SlideShare a Scribd company logo
Expressions
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
Expressions
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
Expressions
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
Expressions
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
Expressions
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $..
Expressions
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $..
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics.
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $..
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics. Mathematical expressions are calculation
procedures and they are written with numbers, variables,
and operation symbols.
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $..
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics. Mathematical expressions are calculation
procedures and they are written with numbers, variables,
and operation symbols. Expressions calculate outcomes.
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $..
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics. Mathematical expressions are calculation
procedures and they are written with numbers, variables,
and operation symbols. Expressions calculate outcomes.
The simplest type of expressions are of the form ax + b where
a and b are numbers.
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $..
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics. Mathematical expressions are calculation
procedures and they are written with numbers, variables,
and operation symbols. Expressions calculate outcomes.
The simplest type of expressions are of the form ax + b where
a and b are numbers. These are called linear expressions.
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $.
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics. Mathematical expressions are calculation
procedures and they are written with numbers, variables,
and operation symbols. Expressions calculate outcomes.
The simplest type of expressions are of the form ax + b where
a and b are numbers. These are called linear expressions.
The expressions “3x” or “3x + 10” are linear,
Example B.
a. We order pizzas from Pizza Grande. Each pizza is $3.
How much would it cost for 4 pizzas? For x pizzas?
For 4 pizzas, it would cost 3 * 4 = $12,
for x pizzas it would cost 3 * x = $3x.
b. There is $10 delivery charge. How much would it cost us
in total if we want the x pizzas delivered?
In total, it would be 3x + 10 in $.
Expressions
Formulas such as “3x” or “3x + 10” are called expressions
in mathematics. Mathematical expressions are calculation
procedures and they are written with numbers, variables,
and operation symbols. Expressions calculate outcomes.
The simplest type of expressions are of the form ax + b where
a and b are numbers. These are called linear expressions.
The expressions “3x” or “3x + 10” are linear,
the expressions “x2 + 1” or “1/x” are not linear.
Expressions
Combining Linear Expressions
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
There are two terms in the linear expression ax + b.
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
There are two terms in the linear expression ax + b.
There are three terms in the expression ax2 + bx + c
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
There are three terms in the expression ax2 + bx + c
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
the x2-term
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
the x2-term the constant term
the x-term
Just as 3 apples + 5 apples = 8 apples we may combine
3x + 5x = 8x, –3x – 5x = –8x,
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
the x2-term the constant term
the x-term
Just as 3 apples + 5 apples = 8 apples we may combine
3x + 5x = 8x, –3x – 5x = –8x, 3x – 5x = –2x, and –3x + 5x = 2x.
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
the x2-term the constant term
the x-term
Just as 3 apples + 5 apples = 8 apples we may combine
3x + 5x = 8x, –3x – 5x = –8x, 3x – 5x = –2x, and –3x + 5x = 2x.
The x-terms can't be combined with the number terms because
they are different type of items just as
2 apple + 3 banana = 2 apple + 3 banana (or 2A + 3B),
i.e. the expression can’t be condensed further.
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
the x2-term the constant term
the x-term
Just as 3 apples + 5 apples = 8 apples we may combine
3x + 5x = 8x, –3x – 5x = –8x, 3x – 5x = –2x, and –3x + 5x = 2x.
The x-terms can't be combined with the number terms because
they are different type of items just as
2 apple + 3 banana = 2 apple + 3 banana (or 2A + 3B),
i.e. the expression can’t be condensed further.
Hence the expression “2 + 3x” stays as “2 + 3x”, it's not “5x”.
Expressions
Combining Linear Expressions
Every expression is the sum of simpler expressions and each
of these addend(s) is called a term.
Each term is named by its variable-component.
There are two terms in the linear expression ax + b.
the x-term the constant term
There are three terms in the expression ax2 + bx + c
the x2-term the constant term
the x-term
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term.
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient.
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
We may multiply a number with an expression and expand the
result by the distributive law.
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
We may multiply a number with an expression and expand the
result by the distributive law.
Distributive Law
A(B ± C) = AB ± AC = (B ± C)A
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
We may multiply a number with an expression and expand the
result by the distributive law.
Distributive Law
A(B ± C) = AB ± AC = (B ± C)A
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
Example D. Expand then simplify.
a. –5(2x – 4)
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
We may multiply a number with an expression and expand the
result by the distributive law.
Distributive Law
A(B ± C) = AB ± AC = (B ± C)A
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
Example D. Expand then simplify.
a. –5(2x – 4)
= –5(2x) – (–5)(4)
For the x-term ax, the number “a” is called the coefficient of
the term. When we multiply a number with an x-term, we
multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x,
and –2(–4x) = (–2)(–4)x = 8x.
We may multiply a number with an expression and expand the
result by the distributive law.
Distributive Law
A(B ± C) = AB ± AC = (B ± C)A
Expressions
Example C. Combine.
2x – 4 + 9 – 5x
= 2x – 5x – 4 + 9
= –3x + 5
Example D. Expand then simplify.
a. –5(2x – 4)
= –5(2x) – (–5)(4)
= –10x + 20
b. 3(2x – 4) + 2(4 – 5x)
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
Example E. A store sells two types of gift boxes Regular and
Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe
has 24 apples and 24 bananas. We have 3 boxes of Regular and
4 boxes of Deluxe. How many apples and bananas are there?
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
Let A stands for apple and B stands for banana,
Example E. A store sells two types of gift boxes Regular and
Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe
has 24 apples and 24 bananas. We have 3 boxes of Regular and
4 boxes of Deluxe. How many apples and bananas are there?
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
Let A stands for apple and B stands for banana,
then Regular = (12A + 8B) and Deluxe = (24A + 24B).
