SlideShare a Scribd company logo
1 of 84
Linear Equations I
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
Recall example A from the section on expressions.(–Link this)
Linear Equations I
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
We backtrack the calculation by subtracting the $10 for delivery
so the cost for the pizzas is $24,
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
We backtrack the calculation by subtracting the $10 for delivery
so the cost for the pizzas is $24, each pizza is $3 so we must
have ordered 8 pizzas.
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
We backtrack the calculation by subtracting the $10 for delivery
so the cost for the pizzas is $24, each pizza is $3 so we must
have ordered 8 pizzas.
In symbols, we've the equation 3x + 10 = 34,
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
We backtrack the calculation by subtracting the $10 for delivery
so the cost for the pizzas is $24, each pizza is $3 so we must
have ordered 8 pizzas.
In symbols, we've the equation 3x + 10 = 34,
backtrack-calculation: 3x + 10 = 34 subtract 10
–10 –10
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
We backtrack the calculation by subtracting the $10 for delivery
so the cost for the pizzas is $24, each pizza is $3 so we must
have ordered 8 pizzas.
In symbols, we've the equation 3x + 10 = 34,
backtrack-calculation: 3x + 10 = 34 subtract 10
–10 –10
so 3x = 24
Example A.
a. We order pizzas from Pizza Grande. Each pizza is $3.
There is $10 delivery charge. How much would it cost
if we want x pizzas delivered?
For x pizzas it would cost 3 * x = $3x.
To have them delivered, it would cost 3x + 10 ($) in total.
Recall example A from the section on expressions.(–Link this)
Linear Equations I
b. Suppose the total is $34, how many pizzas did we order?
We backtrack the calculation by subtracting the $10 for delivery
so the cost for the pizzas is $24, each pizza is $3 so we must
have ordered 8 pizzas.
In symbols, we've the equation 3x + 10 = 34,
backtrack-calculation: 3x + 10 = 34 subtract 10
–10 –10
so 3x = 24 divide by 3
so x = 8 (pizzas)
In the above examples, the symbolic method to find solution
may seem unnecessarily cumbersome but for complicated
problems, the symbolic versions are indispensable.
Linear Equations I
In the above examples, the symbolic method to find solution
may seem unnecessarily cumbersome but for complicated
problems, the symbolic versions are indispensable.
An equation is two expressions set equal to each other.
Equations look like:
left expression = right expression
or
LHS = RHS
Linear Equations I
In the above examples, the symbolic method to find solution
may seem unnecessarily cumbersome but for complicated
problems, the symbolic versions are indispensable.
An equation is two expressions set equal to each other.
Equations look like:
left expression = right expression
or
LHS = RHS
Linear Equations I
We want to solve equations, i.e. we want to find the value
(or values) for the variable x such that it makes both sides
equal.
In the above examples, the symbolic method to find solution
may seem unnecessarily cumbersome but for complicated
problems, the symbolic versions are indispensable.
An equation is two expressions set equal to each other.
Equations look like:
left expression = right expression
or
LHS = RHS
Linear Equations I
We want to solve equations, i.e. we want to find the value
(or values) for the variable x such that it makes both sides
equal. Such a value is called a solution of the equation.
In the above examples, the symbolic method to find solution
may seem unnecessarily cumbersome but for complicated
problems, the symbolic versions are indispensable.
An equation is two expressions set equal to each other.
Equations look like:
left expression = right expression
or
LHS = RHS
In the example above 3x + 10 = 34 is an equations and
x = 8 is the solution for this equations because 3(8) + 10 is 34.
Linear Equations I
We want to solve equations, i.e. we want to find the value
(or values) for the variable x such that it makes both sides
equal. Such a value is called a solution of the equation.
In the above examples, the symbolic method to find solution
may seem unnecessarily cumbersome but for complicated
problems, the symbolic versions are indispensable.
An equation is two expressions set equal to each other.
Equations look like:
left expression = right expression
or
LHS = RHS
Linear Equations I
We want to solve equations, i.e. we want to find the value
(or values) for the variable x such that it makes both sides
equal. Such a value is called a solution of the equation.
Where as we use an expression to calculate future outcomes,
we use an equation to backtrack from known outcomes to the
original input x, the solution for the equation.
In the example above 3x + 10 = 34 is an equations and
x = 8 is the solution for this equations because 3(8) + 10 is 34.
Linear Equations I
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear equations are the easy to solve, i.e. it’s easy to
manipulate a linear equation, to backtrack the calculations,
to reveal what x is.
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear equations are the easy to solve, i.e. it’s easy to
manipulate a linear equation, to backtrack the calculations,
to reveal what x is. The easiest linear equations to solve are
the single–step equations such as the following ones,
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear equations are the easy to solve, i.e. it’s easy to
manipulate a linear equation, to backtrack the calculations,
to reveal what x is. The easiest linear equations to solve are
the single–step equations such as the following ones,
x – 3 = 12,
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear equations are the easy to solve, i.e. it’s easy to
manipulate a linear equation, to backtrack the calculations,
to reveal what x is. The easiest linear equations to solve are
the single–step equations such as the following ones,
x – 3 = 12,
12 = x + 3,
