SlideShare a Scribd company logo
Multiplication and Division of Signed Numbers
Rule for Multiplication of Signed Numbers
Multiplication and Division of Signed Numbers
Rule for Multiplication of Signed Numbers
To multiple two signed numbers, we multiply their absolute
values and use the following rules for the sign of the product.
Multiplication and Division of Signed Numbers
Rule for Multiplication of Signed Numbers
To multiple two signed numbers, we multiply their absolute
values and use the following rules for the sign of the product.
+ * + = – * – = + ;
Multiplication and Division of Signed Numbers
Rule for Multiplication of Signed Numbers
To multiple two signed numbers, we multiply their absolute
values and use the following rules for the sign of the product.
+ * + = – * – = + ;
+ * – = – * + = – ;
Multiplication and Division of Signed Numbers
Rule for Multiplication of Signed Numbers
To multiple two signed numbers, we multiply their absolute
values and use the following rules for the sign of the product.
+ * + = – * – = + ;
+ * – = – * + = – ;
Multiplication and Division of Signed Numbers
Two numbers with the same sign multiplied yield positive
products.
Rule for Multiplication of Signed Numbers
To multiple two signed numbers, we multiply their absolute
values and use the following rules for the sign of the product.
+ * + = – * – = + ;
+ * – = – * + = – ;
Multiplication and Division of Signed Numbers
Two numbers with the same sign multiplied yield a positive
product.
Two numbers with opposite signs multiplied yield a negative
product.
Rule for Multiplication of Signed Numbers
To multiple two signed numbers, we multiply their absolute
values and use the following rules for the sign of the product.
+ * + = – * – = + ;
+ * – = – * + = – ;
Multiplication and Division of Signed Numbers
Two numbers with the same sign multiplied yield a positive
product.
Two numbers with opposite signs multiplied yield a negative
product.
Example A.
a. 5 * (4) = –5 * (–4)
Rule for Multiplication of Signed Numbers
To multiple two signed numbers, we multiply their absolute
values and use the following rules for the sign of the product.
+ * + = – * – = + ;
+ * – = – * + = – ;
Multiplication and Division of Signed Numbers
Two numbers with the same sign multiplied yield a positive
product.
Two numbers with opposite signs multiplied yield a negative
product.
Example A.
a. 5 * (4) = –5 * (–4) = 20
Rule for Multiplication of Signed Numbers
To multiple two signed numbers, we multiply their absolute
values and use the following rules for the sign of the product.
+ * + = – * – = + ;
+ * – = – * + = – ;
Multiplication and Division of Signed Numbers
Two numbers with the same sign multiplied yield a positive
product.
Two numbers with opposite signs multiplied yield a negative
product.
Example A.
a. 5 * (4) = –5 * (–4) = 20
b. –5 * (4) = 5 * (–4)
Rule for Multiplication of Signed Numbers
To multiple two signed numbers, we multiply their absolute
values and use the following rules for the sign of the product.
+ * + = – * – = + ;
+ * – = – * + = – ;
Multiplication and Division of Signed Numbers
Two numbers with the same sign multiplied yield a positive
product.
Two numbers with opposite signs multiplied yield a negative
product.
Example A.
a. 5 * (4) = –5 * (–4) = 20
b. –5 * (4) = 5 * (–4) = –20
Rule for Multiplication of Signed Numbers
To multiple two signed numbers, we multiply their absolute
values and use the following rules for the sign of the product.
+ * + = – * – = + ;
+ * – = – * + = – ;
Multiplication and Division of Signed Numbers
Two numbers with the same sign multiplied yield a positive
product.
Two numbers with opposite signs multiplied yield a negative
product.
Example A.
a. 5 * (4) = –5 * (–4) = 20
b. –5 * (4) = 5 * (–4) = –20
In algebra, multiplication operation are not always written
down explicitly.
Rule for Multiplication of Signed Numbers
To multiple two signed numbers, we multiply their absolute
values and use the following rules for the sign of the product.
+ * + = – * – = + ;
+ * – = – * + = – ;
Multiplication and Division of Signed Numbers
Two numbers with the same sign multiplied yield a positive
product.
Two numbers with opposite signs multiplied yield a negative
product.
Example A.
a. 5 * (4) = –5 * (–4) = 20
b. –5 * (4) = 5 * (–4) = –20
In algebra, multiplication operation are not always written
down explicitly. Instead we use the following rules to identify
multiplication operations.
Multiplication and Division of Signed Numbers
● If there is no operation indicated between two quantities, the
operation between them is multiplication.
Multiplication and Division of Signed Numbers
● If there is no operation indicated between two quantities, the
operation between them is multiplication. Hence xy means x * y.
Multiplication and Division of Signed Numbers
● If there is no operation indicated between a set of ( ) and a
quantity, the operation between them is multiplication.
● If there is no operation indicated between two quantities, the
operation between them is multiplication. Hence xy means x * y.
Multiplication and Division of Signed Numbers
● If there is no operation indicated between a set of ( ) and a
quantity, the operation between them is multiplication.
Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x.
● If there is no operation indicated between two quantities, the
operation between them is multiplication. Hence xy means x * y.
Multiplication and Division of Signed Numbers
● If there is no operation indicated between two sets of ( )’s,
the operation between them is multiplication.
● If there is no operation indicated between a set of ( ) and a
quantity, the operation between them is multiplication.
Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x.
● If there is no operation indicated between two quantities, the
operation between them is multiplication. Hence xy means x * y.
Multiplication and Division of Signed Numbers
● If there is no operation indicated between two sets of ( )’s,
the operation between them is multiplication.
Hence (x + y)(a + b) = (x + y) * (a + b)
● If there is no operation indicated between a set of ( ) and a
quantity, the operation between them is multiplication.
Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x.
● If there is no operation indicated between two quantities, the
operation between them is multiplication. Hence xy means x * y.
Multiplication and Division of Signed Numbers
● If there is no operation indicated between two sets of ( )’s,
the operation between them is multiplication.
Hence (x + y)(a + b) = (x + y) * (a + b)
● If there is no operation indicated between a set of ( ) and a
quantity, the operation between them is multiplication.
Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x.
● If there is no operation indicated between two quantities, the
operation between them is multiplication. Hence xy means x * y.
However, if there is a “+” or “–” sign between the ( ) and a
quantity, then the operation is to combine.
● If there is no operation indicated between two quantities, the