Example E. A store sells two types of gift boxes Regular and
Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe
has 24 apples and 24 bananas. We have 3 boxes of Regular and
4 boxes of Deluxe. How many apples and bananas are there?
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
Let A stands for apple and B stands for banana,
then Regular = (12A + 8B) and Deluxe = (24A + 24B).
Three boxes of Regular and four boxes of Deluxe is
3(12A + 8B) + 4(24A + 24B)
Example E. A store sells two types of gift boxes Regular and
Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe
has 24 apples and 24 bananas. We have 3 boxes of Regular and
4 boxes of Deluxe. How many apples and bananas are there?
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
Let A stands for apple and B stands for banana,
then Regular = (12A + 8B) and Deluxe = (24A + 24B).
Three boxes of Regular and four boxes of Deluxe is
3(12A + 8B) + 4(24A + 24B)
= 36A + 24B + 96A + 96B = 132A + 120B
Example E. A store sells two types of gift boxes Regular and
Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe
has 24 apples and 24 bananas. We have 3 boxes of Regular and
4 boxes of Deluxe. How many apples and bananas are there?
b. 3(2x – 4) + 2(4 – 5x) expand
= 6x – 12 + 8 – 10x
= –4x – 4
Expressions
Distributive law gives us the option of expanding the content of
the parentheses i.e. extract items out of containers.
Let A stands for apple and B stands for banana,
then Regular = (12A + 8B) and Deluxe = (24A + 24B).
Three boxes of Regular and four boxes of Deluxe is
3(12A + 8B) + 4(24A + 24B)
= 36A + 24B + 96A + 96B = 132A + 120B
Hence we have 132 apples and 120 bananas.
Example E. A store sells two types of gift boxes Regular and
Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe
has 24 apples and 24 bananas. We have 3 boxes of Regular and
4 boxes of Deluxe. How many apples and bananas are there?
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers.
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
Example F. Expand.
–3{–3x – [5 – 2(– 4x – 6)] – 4}
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
Example F. Expand.
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
Example F. Expand.
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
Example F. Expand.
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
= –3{–3x – [17 + 8x] – 4}
Example F. Expand.
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
= –3{–3x – [17 + 8x] – 4}
Example F. Expand.
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
expand,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
= –3{–3x – [17 + 8x] – 4}
Example F. Expand.
= –3{– 3x – 17 – 8x – 4}
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
expand,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
= –3{–3x – [17 + 8x] – 4}
Example F. Expand.
= –3{– 3x – 17 – 8x – 4}
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
expand,
simplify,
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
= –3{–3x – [17 + 8x] – 4}
Example F. Expand.
= –3{– 3x – 17 – 8x – 4}
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
expand,
simplify,
= –3{–11x – 21}
Expressions
We usually start with the innermost set of parentheses to
simplify an expression that has multiple layers of parentheses.
In mathematics, ( )’s, [ ]’s, and { }’s are often used to
distinguish the layers. This can't be the case for calculators or
software where [ ] and { } may have other meanings.
Always simplify the content of a set of parentheses first before
expanding it.
= –3{–3x – [5 + 8x + 12] – 4}
= –3{–3x – [17 + 8x] – 4}
Example F. Expand.
= –3{– 3x – 17 – 8x – 4}
–3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
simplify,
expand,
simplify,
= –3{–11x – 21} expand,
= 33x + 63
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as )
p
qx
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q*
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Hence is the same as .2x
3
2
3
x
*
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
Hence is the same as .2x
3
2
3
x
*
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6)
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6)
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
Example H. Combine
4
3
x + 5
4
x
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
4
3
x + 5
4
x
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
= ( )12 / 12
4
3
x + 5
4
x
4
3
x + 5
4
x
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
= ( )12 / 12
4
3
x + 5
4
x
4
3
x + 5
4
x expand and cancel the denominators,
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
4
= ( )12 / 12
4
3
x + 5
4
x
4
3
x + 5
4
x expand and cancel the denominators,
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
4 3
= ( )12 / 12
4
3
x + 5
4
x
4
3
x + 5
4
x expand and cancel the denominators,
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
4 3
= ( )12 / 12
4
3
x + 5
4
x
4
3
x + 5
4
x expand and cancel the denominators,
= (4*4 x + 5*3x) / 12
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Expressions
X-terms with fractional coefficients may be written in two ways,
p
q
x or
px
q
( but not as ) since
p
qx
p
q x =
p
q
x
1
= px
q
Example G. Evaluate if x = 6.4
3
x
we getSet x = (6) in
4
3
2
Hence is the same as .2x
3
2
3
x
*
4
3
x, (6) = 8
We may use the multiplier method to combine fraction terms
i.e. multiply the problem by the LCD and divide by the LCD.
31x
12
4 3
= ( )12 / 12
4
3
x + 5
4
x
4
3
x + 5
4
x expand and cancel the denominators,
= (4*4 x + 5*3x) / 12 = (16x + 15x) /12 =
Example H. Combine
4
3
x + 5
4
x
Multiply and divide by their LCD =12,
Exercise A. Combine like terms and simplify the expressions.
Expressions
1. 3x + 5x 2. 3x – 5x 3. –3x – 5x 4. –3x + 5x
5. 3x + 5x + 4 6. 3x – 5 + 2x 7. 8 – 3x – 5
8. 8 – 3x – 5 – x 9. 8x – 4x – 5 – 2x 10. 6 – 4x – 5x – 2
11. 3A + 4B – 5A + 2B 12. –8B + 4A – 9A – B
B. Expand then simplify the expressions.
13. 3(x + 5) 14. –3(x – 5) 15. –4(–3x – 5) 16. –3(6 + 5x)
25. 3(A + 4B) – 5(A + 2B) 26. –8(B + 4A) + 9(2A – B)
17. 3(x + 5) + 3(x – 5) 18. 3(x + 5) – 4(–3x – 5)
19. –9(x – 6) + 4(–3 + 5x) 20. –12(4x + 5) – 4(–7 – 5x)
21. 7(8 – 6x) + 4(–3x + 5) 22. 2(–14x + 5) – 4(–7x – 5)
23. –7(–8 – 6x) – 4(–3 – 5x) 24. –2(–14x – 5) – 6(–9x – 2)
27. 11(A – 4B) – 2(A – 12B) 28. –6(B – 7A) – 8(A – 4B)
Expressions
C. Starting from the innermost ( ) expand and simplify.
29. x + 2[6 + 4(–3 + 5x)] 30. –5[ x – 4(–7 – 5x)] + 6
31. 8 – 2[4(–3x + 5) + 6x] + x 32. –14x + 5[x – 4(–5x + 15)]
33. –7x + 3{8 – [6(x – 2) –3] – 5x}
34. –3{8 – [6(x – 2) –3] – 5x} – 5[x – 3(–5x + 4)]
35. 4[5(3 – 2x) – 6x] – 3{x – 2[x – 3(–5x + 4)]}
2
3
x + 3
4
x36.
4
3
x – 3
4
x37.
3
8
x – 5
6
x39.5
8
x + 1
6
x38. – –
D. Combine using the LCD-multiplication method
40. Do 36 – 39 by the cross–multiplication method.
Expressions
42. As in example D with gift boxes Regular and Deluxe, the
Regular contains12 apples and 8 bananas, the Deluxe has 24
apples and 24 bananas. For large orders we may ship them in
crates or freight-containers where a crate contains 100 boxes
Regular and 80 boxes Deluxe and a container holds 150
Regular boxes and 100 Deluxe boxes.
King Kong ordered 4 crates and 5 containers, how many of
each type of fruit does King Kong have?
41. As in example D with gift boxes Regular and Deluxe, the
Regular contains12 apples and 8 bananas, the Deluxe has 24
apples and 24 bananas. Joe has 6 Regular boxes and 8
Deluxe boxes. How many of each type of fruit does he have?