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear equations are the easy to solve, i.e. it’s easy to
manipulate a linear equation, to backtrack the calculations,
to reveal what x is. The easiest linear equations to solve are
the single–step equations such as the following ones,
x – 3 = 12,
12 = x + 3,
3*x = 12,
12 =
all four equation are one-step equations.
x
3
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
Linear equations are the easy to solve, i.e. it’s easy to
manipulate a linear equation, to backtrack the calculations,
to reveal what x is. The easiest linear equations to solve are
the single–step equations such as the following ones,
x – 3 = 12,
12 = x + 3,
3*x = 12,
12 =
all four equation are one-step equations.
x
3
Linear Equations I
A linear equation does not contain any higher powers of x
such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because
of the x2.
A linear equation is an equation where both the
expressions on both sides are linear expressions such as
3x + 10 = 34, or
8 = 4x – 6.
12 = x – 3,
x + 3 = 12,
12 = 3*x,
x/3 = 12
These equations are the same,
i.e. it doesn’t matter it’s
A = B or B = A. Both versions
will lead to the answer for x.
Basic principle for solving one- step-equations:
Linear Equations I
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Linear Equations I
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12
b. x + 3 = –12
c. 3x = 15
Linear Equations I
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12
b. x + 3 = –12
c. 3x = 15
Linear Equations I
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
b. x + 3 = –12
c. 3x = 15
Linear Equations I
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15
b. x + 3 = –12
c. 3x = 15
Linear Equations I
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12
c. 3x = 15
Linear Equations I
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
–12 = –12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
c. 3x = 15
Linear Equations I
12 = 12 (yes)
?
–12 = –12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
This says
“triple the x gives 15”,
hence divide by 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
3x
3
15
3
=
c. 3x = 15 Both sides divided by 3
Linear Equations I
12 = 12 (yes)
?
–12 = –12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
This says
“triple the x gives 15”,
hence divide by 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
3x
3
15
3
=
x = 5
c. 3x = 15 Both sides divided by 3
Linear Equations I
12 = 12 (yes)
?
–12 = –12 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
This says
“triple the x gives 15”,
hence divide by 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
3x
3
15
3
=
x = 5 check: 3(5) = 15
c. 3x = 15 Both sides divided by 3
Linear Equations I
12 = 12 (yes)
?
–12 = –12 (yes)
?
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
This says
“triple the x gives 15”,
hence divide by 3 to get
back to x.
Basic principle for solving one- step-equations:
To solve one-step-equations, isolate the x on one side by
applying the opposite operation to both sides of the equation.
Example B. Solve for x
a. x – 3 = 12 Add 3 to both sides
+ 3 + 3
x = 15 check: 15 – 3 = 12
b. x + 3 = –12 Subtract 3 from both sides
–3 –3
x = –15 check: –15 + 3 = –12
3x
3
15
3
=
x = 5 check: 3(5) = 15
c. 3x = 15 Both sides divided by 3
Linear Equations I
12 = 12 (yes)
?
–12 = –12 (yes)
?
15 = 15 (yes)
?
This says
“x take away 3 gives 12”,
hence add 3 to get back to x.
This says
“3 added to x gives –12”,
hence subtract 3 to get
back to x.
This says
“triple the x gives 15”,
hence divide by 3 to get
back to x.
x
3
–12=d.
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Next we solve equations that require two steps. These are the
ones that we have to collect the x-terms (or the number–terms)
first with addition or subtraction, then multiply or divide to get x.
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Next we solve equations that require two steps. These are the
ones that we have to collect the x-terms (or the number–terms)
first with addition or subtraction, then multiply or divide to get x.
Example C. Solve for x
a. 4x – 6 = 30
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Next we solve equations that require two steps. These are the
ones that we have to collect the x-terms (or the number–terms)
first with addition or subtraction, then multiply or divide to get x.
Example C. Solve for x
a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
+6+6
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Next we solve equations that require two steps. These are the
ones that we have to collect the x-terms (or the number–terms)
first with addition or subtraction, then multiply or divide to get x.
Example C. Solve for x
a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
+6+6
4x = 36
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Next we solve equations that require two steps. These are the
ones that we have to collect the x-terms (or the number–terms)
first with addition or subtraction, then multiply or divide to get x.
Example C. Solve for x
a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
+6+6
4x = 36
4 4
Divide both sides by 4
x
3
–12=d. Multiply both sides by 3
x
3
–12=( (3))
x = –36 Check:
3
–12=– 36
Linear Equations I
This says
“x divided by 3 gives –12”,
hence multiply by 3 to get
back to x.
Next we solve equations that require two steps. These are the
ones that we have to collect the x-terms (or the number–terms)
first with addition or subtraction, then multiply or divide to get x.
Example C. Solve for x
a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides
Fact: Given a linear equation if we +, –, * , /, to both sides by
the same quantity, the new equation will have the same
solution.
+6+6
x = 9
4x = 36
(Check this is the right answer.)
4 4
Divide both sides by 4
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–6 2x=
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–3 = x
–6 2x=
2 2 Divide by 2
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–3 = x
–6 2x=
2 2
In real–life, we encounter linear equations often.