operation between them is multiplication. Hence xy means x * y.
Multiplication and Division of Signed Numbers
● If there is no operation indicated between two sets of ( )’s,
the operation between them is multiplication.
Hence (x + y)(a + b) = (x + y) * (a + b)
● If there is no operation indicated between a set of ( ) and a
quantity, the operation between them is multiplication.
Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x.
However, if there is a “+” or “–” sign between the ( ) and a
quantity, then the operation is to combine.
Hence 3(+5) = (+5)3 =15,
Multiplication and Division of Signed Numbers
● If there is no operation indicated between two sets of ( )’s,
the operation between them is multiplication.
Hence (x + y)(a + b) = (x + y) * (a + b)
● If there is no operation indicated between a set of ( ) and a
quantity, the operation between them is multiplication.
Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x.
● If there is no operation indicated between two quantities, the
operation between them is multiplication. Hence xy means x * y.
However, if there is a “+” or “–” sign between the ( ) and a
quantity, then the operation is to combine.
Hence 3(+5) = (+5)3 =15, but 3 + (5) = (3) + 5 = 8,
Multiplication and Division of Signed Numbers
● If there is no operation indicated between two sets of ( )’s,
the operation between them is multiplication.
Hence (x + y)(a + b) = (x + y) * (a + b)
● If there is no operation indicated between a set of ( ) and a
quantity, the operation between them is multiplication.
Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x.
● If there is no operation indicated between two quantities, the
operation between them is multiplication. Hence xy means x * y.
However, if there is a “+” or “–” sign between the ( ) and a
quantity, then the operation is to combine.
Hence 3(+5) = (+5)3 =15, but 3 + (5) = (3) + 5 = 8,
and –5(–5) = (–5)(–5) = 25,
Multiplication and Division of Signed Numbers
● If there is no operation indicated between two sets of ( )’s,
the operation between them is multiplication.
Hence (x + y)(a + b) = (x + y) * (a + b)
● If there is no operation indicated between a set of ( ) and a
quantity, the operation between them is multiplication.
Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x.
● If there is no operation indicated between two quantities, the
operation between them is multiplication. Hence xy means x * y.
However, if there is a “+” or “–” sign between the ( ) and a
quantity, then the operation is to combine.
Hence 3(+5) = (+5)3 =15, but 3 + (5) = (3) + 5 = 8,
and –5(–5) = (–5)(–5) = 25, but (–5) – 5 = –5 – (5) = –10.
Multiplication and Division of Signed Numbers
However, if there is a “+” or “–” sign between the ( ) and a
quantity, then the operation is to combine.
Hence 3(+5) = (+5)3 =15, but 3 + (5) = (3) + 5 = 8,
and –5(–5) = (–5)(–5) = 25, but (–5) – 5 = –5 – (5) = –10.
● If there is no operation indicated between two sets of ( )’s,
the operation between them is multiplication.
Hence (x + y)(a + b) = (x + y) * (a + b)
● If there is no operation indicated between a set of ( ) and a
quantity, the operation between them is multiplication.
Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x.
To multiply many signed numbers together, we always
determine the sign of the product first, then multiply just the
numbers themselves. The sign of the product is determined by
the following Even–Odd Rules.
● If there is no operation indicated between two quantities, the
operation between them is multiplication. Hence xy means x * y.
Even-Odd Rule for the Sign of a Product
• If there are even number of negative numbers in the
multiplication, the product is positive.
Multiplication and Division of Signed Numbers
Even-Odd Rule for the Sign of a Product
• If there are even number of negative numbers in the
multiplication, the product is positive.
• If there are odd number of negative numbers in the
multiplication, the product is negative.
Multiplication and Division of Signed Numbers
Even-Odd Rule for the Sign of a Product
• If there are even number of negative numbers in the
multiplication, the product is positive.
• If there are odd number of negative numbers in the
multiplication, the product is negative.
Example B.
a. –1(–2 ) 2 (–1)
Multiplication and Division of Signed Numbers
Even-Odd Rule for the Sign of a Product
• If there are even number of negative numbers in the
multiplication, the product is positive.
• If there are odd number of negative numbers in the
multiplication, the product is negative.
Example B.
a. –1(–2 ) 2 (–1)
Multiplication and Division of Signed Numbers
three negative numbers, so the product is negative
Even-Odd Rule for the Sign of a Product
• If there are even number of negative numbers in the
multiplication, the product is positive.
• If there are odd number of negative numbers in the
multiplication, the product is negative.
Example B.
a. –1(–2 ) 2 (–1) = – 4
Multiplication and Division of Signed Numbers
three negative numbers, so the product is negative
4 came from 1*2*2*1 (just the numbers)
Even-Odd Rule for the Sign of a Product
• If there are even number of negative numbers in the
multiplication, the product is positive.
• If there are odd number of negative numbers in the
multiplication, the product is negative.
Example B.
a. –1(–2 ) 2 (–1) = – 4
b. (–2)4
Multiplication and Division of Signed Numbers
three negative numbers, so the product is negative
Even-Odd Rule for the Sign of a Product
• If there are even number of negative numbers in the
multiplication, the product is positive.
• If there are odd number of negative numbers in the
multiplication, the product is negative.
Example B.
a. –1(–2 ) 2 (–1) = – 4
b. (–2)4 = (–2 )(–2)(–2)(–2)
Multiplication and Division of Signed Numbers
three negative numbers, so the product is negative
Even-Odd Rule for the Sign of a Product
• If there are even number of negative numbers in the
multiplication, the product is positive.
• If there are odd number of negative numbers in the
multiplication, the product is negative.
Example B.
a. –1(–2 ) 2 (–1) = – 4
b. (–2)4 = (–2 )(–2)(–2)(–2)
Multiplication and Division of Signed Numbers
three negative numbers, so the product is negative
four negative numbers, so the product is positive
Even-Odd Rule for the Sign of a Product
• If there are even number of negative numbers in the
multiplication, the product is positive.
• If there are odd number of negative numbers in the
multiplication, the product is negative.
Example B.
a. –1(–2 ) 2 (–1) = – 4
b. (–2)4 = (–2 )(–2)(–2)(–2) = 16
Multiplication and Division of Signed Numbers
three negative numbers, so the product is negative
four negative numbers, so the product is positive
Even-Odd Rule for the Sign of a Product
• If there are even number of negative numbers in the
multiplication, the product is positive.
• If there are odd number of negative numbers in the
multiplication, the product is negative.
Example B.
a. –1(–2 ) 2 (–1) = – 4
b. (–2)4 = (–2 )(–2)(–2)(–2) = 16