More Related Content

What's hot

algebra and its concepts
algebra and its conceptsalgebra and its concepts
algebra and its concepts
Bajrangi Bhaijan
 
Evaluating an Algebraic Expression
Evaluating an Algebraic ExpressionEvaluating an Algebraic Expression
Evaluating an Algebraic Expression
JC Alisasis
 
16.2 Solving by Factoring
16.2 Solving by Factoring16.2 Solving by Factoring
16.2 Solving by Factoring
swartzje
 
Equations with Variables on Both Sides
Equations with Variables on Both SidesEquations with Variables on Both Sides
Equations with Variables on Both Sides
Passy World
 
6.3 matrix algebra
6.3 matrix algebra6.3 matrix algebra
6.3 matrix algebra
math260
 
Distributive property in algebra power point
Distributive property in algebra power pointDistributive property in algebra power point
Distributive property in algebra power point
Christie Harp
 
6.1 system of linear equations and matrices
6.1 system of linear equations and matrices6.1 system of linear equations and matrices
6.1 system of linear equations and matrices
math260
 
Add & subtract mixed numbers
Add & subtract mixed numbersAdd & subtract mixed numbers
Add & subtract mixed numbers
angelwatler
 
Algebra Expressions in Word Problems
Algebra Expressions in Word ProblemsAlgebra Expressions in Word Problems
Algebra Expressions in Word Problems
Passy World
 
Introduction to Polynomial Functions
Introduction to Polynomial FunctionsIntroduction to Polynomial Functions
Introduction to Polynomial Functions
kshoskey
 
Examples about order of operations
Examples about order of operationsExamples about order of operations
Examples about order of operations
Martha Ardila Ibarra
 
Properties of Real Numbers
Properties of Real NumbersProperties of Real Numbers
Properties of Real Numbers
rfant
 
7. lesson 6 division of whole numbers
7. lesson 6 division of whole numbers7. lesson 6 division of whole numbers
7. lesson 6 division of whole numbers
John Rome Aranas
 
Amazing Math Tips & Tricks
Amazing Math Tips & TricksAmazing Math Tips & Tricks
Amazing Math Tips & Tricks
Minhas Kamal
 
Evaluating algebraic expression
Evaluating algebraic expressionEvaluating algebraic expression
Evaluating algebraic expression
Marites Ablay
 
Subtracting integers
Subtracting integersSubtracting integers
Subtracting integers
rinabells
 
Patterns and sequences
Patterns and sequencesPatterns and sequences
Patterns and sequences
Lea Perez
 
Divisibility Rules
Divisibility RulesDivisibility Rules
Divisibility Rules
Tim Bonnar
 
Ratios and proportions
Ratios and proportionsRatios and proportions
Ratios and proportions
Himank_Singh
 
Order of operations
Order of operationsOrder of operations
Order of operations
NeilfieOrit2
 

What's hot (20)

algebra and its concepts
algebra and its conceptsalgebra and its concepts
algebra and its concepts
 
Evaluating an Algebraic Expression
Evaluating an Algebraic ExpressionEvaluating an Algebraic Expression
Evaluating an Algebraic Expression
 
16.2 Solving by Factoring
16.2 Solving by Factoring16.2 Solving by Factoring
16.2 Solving by Factoring
 
Equations with Variables on Both Sides
Equations with Variables on Both SidesEquations with Variables on Both Sides
Equations with Variables on Both Sides
 
6.3 matrix algebra
6.3 matrix algebra6.3 matrix algebra
6.3 matrix algebra
 
Distributive property in algebra power point
Distributive property in algebra power pointDistributive property in algebra power point
Distributive property in algebra power point
 
