linear equations
56 system of linear equations
 
54 the least common multiple
54 the least common multiple54 the least common multiple
54 the least common multiple
 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressions
 
52 rational expressions
52 rational expressions52 rational expressions
52 rational expressions
 
51 basic shapes and formulas
51 basic shapes and formulas51 basic shapes and formulas
51 basic shapes and formulas
 
41 expressions
41 expressions41 expressions
41 expressions
 
59 constructing linea equations of lines
59 constructing linea equations of lines59 constructing linea equations of lines
59 constructing linea equations of lines
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
 
58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
 
55 inequalities and comparative statements
55 inequalities and comparative statements55 inequalities and comparative statements
55 inequalities and comparative statements
 
56 the rectangular coordinate system
56 the rectangular coordinate system56 the rectangular coordinate system
56 the rectangular coordinate system
 
54 the number line
54 the number line54 the number line
54 the number line
 
53 pythagorean theorem and square roots
53 pythagorean theorem and square roots53 pythagorean theorem and square roots
53 pythagorean theorem and square roots
 
52 about triangles
52 about triangles52 about triangles
52 about triangles
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoring
 
51 ratio-proportion
51 ratio-proportion51 ratio-proportion
51 ratio-proportion
 
49 factoring trinomials the ac method and making lists
49 factoring trinomials  the ac method and making lists49 factoring trinomials  the ac method and making lists
49 factoring trinomials the ac method and making lists
 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas
 
45scientific notation
45scientific notation45scientific notation
45scientific notation
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressions
 

Recently uploaded

Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptBasic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptSourabh Kumar
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxakshayaramakrishnan21
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePedroFerreira53928
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfjoachimlavalley1
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfkaushalkr1407
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonSteve Thomason
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfTamralipta Mahavidyalaya
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasiemaillard
 
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxSolid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxDenish Jangid
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxEduSkills OECD
 
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdfDanh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdfQucHHunhnh
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaasiemaillard
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...Jisc
 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxricssacare
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxJheel Barad
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfVivekanand Anglo Vedic Academy
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPCeline George
 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxJenilouCasareno
 

Recently uploaded (20)

Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.pptBasic_QTL_Marker-assisted_Selection_Sourabh.ppt
Basic_QTL_Marker-assisted_Selection_Sourabh.ppt
 
Salient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptxSalient features of Environment protection Act 1986.pptx
Salient features of Environment protection Act 1986.pptx
 
Chapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptxChapter 3 - Islamic Banking Products and Services.pptx
Chapter 3 - Islamic Banking Products and Services.pptx
 
PART A. Introduction to Costumer Service
PART A. Introduction to Costumer ServicePART A. Introduction to Costumer Service
PART A. Introduction to Costumer Service
 
Additional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdfAdditional Benefits for Employee Website.pdf
Additional Benefits for Employee Website.pdf
 
The Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdfThe Roman Empire A Historical Colossus.pdf
The Roman Empire A Historical Colossus.pdf
 
The Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve ThomasonThe Art Pastor's Guide to Sabbath | Steve Thomason
The Art Pastor's Guide to Sabbath | Steve Thomason
 
Home assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdfHome assignment II on Spectroscopy 2024 Answers.pdf
Home assignment II on Spectroscopy 2024 Answers.pdf
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptxSolid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
Solid waste management & Types of Basic civil Engineering notes by DJ Sir.pptx
 
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptxStudents, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
Students, digital devices and success - Andreas Schleicher - 27 May 2024..pptx
 
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdfDanh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
Danh sách HSG Bộ môn cấp trường - Cấp THPT.pdf
 
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
 
How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...How libraries can support authors with open access requirements for UKRI fund...
How libraries can support authors with open access requirements for UKRI fund...
 
