SlideShare a Scribd company logo
1 of 44
Download to read offline
Sum and Product of Roots
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
                     ax 2  bx  c  a  x    x   
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
                     ax 2  bx  c  a  x    x   
                     ax 2  bx  c  a  x 2   x   x   
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
                     ax 2  bx  c  a  x    x   
                     ax 2  bx  c  a  x 2   x   x   
                          b     c
                     x 2  x   x 2      x  
                          a     a
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
                     ax 2  bx  c  a  x    x   
                     ax 2  bx  c  a  x 2   x   x   
                          b     c
                     x 2  x   x 2      x  
                          a     a
     Thus
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
                     ax 2  bx  c  a  x    x   
                     ax 2  bx  c  a  x 2   x   x   
                          b     c
                     x 2  x   x 2      x  
                          a     a
     Thus
                        b
                             (sum of roots)
                        a
Sum and Product of Roots
 If  and  are the roots of ax 2  bx  c  0, then;
                     ax 2  bx  c  a  x    x   
                     ax 2  bx  c  a  x 2   x   x   
                          b     c
                     x 2  x   x 2      x  
                          a     a
     Thus
                        b
                             (sum of roots)
                        a
                        c
                             (product of roots)
                        a
e.g. (i) Form a quadratic equation whose roots are;
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3
        1
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3
        1
        6
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3
        1
        6
  x2  x  6  0
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                     b) 2  5 and 2  5
        1
        6
  x2  x  6  0
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                     b) 2  5 and 2  5
        1                            4
        6
  x2  x  6  0
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                     b) 2  5 and 2  5
        1                            4
        6                               4  5
  x2  x  6  0                              1
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                     b) 2  5 and 2  5
        1                            4
        6                                4  5
  x2  x  6  0                                1
                                        x2  4x 1  0
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                         b) 2  5 and 2  5
        1                                4
        6                                    4  5
  x2  x  6  0                                    1
                                            x2  4x 1  0

 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find;
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                         b) 2  5 and 2  5
        1                                4
        6                                    4  5
  x2  x  6  0                                    1
                                            x2  4x 1  0

 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find;
      a)   
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                         b) 2  5 and 2  5
        1                                4
        6                                    4  5
  x2  x  6  0                                    1
                                            x2  4x 1  0

 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find;
                   b
        a)    
                    a
                   3
                 
                   2
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                         b) 2  5 and 2  5
        1                                4
        6                                    4  5
  x2  x  6  0                                    1
                                            x2  4x 1  0

 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find;
                   b                    b) 
        a)    
                    a
                   3
                 
                   2
e.g. (i) Form a quadratic equation whose roots are;
a ) 2 and  3                         b) 2  5 and 2  5
        1                                4
        6                                    4  5
  x2  x  6  0                                    1
                                            x2  4x 1  0

 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find;
                   b                    b)  
                                                    c
        a)    
                    a                               a
                   3                                1
                                                 
                   2                                 2
c)  2   2
c)  2   2       2
                     2
c)  2   2       2
                      2



                      1
                  2

                2 
                3
                    
               2    2
c)  2   2       2
                      2



                      1
                  2

                2 
                3
                    
               2    2
              9
             1
              4
              13
            
               4
1       1
c)          2            
    2   2           2
                            d)
                                        
                      1
                2

                2 
                3
                    
               2    2
              9
             1
              4
              13
            
               4
1   1  
c)          2   d)   
    2   2           2

                                   
                      1
                2

                2 
                3
                    
               2    2
              9
             1
              4
              13
            
               4
1   1  
c)          2   d)   
    2   2           2

                                   
                      1
                2

                2 
                3                       3
                    
               2    2              2
              9                         1
             1                        2
              4
              13
            
               4
1   1  
c)          2     d)   
    2   2            2

                                     
                      1 
                 2
              3                         3
                2 
              2     2                2
              9                           1
             1                          2
              4
              13                         3
            