Fact: A quantity raised to an even power is always positive
i.e. xeven is always positive (except 0).
Multiplication and Division of Signed Numbers
three negative numbers, so the product is negative
four negative numbers, so the product is positive
Multiplication and Division of Signed Numbers
In algebra, a ÷ b is written as a/b or .
a
b
Rule for the Sign of a Quotient
Multiplication and Division of Signed Numbers
In algebra, a ÷ b is written as a/b or .
a
b
Rule for the Sign of a Quotient
Division of signed numbers follows the same sign-rules for
multiplications.
Multiplication and Division of Signed Numbers
In algebra, a ÷ b is written as a/b or .
a
b
Rule for the Sign of a Quotient
Division of signed numbers follows the same sign-rules for
multiplications.
Multiplication and Division of Signed Numbers
In algebra, a ÷ b is written as a/b or .
a
b
+
+
=
–
– = +
+
+
=
–
–=
–
Rule for the Sign of a Quotient
Division of signed numbers follows the same sign-rules for
multiplications.
Two numbers with the same sign divided yield a positive
quotient.
Multiplication and Division of Signed Numbers
In algebra, a ÷ b is written as a/b or .
a
b
+
+
=
–
– = +
+
+
=
–
–=
–
Rule for the Sign of a Quotient
Division of signed numbers follows the same sign-rules for
multiplications.
Two numbers with the same sign divided yield a positive
quotient.
Two numbers with opposite signs divided yield a negative
quotient.
Multiplication and Division of Signed Numbers
In algebra, a ÷ b is written as a/b or .
a
b
+
+
=
–
– = +
+
+
=
–
–=
–
Rule for the Sign of a Quotient
Division of signed numbers follows the same sign-rules for
multiplications.
Two numbers with the same sign divided yield a positive
quotient.
Two numbers with opposite signs divided yield a negative
quotient.
Multiplication and Division of Signed Numbers
Example C.
a.
In algebra, a ÷ b is written as a/b or .
a
b
+
+
=
–
– = +
+
+
=
–
–=
–
20
4
= –20
–4
Rule for the Sign of a Quotient
Division of signed numbers follows the same sign-rules for
multiplications.
Two numbers with the same sign divided yield a positive
quotient.
Two numbers with opposite signs divided yield a negative
quotient.
Multiplication and Division of Signed Numbers
Example C.
a.
In algebra, a ÷ b is written as a/b or .
a
b
+
+
=
–
– = +
+
+
=
–
–=
–
20
4
= –20
–4
= 5
Rule for the Sign of a Quotient
Division of signed numbers follows the same sign-rules for
multiplications.
Two numbers with the same sign divided yield a positive
quotient.
Two numbers with opposite signs divided yield a negative
quotient.
Multiplication and Division of Signed Numbers
Example C.
a.
b . –20 / 4 = 20 / (–4)
In algebra, a ÷ b is written as a/b or .
a
b
+
+
=
–
– = +
+
+
=
–
–=
–
20
4
= –20
–4
= 5
Rule for the Sign of a Quotient
Division of signed numbers follows the same sign-rules for
multiplications.
Two numbers with the same sign divided yield a positive
quotient.
Two numbers with opposite signs divided yield a negative
quotient.
Multiplication and Division of Signed Numbers
Example C.
a.
b . –20 / 4 = 20 / (–4) = –5
In algebra, a ÷ b is written as a/b or .
a
b
+
+
=
–
– = +
+
+
=
–
–=
–
20
4
= –20
–4
= 5
Rule for the Sign of a Quotient
Division of signed numbers follows the same sign-rules for
multiplications.
Two numbers with the same sign divided yield a positive
quotient.
Two numbers with opposite signs divided yield a negative
quotient.
Multiplication and Division of Signed Numbers
Example C.
a.
b . –20 / 4 = 20 / (–4) = –5
In algebra, a ÷ b is written as a/b or .
a
b
+
+
=
–
– = +
+
+
=
–
–=
–
20
4
= –20
–4
= 5
c.
(–6)2
=
–4
Rule for the Sign of a Quotient
Division of signed numbers follows the same sign-rules for
multiplications.
Two numbers with the same sign divided yield a positive
quotient.
Two numbers with opposite signs divided yield a negative
quotient.
Multiplication and Division of Signed Numbers
Example C.
a.
b . –20 / 4 = 20 / (–4) = –5
In algebra, a ÷ b is written as a/b or .
a
b
+
+
=
–
– = +
+
+
=
–
–=
–
20
4
= –20
–4
= 5
c.
(–6)2
=
36
–4–4
Rule for the Sign of a Quotient
Division of signed numbers follows the same sign-rules for
multiplications.
Two numbers with the same sign divided yield a positive
quotient.
Two numbers with opposite signs divided yield a negative
quotient.
Multiplication and Division of Signed Numbers
Example C.
a.
b . –20 / 4 = 20 / (–4) = –5
In algebra, a ÷ b is written as a/b or .
a
b
+
+
=
–
– = +
+
+
=
–
–=
–
20
4
= –20
–4
= 5
c.
(–6)2
=
36
–4 =
–4 –9
The Even–Odd Rule applies to more length * and / operations
problems.
Multiplication and Division of Signed Numbers
The Even–Odd Rule applies to more length * and / operations
problems.
Multiplication and Division of Signed Numbers
Example D. Simplify.
(– 4)6(–1)(–3)
(–2)(–5)12
The Even–Odd Rule applies to more length * and / operations
problems.
Multiplication and Division of Signed Numbers
Example D. Simplify.
(– 4)6(–1)(–3)
(–2)(–5)12
five negative numbers
so the product is negative
The Even–Odd Rule applies to more length * and / operations
problems.
Multiplication and Division of Signed Numbers
Example D. Simplify.
(– 4)6(–1)(–3)
(–2)(–5)12
= –
five negative numbers
so the product is negative
The Even–Odd Rule applies to more length * and / operations
problems.
Multiplication and Division of Signed Numbers
Example D. Simplify.
(– 4)6(–1)(–3)
(–2)(–5)12
= –
five negative numbers
so the product is negative
simplify just the numbers4(6)(3)
2(5)(12)
The Even–Odd Rule applies to more length * and / operations
problems.
Multiplication and Division of Signed Numbers
Example D. Simplify.
(– 4)6(–1)(–3)
(–2)(–5)12
= –
five negative numbers
so the product is negative
simplify just the numbers4(6)(3)
2(5)(12)
= –
3
5
The Even–Odd Rule applies to more length * and / operations
problems.
Multiplication and Division of Signed Numbers
Example D. Simplify.
(– 4)6(–1)(–3)
(–2)(–5)12
= –
five negative numbers
so the product is negative
simplify just the numbers4(6)(3)
2(5)(12)
= –
3
5
Various form of the Even–Odd Rule extend to algebra and
geometry. It’s the basis of many decisions and conclusions in
mathematics problems.
The following is an example of the two types of graphs there
are due to this Even–Odd Rule. (Don’t worry about how they
are produced.)
The Even Power Graphs vs. Odd Power Graphs of y = xN
Multiplication and Division of Signed Numbers
Make sure that you interpret the operations correctly.
Exercise A. Calculate the following expressions.
1. 3 – 3 2. 3(–3) 3. (3) – 3 4. (–3) – 3
5. –3(–3) 6. –(–3)(–3) 7. (–3) – (–3) 8. –(–3) – (–3)
B.Multiply. Determine the sign first.
9. 2(–3) 10. (–2)(–3) 11. (–1)(–2)(–3)
12. 2(–2)(–3) 13. (–2)(–2)(–2) 14. (–2)(–2)(–2)(–2)
15. (–1)(–2)(–2)(–2)(–2) 16. 2(–1)(3)(–1)(–2)
17. 12
–3
18. –12
–3
19. –24
–8
21. (2)(–6)
–8
C. Simplify. Determine the sign and cancel first.
20. 24
–12
22. (–18)(–6)
–9
23. (–9)(6)
(12)(–3)
24. (15)(–4)
(–8)(–10)
25. (–12)(–9)
(– 27)(15)
26. (–2)(–6)(–1)
(2)(–3)(–2)
27. 3(–5)(–4)
(–2)(–1)(–2)
28. (–2)(3)(–4)5(–6)
(–3)(4)(–5)6(–7)
Multiplication and Division of Signed Numbers