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptxJose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
Jose-Rizal-and-Philippine-Nationalism-National-Symbol-2.pptx
 
Instructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptxInstructions for Submissions thorugh G- Classroom.pptx
Instructions for Submissions thorugh G- Classroom.pptx
 
Sectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdfSectors of the Indian Economy - Class 10 Study Notes pdf
Sectors of the Indian Economy - Class 10 Study Notes pdf
 
How to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERPHow to Create Map Views in the Odoo 17 ERP
How to Create Map Views in the Odoo 17 ERP
 
B.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdfB.ed spl. HI pdusu exam paper-2023-24.pdf
B.ed spl. HI pdusu exam paper-2023-24.pdf
 
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptxMatatag-Curriculum and the 21st Century Skills Presentation.pptx
Matatag-Curriculum and the 21st Century Skills Presentation.pptx
 

48 factoring out the gcf and the grouping method

  • 2. To factor means to rewrite a quantity as a product (without using 1). Factoring Out GCF
  • 3. Example A. Factor 12 completely. To factor means to rewrite a quantity as a product (without using 1). Factoring Out GCF
  • 4. Example A. Factor 12 completely. 12 = 3 * 4 To factor means to rewrite a quantity as a product (without using 1). Factoring Out GCF
  • 5. Example A. Factor 12 completely. 12 = 3 * 4 To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. Factoring Out GCF
  • 6. Example A. Factor 12 completely. 12 = 3 * 4 To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. Factoring Out GCF The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 7. Example A. Factor 12 completely. 12 = 3 * 4 To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 8. Example A. Factor 12 completely. 12 = 3 * 4 To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF not prime The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 9. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF factored completelynot prime The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 10. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 11. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF Example B. a. Since 6 = 2*3, 15 = 3*5, A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 12. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF Example B. a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor. A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 13. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF Example B. a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor. b. The common factors of 4ab, 6a are A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 14. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF Example B. a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor. b. The common factors of 4ab, 6a are 2, A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 15. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF Example B. a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor. b. The common factors of 4ab, 6a are 2, a, A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 16. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF Example B. a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor. b. The common factors of 4ab, 6a are 2, a, 2a. A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 17. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF Example B. a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor. b. The common factors of 4ab, 6a are 2, a, 2a. c. The common factors of 6xy2, 15x2y2 are A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 18. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF Example B. a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor. b. The common factors of 4ab, 6a are 2, a, 2a. c. The common factors of 6xy2, 15x2y2 are 3, A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 19. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF Example B. a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor. b. The common factors of 4ab, 6a are 2, a, 2a. c. The common factors of 6xy2, 15x2y2 are 3, x, A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 20. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF Example B. a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor. b. The common factors of 4ab, 6a are 2, a, 2a. c. The common factors of 6xy2, 15x2y2 are 3, x, y2, A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 21. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF Example B. a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor. b. The common factors of 4ab, 6a are 2, a, 2a. c. The common factors of 6xy2, 15x2y2 are 3, x, y2, xy2, .. A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 22. Example A. Factor 12 completely. 12 = 3 * 4 = 3 * 2 * 2 not prime factored completely To factor means to rewrite a quantity as a product (without using 1). A quantity x that can’t be written as product besides as 1*x is said to be prime. To factor completely means each factor in the product is prime. Factoring Out GCF Example B. a. Since 6 = 2*3, 15 = 3*5, 3 is a common factor. b. The common factors of 4ab, 6a are 2, a, 2a. c. The common factors of 6xy2, 15x2y2 are 3, x, y2, xy2, .. d. The common factor of a(x+y), b(x+y) is (x+y). A common factor of two or more quantities is a factor belongs to all the quantities. The numbers 2, 3, 5, 7,. . 11, . . are prime.
  • 23. The greatest common factor (GCF) is the common factor that has the largest coefficient and highest degree of each factor among all common factors. Factoring Out GCF
  • 24. The greatest common factor (GCF) is the common factor that has the largest coefficient and highest degree of each factor among all common factors. Factoring Out GCF Example C. Find the GCF of the given quantities. a. GCF{24, 36}
  • 25. The greatest common factor (GCF) is the common factor that has the largest coefficient and highest degree of each factor among all common factors. Factoring Out GCF Example C. Find the GCF of the given quantities. a. GCF{24, 36} = 12.
  • 26. The greatest common factor (GCF) is the common factor that has the largest coefficient and highest degree of each factor among all common factors. Factoring Out GCF Example C. Find the GCF of the given quantities. a. GCF{24, 36} = 12. b. GCF{4ab, 6a}
  • 27. The greatest common factor (GCF) is the common factor that has the largest coefficient and highest degree of each factor among all common factors. Factoring Out GCF Example C. Find the GCF of the given quantities. a. GCF{24, 36} = 12. b. GCF{4ab, 6a} = 2a.
  • 28. The greatest common factor (GCF) is the common factor that has the largest coefficient and highest degree of each factor among all common factors. Factoring Out GCF Example C. Find the GCF of the given quantities. a. GCF{24, 36} = 12. b. GCF{4ab, 6a} = 2a. c. GCF {6xy2, 15 x2y2}
  • 29. The greatest common factor (GCF) is the common factor that has the largest coefficient and highest degree of each factor among all common factors. Factoring Out GCF Example C. Find the GCF of the given quantities. a. GCF{24, 36} = 12. b. GCF{4ab, 6a} = 2a. c. GCF {6xy2, 15 x2y2} = 3xy2.
  • 30. The greatest common factor (GCF) is the common factor that has the largest coefficient and highest degree of each factor among all common factors. Factoring Out GCF Example C. Find the GCF of the given quantities. a. GCF{24, 36} = 12. b. GCF{4ab, 6a} = 2a. c. GCF {6xy2, 15 x2y2} = 3xy2. d. GCF{x3y5, x4y6, x5y4} =
  • 31. The greatest common factor (GCF) is the common factor that has the largest coefficient and highest degree of each factor among all common factors. Factoring Out GCF Example C. Find the GCF of the given quantities. a. GCF{24, 36} = 12. b. GCF{4ab, 6a} = 2a. c. GCF {6xy2, 15 x2y2} = 3xy2. d. GCF{x3y5, x4y6, x5y4} = x3y4.