Divide by 2
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–3 = x
–6 2x=
2 2
In real–life, we encounter linear equations often.
Example D. To make a cheese sandwich, we use two slices of
bread each having 70 calories and slices of cheeses with
cheese where each slices of cheese is 90 calories
a. How many calories are there in the sandwich with 2 slices of
cheese?
Divide by 2
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–3 = x
–6 2x=
2 2
In real–life, we encounter linear equations often.
Example D. To make a cheese sandwich, we use two slices of
bread each having 70 calories and slices of cheeses with
cheese where each slices of cheese is 90 calories
a. How many calories are there in the sandwich with 2 slices of
cheese?
There are 140 cal in the bread and 2 * 90 = 180 cal to make a
total of 140 + 180 = 320 calories in the cheese.
Divide by 2
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–3 = x
–6 2x=
2 2
In real–life, we encounter linear equations often.
Example D. To make a cheese sandwich, we use two slices of
bread each having 70 calories and slices of cheeses with
cheese where each slices of cheese is 90 calories
a. How many calories are there in the sandwich with 2 slices of
cheese?
There are 140 cal in the bread and 2 * 90 = 180 cal to make a
total of 140 + 180 = 320 calories in the cheese.
b. What is the expression that calculate the number of calories
of a sandwich with x slices of cheese?
Divide by 2
Linear Equations I
Example C. Solve for x
b. x – 6 = 3x Collect the x's by subtracting x from both sides
–x –x
–3 = x
–6 2x=
2 2
In real–life, we encounter linear equations often.
Example D. To make a cheese sandwich, we use two slices of
bread each having 70 calories and slices of cheeses with
cheese where each slices of cheese is 90 calories
a. How many calories are there in the sandwich with 2 slices of
cheese?
There are 140 cal in the bread and 2 * 90 = 180 cal to make a
total of 140 + 180 = 320 calories in the cheese.
b. What is the expression that calculate the number of calories
of a sandwich with x slices of cheese?
There are 140 + 90x calories in the sandwich.
Divide by 2
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
The total calories 14 + 90x is 500,
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
So there are 4 slices of cheese in a 500–cal sandwich.
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
The more general linear equations have the form
#x ± # = #x ± #,
where # can be any number.
So there are 4 slices of cheese in a 500–cal sandwich.
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
The more general linear equations have the form
#x ± # = #x ± #,
where # can be any number. We solve it by following steps:
So there are 4 slices of cheese in a 500–cal sandwich.
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
The more general linear equations have the form
#x ± # = #x ± #,
where # can be any number. We solve it by following steps:
1. Add or subtract to move the x-term to one side of the
equation and get: #x ± # = # or # = #x ± #
So there are 4 slices of cheese in a 500–cal sandwich.
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
The more general linear equations have the form
#x ± # = #x ± #,
where # can be any number. We solve it by following steps:
1. Add or subtract to move the x-term to one side of the
equation and get: #x ± # = # or # = #x ± #
2. Add or subtract the # to separate the number-term from the
x-term to get: #x = # or # = #x.
So there are 4 slices of cheese in a 500–cal sandwich.
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Linear Equations I
c. How many slices of cheese are there in a 500–cal sandwich?
Subtract 140 from
both sides–140 –140
90x = 360 Divide both sides by 90
90 90
x = 4
The more general linear equations have the form
#x ± # = #x ± #,
where # can be any number. We solve it by following steps:
1. Add or subtract to move the x-term to one side of the
equation and get: #x ± # = # or # = #x ± #
2. Add or subtract the # to separate the number-term from the
x-term to get: #x = # or # = #x.
3. Divide or multiply to get x:
x = solution or solution = x
So there are 4 slices of cheese in a 500–cal sandwich.
The total calories 14 + 90x is 500, i.e.
140 + 90x = 500
Example E.
Solve 3x – 4 = 5x + 2
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
subtract 3x to remove
the x from one side.
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
– 4 = 2x + 2
subtract 3x to remove
the x from one side.
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
– 4 = 2x + 2
–2 –2
subtract 3x to remove
the x from one side.
subtract 2 to move the 2 to
the other side.
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
– 4 = 2x + 2
–2 –2
– 6 = 2x
subtract 3x to remove
the x from one side.
subtract 2 to move the 2 to
the other side.
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
– 4 = 2x + 2
–2 –2
– 6 = 2x
2
–6
2
2x
=
subtract 3x to remove
the x from one side.
subtract 2 to move the 2 to
the other side.
divide by 2 get x.
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
– 4 = 2x + 2
–2 –2
– 6 = 2x
2
–6
2
2x
=
–3 = x
subtract 3x to remove
the x from one side.
subtract 2 to move the 2 to
the other side.
divide by 2 get x.
Linear Equations I
Example E.
Solve 3x – 4 = 5x + 2
–3x –3x
– 4 = 2x + 2
–2 –2
– 6 = 2x
2
–6
2
2x
=
–3 = x
subtract 3x to remove
the x from one side.
subtract 2 to move the 2 to
the other side.
divide by 2 get x.
Linear Equations I
Exercise
A. Solve in one step by addition or subtraction .
Linear Equations I
1. x + 2 = 3 2. x – 1 = –3 3. –3 = x –5
4. x + 8 = –15 5. x – 2 = –1/2 6. = x –
3
2
2
1
B. Solve in one step by multiplication or division.
7. 2x = 3 8. –3x = –1 9. –3 = –5x
10. 8 x = –15 11. –4 =
2
x 12. 7 =
3
–x
13. = –4
3
–x
14. 7 = –x 15. –x = –7
C. Solve by collecting the x’s to one side first. (Remember to
keep the x’s positive.)
16. x + 2 = 5 – 2x 17. 2x – 1 = – x –7 18. –x = x – 8
19. –x = 3 – 2x 20. –5x = 6 – 3x 21. –x + 2 = 3 + 2x
22. –3x – 1= 3 – 6x 23. –x + 7 = 3 – 3x 24. –2x + 2 = 9 + x