               4
1    
                                               1
 c)          2            d)   
      2    2            2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
1    
                                               1
 c)          2            d)   
      2    2            2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
1    
                                               1
 c)          2            d)   
      2    2            2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
             2  6
1    
                                               1
 c)          2            d)   
      2    2             2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
             2  6
               3  6
                  2
1    
                                               1
 c)          2            d)   
      2    2             2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
             2  6                            2   m
               3  6
                  2
1    
                                               1
 c)          2            d)   
      2    2             2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
             2  6                            2   m
                3  6                              2 2  m
                  2
1    
                                               1
 c)          2            d)   
      2    2            2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
             2  6                            2   m
                3  6                               2 2  m
                                                  2  2   m
                                                          2
                   2
1    
                                               1
 c)          2            d)   
      2    2            2

                                             
                         1
                    2

                   2 
                   3                                 3
                       
                  2    2                        2
                 9                                   1
                1                                  2
                 4
                 13                                 3
               
                  4
(iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
                        Let the roots be  and 2
             2  6                            2   m
                3  6                               2 2  m
                                                  2  2   m
                                                          2
                   2
                                                         m8
(iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the
     reciprocal of the other.
(iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the
     reciprocal of the other.
                                                 1
                          Let the roots be  and
                                                     
(iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the
     reciprocal of the other.
                                                 1
                          Let the roots be  and
                                                     
                                    1 1
                                  
                                       2m  1
(iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the
     reciprocal of the other.
                                                 1
                          Let the roots be  and
                                                     
                                    1 1
                                  
                                       2m  1
                                            1
                                       1
                                          2m  1
(iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the
     reciprocal of the other.
                                                 1
                          Let the roots be  and
                                                     
                                    1 1
                                  
                                       2m  1
                                            1
                                       1
                                          2m  1
                                 2m  1  1
                                     2m  2
                                      m 1
(iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the
     reciprocal of the other.
                                                 1
                          Let the roots be  and
                                                     
                                    1 1
                                  
                                       2m  1
                                            1
                                       1
                                          2m  1
                                 2m  1  1
                                     2m  2
                                      m 1



             Exercise 8H; 3beh, 4bdf, 5, 6, 7abc i, 8, 10, 12,
                        13cd, 15, 18, 20, 21ac

More Related Content

What's hot

11X1 T10 05 the discriminant (2010)
11X1 T10 05 the discriminant (2010)11X1 T10 05 the discriminant (2010)
11X1 T10 05 the discriminant (2010)Nigel Simmons
 
11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)Nigel Simmons
 
12X1 T01 01 log laws
12X1 T01 01 log laws12X1 T01 01 log laws
12X1 T01 01 log lawsNigel Simmons
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)Nigel Simmons
 
11X1 T17 07 approximations
11X1 T17 07 approximations11X1 T17 07 approximations
11X1 T17 07 approximationsNigel Simmons
 
Ah unit 1 differentiation
Ah unit 1 differentiationAh unit 1 differentiation
Ah unit 1 differentiationsjamaths
 

What's hot (8)

11X1 T10 05 the discriminant (2010)
11X1 T10 05 the discriminant (2010)11X1 T10 05 the discriminant (2010)
11X1 T10 05 the discriminant (2010)
 
11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)11 X1 T01 01 algebra & indices (2010)
11 X1 T01 01 algebra & indices (2010)
 
12X1 T01 01 log laws
12X1 T01 01 log laws12X1 T01 01 log laws
12X1 T01 01 log laws
 
11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)11X1 T01 09 completing the square (2011)
11X1 T01 09 completing the square (2011)
 
11X1 T14 04 areas
11X1 T14 04 areas11X1 T14 04 areas
11X1 T14 04 areas
 
11X1 T17 07 approximations
11X1 T17 07 approximations11X1 T17 07 approximations
11X1 T17 07 approximations
 
11X1 T14 05 volumes
11X1 T14 05 volumes11X1 T14 05 volumes
11X1 T14 05 volumes
 
Ah unit 1 differentiation
Ah unit 1 differentiationAh unit 1 differentiation
Ah unit 1 differentiation
 