  • 32. The greatest common factor (GCF) is the common factor that has the largest coefficient and highest degree of each factor among all common factors. Factoring Out GCF Example C. Find the GCF of the given quantities. a. GCF{24, 36} = 12. b. GCF{4ab, 6a} = 2a. c. GCF {6xy2, 15 x2y2} = 3xy2. d. GCF{x3y5, x4y6, x5y4} = x3y4. The Extraction Law Distributive law interpreted backward gives the Extraction Law, that is, common factors may be extracted from sums or differences.
  • 33. The greatest common factor (GCF) is the common factor that has the largest coefficient and highest degree of each factor among all common factors. Factoring Out GCF Example C. Find the GCF of the given quantities. a. GCF{24, 36} = 12. b. GCF{4ab, 6a} = 2a. c. GCF {6xy2, 15 x2y2} = 3xy2. d. GCF{x3y5, x4y6, x5y4} = x3y4. The Extraction Law Distributive law interpreted backward gives the Extraction Law, that is, common factors may be extracted from sums or differences. AB ± AC  A(B±C)
  • 34. The greatest common factor (GCF) is the common factor that has the largest coefficient and highest degree of each factor among all common factors. Factoring Out GCF Example C. Find the GCF of the given quantities. a. GCF{24, 36} = 12. b. GCF{4ab, 6a} = 2a. c. GCF {6xy2, 15 x2y2} = 3xy2. d. GCF{x3y5, x4y6, x5y4} = x3y4. The Extraction Law Distributive law interpreted backward gives the Extraction Law, that is, common factors may be extracted from sums or differences. AB ± AC  A(B±C) This procedure is also called “factoring out a common factor”. To factor, the first step always is to factor out the GCF, then factor the “left over” if it’s needed.
  • 35. Factoring Out GCF Example D. Factor out the GCF. a. xy – 4y
  • 36. (the GCF is y) Factoring Out GCF Example D. Factor out the GCF. a. xy – 4y
  • 37. (the GCF is y) Factoring Out GCF Example D. Factor out the GCF. a. xy – 4y = y(x – 4)
  • 38. (the GCF is y) Factoring Out GCF Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a
  • 39. (the GCF is y) Factoring Out GCF Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3)
  • 40. (the GCF is y) (the GCF is 2a) Factoring Out GCF Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3)
  • 41. (the GCF is y) (the GCF is 2a) Factoring Out GCF Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3)
  • 42. (the GCF is y) (the GCF is 2a) Factoring Out GCF Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3) c. 12x2y3 + 6x2y2
  • 43. (the GCF is y) (the GCF is 2a) (the GCF is 6x2y2) Factoring Out GCF Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3) c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1)
  • 44. (the GCF is y) (the GCF is 2a) (the GCF is 6x2y2) Factoring Out GCF Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3) c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
  • 45. Factoring Out GCF We may pull out common factors that are ( )'s. (the GCF is y) (the GCF is 2a) (the GCF is 6x2y2) Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3) c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
  • 46. Factoring Out GCF We may pull out common factors that are ( )'s. Example E. Factor a. a(x + y) – 4(x + y) Pull out the common factor (x + y) a(x + y) – 4(x + y) = (a – 4)(x + y) b. Factor (2x – 3)3x – 2(2x – 3) (the GCF is y) (the GCF is 2a) (the GCF is 6x2y2) Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3) c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
  • 47. Factoring Out GCF We may pull out common factors that are ( )'s. Example E. Factor a. a(x + y) – 4(x + y) Pull out the common factor (x + y) a(x + y) – 4(x + y) = (a – 4)(x + y) b. Factor (2x – 3)3x – 2(2x – 3) (the GCF is y) (the GCF is 2a) (the GCF is 6x2y2) Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3) c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
  • 48. Factoring Out GCF We may pull out common factors that are ( )'s. Example E. Factor a. a(x + y) – 4(x + y) Pull out the common factor (x + y) a(x + y) – 4(x + y) = (a – 4)(x + y) b. Factor (2x – 3)3x – 2(2x – 3) (the GCF is y) (the GCF is 2a) (the GCF is 6x2y2) Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3) c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