6.1 system of linear equations and matrices
6.1 system of linear equations and matrices6.1 system of linear equations and matrices
6.1 system of linear equations and matrices
 
Add & subtract mixed numbers
Add & subtract mixed numbersAdd & subtract mixed numbers
Add & subtract mixed numbers
 
Algebra Expressions in Word Problems
Algebra Expressions in Word ProblemsAlgebra Expressions in Word Problems
Algebra Expressions in Word Problems
 
Introduction to Polynomial Functions
Introduction to Polynomial FunctionsIntroduction to Polynomial Functions
Introduction to Polynomial Functions
 
Examples about order of operations
Examples about order of operationsExamples about order of operations
Examples about order of operations
 
Properties of Real Numbers
Properties of Real NumbersProperties of Real Numbers
Properties of Real Numbers
 
7. lesson 6 division of whole numbers
7. lesson 6 division of whole numbers7. lesson 6 division of whole numbers
7. lesson 6 division of whole numbers
 
Amazing Math Tips & Tricks
Amazing Math Tips & TricksAmazing Math Tips & Tricks
Amazing Math Tips & Tricks
 
Evaluating algebraic expression
Evaluating algebraic expressionEvaluating algebraic expression
Evaluating algebraic expression
 
Subtracting integers
Subtracting integersSubtracting integers
Subtracting integers
 
Patterns and sequences
Patterns and sequencesPatterns and sequences
Patterns and sequences
 
Divisibility Rules
Divisibility RulesDivisibility Rules
Divisibility Rules
 
Ratios and proportions
Ratios and proportionsRatios and proportions
Ratios and proportions
 
Order of operations
Order of operationsOrder of operations
Order of operations
 

Similar to 2 expressions and linear expressions

2 1 expressions
2 1 expressions2 1 expressions
2 1 expressions
math123a
 
1 expressions x
1 expressions x1 expressions x
1 expressions x
Tzenma
 
41 expressions
41 expressions41 expressions
41 expressions
alg-ready-review
 
41 expressions
41 expressions41 expressions
41 expressions
alg1testreview
 
3 linear equations
3 linear equations3 linear equations
3 linear equations
elem-alg-sample
 
2 2linear equations i
2 2linear equations i2 2linear equations i
2 2linear equations i
math123a
 
2linear equations i x
2linear equations i x2linear equations i x
2linear equations i x
Tzenma
 
42 linear equations
42 linear equations42 linear equations
42 linear equations
alg1testreview
 
42 linear equations
42 linear equations42 linear equations
42 linear equations
alg-ready-review
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoring
alg1testreview
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
math266
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions y
math260
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions y
math260
 
1.2Algebraic Expressions-x
1.2Algebraic Expressions-x1.2Algebraic Expressions-x
1.2Algebraic Expressions-x
math260
 
1.2 algebraic expressions
1.2 algebraic expressions1.2 algebraic expressions
1.2 algebraic expressions
math260
 
factoring trinomials the ac method and making lists
factoring trinomials  the ac method and making listsfactoring trinomials  the ac method and making lists
factoring trinomials the ac method and making lists
math260
 
2 solving equations nat-e
2 solving equations nat-e2 solving equations nat-e
2 solving equations nat-e
math260
 
Properties of Addition & Multiplication
Properties of Addition & MultiplicationProperties of Addition & Multiplication
Properties of Addition & Multiplication
itutor
 
Algebraic expressions
Algebraic expressionsAlgebraic expressions
Algebraic expressions
Manav Gupta
 
1.3 solving equations y
1.3 solving equations y1.3 solving equations y
1.3 solving equations y
math260
 

Similar to 2 expressions and linear expressions (20)

2 1 expressions
2 1 expressions2 1 expressions
2 1 expressions
 
1 expressions x
1 expressions x1 expressions x
1 expressions x
 
41 expressions
41 expressions41 expressions
41 expressions
 
41 expressions
41 expressions41 expressions
41 expressions
 
3 linear equations
3 linear equations3 linear equations
3 linear equations
 
2 2linear equations i
2 2linear equations i2 2linear equations i
2 2linear equations i
 
2linear equations i x
2linear equations i x2linear equations i x
2linear equations i x
 
42 linear equations
42 linear equations42 linear equations
42 linear equations
 
42 linear equations
42 linear equations42 linear equations
42 linear equations
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoring
 
3 algebraic expressions y
3 algebraic expressions y3 algebraic expressions y
3 algebraic expressions y
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions y
 
1.2 algebraic expressions y
1.2 algebraic expressions y1.2 algebraic expressions y
1.2 algebraic expressions y
 
1.2Algebraic Expressions-x
1.2Algebraic Expressions-x1.2Algebraic Expressions-x
1.2Algebraic Expressions-x
 
1.2 algebraic expressions
1.2 algebraic expressions1.2 algebraic expressions
1.2 algebraic expressions
 
factoring trinomials the ac method and making lists
factoring trinomials  the ac method and making listsfactoring trinomials  the ac method and making lists
factoring trinomials the ac method and making lists
 
2 solving equations nat-e
2 solving equations nat-e2 solving equations nat-e
2 solving equations nat-e
 
Properties of Addition & Multiplication
Properties of Addition & MultiplicationProperties of Addition & Multiplication
Properties of Addition & Multiplication
 
Algebraic expressions
Algebraic expressionsAlgebraic expressions
Algebraic expressions
 
1.3 solving equations y
1.3 solving equations y1.3 solving equations y
1.3 solving equations y
 

More from elem-alg-sample

6 equations and applications of lines
6 equations and applications of lines6 equations and applications of lines
6 equations and applications of lines
elem-alg-sample
 