More Related Content

What's hot

1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalitiesmath123c
 
5 complex numbers y
5 complex numbers y5 complex numbers y
5 complex numbers y
math260
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomialsmath260
 
8 multiplication division of signed numbers, order of operations
8 multiplication division of signed numbers, order of operations8 multiplication division of signed numbers, order of operations
8 multiplication division of signed numbers, order of operations
elem-alg-sample
 
1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functionsmath265
 
49 factoring trinomials the ac method and making lists
49 factoring trinomials  the ac method and making lists49 factoring trinomials  the ac method and making lists
49 factoring trinomials the ac method and making lists
alg1testreview
 
2 4linear word problems
2 4linear word problems2 4linear word problems
2 4linear word problemsmath123a
 
1.5 notation and algebra of functions
1.5 notation and algebra of functions1.5 notation and algebra of functions
1.5 notation and algebra of functionsmath123c
 
1 s3 multiplication and division of signed numbers
1 s3 multiplication and division of signed numbers1 s3 multiplication and division of signed numbers
1 s3 multiplication and division of signed numbersmath123a
 
2 6 inequalities
2 6 inequalities2 6 inequalities
2 6 inequalitiesmath123a
 
3 multiplication and division of signed numbers 125s
3 multiplication and division of signed numbers 125s3 multiplication and division of signed numbers 125s
3 multiplication and division of signed numbers 125s
Tzenma
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
math266
 
43literal equations
43literal equations43literal equations
43literal equations
alg1testreview
 
1.3 solving equations
1.3 solving equations1.3 solving equations
1.3 solving equationsmath260
 
2 2linear equations i
2 2linear equations i2 2linear equations i
2 2linear equations imath123a
 
11 arith operations
11 arith operations11 arith operations
11 arith operations
alg1testreview
 
1.4 review on log exp-functions
1.4 review on log exp-functions1.4 review on log exp-functions
1.4 review on log exp-functionsmath265
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
math260
 
42 linear equations
42 linear equations42 linear equations
42 linear equations
alg1testreview
 

What's hot (20)

1.3 sign charts and inequalities
1.3 sign charts and inequalities1.3 sign charts and inequalities
1.3 sign charts and inequalities
 
5 complex numbers y
5 complex numbers y5 complex numbers y
5 complex numbers y
 
2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials2.9 graphs of factorable polynomials
2.9 graphs of factorable polynomials
 
8 multiplication division of signed numbers, order of operations
8 multiplication division of signed numbers, order of operations8 multiplication division of signed numbers, order of operations
8 multiplication division of signed numbers, order of operations
 
1.5 algebraic and elementary functions
1.5 algebraic and elementary functions1.5 algebraic and elementary functions
1.5 algebraic and elementary functions
 
49 factoring trinomials the ac method and making lists
49 factoring trinomials  the ac method and making lists49 factoring trinomials  the ac method and making lists
49 factoring trinomials the ac method and making lists
 
2 4linear word problems
2 4linear word problems2 4linear word problems
2 4linear word problems
 
1.5 notation and algebra of functions
1.5 notation and algebra of functions1.5 notation and algebra of functions
1.5 notation and algebra of functions
 
Ch. 4.2 Hexagons
Ch. 4.2 HexagonsCh. 4.2 Hexagons
Ch. 4.2 Hexagons
 
1 s3 multiplication and division of signed numbers
1 s3 multiplication and division of signed numbers1 s3 multiplication and division of signed numbers
1 s3 multiplication and division of signed numbers
 
2 6 inequalities
2 6 inequalities2 6 inequalities
2 6 inequalities
 
3 multiplication and division of signed numbers 125s
3 multiplication and division of signed numbers 125s3 multiplication and division of signed numbers 125s
3 multiplication and division of signed numbers 125s
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
 
43literal equations
43literal equations43literal equations
43literal equations
 
1.3 solving equations
1.3 solving equations1.3 solving equations
1.3 solving equations
 
2 2linear equations i
2 2linear equations i2 2linear equations i
2 2linear equations i
 
11 arith operations
11 arith operations11 arith operations
11 arith operations
 
1.4 review on log exp-functions
1.4 review on log exp-functions1.4 review on log exp-functions
1.4 review on log exp-functions
 
11 graphs of first degree functions x
11 graphs of first degree functions x11 graphs of first degree functions x
11 graphs of first degree functions x
 
42 linear equations
42 linear equations42 linear equations
42 linear equations
 

Similar to 22 multiplication and division of signed numbers

Real-Number-System.pptx
Real-Number-System.pptxReal-Number-System.pptx
Real-Number-System.pptx
KristleJoyDimayuga
 
Lesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersLesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbers
Terry Gastauer
 
Real numbers
Real numbersReal numbers
Real numbers
Mark Ryder
 
8 maths-ncert-chapter-1
8 maths-ncert-chapter-18 maths-ncert-chapter-1
8 maths-ncert-chapter-1
akstudy1024
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
GenesisPerazaSequera
 
Aditya Class 8th
Aditya Class 8thAditya Class 8th
Aditya Class 8th
BasantOjha1
 
Hemh101
Hemh101Hemh101
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdfCBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
ShavetaSharma37
 
ch1.pdf
ch1.pdfch1.pdf
ch1.pdf
himani688715
 
Integers
IntegersIntegers
Números reales
Números realesNúmeros reales
Números reales
Noriana López
 
Fundamentals of AlgebraChu v. NguyenIntegral Exponents
Fundamentals of AlgebraChu v. NguyenIntegral ExponentsFundamentals of AlgebraChu v. NguyenIntegral Exponents
Fundamentals of AlgebraChu v. NguyenIntegral Exponents
DustiBuckner14
 
Operations with signed numbers
Operations with signed numbersOperations with signed numbers
Operations with signed numbersbutcarismath
 
Numeros reales, Conjuntos, desigualdades, valor absoluto
Numeros reales, Conjuntos, desigualdades, valor absolutoNumeros reales, Conjuntos, desigualdades, valor absoluto
Numeros reales, Conjuntos, desigualdades, valor absoluto
YoletziMedina1
 
Properties of Addition & Multiplication
Properties of Addition & MultiplicationProperties of Addition & Multiplication
Properties of Addition & Multiplicationitutor
 

Similar to 22 multiplication and division of signed numbers (20)

Real-Number-System.pptx
Real-Number-System.pptxReal-Number-System.pptx
Real-Number-System.pptx
 
Integers
IntegersIntegers
Integers
 
Lesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersLesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbers
 
Real numbers
Real numbersReal numbers
Real numbers
 
8 maths-ncert-chapter-1
8 maths-ncert-chapter-18 maths-ncert-chapter-1
8 maths-ncert-chapter-1
 
Expresiones algebraicas
Expresiones algebraicasExpresiones algebraicas
Expresiones algebraicas
 
Aditya Class 8th
Aditya Class 8thAditya Class 8th
Aditya Class 8th
 
Hemh101
Hemh101Hemh101
Hemh101
 
Integers
IntegersIntegers
Integers
 
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdfCBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
 
1059331.pdf
1059331.pdf1059331.pdf
1059331.pdf
 
ch1.pdf
ch1.pdfch1.pdf
ch1.pdf
 
Integers
IntegersIntegers
Integers
 
Números reales
Números realesNúmeros reales
Números reales
 
Fundamentals of AlgebraChu v. NguyenIntegral Exponents
Fundamentals of AlgebraChu v. NguyenIntegral ExponentsFundamentals of AlgebraChu v. NguyenIntegral Exponents
Fundamentals of AlgebraChu v. NguyenIntegral Exponents
 