  • 49. Factoring Out GCF We may pull out common factors that are ( )'s. Example E. Factor a. a(x + y) – 4(x + y) Pull out the common factor (x + y) a(x + y) – 4(x + y) = (a – 4)(x + y) b. Factor (2x – 3)3x – 2(2x – 3) Pull out the common factor (2x – 3), (the GCF is y) (the GCF is 2a) (the GCF is 6x2y2) Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3) c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
  • 50. Factoring Out GCF We may pull out common factors that are ( )'s. Example E. Factor a. a(x + y) – 4(x + y) Pull out the common factor (x + y) a(x + y) – 4(x + y) = (a – 4)(x + y) b. Factor (2x – 3)3x – 2(2x – 3) Pull out the common factor (2x – 3), (2x – 3)3x – 2(2x – 3) = (2x – 3) (3x – 2) (the GCF is y) (the GCF is 2a) (the GCF is 6x2y2) Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3) c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1)
  • 51. Factoring Out GCF We may pull out common factors that are ( )'s. Example E. Factor a. a(x + y) – 4(x + y) Pull out the common factor (x + y) a(x + y) – 4(x + y) = (a – 4)(x + y) b. Factor (2x – 3)3x – 2(2x – 3) Pull out the common factor (2x – 3), (2x – 3)3x – 2(2x – 3) = (2x – 3) (3x – 2) (the GCF is y) (the GCF is 2a) (the GCF is 6x2y2) Example D. Factor out the GCF. a. xy – 4y = y(x – 4) b. 4ab + 6a = 2a(2b) + 2a(3) = 2a(2b + 3) c. 12x2y3 + 6x2y2 = 6x2y2(2y) + 6x2y2(1) = 6x2y2(2y + 1) Note the order of the “( )’s” doesn’t matter because AB=BA.
  • 52. Factoring Out GCF There are special four–term formulas where we have to separate the terms into two pairs,
  • 53. Factoring Out GCF There are special four–term formulas where we have to separate the terms into two pairs, Example F. Factor by pulling out twice. a. 3x – 3y + ax – ay
  • 54. Factoring Out GCF There are special four–term formulas where we have to separate the terms into two pairs, Example F. Factor by pulling out twice. a. 3x – 3y + ax – ay Group them into two groups. = (3x – 3y) + (ax – ay)
  • 55. Factoring Out GCF There are special four–term formulas where we have to separate the terms into two pairs, factor out each pair’s GCF to reveal a common parenthesis–factor, then we pull out this common parenthesis. Example F. Factor by pulling out twice. a. 3x – 3y + ax – ay Group them into two groups. = (3x – 3y) + (ax – ay) Factor out the GCF of each group. = 3(x – y) + a(x – y)
  • 56. Factoring Out GCF There are special four–term formulas where we have to separate the terms into two pairs, factor out each pair’s GCF to reveal a common parenthesis–factor, then we pull out this common parenthesis. Example F. Factor by pulling out twice. a. 3x – 3y + ax – ay Group them into two groups. = (3x – 3y) + (ax – ay) Factor out the GCF of each group. = 3(x – y) + a(x – y) Pull the factor (x – y) again. = (3 + a)(x – y)
  • 57. Factoring Out GCF We may need to pull out the negative sign e.g. writing –4x + 10 as –(2x – 5), in the expression to reveal the common factor. b. x(2x – 5) – 4x + 10 There are special four–term formulas where we have to separate the terms into two pairs, factor out each pair’s GCF to reveal a common parenthesis–factor, then we pull out this common parenthesis. Example F. Factor by pulling out twice. a. 3x – 3y + ax – ay Group them into two groups. = (3x – 3y) + (ax – ay) Factor out the GCF of each group. = 3(x – y) + a(x – y) Pull the factor (x – y) again. = (3 + a)(x – y)
  • 58. Factoring Out GCF We may need to pull out the negative sign e.g. writing –4x + 10 as –(2x – 5), in the expression to reveal the common factor. b. x(2x – 5) – 4x + 10 = y(2x – 5) – 2(2x – 5) There are special four–term formulas where we have to separate the terms into two pairs, factor out each pair’s GCF to reveal a common parenthesis–factor, then we pull out this common parenthesis. Example F. Factor by pulling out twice. a. 3x – 3y + ax – ay Group them into two groups. = (3x – 3y) + (ax – ay) Factor out the GCF of each group. = 3(x – y) + a(x – y) Pull the factor (x – y) again. = (3 + a)(x – y)