5 slopes of lines
5 slopes of lines5 slopes of lines
5 slopes of lines
elem-alg-sample
 
4 linear equations and graphs of lines
4 linear equations and graphs of lines4 linear equations and graphs of lines
4 linear equations and graphs of lines
elem-alg-sample
 
3 rectangular coordinate system
3 rectangular coordinate system3 rectangular coordinate system
3 rectangular coordinate system
elem-alg-sample
 
2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases
elem-alg-sample
 
1 basic geometry and formulas
1 basic geometry and formulas1 basic geometry and formulas
1 basic geometry and formulas
elem-alg-sample
 
18 variations
18 variations18 variations
18 variations
elem-alg-sample
 
17 applications of proportions and the rational equations
17 applications of proportions and the rational equations17 applications of proportions and the rational equations
17 applications of proportions and the rational equations
elem-alg-sample
 
16 the multiplier method for simplifying complex fractions
16 the multiplier method for simplifying complex fractions16 the multiplier method for simplifying complex fractions
16 the multiplier method for simplifying complex fractions
elem-alg-sample
 
15 proportions and the multiplier method for solving rational equations
15 proportions and the multiplier method for solving rational equations15 proportions and the multiplier method for solving rational equations
15 proportions and the multiplier method for solving rational equations
elem-alg-sample
 
14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...
elem-alg-sample
 
13 multiplication and division of rational expressions
13 multiplication and division of rational expressions13 multiplication and division of rational expressions
13 multiplication and division of rational expressions
elem-alg-sample
 
12 rational expressions
12 rational expressions12 rational expressions
12 rational expressions
elem-alg-sample
 
11 applications of factoring
11 applications of factoring11 applications of factoring
11 applications of factoring
elem-alg-sample
 
10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas
elem-alg-sample
 
9 factoring trinomials
9 factoring trinomials9 factoring trinomials
9 factoring trinomials
elem-alg-sample
 
8 factoring out gcf
8 factoring out gcf8 factoring out gcf
8 factoring out gcf
elem-alg-sample
 
7 special binomial operations and formulas
7 special binomial operations and formulas7 special binomial operations and formulas
7 special binomial operations and formulas
elem-alg-sample
 
6 polynomial expressions and operations
6 polynomial expressions and operations6 polynomial expressions and operations
6 polynomial expressions and operations
elem-alg-sample
 
5 exponents and scientific notation
5 exponents and scientific notation5 exponents and scientific notation
5 exponents and scientific notation
elem-alg-sample
 

More from elem-alg-sample (20)

6 equations and applications of lines
6 equations and applications of lines6 equations and applications of lines
6 equations and applications of lines
 
5 slopes of lines
5 slopes of lines5 slopes of lines
5 slopes of lines
 
4 linear equations and graphs of lines
4 linear equations and graphs of lines4 linear equations and graphs of lines
4 linear equations and graphs of lines
 
3 rectangular coordinate system
3 rectangular coordinate system3 rectangular coordinate system
3 rectangular coordinate system
 
2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases2 the real line, inequalities and comparative phrases
2 the real line, inequalities and comparative phrases
 
1 basic geometry and formulas
1 basic geometry and formulas1 basic geometry and formulas
1 basic geometry and formulas
 
18 variations
18 variations18 variations
18 variations
 
17 applications of proportions and the rational equations
17 applications of proportions and the rational equations17 applications of proportions and the rational equations
17 applications of proportions and the rational equations
 
16 the multiplier method for simplifying complex fractions
16 the multiplier method for simplifying complex fractions16 the multiplier method for simplifying complex fractions
16 the multiplier method for simplifying complex fractions
 
15 proportions and the multiplier method for solving rational equations
15 proportions and the multiplier method for solving rational equations15 proportions and the multiplier method for solving rational equations
15 proportions and the multiplier method for solving rational equations
 
14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...14 the lcm and the multiplier method for addition and subtraction of rational...
14 the lcm and the multiplier method for addition and subtraction of rational...
 
13 multiplication and division of rational expressions
13 multiplication and division of rational expressions13 multiplication and division of rational expressions
13 multiplication and division of rational expressions
 
12 rational expressions
12 rational expressions12 rational expressions
12 rational expressions
 
11 applications of factoring
11 applications of factoring11 applications of factoring
11 applications of factoring
 
10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas10 more on factoring trinomials and factoring by formulas
10 more on factoring trinomials and factoring by formulas
 
9 factoring trinomials
9 factoring trinomials9 factoring trinomials
9 factoring trinomials
 
8 factoring out gcf
8 factoring out gcf8 factoring out gcf
8 factoring out gcf
 
7 special binomial operations and formulas
7 special binomial operations and formulas7 special binomial operations and formulas
7 special binomial operations and formulas
 
6 polynomial expressions and operations
6 polynomial expressions and operations6 polynomial expressions and operations
6 polynomial expressions and operations
 
5 exponents and scientific notation
5 exponents and scientific notation5 exponents and scientific notation
5 exponents and scientific notation
 

Recently uploaded

Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
Jyoti Chand
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Excellence Foundation for South Sudan
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Denish Jangid
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
Jean Carlos Nunes Paixão
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
National Information Standards Organization (NISO)
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
Katrina Pritchard
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
Celine George
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
Priyankaranawat4
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
Dr. Shivangi Singh Parihar
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
iammrhaywood
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
Himanshu Rai
 
How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience
Wahiba Chair Training & Consulting
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
eBook.com.bd (প্রয়োজনীয় বাংলা বই)
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
S. Raj Kumar
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
paigestewart1632
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
adhitya5119
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
History of Stoke Newington
 
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Diana Rendina
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
TechSoup
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
Nguyen Thanh Tu Collection
 

Recently uploaded (20)

Wound healing PPT
Wound healing PPTWound healing PPT
Wound healing PPT
 
Your Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective UpskillingYour Skill Boost Masterclass: Strategies for Effective Upskilling
Your Skill Boost Masterclass: Strategies for Effective Upskilling
 
Chapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptxChapter wise All Notes of First year Basic Civil Engineering.pptx
Chapter wise All Notes of First year Basic Civil Engineering.pptx
 
A Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdfA Independência da América Espanhola LAPBOOK.pdf
A Independência da América Espanhola LAPBOOK.pdf
 
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
Pollock and Snow "DEIA in the Scholarly Landscape, Session One: Setting Expec...
 