Operations with signed numbers
Operations with signed numbersOperations with signed numbers
Operations with signed numbers
 
Numeros reales, Conjuntos, desigualdades, valor absoluto
Numeros reales, Conjuntos, desigualdades, valor absolutoNumeros reales, Conjuntos, desigualdades, valor absoluto
Numeros reales, Conjuntos, desigualdades, valor absoluto
 
Chapter0
Chapter0Chapter0
Chapter0
 
Properties of Addition & Multiplication
Properties of Addition & MultiplicationProperties of Addition & Multiplication
Properties of Addition & Multiplication
 
AFS7 Math 1
AFS7 Math 1AFS7 Math 1
AFS7 Math 1
 

More from alg1testreview

56 system of linear equations
56 system of linear equations56 system of linear equations
56 system of linear equations
alg1testreview
 
55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions 55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions
alg1testreview
 
54 the least common multiple
54 the least common multiple54 the least common multiple
54 the least common multiple
alg1testreview
 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressions
alg1testreview
 
52 rational expressions
52 rational expressions52 rational expressions
52 rational expressions
alg1testreview
 
51 basic shapes and formulas
51 basic shapes and formulas51 basic shapes and formulas
51 basic shapes and formulas
alg1testreview
 
41 expressions
41 expressions41 expressions
41 expressions
alg1testreview
 
59 constructing linea equations of lines
59 constructing linea equations of lines59 constructing linea equations of lines
59 constructing linea equations of lines
alg1testreview
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
alg1testreview
 
58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
alg1testreview
 
56 the rectangular coordinate system
56 the rectangular coordinate system56 the rectangular coordinate system
56 the rectangular coordinate system
alg1testreview
 
54 the number line
54 the number line54 the number line
54 the number line
alg1testreview
 
53 pythagorean theorem and square roots
53 pythagorean theorem and square roots53 pythagorean theorem and square roots
53 pythagorean theorem and square roots
alg1testreview
 
52 about triangles
52 about triangles52 about triangles
52 about triangles
alg1testreview
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoring
alg1testreview
 
51 ratio-proportion
51 ratio-proportion51 ratio-proportion
51 ratio-proportion
alg1testreview
 
48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method
alg1testreview
 
45scientific notation
45scientific notation45scientific notation
45scientific notation
alg1testreview
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressions
alg1testreview
 
44 exponents
44 exponents44 exponents
44 exponents
alg1testreview
 

More from alg1testreview (20)

56 system of linear equations
56 system of linear equations56 system of linear equations
56 system of linear equations
 
55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions 55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions
 
54 the least common multiple
54 the least common multiple54 the least common multiple
54 the least common multiple
 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressions
 
52 rational expressions
52 rational expressions52 rational expressions
52 rational expressions
 
51 basic shapes and formulas
51 basic shapes and formulas51 basic shapes and formulas
51 basic shapes and formulas
 
41 expressions
41 expressions41 expressions
41 expressions
 
59 constructing linea equations of lines
59 constructing linea equations of lines59 constructing linea equations of lines
59 constructing linea equations of lines
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
 
58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
 
56 the rectangular coordinate system
56 the rectangular coordinate system56 the rectangular coordinate system
56 the rectangular coordinate system
 
54 the number line
54 the number line54 the number line
54 the number line
 
53 pythagorean theorem and square roots
53 pythagorean theorem and square roots53 pythagorean theorem and square roots
53 pythagorean theorem and square roots
 
52 about triangles
52 about triangles52 about triangles
52 about triangles
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoring
 
51 ratio-proportion
51 ratio-proportion51 ratio-proportion
51 ratio-proportion
 
48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method
 
45scientific notation
45scientific notation45scientific notation
45scientific notation
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressions
 
44 exponents
44 exponents44 exponents
44 exponents
 

Recently uploaded

The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
RitikBhardwaj56
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
heathfieldcps1
 
Fresher’s Quiz 2023 at GMC Nizamabad.pptx
Fresher’s Quiz 2023 at GMC Nizamabad.pptxFresher’s Quiz 2023 at GMC Nizamabad.pptx
Fresher’s Quiz 2023 at GMC Nizamabad.pptx
SriSurya50
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
Priyankaranawat4
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
Academy of Science of South Africa
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Mohd Adib Abd Muin, Senior Lecturer at Universiti Utara Malaysia
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
Ashokrao Mane college of Pharmacy Peth-Vadgaon
 
Group Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana BuscigliopptxGroup Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana Buscigliopptx
ArianaBusciglio
 
Advantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO PerspectiveAdvantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO Perspective
Krisztián Száraz
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
Israel Genealogy Research Association
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
Levi Shapiro
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
taiba qazi
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
Scholarhat
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
thanhdowork
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
tarandeep35
 
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
NelTorrente
 
kitab khulasah nurul yaqin jilid 1 - 2.pptx
kitab khulasah nurul yaqin jilid 1 - 2.pptxkitab khulasah nurul yaqin jilid 1 - 2.pptx
kitab khulasah nurul yaqin jilid 1 - 2.pptx
datarid22
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
chanes7
 

Recently uploaded (20)

The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...The simplified electron and muon model, Oscillating Spacetime: The Foundation...
The simplified electron and muon model, Oscillating Spacetime: The Foundation...
 
The basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptxThe basics of sentences session 5pptx.pptx
The basics of sentences session 5pptx.pptx
 
Fresher’s Quiz 2023 at GMC Nizamabad.pptx
Fresher’s Quiz 2023 at GMC Nizamabad.pptxFresher’s Quiz 2023 at GMC Nizamabad.pptx
Fresher’s Quiz 2023 at GMC Nizamabad.pptx
 
clinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdfclinical examination of hip joint (1).pdf
clinical examination of hip joint (1).pdf
 
South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)South African Journal of Science: Writing with integrity workshop (2024)
South African Journal of Science: Writing with integrity workshop (2024)
 
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptxChapter 4 - Islamic Financial Institutions in Malaysia.pptx
Chapter 4 - Islamic Financial Institutions in Malaysia.pptx
 
Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.Biological Screening of Herbal Drugs in detailed.
Biological Screening of Herbal Drugs in detailed.
 