  • 59. Factoring Out GCF We may need to pull out the negative sign e.g. writing –4x + 10 as –(2x – 5), in the expression to reveal the common factor. b. x(2x – 5) – 4x + 10 = y(2x – 5) – 2(2x – 5) = (y – 2) (2x – 5) There are special four–term formulas where we have to separate the terms into two pairs, factor out each pair’s GCF to reveal a common parenthesis–factor, then we pull out this common parenthesis. Example F. Factor by pulling out twice. a. 3x – 3y + ax – ay Group them into two groups. = (3x – 3y) + (ax – ay) Factor out the GCF of each group. = 3(x – y) + a(x – y) Pull the factor (x – y) again. = (3 + a)(x – y)
  • 60. Trinomials (three-term) are polynomials of the form ax2 + bx + c where a, b, and c are numbers. Factoring Trinomials and Making Lists
  • 61. Trinomials (three-term) are polynomials of the form ax2 + bx + c where a, b, and c are numbers. The product of two binomials is a trinomials: (#x + #)(#x + #)  ax2 + bx + c Factoring Trinomials and Making Lists
  • 62. Factoring Trinomials and Making Lists Trinomials (three-term) are polynomials of the form ax2 + bx + c where a, b, and c are numbers. The product of two binomials is a trinomials: (#x + #)(#x + #)  ax2 + bx + c Hence, to factor a trinomial, we write the trinomial as a product of two binomials, if possible,
  • 63. Trinomials (three-term) are polynomials of the form ax2 + bx + c where a, b, and c are numbers. The product of two binomials is a trinomials: (#x + #)(#x + #)  ax2 + bx + c Hence, to factor a trinomial, we write the trinomial as a product of two binomials, if possible, that is: ax2 + bx + c  (#x + #)(#x + #) Factoring Trinomials and Making Lists
  • 64. Trinomials (three-term) are polynomials of the form ax2 + bx + c where a, b, and c are numbers. The product of two binomials is a trinomials: (#x + #)(#x + #)  ax2 + bx + c Hence, to factor a trinomial, we write the trinomial as a product of two binomials, if possible, that is: ax2 + bx + c  (#x + #)(#x + #) We start with the case a = 1, trinomials of the form x2 + bx + c. Factoring Trinomials and Making Lists
  • 65. Trinomials (three-term) are polynomials of the form ax2 + bx + c where a, b, and c are numbers. The product of two binomials is a trinomials: (#x + #)(#x + #)  ax2 + bx + c Hence to “factor a trinomial” means, if possible, to write the trinomial as a product of two binomials, that is: ax2 + bx + c  (#x + #)(#x + #) Factoring Trinomials and Making Lists
  • 66. Example A. a. Factor x2 + 5x + 6 Factoring Trinomials and Making Lists Factoring the trinomial x2 + bx + c
  • 67. Example A. a. Factor x2 + 5x + 6 Factoring Trinomials and Making Lists Factoring the trinomial x2 + bx + c To factor the trinomial x2 + bx + c, search for a pair of numbers u and v such that uv = c, and u + v = b.
  • 68. Example A. a. Factor x2 + 5x + 6 We want (x + u)(x + v) = x2 + 5x + 6, so we need u and v where uv = 6 and u + v = 5. Factoring Trinomials and Making Lists Factoring the trinomial x2 + bx + c To factor the trinomial x2 + bx + c, search for a pair of numbers u and v such that uv = c, and u + v = b.
  • 69. Example A. a. Factor x2 + 5x + 6 We want (x + u)(x + v) = x2 + 5x + 6, so we need u and v where uv = 6 and u + v = 5. Factoring Trinomials and Making Lists Factoring the trinomial x2 + bx + c To factor the trinomial x2 + bx + c, search for a pair of numbers u and v such that uv = c, and u + v = b. To carry this out, make a list of all the possible u and v such that uv = c,
  • 70. Example A. a. Factor x2 + 5x + 6 We want (x + u)(x + v) = x2 + 5x + 6, so we need u and v where uv = 6 and u + v = 5. List all such u and v where uv = 6: (1)(6) = (2)(3) = (-1)(-6) = (-2)(-3) = 6 Factoring Trinomials and Making Lists Factoring the trinomial x2 + bx + c To factor the trinomial x2 + bx + c, search for a pair of numbers u and v such that uv = c, and u + v = b. To carry this out, make a list of all the possible u and v such that uv = c,