More Related Content

What's hot

3 3 systems of linear equations 1
3 3 systems of linear equations 13 3 systems of linear equations 1
3 3 systems of linear equations 1math123a
 
2 4linear word problems
2 4linear word problems2 4linear word problems
2 4linear word problemsmath123a
 
5 2factoring trinomial i
5 2factoring trinomial i5 2factoring trinomial i
5 2factoring trinomial imath123a
 
2 1 expressions
2 1 expressions2 1 expressions
2 1 expressionsmath123a
 
4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressionsmath123a
 
1 4 cancellation
1 4 cancellation1 4 cancellation
1 4 cancellationmath123b
 
6.1 system of linear equations and matrices
6.1 system of linear equations and matrices6.1 system of linear equations and matrices
6.1 system of linear equations and matricesmath260
 
1 s5 variables and evaluation
1 s5 variables and evaluation1 s5 variables and evaluation
1 s5 variables and evaluationmath123a
 
32 multiplication and division of decimals
32 multiplication and division of decimals32 multiplication and division of decimals
32 multiplication and division of decimalsalg1testreview
 
5 7applications of factoring
5 7applications of factoring5 7applications of factoring
5 7applications of factoringmath123a
 
1.2 algebraic expressions
1.2 algebraic expressions1.2 algebraic expressions
1.2 algebraic expressionsmath260
 
2linear equations i x
2linear equations i x2linear equations i x
2linear equations i xTzenma
 
4.3 system of linear equations 1
4.3 system of linear equations 14.3 system of linear equations 1
4.3 system of linear equations 1math123c
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressionsalg1testreview
 
4.5 calculation with log and exp
4.5 calculation with log and exp4.5 calculation with log and exp
4.5 calculation with log and expmath260
 

What's hot (20)

3 3 systems of linear equations 1
3 3 systems of linear equations 13 3 systems of linear equations 1
3 3 systems of linear equations 1
 
2 4linear word problems
2 4linear word problems2 4linear word problems
2 4linear word problems
 
5 2factoring trinomial i
5 2factoring trinomial i5 2factoring trinomial i
5 2factoring trinomial i
 
2 1 expressions
2 1 expressions2 1 expressions
2 1 expressions
 
4 3polynomial expressions
4 3polynomial expressions4 3polynomial expressions
4 3polynomial expressions
 
41 expressions
41 expressions41 expressions
41 expressions
 
1 4 cancellation
1 4 cancellation1 4 cancellation
1 4 cancellation
 
6.1 system of linear equations and matrices
6.1 system of linear equations and matrices6.1 system of linear equations and matrices
6.1 system of linear equations and matrices
 
1 s5 variables and evaluation
1 s5 variables and evaluation1 s5 variables and evaluation
1 s5 variables and evaluation
 
43literal equations
43literal equations43literal equations
43literal equations
 
11 arith operations
11 arith operations11 arith operations
11 arith operations
 
32 multiplication and division of decimals
32 multiplication and division of decimals32 multiplication and division of decimals
32 multiplication and division of decimals
 
5 7applications of factoring
5 7applications of factoring5 7applications of factoring
5 7applications of factoring
 
1.2 algebraic expressions
1.2 algebraic expressions1.2 algebraic expressions
1.2 algebraic expressions
 
2linear equations i x
2linear equations i x2linear equations i x
2linear equations i x
 
4.3 system of linear equations 1
4.3 system of linear equations 14.3 system of linear equations 1
4.3 system of linear equations 1
 
46polynomial expressions
46polynomial expressions46polynomial expressions
46polynomial expressions
 
42 linear equations
42 linear equations42 linear equations
42 linear equations
 
4.5 calculation with log and exp
4.5 calculation with log and exp4.5 calculation with log and exp
4.5 calculation with log and exp
 
44 exponents
44 exponents44 exponents
44 exponents
 

Similar to 42 linear equations

1 expressions x
1 expressions x1 expressions x
1 expressions xTzenma
 
2 expressions and linear expressions
2 expressions and linear expressions2 expressions and linear expressions
2 expressions and linear expressionselem-alg-sample
 
2 solving equations nat-e
2 solving equations nat-e2 solving equations nat-e
2 solving equations nat-emath260
 
1.3 solving equations y
1.3 solving equations y1.3 solving equations y
1.3 solving equations ymath260
 
1.3 solving equations
1.3 solving equations1.3 solving equations
1.3 solving equationsmath260
 
Systems of linear equations in three variables
Systems of linear equations in three variablesSystems of linear equations in three variables
Systems of linear equations in three variablesRose Mary Tania Arini
 
Tutorial linear equations and linear inequalities
Tutorial linear equations and linear inequalitiesTutorial linear equations and linear inequalities
Tutorial linear equations and linear inequalitieskhyps13
 
factoring trinomials the ac method and making lists
factoring trinomials  the ac method and making listsfactoring trinomials  the ac method and making lists
factoring trinomials the ac method and making listsmath260
 
LINEAR EQUATION IN TWO VARIABLES
LINEAR EQUATION IN TWO VARIABLESLINEAR EQUATION IN TWO VARIABLES
LINEAR EQUATION IN TWO VARIABLESManah Chhabra
 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variablemisey_margarette
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions ymath266
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions ymath260
 
Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...
Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...
Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...Mathslearning.com
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions ymath260
 
1.2Algebraic Expressions-x
1.2Algebraic Expressions-x1.2Algebraic Expressions-x
1.2Algebraic Expressions-xmath260
 
82 systems of linear equations 2
82 systems of linear equations 282 systems of linear equations 2
82 systems of linear equations 2math126
 

Similar to 42 linear equations (20)

1 expressions x
1 expressions x1 expressions x
1 expressions x
 
2 expressions and linear expressions
2 expressions and linear expressions2 expressions and linear expressions
2 expressions and linear expressions
 
41 expressions
41 expressions41 expressions
41 expressions
 
2 solving equations nat-e
2 solving equations nat-e2 solving equations nat-e
2 solving equations nat-e
 
1.3 solving equations y
1.3 solving equations y1.3 solving equations y
1.3 solving equations y
 
1.3 solving equations
1.3 solving equations1.3 solving equations
1.3 solving equations
 
Systems of linear equations in three variables
Systems of linear equations in three variablesSystems of linear equations in three variables
Systems of linear equations in three variables
 
Tutorial linear equations and linear inequalities
Tutorial linear equations and linear inequalitiesTutorial linear equations and linear inequalities
Tutorial linear equations and linear inequalities
 
factoring trinomials the ac method and making lists
factoring trinomials  the ac method and making listsfactoring trinomials  the ac method and making lists
factoring trinomials the ac method and making lists
 
LINEAR EQUATION IN TWO VARIABLES
LINEAR EQUATION IN TWO VARIABLESLINEAR EQUATION IN TWO VARIABLES
LINEAR EQUATION IN TWO VARIABLES
 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variable
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions y
 
Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...
Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...
Algebra the way to do it | Free Sample eBook | Mathslearning.com | Mathematic...
 