BBR 2024 Summer Sessions Interview Training
BBR  2024 Summer Sessions Interview TrainingBBR  2024 Summer Sessions Interview Training
BBR 2024 Summer Sessions Interview Training
 
How to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRMHow to Manage Your Lost Opportunities in Odoo 17 CRM
How to Manage Your Lost Opportunities in Odoo 17 CRM
 
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdfANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
ANATOMY AND BIOMECHANICS OF HIP JOINT.pdf
 
PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.PCOS corelations and management through Ayurveda.
PCOS corelations and management through Ayurveda.
 
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptxNEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
NEWSPAPERS - QUESTION 1 - REVISION POWERPOINT.pptx
 
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem studentsRHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
RHEOLOGY Physical pharmaceutics-II notes for B.pharm 4th sem students
 
How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience How to Create a More Engaging and Human Online Learning Experience
How to Create a More Engaging and Human Online Learning Experience
 
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdfবাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
বাংলাদেশ অর্থনৈতিক সমীক্ষা (Economic Review) ২০২৪ UJS App.pdf
 
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching AptitudeUGC NET Exam Paper 1- Unit 1:Teaching Aptitude
UGC NET Exam Paper 1- Unit 1:Teaching Aptitude
 
Cognitive Development Adolescence Psychology
Cognitive Development Adolescence PsychologyCognitive Development Adolescence Psychology
Cognitive Development Adolescence Psychology
 
Main Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docxMain Java[All of the Base Concepts}.docx
Main Java[All of the Base Concepts}.docx
 
The History of Stoke Newington Street Names
The History of Stoke Newington Street NamesThe History of Stoke Newington Street Names
The History of Stoke Newington Street Names
 
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
Reimagining Your Library Space: How to Increase the Vibes in Your Library No ...
 
Leveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit InnovationLeveraging Generative AI to Drive Nonprofit Innovation
Leveraging Generative AI to Drive Nonprofit Innovation
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 CẢ NĂM - GLOBAL SUCCESS - NĂM HỌC 2023-2024 (CÓ FI...
 