  • 71. Example A. a. Factor x2 + 5x + 6 We want (x + u)(x + v) = x2 + 5x + 6, so we need u and v where uv = 6 and u + v = 5. List all such u and v where uv = 6: (1)(6) = (2)(3) = (-1)(-6) = (-2)(-3) = 6 Factoring Trinomials and Making Lists Factoring the trinomial x2 + bx + c To factor the trinomial x2 + bx + c, search for a pair of numbers u and v such that uv = c, and u + v = b. To carry this out, make a list of all the possible u and v such that uv = c, then search for the pair that satisfies u + v = b. Such a pair of u and v may or may not exist.
  • 72. Example A. a. Factor x2 + 5x + 6 We want (x + u)(x + v) = x2 + 5x + 6, so we need u and v where uv = 6 and u + v = 5. List all such u and v where uv = 6: (1)(6) = (2)(3) = (-1)(-6) = (-2)(-3) = 6 Factoring Trinomials and Making Lists Factoring the trinomial x2 + bx + c To factor the trinomial x2 + bx + c, search for a pair of numbers u and v such that uv = c, and u + v = b. To carry this out, make a list of all the possible u and v such that uv = c, then search for the pair that satisfies u + v = b. Such a pair of u and v may or may not exist. 2, 3 is the pair where u + v = 5.
  • 73. Example A. a. Factor x2 + 5x + 6 We want (x + u)(x + v) = x2 + 5x + 6, so we need u and v where uv = 6 and u + v = 5. List all such u and v where uv = 6: (1)(6) = (2)(3) = (-1)(-6) = (-2)(-3) = 6 so x2 + 5x + 6 = (x + 2)(x + 3). Factoring Trinomials and Making Lists Factoring the trinomial x2 + bx + c To factor the trinomial x2 + bx + c, search for a pair of numbers u and v such that uv = c, and u + v = b. To carry this out, make a list of all the possible u and v such that uv = c, then search for the pair that satisfies u + v = b. Such a pair of u and v may or may not exist. 2, 3 is the pair where u + v = 5.
  • 74. c. Factor x2 + 5x – 6 We want (x + u)(x + v) = x2 + 5x – 6, so we need uv = –6 and u + v = 5. Since -6 = (–1)(6) = (1)(–6) = (–2)(3) =(2)(–3) and –1 + 6 = 5, so x2 + 5x – 6 = (x – 1)(x + 6). b. Factor x2 – 5x + 6 We want (x + u)(x + v) = x2 – 5x + 6, so we need u and v where uv = 6 and u + v = –5. Since 6 = (1)(6) = (2)(3) = (-1)(-6) = (-2)(-3) and –2 – 3 = –5, so x2 – 5x + 6 = (x – 2)(x – 3). Example A. a. Factor x2 + 5x + 6 We want (x + u)(x + v) = x2 + 5x + 6, so we need u and v where uv = 6 and u + v = 5. Since 6 = (1)(6) = (2)(3) = (-1)(-6) = (-2)(-3) and 2x + 3x = 5x, so x2 + 5x + 6 = (x + 2)(x + 3) Factoring Trinomials and Making Lists
  • 75. Observations About Signs Factoring Trinomials and Making Lists
  • 76. Observations About Signs Given that x2 + bx + c = (x + u)(x + v) so that uv = c, we observe the following. Factoring Trinomials and Making Lists
  • 77. Observations About Signs Given that x2 + bx + c = (x + u)(x + v) so that uv = c, we observe the following. 1. If c is positive, then u and v have same sign. In particular, if b is also positive, then both are positive. Factoring Trinomials and Making Lists
  • 78. Observations About Signs Given that x2 + bx + c = (x + u)(x + v) so that uv = c, we observe the following. 1. If c is positive, then u and v have same sign. In particular, if b is also positive, then both are positive. From the examples above x2 + 5x + 6 = (x + 2)(x + 3) Factoring Trinomials and Making Lists
  • 79. Observations About Signs Given that x2 + bx + c = (x + u)(x + v) so that uv = c, we observe the following. 1. If c is positive, then u and v have same sign. In particular, if b is also positive, then both are positive. if b is negative, then both are negative. From the examples above x2 + 5x + 6 = (x + 2)(x + 3) Factoring Trinomials and Making Lists
  • 80. { Observations About Signs Given that x2 + bx + c = (x + u)(x + v) so that uv = c, we observe the following. 1. If c is positive, then u and v have same sign. In particular, if b is also positive, then both are positive. if b is negative, then both are negative. From the examples above x2 + 5x + 6 = (x + 2)(x + 3) x2 – 5x + 6 = (x – 2)(x – 3) Factoring Trinomials and Making Lists