Linear equations
Linear equationsLinear equations
Linear equations
 
Just equations
Just equationsJust equations
Just equations
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions y
 
Solving equations
Solving equationsSolving equations
Solving equations
 
1.2Algebraic Expressions-x
1.2Algebraic Expressions-x1.2Algebraic Expressions-x
1.2Algebraic Expressions-x
 
82 systems of linear equations 2
82 systems of linear equations 282 systems of linear equations 2
82 systems of linear equations 2
 

More from alg1testreview

56 system of linear equations
56 system of linear equations56 system of linear equations
56 system of linear equationsalg1testreview
 
55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions 55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions alg1testreview
 
54 the least common multiple
54 the least common multiple54 the least common multiple
54 the least common multiplealg1testreview
 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressionsalg1testreview
 
52 rational expressions
52 rational expressions52 rational expressions
52 rational expressionsalg1testreview
 
51 basic shapes and formulas
51 basic shapes and formulas51 basic shapes and formulas
51 basic shapes and formulasalg1testreview
 
59 constructing linea equations of lines
59 constructing linea equations of lines59 constructing linea equations of lines
59 constructing linea equations of linesalg1testreview
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equationsalg1testreview
 
56 the rectangular coordinate system
56 the rectangular coordinate system56 the rectangular coordinate system
56 the rectangular coordinate systemalg1testreview
 
53 pythagorean theorem and square roots
53 pythagorean theorem and square roots53 pythagorean theorem and square roots
53 pythagorean theorem and square rootsalg1testreview
 
48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping methodalg1testreview
 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulasalg1testreview
 
31 decimals, addition and subtraction of decimals
31 decimals, addition and subtraction of decimals31 decimals, addition and subtraction of decimals
31 decimals, addition and subtraction of decimalsalg1testreview
 
34 conversion between decimals, fractions and percentages
34 conversion between decimals, fractions and percentages34 conversion between decimals, fractions and percentages
34 conversion between decimals, fractions and percentagesalg1testreview
 

More from alg1testreview (20)

56 system of linear equations
56 system of linear equations56 system of linear equations
56 system of linear equations
 
55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions 55 addition and subtraction of rational expressions
55 addition and subtraction of rational expressions
 
54 the least common multiple
54 the least common multiple54 the least common multiple
54 the least common multiple
 
53 multiplication and division of rational expressions
53 multiplication and division of rational expressions53 multiplication and division of rational expressions
53 multiplication and division of rational expressions
 
52 rational expressions
52 rational expressions52 rational expressions
52 rational expressions
 
51 basic shapes and formulas
51 basic shapes and formulas51 basic shapes and formulas
51 basic shapes and formulas
 
59 constructing linea equations of lines
59 constructing linea equations of lines59 constructing linea equations of lines
59 constructing linea equations of lines
 
57 graphing lines from linear equations
57 graphing lines from linear equations57 graphing lines from linear equations
57 graphing lines from linear equations
 
58 slopes of lines
58 slopes of lines58 slopes of lines
58 slopes of lines
 
56 the rectangular coordinate system
56 the rectangular coordinate system56 the rectangular coordinate system
56 the rectangular coordinate system
 
54 the number line
54 the number line54 the number line
54 the number line
 
53 pythagorean theorem and square roots
53 pythagorean theorem and square roots53 pythagorean theorem and square roots
53 pythagorean theorem and square roots
 
52 about triangles
52 about triangles52 about triangles
52 about triangles
 
51 ratio-proportion
51 ratio-proportion51 ratio-proportion
51 ratio-proportion
 
48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method48 factoring out the gcf and the grouping method
48 factoring out the gcf and the grouping method
 
47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas47 operations of 2nd degree expressions and formulas
47 operations of 2nd degree expressions and formulas
 
45scientific notation
45scientific notation45scientific notation
45scientific notation
 
33 percentages
33 percentages33 percentages
33 percentages
 
31 decimals, addition and subtraction of decimals
31 decimals, addition and subtraction of decimals31 decimals, addition and subtraction of decimals
31 decimals, addition and subtraction of decimals
 
34 conversion between decimals, fractions and percentages
34 conversion between decimals, fractions and percentages34 conversion between decimals, fractions and percentages
34 conversion between decimals, fractions and percentages
 

Recently uploaded

Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfakmcokerachita
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfUmakantAnnand
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxpboyjonauth
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsKarinaGenton
 

Recently uploaded (20)

Class 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdfClass 11 Legal Studies Ch-1 Concept of State .pdf
Class 11 Legal Studies Ch-1 Concept of State .pdf
 
Concept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.CompdfConcept of Vouching. B.Com(Hons) /B.Compdf
Concept of Vouching. B.Com(Hons) /B.Compdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Introduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptxIntroduction to AI in Higher Education_draft.pptx
Introduction to AI in Higher Education_draft.pptx
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
Science 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its CharacteristicsScience 7 - LAND and SEA BREEZE and its Characteristics
Science 7 - LAND and SEA BREEZE and its Characteristics
 