2 expressions and linear expressions

  • 2. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? Expressions
  • 3. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, Expressions
  • 4. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. Expressions
  • 5. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? Expressions
  • 6. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $.. Expressions
  • 7. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $.. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics.
  • 8. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $.. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics. Mathematical expressions are calculation procedures and they are written with numbers, variables, and operation symbols.
  • 9. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $.. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics. Mathematical expressions are calculation procedures and they are written with numbers, variables, and operation symbols. Expressions calculate outcomes.
  • 10. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $.. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics. Mathematical expressions are calculation procedures and they are written with numbers, variables, and operation symbols. Expressions calculate outcomes. The simplest type of expressions are of the form ax + b where a and b are numbers.
  • 11. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $.. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics. Mathematical expressions are calculation procedures and they are written with numbers, variables, and operation symbols. Expressions calculate outcomes. The simplest type of expressions are of the form ax + b where a and b are numbers. These are called linear expressions.
  • 12. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics. Mathematical expressions are calculation procedures and they are written with numbers, variables, and operation symbols. Expressions calculate outcomes. The simplest type of expressions are of the form ax + b where a and b are numbers. These are called linear expressions. The expressions “3x” or “3x + 10” are linear,
  • 13. Example B. a. We order pizzas from Pizza Grande. Each pizza is $3. How much would it cost for 4 pizzas? For x pizzas? For 4 pizzas, it would cost 3 * 4 = $12, for x pizzas it would cost 3 * x = $3x. b. There is $10 delivery charge. How much would it cost us in total if we want the x pizzas delivered? In total, it would be 3x + 10 in $. Expressions Formulas such as “3x” or “3x + 10” are called expressions in mathematics. Mathematical expressions are calculation procedures and they are written with numbers, variables, and operation symbols. Expressions calculate outcomes. The simplest type of expressions are of the form ax + b where a and b are numbers. These are called linear expressions. The expressions “3x” or “3x + 10” are linear, the expressions “x2 + 1” or “1/x” are not linear.
  • 15. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term.
  • 16. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. There are two terms in the linear expression ax + b.
  • 17. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. There are two terms in the linear expression ax + b. There are three terms in the expression ax2 + bx + c
  • 18. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. There are three terms in the expression ax2 + bx + c
  • 19. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c
  • 20. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c the x2-term
  • 21. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c the x2-term the constant term the x-term
  • 22. Just as 3 apples + 5 apples = 8 apples we may combine 3x + 5x = 8x, –3x – 5x = –8x, Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c the x2-term the constant term the x-term
  • 23. Just as 3 apples + 5 apples = 8 apples we may combine 3x + 5x = 8x, –3x – 5x = –8x, 3x – 5x = –2x, and –3x + 5x = 2x. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c the x2-term the constant term the x-term
  • 24. Just as 3 apples + 5 apples = 8 apples we may combine 3x + 5x = 8x, –3x – 5x = –8x, 3x – 5x = –2x, and –3x + 5x = 2x. The x-terms can't be combined with the number terms because they are different type of items just as 2 apple + 3 banana = 2 apple + 3 banana (or 2A + 3B), i.e. the expression can’t be condensed further. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c the x2-term the constant term the x-term
  • 25. Just as 3 apples + 5 apples = 8 apples we may combine 3x + 5x = 8x, –3x – 5x = –8x, 3x – 5x = –2x, and –3x + 5x = 2x. The x-terms can't be combined with the number terms because they are different type of items just as 2 apple + 3 banana = 2 apple + 3 banana (or 2A + 3B), i.e. the expression can’t be condensed further. Hence the expression “2 + 3x” stays as “2 + 3x”, it's not “5x”. Expressions Combining Linear Expressions Every expression is the sum of simpler expressions and each of these addend(s) is called a term. Each term is named by its variable-component. There are two terms in the linear expression ax + b. the x-term the constant term There are three terms in the expression ax2 + bx + c the x2-term the constant term the x-term
  • 27. Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9
  • 28. Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 29. For the x-term ax, the number “a” is called the coefficient of the term. Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 30. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 31. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 32. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 33. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. We may multiply a number with an expression and expand the result by the distributive law. Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 34. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. We may multiply a number with an expression and expand the result by the distributive law. Distributive Law A(B ± C) = AB ± AC = (B ± C)A Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5
  • 35. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. We may multiply a number with an expression and expand the result by the distributive law. Distributive Law A(B ± C) = AB ± AC = (B ± C)A Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5 Example D. Expand then simplify. a. –5(2x – 4)
  • 36. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. We may multiply a number with an expression and expand the result by the distributive law. Distributive Law A(B ± C) = AB ± AC = (B ± C)A Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5 Example D. Expand then simplify. a. –5(2x – 4) = –5(2x) – (–5)(4)
  • 37. For the x-term ax, the number “a” is called the coefficient of the term. When we multiply a number with an x-term, we multiply it with the coefficient. Hence, 3(5x) = (3*5)x =15x, and –2(–4x) = (–2)(–4)x = 8x. We may multiply a number with an expression and expand the result by the distributive law. Distributive Law A(B ± C) = AB ± AC = (B ± C)A Expressions Example C. Combine. 2x – 4 + 9 – 5x = 2x – 5x – 4 + 9 = –3x + 5 Example D. Expand then simplify. a. –5(2x – 4) = –5(2x) – (–5)(4) = –10x + 20
  • 38. b. 3(2x – 4) + 2(4 – 5x) Expressions
  • 39. b. 3(2x – 4) + 2(4 – 5x) expand Expressions
  • 40. b. 3(2x – 4) + 2(4 – 5x) expand = 6x Expressions
  • 41. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 Expressions
  • 42. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 Expressions
  • 43. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x Expressions
  • 44. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions
  • 45. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers.
  • 46. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers. Example E. A store sells two types of gift boxes Regular and Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. We have 3 boxes of Regular and 4 boxes of Deluxe. How many apples and bananas are there?
  • 47. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers. Let A stands for apple and B stands for banana, Example E. A store sells two types of gift boxes Regular and Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. We have 3 boxes of Regular and 4 boxes of Deluxe. How many apples and bananas are there?