Group Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana BuscigliopptxGroup Presentation 2 Economics.Ariana Buscigliopptx
Group Presentation 2 Economics.Ariana Buscigliopptx
 
Advantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO PerspectiveAdvantages and Disadvantages of CMS from an SEO Perspective
Advantages and Disadvantages of CMS from an SEO Perspective
 
The Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collectionThe Diamonds of 2023-2024 in the IGRA collection
The Diamonds of 2023-2024 in the IGRA collection
 
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
June 3, 2024 Anti-Semitism Letter Sent to MIT President Kornbluth and MIT Cor...
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
DRUGS AND ITS classification slide share
DRUGS AND ITS classification slide shareDRUGS AND ITS classification slide share
DRUGS AND ITS classification slide share
 
Azure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHatAzure Interview Questions and Answers PDF By ScholarHat
Azure Interview Questions and Answers PDF By ScholarHat
 
A Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptxA Survey of Techniques for Maximizing LLM Performance.pptx
A Survey of Techniques for Maximizing LLM Performance.pptx
 
S1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptxS1-Introduction-Biopesticides in ICM.pptx
S1-Introduction-Biopesticides in ICM.pptx
 
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
MATATAG CURRICULUM: ASSESSING THE READINESS OF ELEM. PUBLIC SCHOOL TEACHERS I...
 
kitab khulasah nurul yaqin jilid 1 - 2.pptx
kitab khulasah nurul yaqin jilid 1 - 2.pptxkitab khulasah nurul yaqin jilid 1 - 2.pptx
kitab khulasah nurul yaqin jilid 1 - 2.pptx
 
Digital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments UnitDigital Artifact 1 - 10VCD Environments Unit
Digital Artifact 1 - 10VCD Environments Unit
 