42 linear equations

  • 2. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? Recall example A from the section on expressions.(–Link this) Linear Equations I
  • 3. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. Recall example A from the section on expressions.(–Link this) Linear Equations I
  • 4. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I
  • 5. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order?
  • 6. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order? We backtrack the calculation by subtracting the $10 for delivery so the cost for the pizzas is $24,
  • 7. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order? We backtrack the calculation by subtracting the $10 for delivery so the cost for the pizzas is $24, each pizza is $3 so we must have ordered 8 pizzas.
  • 8. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order? We backtrack the calculation by subtracting the $10 for delivery so the cost for the pizzas is $24, each pizza is $3 so we must have ordered 8 pizzas. In symbols, we've the equation 3x + 10 = 34,
  • 9. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order? We backtrack the calculation by subtracting the $10 for delivery so the cost for the pizzas is $24, each pizza is $3 so we must have ordered 8 pizzas. In symbols, we've the equation 3x + 10 = 34, backtrack-calculation: 3x + 10 = 34 subtract 10 –10 –10
  • 10. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order? We backtrack the calculation by subtracting the $10 for delivery so the cost for the pizzas is $24, each pizza is $3 so we must have ordered 8 pizzas. In symbols, we've the equation 3x + 10 = 34, backtrack-calculation: 3x + 10 = 34 subtract 10 –10 –10 so 3x = 24
  • 11. Example A. a. We order pizzas from Pizza Grande. Each pizza is $3. There is $10 delivery charge. How much would it cost if we want x pizzas delivered? For x pizzas it would cost 3 * x = $3x. To have them delivered, it would cost 3x + 10 ($) in total. Recall example A from the section on expressions.(–Link this) Linear Equations I b. Suppose the total is $34, how many pizzas did we order? We backtrack the calculation by subtracting the $10 for delivery so the cost for the pizzas is $24, each pizza is $3 so we must have ordered 8 pizzas. In symbols, we've the equation 3x + 10 = 34, backtrack-calculation: 3x + 10 = 34 subtract 10 –10 –10 so 3x = 24 divide by 3 so x = 8 (pizzas)
  • 12. In the above examples, the symbolic method to find solution may seem unnecessarily cumbersome but for complicated problems, the symbolic versions are indispensable. Linear Equations I
  • 13. In the above examples, the symbolic method to find solution may seem unnecessarily cumbersome but for complicated problems, the symbolic versions are indispensable. An equation is two expressions set equal to each other. Equations look like: left expression = right expression or LHS = RHS Linear Equations I
  • 14. In the above examples, the symbolic method to find solution may seem unnecessarily cumbersome but for complicated problems, the symbolic versions are indispensable. An equation is two expressions set equal to each other. Equations look like: left expression = right expression or LHS = RHS Linear Equations I We want to solve equations, i.e. we want to find the value (or values) for the variable x such that it makes both sides equal.
  • 15. In the above examples, the symbolic method to find solution may seem unnecessarily cumbersome but for complicated problems, the symbolic versions are indispensable. An equation is two expressions set equal to each other. Equations look like: left expression = right expression or LHS = RHS Linear Equations I We want to solve equations, i.e. we want to find the value (or values) for the variable x such that it makes both sides equal. Such a value is called a solution of the equation.
  • 16. In the above examples, the symbolic method to find solution may seem unnecessarily cumbersome but for complicated problems, the symbolic versions are indispensable. An equation is two expressions set equal to each other. Equations look like: left expression = right expression or LHS = RHS In the example above 3x + 10 = 34 is an equations and x = 8 is the solution for this equations because 3(8) + 10 is 34. Linear Equations I We want to solve equations, i.e. we want to find the value (or values) for the variable x such that it makes both sides equal. Such a value is called a solution of the equation.
  • 17. In the above examples, the symbolic method to find solution may seem unnecessarily cumbersome but for complicated problems, the symbolic versions are indispensable. An equation is two expressions set equal to each other. Equations look like: left expression = right expression or LHS = RHS Linear Equations I We want to solve equations, i.e. we want to find the value (or values) for the variable x such that it makes both sides equal. Such a value is called a solution of the equation. Where as we use an expression to calculate future outcomes, we use an equation to backtrack from known outcomes to the original input x, the solution for the equation. In the example above 3x + 10 = 34 is an equations and x = 8 is the solution for this equations because 3(8) + 10 is 34.
  • 18. Linear Equations I A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 19. Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 20. Linear equations are the easy to solve, i.e. it’s easy to manipulate a linear equation, to backtrack the calculations, to reveal what x is. Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 21. Linear equations are the easy to solve, i.e. it’s easy to manipulate a linear equation, to backtrack the calculations, to reveal what x is. The easiest linear equations to solve are the single–step equations such as the following ones, Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 22. Linear equations are the easy to solve, i.e. it’s easy to manipulate a linear equation, to backtrack the calculations, to reveal what x is. The easiest linear equations to solve are the single–step equations such as the following ones, x – 3 = 12, Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 23. Linear equations are the easy to solve, i.e. it’s easy to manipulate a linear equation, to backtrack the calculations, to reveal what x is. The easiest linear equations to solve are the single–step equations such as the following ones, x – 3 = 12, 12 = x + 3, Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 24. Linear equations are the easy to solve, i.e. it’s easy to manipulate a linear equation, to backtrack the calculations, to reveal what x is. The easiest linear equations to solve are the single–step equations such as the following ones, x – 3 = 12, 12 = x + 3, 3*x = 12, 12 = all four equation are one-step equations. x 3 Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6.