  • 48. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers. Let A stands for apple and B stands for banana, then Regular = (12A + 8B) and Deluxe = (24A + 24B). Example E. A store sells two types of gift boxes Regular and Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. We have 3 boxes of Regular and 4 boxes of Deluxe. How many apples and bananas are there?
  • 49. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers. Let A stands for apple and B stands for banana, then Regular = (12A + 8B) and Deluxe = (24A + 24B). Three boxes of Regular and four boxes of Deluxe is 3(12A + 8B) + 4(24A + 24B) Example E. A store sells two types of gift boxes Regular and Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. We have 3 boxes of Regular and 4 boxes of Deluxe. How many apples and bananas are there?
  • 50. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers. Let A stands for apple and B stands for banana, then Regular = (12A + 8B) and Deluxe = (24A + 24B). Three boxes of Regular and four boxes of Deluxe is 3(12A + 8B) + 4(24A + 24B) = 36A + 24B + 96A + 96B = 132A + 120B Example E. A store sells two types of gift boxes Regular and Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. We have 3 boxes of Regular and 4 boxes of Deluxe. How many apples and bananas are there?
  • 51. b. 3(2x – 4) + 2(4 – 5x) expand = 6x – 12 + 8 – 10x = –4x – 4 Expressions Distributive law gives us the option of expanding the content of the parentheses i.e. extract items out of containers. Let A stands for apple and B stands for banana, then Regular = (12A + 8B) and Deluxe = (24A + 24B). Three boxes of Regular and four boxes of Deluxe is 3(12A + 8B) + 4(24A + 24B) = 36A + 24B + 96A + 96B = 132A + 120B Hence we have 132 apples and 120 bananas. Example E. A store sells two types of gift boxes Regular and Deluxe. The Regular has 12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. We have 3 boxes of Regular and 4 boxes of Deluxe. How many apples and bananas are there?
  • 52. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses.
  • 53. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers.
  • 54. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings.
  • 55. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it.
  • 56. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. Example F. Expand. –3{–3x – [5 – 2(– 4x – 6)] – 4}
  • 57. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. Example F. Expand. –3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
  • 58. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} Example F. Expand. –3{–3x – [5 – 2(– 4x – 6)] – 4} expand,
  • 59. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} Example F. Expand. –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify,
  • 60. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} = –3{–3x – [17 + 8x] – 4} Example F. Expand. –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify,
  • 61. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} = –3{–3x – [17 + 8x] – 4} Example F. Expand. –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify, expand,
  • 62. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} = –3{–3x – [17 + 8x] – 4} Example F. Expand. = –3{– 3x – 17 – 8x – 4} –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify, expand,
  • 63. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} = –3{–3x – [17 + 8x] – 4} Example F. Expand. = –3{– 3x – 17 – 8x – 4} –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify, expand, simplify,
  • 64. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} = –3{–3x – [17 + 8x] – 4} Example F. Expand. = –3{– 3x – 17 – 8x – 4} –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify, expand, simplify, = –3{–11x – 21}
  • 65. Expressions We usually start with the innermost set of parentheses to simplify an expression that has multiple layers of parentheses. In mathematics, ( )’s, [ ]’s, and { }’s are often used to distinguish the layers. This can't be the case for calculators or software where [ ] and { } may have other meanings. Always simplify the content of a set of parentheses first before expanding it. = –3{–3x – [5 + 8x + 12] – 4} = –3{–3x – [17 + 8x] – 4} Example F. Expand. = –3{– 3x – 17 – 8x – 4} –3{–3x – [5 – 2(– 4x – 6)] – 4} expand, simplify, expand, simplify, = –3{–11x – 21} expand, = 33x + 63
  • 66. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q
  • 67. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) p qx
  • 68. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q*
  • 69. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Hence is the same as .2x 3 2 3 x *
  • 70. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x Hence is the same as .2x 3 2 3 x *
  • 71. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 Hence is the same as .2x 3 2 3 x * 4 3 x, (6)
  • 72. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6)
  • 73. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8
  • 74. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD.
  • 75. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. Example H. Combine 4 3 x + 5 4 x
  • 76. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. 4 3 x + 5 4 x Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 77. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. = ( )12 / 12 4 3 x + 5 4 x 4 3 x + 5 4 x Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 78. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. = ( )12 / 12 4 3 x + 5 4 x 4 3 x + 5 4 x expand and cancel the denominators, Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 79. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. 4 = ( )12 / 12 4 3 x + 5 4 x 4 3 x + 5 4 x expand and cancel the denominators, Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 80. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. 4 3 = ( )12 / 12 4 3 x + 5 4 x 4 3 x + 5 4 x expand and cancel the denominators, Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 81. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. 4 3 = ( )12 / 12 4 3 x + 5 4 x 4 3 x + 5 4 x expand and cancel the denominators, = (4*4 x + 5*3x) / 12 Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 82. Expressions X-terms with fractional coefficients may be written in two ways, p q x or px q ( but not as ) since p qx p q x = p q x 1 = px q Example G. Evaluate if x = 6.4 3 x we getSet x = (6) in 4 3 2 Hence is the same as .2x 3 2 3 x * 4 3 x, (6) = 8 We may use the multiplier method to combine fraction terms i.e. multiply the problem by the LCD and divide by the LCD. 31x 12 4 3 = ( )12 / 12 4 3 x + 5 4 x 4 3 x + 5 4 x expand and cancel the denominators, = (4*4 x + 5*3x) / 12 = (16x + 15x) /12 = Example H. Combine 4 3 x + 5 4 x Multiply and divide by their LCD =12,
  • 83. Exercise A. Combine like terms and simplify the expressions. Expressions 1. 3x + 5x 2. 3x – 5x 3. –3x – 5x 4. –3x + 5x 5. 3x + 5x + 4 6. 3x – 5 + 2x 7. 8 – 3x – 5 8. 8 – 3x – 5 – x 9. 8x – 4x – 5 – 2x 10. 6 – 4x – 5x – 2 11. 3A + 4B – 5A + 2B 12. –8B + 4A – 9A – B B. Expand then simplify the expressions. 13. 3(x + 5) 14. –3(x – 5) 15. –4(–3x – 5) 16. –3(6 + 5x) 25. 3(A + 4B) – 5(A + 2B) 26. –8(B + 4A) + 9(2A – B) 17. 3(x + 5) + 3(x – 5) 18. 3(x + 5) – 4(–3x – 5) 19. –9(x – 6) + 4(–3 + 5x) 20. –12(4x + 5) – 4(–7 – 5x) 21. 7(8 – 6x) + 4(–3x + 5) 22. 2(–14x + 5) – 4(–7x – 5) 23. –7(–8 – 6x) – 4(–3 – 5x) 24. –2(–14x – 5) – 6(–9x – 2) 27. 11(A – 4B) – 2(A – 12B) 28. –6(B – 7A) – 8(A – 4B)
  • 84. Expressions C. Starting from the innermost ( ) expand and simplify. 29. x + 2[6 + 4(–3 + 5x)] 30. –5[ x – 4(–7 – 5x)] + 6 31. 8 – 2[4(–3x + 5) + 6x] + x 32. –14x + 5[x – 4(–5x + 15)] 33. –7x + 3{8 – [6(x – 2) –3] – 5x} 34. –3{8 – [6(x – 2) –3] – 5x} – 5[x – 3(–5x + 4)] 35. 4[5(3 – 2x) – 6x] – 3{x – 2[x – 3(–5x + 4)]} 2 3 x + 3 4 x36. 4 3 x – 3 4 x37. 3 8 x – 5 6 x39.5 8 x + 1 6 x38. – – D. Combine using the LCD-multiplication method 40. Do 36 – 39 by the cross–multiplication method.
  • 85. Expressions 42. As in example D with gift boxes Regular and Deluxe, the Regular contains12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. For large orders we may ship them in crates or freight-containers where a crate contains 100 boxes Regular and 80 boxes Deluxe and a container holds 150 Regular boxes and 100 Deluxe boxes. King Kong ordered 4 crates and 5 containers, how many of each type of fruit does King Kong have? 41. As in example D with gift boxes Regular and Deluxe, the Regular contains12 apples and 8 bananas, the Deluxe has 24 apples and 24 bananas. Joe has 6 Regular boxes and 8 Deluxe boxes. How many of each type of fruit does he have?