  • 81. { Observations About Signs Given that x2 + bx + c = (x + u)(x + v) so that uv = c, we observe the following. 1. If c is positive, then u and v have same sign. In particular, if b is also positive, then both are positive. if b is negative, then both are negative. From the examples above x2 + 5x + 6 = (x + 2)(x + 3) x2 – 5x + 6 = (x – 2)(x – 3) 2. If c is negative, then u and v have opposite signs. Factoring Trinomials and Making Lists
  • 82. { Observations About Signs Given that x2 + bx + c = (x + u)(x + v) so that uv = c, we observe the following. 1. If c is positive, then u and v have same sign. In particular, if b is also positive, then both are positive. if b is negative, then both are negative. From the examples above x2 + 5x + 6 = (x + 2)(x + 3) x2 – 5x + 6 = (x – 2)(x – 3) 2. If c is negative, then u and v have opposite signs. The one with larger absolute value has the same sign as b. Factoring Trinomials and Making Lists
  • 83. { Observations About Signs Given that x2 + bx + c = (x + u)(x + v) so that uv = c, we observe the following. 1. If c is positive, then u and v have same sign. In particular, if b is also positive, then both are positive. if b is negative, then both are negative. From the examples above x2 + 5x + 6 = (x + 2)(x + 3) x2 – 5x + 6 = (x – 2)(x – 3) 2. If c is negative, then u and v have opposite signs. The one with larger absolute value has the same sign as b. From the example above x2 – 5x – 6 = (x – 6)(x + 1) Factoring Trinomials and Making Lists
  • 84. Example B. a. Factor x2 + 4x – 12 We need u and v having opposite signs such that uv = –12, u + v = +4. Since -12 = (-1)(12) = (-2)(6) = (-3)(4)… They must be –2 and 6 hence x2 + 4x – 12 = (x – 2)(x + 6). b. Factor x2 – 8x – 12 We need u and v such that uv = –12, u + v = –8 with u and v having opposite signs. This is impossible. Hence x2 – 8x – 12 is prime. Factoring Trinomials and Making Lists
  • 85. Exercise. A. Factor. If it’s prime, state so. 1. x2 – x – 2 2. x2 + x – 2 3. x2 – x – 6 4. x2 + x – 6 5. x2 – x + 2 6. x2 + 2x – 3 7. x2 + 2x – 8 8. x2 – 3x – 4 9. x2 + 5x + 6 10. x2 + 5x – 6 13. x2 – x – 20 11. x2 – 5x – 6 12. x2 – 5x + 6 17. x2 – 10x – 24 14. x2 – 8x – 20 15. x2 – 9x – 20 16. x2 – 9x + 20 18. x2 – 10x + 24 19. x2 – 11x + 24 20. x2 – 11x – 24 21. x2 – 12x – 36 22. x2 – 12x + 36 23. x2 – 13x – 36 24. x2 – 13x + 36 B. Factor. Factor out the GCF, the “–”, and arrange the terms in order first if necessary. 29. 3x2 – 30x – 7227. –x2 – 5x + 14 28. 2x3 – 18x2 + 40x 30. –2x3 + 20x2 – 24x 25. x2 – 36 26. x2 + 36 31. –2x4 + 18x2 32. –3x – 24x3 + 22x2 33. 5x4 + 10x5 – 5x3 Factoring Trinomials and Making Lists
  • 86. 35. –3x3 – 30x2 – 48x34. –yx2 + 4yx + 5y 36. –2x3 + 20x2 – 24x 40. 4x2 – 44xy + 96y2 37. –x2 + 11xy + 24y2 38. x4 – 6x3 + 36x2 39. –x2 + 9xy + 36y2 C. Factor. Factor out the GCF, the “–”, and arrange the terms in order first. D. Factor. If not possible, state so. 41. x2 + 1 42. x2 + 4 43. x2 + 9 43. 4x2 + 25 44. What can you conclude from 41–43? Factoring Trinomials and Making Lists
  • 87. Factoring Out GCF Exercise. A. Find the GCF of the listed quantities. Factoring Out GCF 1. {4, 6 } 2. {12, 18 } 3. {32, 20, 12 } 4. {25, 20, 30 } 5. {4x, 6x2 } 6. {12x2y, 18xy2 } 7. {32A2B3, 20A3B3, 12 A2B2} 8. {25x7y6z6, 20y7z5x6, 30z8x7y6 } B. Factor out the GCF. 9. 4 – 6y 10. 12x + 18y 11. 32A + 20B – 12C 12. 25x + 20y – 30 13. –4x + 6x2 14. –12x2y – 18xy2 15. 32A2B3 – 20A3B3 – 12A2B2} 16. 25x7y6z6 – 20y7z5x6 + 30z8x7y6 17. 4x4 – 8x3 + 2x2 18. 20x4 – 5x2 19. x(x – 2) + 3(x – 2) 20. 4x(2x – 3) – 5(2x – 3) C. Factor out the “–”. 21. –2y + 4 22. –3x + 18 23. –5x + 15 24. –8x + 16
  • 88. Factoring Out GCF D. Factor, use grouping if it’s necessary. 25. y2 – 2y + 3y – 6 26. x2 + 3x + 6x + 18 27. y2 – 2y – 3y + 6 28. x2 + 3x – 6x – 18 29. y2 – y + 4y – 4 30. x2 – 5x – 2x + 10 31. 2y2 – y – 6y + 3 32. 3x2 + 2x – 6x – 4 33. 4x2 + 6x – 6x – 9 34. –3x2 + 4x – 6x + 8 35. –5y2 + 10y – 3y + 6 36. –x2 + 3x – 7x + 21 37. 2y2 – xy – 6xy + 3x2 38. 3x2 + 2xy – 6xy – 4y2 39. –5x2 + 2xy – 20xy + 8y2 40. –14x2 + 21xy – 8xy + 12y2