  • 25. Linear equations are the easy to solve, i.e. it’s easy to manipulate a linear equation, to backtrack the calculations, to reveal what x is. The easiest linear equations to solve are the single–step equations such as the following ones, x – 3 = 12, 12 = x + 3, 3*x = 12, 12 = all four equation are one-step equations. x 3 Linear Equations I A linear equation does not contain any higher powers of x such as x2, x3; x2 – 3x = 2x – 3 is not a linear equation because of the x2. A linear equation is an equation where both the expressions on both sides are linear expressions such as 3x + 10 = 34, or 8 = 4x – 6. 12 = x – 3, x + 3 = 12, 12 = 3*x, x/3 = 12 These equations are the same, i.e. it doesn’t matter it’s A = B or B = A. Both versions will lead to the answer for x.
  • 26. Basic principle for solving one- step-equations: Linear Equations I
  • 27. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Linear Equations I
  • 28. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 b. x + 3 = –12 c. 3x = 15 Linear Equations I
  • 29. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 b. x + 3 = –12 c. 3x = 15 Linear Equations I This says “x take away 3 gives 12”, hence add 3 to get back to x.
  • 30. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 b. x + 3 = –12 c. 3x = 15 Linear Equations I This says “x take away 3 gives 12”, hence add 3 to get back to x.
  • 31. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 b. x + 3 = –12 c. 3x = 15 Linear Equations I This says “x take away 3 gives 12”, hence add 3 to get back to x.
  • 32. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 c. 3x = 15 Linear Equations I ? This says “x take away 3 gives 12”, hence add 3 to get back to x.
  • 33. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x.
  • 34. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x.
  • 35. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x.
  • 36. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x.
  • 37. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x.
  • 38. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? –12 = –12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x.
  • 39. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 c. 3x = 15 Linear Equations I 12 = 12 (yes) ? –12 = –12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x. This says “triple the x gives 15”, hence divide by 3 to get back to x.
  • 40. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 3x 3 15 3 = c. 3x = 15 Both sides divided by 3 Linear Equations I 12 = 12 (yes) ? –12 = –12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x. This says “triple the x gives 15”, hence divide by 3 to get back to x.
  • 41. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 3x 3 15 3 = x = 5 c. 3x = 15 Both sides divided by 3 Linear Equations I 12 = 12 (yes) ? –12 = –12 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x. This says “triple the x gives 15”, hence divide by 3 to get back to x.
  • 42. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 3x 3 15 3 = x = 5 check: 3(5) = 15 c. 3x = 15 Both sides divided by 3 Linear Equations I 12 = 12 (yes) ? –12 = –12 (yes) ? ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x. This says “triple the x gives 15”, hence divide by 3 to get back to x.
  • 43. Basic principle for solving one- step-equations: To solve one-step-equations, isolate the x on one side by applying the opposite operation to both sides of the equation. Example B. Solve for x a. x – 3 = 12 Add 3 to both sides + 3 + 3 x = 15 check: 15 – 3 = 12 b. x + 3 = –12 Subtract 3 from both sides –3 –3 x = –15 check: –15 + 3 = –12 3x 3 15 3 = x = 5 check: 3(5) = 15 c. 3x = 15 Both sides divided by 3 Linear Equations I 12 = 12 (yes) ? –12 = –12 (yes) ? 15 = 15 (yes) ? This says “x take away 3 gives 12”, hence add 3 to get back to x. This says “3 added to x gives –12”, hence subtract 3 to get back to x. This says “triple the x gives 15”, hence divide by 3 to get back to x.
  • 44. x 3 –12=d. Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x.
  • 45. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x.
  • 46. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x.
  • 47. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x.
  • 48. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution.
  • 49. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Next we solve equations that require two steps. These are the ones that we have to collect the x-terms (or the number–terms) first with addition or subtraction, then multiply or divide to get x. Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution.
  • 50. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Next we solve equations that require two steps. These are the ones that we have to collect the x-terms (or the number–terms) first with addition or subtraction, then multiply or divide to get x. Example C. Solve for x a. 4x – 6 = 30 Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution.
  • 51. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Next we solve equations that require two steps. These are the ones that we have to collect the x-terms (or the number–terms) first with addition or subtraction, then multiply or divide to get x. Example C. Solve for x a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution. +6+6
  • 52. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Next we solve equations that require two steps. These are the ones that we have to collect the x-terms (or the number–terms) first with addition or subtraction, then multiply or divide to get x. Example C. Solve for x a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution. +6+6 4x = 36
  • 53. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Next we solve equations that require two steps. These are the ones that we have to collect the x-terms (or the number–terms) first with addition or subtraction, then multiply or divide to get x. Example C. Solve for x a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution. +6+6 4x = 36 4 4 Divide both sides by 4
  • 54. x 3 –12=d. Multiply both sides by 3 x 3 –12=( (3)) x = –36 Check: 3 –12=– 36 Linear Equations I This says “x divided by 3 gives –12”, hence multiply by 3 to get back to x. Next we solve equations that require two steps. These are the ones that we have to collect the x-terms (or the number–terms) first with addition or subtraction, then multiply or divide to get x. Example C. Solve for x a. 4x – 6 = 30 Collect the numbers by adding 6 to both sides Fact: Given a linear equation if we +, –, * , /, to both sides by the same quantity, the new equation will have the same solution. +6+6 x = 9 4x = 36 (Check this is the right answer.) 4 4 Divide both sides by 4
  • 55. Linear Equations I Example C. Solve for x b. x – 6 = 3x
  • 56. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x
  • 57. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –6 2x=