22 multiplication and division of signed numbers

  • 1. Multiplication and Division of Signed Numbers
  • 2. Rule for Multiplication of Signed Numbers Multiplication and Division of Signed Numbers
  • 3. Rule for Multiplication of Signed Numbers To multiple two signed numbers, we multiply their absolute values and use the following rules for the sign of the product. Multiplication and Division of Signed Numbers
  • 4. Rule for Multiplication of Signed Numbers To multiple two signed numbers, we multiply their absolute values and use the following rules for the sign of the product. + * + = – * – = + ; Multiplication and Division of Signed Numbers
  • 5. Rule for Multiplication of Signed Numbers To multiple two signed numbers, we multiply their absolute values and use the following rules for the sign of the product. + * + = – * – = + ; + * – = – * + = – ; Multiplication and Division of Signed Numbers
  • 6. Rule for Multiplication of Signed Numbers To multiple two signed numbers, we multiply their absolute values and use the following rules for the sign of the product. + * + = – * – = + ; + * – = – * + = – ; Multiplication and Division of Signed Numbers Two numbers with the same sign multiplied yield positive products.
  • 7. Rule for Multiplication of Signed Numbers To multiple two signed numbers, we multiply their absolute values and use the following rules for the sign of the product. + * + = – * – = + ; + * – = – * + = – ; Multiplication and Division of Signed Numbers Two numbers with the same sign multiplied yield a positive product. Two numbers with opposite signs multiplied yield a negative product.
  • 8. Rule for Multiplication of Signed Numbers To multiple two signed numbers, we multiply their absolute values and use the following rules for the sign of the product. + * + = – * – = + ; + * – = – * + = – ; Multiplication and Division of Signed Numbers Two numbers with the same sign multiplied yield a positive product. Two numbers with opposite signs multiplied yield a negative product. Example A. a. 5 * (4) = –5 * (–4)
  • 9. Rule for Multiplication of Signed Numbers To multiple two signed numbers, we multiply their absolute values and use the following rules for the sign of the product. + * + = – * – = + ; + * – = – * + = – ; Multiplication and Division of Signed Numbers Two numbers with the same sign multiplied yield a positive product. Two numbers with opposite signs multiplied yield a negative product. Example A. a. 5 * (4) = –5 * (–4) = 20
  • 10. Rule for Multiplication of Signed Numbers To multiple two signed numbers, we multiply their absolute values and use the following rules for the sign of the product. + * + = – * – = + ; + * – = – * + = – ; Multiplication and Division of Signed Numbers Two numbers with the same sign multiplied yield a positive product. Two numbers with opposite signs multiplied yield a negative product. Example A. a. 5 * (4) = –5 * (–4) = 20 b. –5 * (4) = 5 * (–4)
  • 11. Rule for Multiplication of Signed Numbers To multiple two signed numbers, we multiply their absolute values and use the following rules for the sign of the product. + * + = – * – = + ; + * – = – * + = – ; Multiplication and Division of Signed Numbers Two numbers with the same sign multiplied yield a positive product. Two numbers with opposite signs multiplied yield a negative product. Example A. a. 5 * (4) = –5 * (–4) = 20 b. –5 * (4) = 5 * (–4) = –20
  • 12. Rule for Multiplication of Signed Numbers To multiple two signed numbers, we multiply their absolute values and use the following rules for the sign of the product. + * + = – * – = + ; + * – = – * + = – ; Multiplication and Division of Signed Numbers Two numbers with the same sign multiplied yield a positive product. Two numbers with opposite signs multiplied yield a negative product. Example A. a. 5 * (4) = –5 * (–4) = 20 b. –5 * (4) = 5 * (–4) = –20 In algebra, multiplication operation are not always written down explicitly.
  • 13. Rule for Multiplication of Signed Numbers To multiple two signed numbers, we multiply their absolute values and use the following rules for the sign of the product. + * + = – * – = + ; + * – = – * + = – ; Multiplication and Division of Signed Numbers Two numbers with the same sign multiplied yield a positive product. Two numbers with opposite signs multiplied yield a negative product. Example A. a. 5 * (4) = –5 * (–4) = 20 b. –5 * (4) = 5 * (–4) = –20 In algebra, multiplication operation are not always written down explicitly. Instead we use the following rules to identify multiplication operations.
  • 14. Multiplication and Division of Signed Numbers ● If there is no operation indicated between two quantities, the operation between them is multiplication.
  • 15. Multiplication and Division of Signed Numbers ● If there is no operation indicated between two quantities, the operation between them is multiplication. Hence xy means x * y.
  • 16. Multiplication and Division of Signed Numbers ● If there is no operation indicated between a set of ( ) and a quantity, the operation between them is multiplication. ● If there is no operation indicated between two quantities, the operation between them is multiplication. Hence xy means x * y.
  • 17. Multiplication and Division of Signed Numbers ● If there is no operation indicated between a set of ( ) and a quantity, the operation between them is multiplication. Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x. ● If there is no operation indicated between two quantities, the operation between them is multiplication. Hence xy means x * y.
  • 18. Multiplication and Division of Signed Numbers ● If there is no operation indicated between two sets of ( )’s, the operation between them is multiplication. ● If there is no operation indicated between a set of ( ) and a quantity, the operation between them is multiplication. Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x. ● If there is no operation indicated between two quantities, the operation between them is multiplication. Hence xy means x * y.
  • 19. Multiplication and Division of Signed Numbers ● If there is no operation indicated between two sets of ( )’s, the operation between them is multiplication. Hence (x + y)(a + b) = (x + y) * (a + b) ● If there is no operation indicated between a set of ( ) and a quantity, the operation between them is multiplication. Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x. ● If there is no operation indicated between two quantities, the operation between them is multiplication. Hence xy means x * y.
  • 20. Multiplication and Division of Signed Numbers ● If there is no operation indicated between two sets of ( )’s, the operation between them is multiplication. Hence (x + y)(a + b) = (x + y) * (a + b) ● If there is no operation indicated between a set of ( ) and a quantity, the operation between them is multiplication. Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x. ● If there is no operation indicated between two quantities, the operation between them is multiplication. Hence xy means x * y. However, if there is a “+” or “–” sign between the ( ) and a quantity, then the operation is to combine.
  • 21. ● If there is no operation indicated between two quantities, the operation between them is multiplication. Hence xy means x * y. Multiplication and Division of Signed Numbers ● If there is no operation indicated between two sets of ( )’s, the operation between them is multiplication. Hence (x + y)(a + b) = (x + y) * (a + b) ● If there is no operation indicated between a set of ( ) and a quantity, the operation between them is multiplication. Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x. However, if there is a “+” or “–” sign between the ( ) and a quantity, then the operation is to combine. Hence 3(+5) = (+5)3 =15,
  • 22. Multiplication and Division of Signed Numbers ● If there is no operation indicated between two sets of ( )’s, the operation between them is multiplication. Hence (x + y)(a + b) = (x + y) * (a + b) ● If there is no operation indicated between a set of ( ) and a quantity, the operation between them is multiplication. Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x. ● If there is no operation indicated between two quantities, the operation between them is multiplication. Hence xy means x * y. However, if there is a “+” or “–” sign between the ( ) and a quantity, then the operation is to combine. Hence 3(+5) = (+5)3 =15, but 3 + (5) = (3) + 5 = 8,
  • 23. Multiplication and Division of Signed Numbers ● If there is no operation indicated between two sets of ( )’s, the operation between them is multiplication. Hence (x + y)(a + b) = (x + y) * (a + b) ● If there is no operation indicated between a set of ( ) and a quantity, the operation between them is multiplication. Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x. ● If there is no operation indicated between two quantities, the operation between them is multiplication. Hence xy means x * y. However, if there is a “+” or “–” sign between the ( ) and a quantity, then the operation is to combine. Hence 3(+5) = (+5)3 =15, but 3 + (5) = (3) + 5 = 8, and –5(–5) = (–5)(–5) = 25,
  • 24. Multiplication and Division of Signed Numbers ● If there is no operation indicated between two sets of ( )’s, the operation between them is multiplication. Hence (x + y)(a + b) = (x + y) * (a + b) ● If there is no operation indicated between a set of ( ) and a quantity, the operation between them is multiplication. Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x. ● If there is no operation indicated between two quantities, the operation between them is multiplication. Hence xy means x * y. However, if there is a “+” or “–” sign between the ( ) and a quantity, then the operation is to combine. Hence 3(+5) = (+5)3 =15, but 3 + (5) = (3) + 5 = 8, and –5(–5) = (–5)(–5) = 25, but (–5) – 5 = –5 – (5) = –10.
  • 25. Multiplication and Division of Signed Numbers However, if there is a “+” or “–” sign between the ( ) and a quantity, then the operation is to combine. Hence 3(+5) = (+5)3 =15, but 3 + (5) = (3) + 5 = 8, and –5(–5) = (–5)(–5) = 25, but (–5) – 5 = –5 – (5) = –10. ● If there is no operation indicated between two sets of ( )’s, the operation between them is multiplication. Hence (x + y)(a + b) = (x + y) * (a + b) ● If there is no operation indicated between a set of ( ) and a quantity, the operation between them is multiplication. Hence x(a + b) = x * (a + b ) and (a + b)x = (a + b) * x. To multiply many signed numbers together, we always determine the sign of the product first, then multiply just the numbers themselves. The sign of the product is determined by the following Even–Odd Rules. ● If there is no operation indicated between two quantities, the operation between them is multiplication. Hence xy means x * y.