  • 58. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –3 = x –6 2x= 2 2 Divide by 2
  • 59. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –3 = x –6 2x= 2 2 In real–life, we encounter linear equations often. Divide by 2
  • 60. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –3 = x –6 2x= 2 2 In real–life, we encounter linear equations often. Example D. To make a cheese sandwich, we use two slices of bread each having 70 calories and slices of cheeses with cheese where each slices of cheese is 90 calories a. How many calories are there in the sandwich with 2 slices of cheese? Divide by 2
  • 61. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –3 = x –6 2x= 2 2 In real–life, we encounter linear equations often. Example D. To make a cheese sandwich, we use two slices of bread each having 70 calories and slices of cheeses with cheese where each slices of cheese is 90 calories a. How many calories are there in the sandwich with 2 slices of cheese? There are 140 cal in the bread and 2 * 90 = 180 cal to make a total of 140 + 180 = 320 calories in the cheese. Divide by 2
  • 62. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –3 = x –6 2x= 2 2 In real–life, we encounter linear equations often. Example D. To make a cheese sandwich, we use two slices of bread each having 70 calories and slices of cheeses with cheese where each slices of cheese is 90 calories a. How many calories are there in the sandwich with 2 slices of cheese? There are 140 cal in the bread and 2 * 90 = 180 cal to make a total of 140 + 180 = 320 calories in the cheese. b. What is the expression that calculate the number of calories of a sandwich with x slices of cheese? Divide by 2
  • 63. Linear Equations I Example C. Solve for x b. x – 6 = 3x Collect the x's by subtracting x from both sides –x –x –3 = x –6 2x= 2 2 In real–life, we encounter linear equations often. Example D. To make a cheese sandwich, we use two slices of bread each having 70 calories and slices of cheeses with cheese where each slices of cheese is 90 calories a. How many calories are there in the sandwich with 2 slices of cheese? There are 140 cal in the bread and 2 * 90 = 180 cal to make a total of 140 + 180 = 320 calories in the cheese. b. What is the expression that calculate the number of calories of a sandwich with x slices of cheese? There are 140 + 90x calories in the sandwich. Divide by 2
  • 64. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich?
  • 65. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? The total calories 14 + 90x is 500,
  • 66. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 67. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 68. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 69. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 70. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 So there are 4 slices of cheese in a 500–cal sandwich. The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 71. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 The more general linear equations have the form #x ± # = #x ± #, where # can be any number. So there are 4 slices of cheese in a 500–cal sandwich. The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 72. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 The more general linear equations have the form #x ± # = #x ± #, where # can be any number. We solve it by following steps: So there are 4 slices of cheese in a 500–cal sandwich. The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 73. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 The more general linear equations have the form #x ± # = #x ± #, where # can be any number. We solve it by following steps: 1. Add or subtract to move the x-term to one side of the equation and get: #x ± # = # or # = #x ± # So there are 4 slices of cheese in a 500–cal sandwich. The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 74. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 The more general linear equations have the form #x ± # = #x ± #, where # can be any number. We solve it by following steps: 1. Add or subtract to move the x-term to one side of the equation and get: #x ± # = # or # = #x ± # 2. Add or subtract the # to separate the number-term from the x-term to get: #x = # or # = #x. So there are 4 slices of cheese in a 500–cal sandwich. The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 75. Linear Equations I c. How many slices of cheese are there in a 500–cal sandwich? Subtract 140 from both sides–140 –140 90x = 360 Divide both sides by 90 90 90 x = 4 The more general linear equations have the form #x ± # = #x ± #, where # can be any number. We solve it by following steps: 1. Add or subtract to move the x-term to one side of the equation and get: #x ± # = # or # = #x ± # 2. Add or subtract the # to separate the number-term from the x-term to get: #x = # or # = #x. 3. Divide or multiply to get x: x = solution or solution = x So there are 4 slices of cheese in a 500–cal sandwich. The total calories 14 + 90x is 500, i.e. 140 + 90x = 500
  • 76. Example E. Solve 3x – 4 = 5x + 2 Linear Equations I
  • 77. Example E. Solve 3x – 4 = 5x + 2 –3x –3x subtract 3x to remove the x from one side. Linear Equations I
  • 78. Example E. Solve 3x – 4 = 5x + 2 –3x –3x – 4 = 2x + 2 subtract 3x to remove the x from one side. Linear Equations I
  • 79. Example E. Solve 3x – 4 = 5x + 2 –3x –3x – 4 = 2x + 2 –2 –2 subtract 3x to remove the x from one side. subtract 2 to move the 2 to the other side. Linear Equations I
  • 80. Example E. Solve 3x – 4 = 5x + 2 –3x –3x – 4 = 2x + 2 –2 –2 – 6 = 2x subtract 3x to remove the x from one side. subtract 2 to move the 2 to the other side. Linear Equations I
  • 81. Example E. Solve 3x – 4 = 5x + 2 –3x –3x – 4 = 2x + 2 –2 –2 – 6 = 2x 2 –6 2 2x = subtract 3x to remove the x from one side. subtract 2 to move the 2 to the other side. divide by 2 get x. Linear Equations I
  • 82. Example E. Solve 3x – 4 = 5x + 2 –3x –3x – 4 = 2x + 2 –2 –2 – 6 = 2x 2 –6 2 2x = –3 = x subtract 3x to remove the x from one side. subtract 2 to move the 2 to the other side. divide by 2 get x. Linear Equations I
  • 83. Example E. Solve 3x – 4 = 5x + 2 –3x –3x – 4 = 2x + 2 –2 –2 – 6 = 2x 2 –6 2 2x = –3 = x subtract 3x to remove the x from one side. subtract 2 to move the 2 to the other side. divide by 2 get x. Linear Equations I
  • 84. Exercise A. Solve in one step by addition or subtraction . Linear Equations I 1. x + 2 = 3 2. x – 1 = –3 3. –3 = x –5 4. x + 8 = –15 5. x – 2 = –1/2 6. = x – 3 2 2 1 B. Solve in one step by multiplication or division. 7. 2x = 3 8. –3x = –1 9. –3 = –5x 10. 8 x = –15 11. –4 = 2 x 12. 7 = 3 –x 13. = –4 3 –x 14. 7 = –x 15. –x = –7 C. Solve by collecting the x’s to one side first. (Remember to keep the x’s positive.) 16. x + 2 = 5 – 2x 17. 2x – 1 = – x –7 18. –x = x – 8 19. –x = 3 – 2x 20. –5x = 6 – 3x 21. –x + 2 = 3 + 2x 22. –3x – 1= 3 – 6x 23. –x + 7 = 3 – 3x 24. –2x + 2 = 9 + x