  • 26. Even-Odd Rule for the Sign of a Product • If there are even number of negative numbers in the multiplication, the product is positive. Multiplication and Division of Signed Numbers
  • 27. Even-Odd Rule for the Sign of a Product • If there are even number of negative numbers in the multiplication, the product is positive. • If there are odd number of negative numbers in the multiplication, the product is negative. Multiplication and Division of Signed Numbers
  • 28. Even-Odd Rule for the Sign of a Product • If there are even number of negative numbers in the multiplication, the product is positive. • If there are odd number of negative numbers in the multiplication, the product is negative. Example B. a. –1(–2 ) 2 (–1) Multiplication and Division of Signed Numbers
  • 29. Even-Odd Rule for the Sign of a Product • If there are even number of negative numbers in the multiplication, the product is positive. • If there are odd number of negative numbers in the multiplication, the product is negative. Example B. a. –1(–2 ) 2 (–1) Multiplication and Division of Signed Numbers three negative numbers, so the product is negative
  • 30. Even-Odd Rule for the Sign of a Product • If there are even number of negative numbers in the multiplication, the product is positive. • If there are odd number of negative numbers in the multiplication, the product is negative. Example B. a. –1(–2 ) 2 (–1) = – 4 Multiplication and Division of Signed Numbers three negative numbers, so the product is negative 4 came from 1*2*2*1 (just the numbers)
  • 31. Even-Odd Rule for the Sign of a Product • If there are even number of negative numbers in the multiplication, the product is positive. • If there are odd number of negative numbers in the multiplication, the product is negative. Example B. a. –1(–2 ) 2 (–1) = – 4 b. (–2)4 Multiplication and Division of Signed Numbers three negative numbers, so the product is negative
  • 32. Even-Odd Rule for the Sign of a Product • If there are even number of negative numbers in the multiplication, the product is positive. • If there are odd number of negative numbers in the multiplication, the product is negative. Example B. a. –1(–2 ) 2 (–1) = – 4 b. (–2)4 = (–2 )(–2)(–2)(–2) Multiplication and Division of Signed Numbers three negative numbers, so the product is negative
  • 33. Even-Odd Rule for the Sign of a Product • If there are even number of negative numbers in the multiplication, the product is positive. • If there are odd number of negative numbers in the multiplication, the product is negative. Example B. a. –1(–2 ) 2 (–1) = – 4 b. (–2)4 = (–2 )(–2)(–2)(–2) Multiplication and Division of Signed Numbers three negative numbers, so the product is negative four negative numbers, so the product is positive
  • 34. Even-Odd Rule for the Sign of a Product • If there are even number of negative numbers in the multiplication, the product is positive. • If there are odd number of negative numbers in the multiplication, the product is negative. Example B. a. –1(–2 ) 2 (–1) = – 4 b. (–2)4 = (–2 )(–2)(–2)(–2) = 16 Multiplication and Division of Signed Numbers three negative numbers, so the product is negative four negative numbers, so the product is positive
  • 35. Even-Odd Rule for the Sign of a Product • If there are even number of negative numbers in the multiplication, the product is positive. • If there are odd number of negative numbers in the multiplication, the product is negative. Example B. a. –1(–2 ) 2 (–1) = – 4 b. (–2)4 = (–2 )(–2)(–2)(–2) = 16 Fact: A quantity raised to an even power is always positive i.e. xeven is always positive (except 0). Multiplication and Division of Signed Numbers three negative numbers, so the product is negative four negative numbers, so the product is positive
  • 36. Multiplication and Division of Signed Numbers In algebra, a ÷ b is written as a/b or . a b
  • 37. Rule for the Sign of a Quotient Multiplication and Division of Signed Numbers In algebra, a ÷ b is written as a/b or . a b
  • 38. Rule for the Sign of a Quotient Division of signed numbers follows the same sign-rules for multiplications. Multiplication and Division of Signed Numbers In algebra, a ÷ b is written as a/b or . a b
  • 39. Rule for the Sign of a Quotient Division of signed numbers follows the same sign-rules for multiplications. Multiplication and Division of Signed Numbers In algebra, a ÷ b is written as a/b or . a b + + = – – = + + + = – –= –
  • 40. Rule for the Sign of a Quotient Division of signed numbers follows the same sign-rules for multiplications. Two numbers with the same sign divided yield a positive quotient. Multiplication and Division of Signed Numbers In algebra, a ÷ b is written as a/b or . a b + + = – – = + + + = – –= –
  • 41. Rule for the Sign of a Quotient Division of signed numbers follows the same sign-rules for multiplications. Two numbers with the same sign divided yield a positive quotient. Two numbers with opposite signs divided yield a negative quotient. Multiplication and Division of Signed Numbers In algebra, a ÷ b is written as a/b or . a b + + = – – = + + + = – –= –
  • 42. Rule for the Sign of a Quotient Division of signed numbers follows the same sign-rules for multiplications. Two numbers with the same sign divided yield a positive quotient. Two numbers with opposite signs divided yield a negative quotient. Multiplication and Division of Signed Numbers Example C. a. In algebra, a ÷ b is written as a/b or . a b + + = – – = + + + = – –= – 20 4 = –20 –4
  • 43. Rule for the Sign of a Quotient Division of signed numbers follows the same sign-rules for multiplications. Two numbers with the same sign divided yield a positive quotient. Two numbers with opposite signs divided yield a negative quotient. Multiplication and Division of Signed Numbers Example C. a. In algebra, a ÷ b is written as a/b or . a b + + = – – = + + + = – –= – 20 4 = –20 –4 = 5
  • 44. Rule for the Sign of a Quotient Division of signed numbers follows the same sign-rules for multiplications. Two numbers with the same sign divided yield a positive quotient. Two numbers with opposite signs divided yield a negative quotient. Multiplication and Division of Signed Numbers Example C. a. b . –20 / 4 = 20 / (–4) In algebra, a ÷ b is written as a/b or . a b + + = – – = + + + = – –= – 20 4 = –20 –4 = 5
  • 45. Rule for the Sign of a Quotient Division of signed numbers follows the same sign-rules for multiplications. Two numbers with the same sign divided yield a positive quotient. Two numbers with opposite signs divided yield a negative quotient. Multiplication and Division of Signed Numbers Example C. a. b . –20 / 4 = 20 / (–4) = –5 In algebra, a ÷ b is written as a/b or . a b + + = – – = + + + = – –= – 20 4 = –20 –4 = 5
  • 46. Rule for the Sign of a Quotient Division of signed numbers follows the same sign-rules for multiplications. Two numbers with the same sign divided yield a positive quotient. Two numbers with opposite signs divided yield a negative quotient. Multiplication and Division of Signed Numbers Example C. a. b . –20 / 4 = 20 / (–4) = –5 In algebra, a ÷ b is written as a/b or . a b + + = – – = + + + = – –= – 20 4 = –20 –4 = 5 c. (–6)2 = –4
  • 47. Rule for the Sign of a Quotient Division of signed numbers follows the same sign-rules for multiplications. Two numbers with the same sign divided yield a positive quotient. Two numbers with opposite signs divided yield a negative quotient. Multiplication and Division of Signed Numbers Example C. a. b . –20 / 4 = 20 / (–4) = –5 In algebra, a ÷ b is written as a/b or . a b + + = – – = + + + = – –= – 20 4 = –20 –4 = 5 c. (–6)2 = 36 –4–4
  • 48. Rule for the Sign of a Quotient Division of signed numbers follows the same sign-rules for multiplications. Two numbers with the same sign divided yield a positive quotient. Two numbers with opposite signs divided yield a negative quotient. Multiplication and Division of Signed Numbers Example C. a. b . –20 / 4 = 20 / (–4) = –5 In algebra, a ÷ b is written as a/b or . a b + + = – – = + + + = – –= – 20 4 = –20 –4 = 5 c. (–6)2 = 36 –4 = –4 –9
  • 49. The Even–Odd Rule applies to more length * and / operations problems. Multiplication and Division of Signed Numbers
  • 50. The Even–Odd Rule applies to more length * and / operations problems. Multiplication and Division of Signed Numbers Example D. Simplify. (– 4)6(–1)(–3) (–2)(–5)12
  • 51. The Even–Odd Rule applies to more length * and / operations problems. Multiplication and Division of Signed Numbers Example D. Simplify. (– 4)6(–1)(–3) (–2)(–5)12 five negative numbers so the product is negative
  • 52. The Even–Odd Rule applies to more length * and / operations problems. Multiplication and Division of Signed Numbers Example D. Simplify. (– 4)6(–1)(–3) (–2)(–5)12 = – five negative numbers so the product is negative
  • 53. The Even–Odd Rule applies to more length * and / operations problems. Multiplication and Division of Signed Numbers Example D. Simplify. (– 4)6(–1)(–3) (–2)(–5)12 = – five negative numbers so the product is negative simplify just the numbers4(6)(3) 2(5)(12)
  • 54. The Even–Odd Rule applies to more length * and / operations problems. Multiplication and Division of Signed Numbers Example D. Simplify. (– 4)6(–1)(–3) (–2)(–5)12 = – five negative numbers so the product is negative simplify just the numbers4(6)(3) 2(5)(12) = – 3 5
  • 55. The Even–Odd Rule applies to more length * and / operations problems. Multiplication and Division of Signed Numbers Example D. Simplify. (– 4)6(–1)(–3) (–2)(–5)12 = – five negative numbers so the product is negative simplify just the numbers4(6)(3) 2(5)(12) = – 3 5 Various form of the Even–Odd Rule extend to algebra and geometry. It’s the basis of many decisions and conclusions in mathematics problems. The following is an example of the two types of graphs there are due to this Even–Odd Rule. (Don’t worry about how they are produced.)
  • 56. The Even Power Graphs vs. Odd Power Graphs of y = xN Multiplication and Division of Signed Numbers
  • 57. Make sure that you interpret the operations correctly. Exercise A. Calculate the following expressions. 1. 3 – 3 2. 3(–3) 3. (3) – 3 4. (–3) – 3 5. –3(–3) 6. –(–3)(–3) 7. (–3) – (–3) 8. –(–3) – (–3) B.Multiply. Determine the sign first. 9. 2(–3) 10. (–2)(–3) 11. (–1)(–2)(–3) 12. 2(–2)(–3) 13. (–2)(–2)(–2) 14. (–2)(–2)(–2)(–2) 15. (–1)(–2)(–2)(–2)(–2) 16. 2(–1)(3)(–1)(–2) 17. 12 –3 18. –12 –3 19. –24 –8 21. (2)(–6) –8 C. Simplify. Determine the sign and cancel first. 20. 24 –12 22. (–18)(–6) –9 23. (–9)(6) (12)(–3) 24. (15)(–4) (–8)(–10) 25. (–12)(–9) (– 27)(15) 26. (–2)(–6)(–1) (2)(–3)(–2) 27. 3(–5)(–4) (–2)(–1)(–2) 28. (–2)(3)(–4)5(–6) (–3)(4)(–5)6(–7) Multiplication and Division of Signed Numbers