Viewers also liked

Algebra 2 unit 10.4
Algebra 2 unit 10.4Algebra 2 unit 10.4
Algebra 2 unit 10.4Mark Ryder
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoringalg1testreview
 
8 4 Negative And Zero Exponents
8 4 Negative And Zero Exponents8 4 Negative And Zero Exponents
8 4 Negative And Zero Exponentstaco40
 
Algebra 2 unit 10.5
Algebra 2 unit 10.5Algebra 2 unit 10.5
Algebra 2 unit 10.5Mark Ryder
 
Mathematics 9 Lesson 6: Rational Exponents
Mathematics 9 Lesson 6: Rational ExponentsMathematics 9 Lesson 6: Rational Exponents
Mathematics 9 Lesson 6: Rational ExponentsJuan Miguel Palero
 
Solving Equations by Factoring
Solving Equations by FactoringSolving Equations by Factoring
Solving Equations by FactoringJosephine Neff
 
Simplifying expressions with negative and zero exponents
Simplifying expressions with negative and zero exponentsSimplifying expressions with negative and zero exponents
Simplifying expressions with negative and zero exponentsGenny Phillips
 
Quadratic Formula
Quadratic FormulaQuadratic Formula
Quadratic Formulaswartzje
 
AA Section 2-9
AA Section 2-9AA Section 2-9
AA Section 2-9Jimbo Lamb
 
Solving quadratics with square roots
Solving quadratics with square rootsSolving quadratics with square roots
Solving quadratics with square rootsswartzje
 
Joint variation
Joint variationJoint variation
Joint variationmstf mstf
 
Quadratic inequalities
Quadratic inequalitiesQuadratic inequalities
Quadratic inequalitiesmstf mstf
 
Mathematics 9 Lesson 4-A: Direct Variation
Mathematics 9 Lesson 4-A: Direct VariationMathematics 9 Lesson 4-A: Direct Variation
Mathematics 9 Lesson 4-A: Direct VariationJuan Miguel Palero
 
Trigonometry: Solving Triangles
Trigonometry:  Solving TrianglesTrigonometry:  Solving Triangles
Trigonometry: Solving TrianglesKristen T
 
Mathematics 9 Lesson 1-A: Solving Quadratic Equations by Completing the Square
Mathematics 9 Lesson 1-A: Solving Quadratic Equations by Completing the SquareMathematics 9 Lesson 1-A: Solving Quadratic Equations by Completing the Square
Mathematics 9 Lesson 1-A: Solving Quadratic Equations by Completing the SquareJuan Miguel Palero
 
Mathematics 9 Lesson 4-C: Joint and Combined Variation
Mathematics 9 Lesson 4-C: Joint and Combined VariationMathematics 9 Lesson 4-C: Joint and Combined Variation
Mathematics 9 Lesson 4-C: Joint and Combined VariationJuan Miguel Palero
 
Law Of Cosines Presentation
Law Of Cosines PresentationLaw Of Cosines Presentation
Law Of Cosines Presentationguest59f920
 
7.7 Solving Radical Equations
7.7 Solving Radical Equations7.7 Solving Radical Equations
7.7 Solving Radical Equationsswartzje
 

Viewers also liked (20)

Math12 lesson2
Math12 lesson2Math12 lesson2
Math12 lesson2
 
Algebra 2 unit 10.4
Algebra 2 unit 10.4Algebra 2 unit 10.4
Algebra 2 unit 10.4
 
50 solving equations by factoring
50 solving equations by factoring50 solving equations by factoring
50 solving equations by factoring
 
8 4 Negative And Zero Exponents
8 4 Negative And Zero Exponents8 4 Negative And Zero Exponents
8 4 Negative And Zero Exponents
 
Algebra 2 unit 10.5
Algebra 2 unit 10.5Algebra 2 unit 10.5
Algebra 2 unit 10.5
 
Mathematics 9 Lesson 6: Rational Exponents
Mathematics 9 Lesson 6: Rational ExponentsMathematics 9 Lesson 6: Rational Exponents
Mathematics 9 Lesson 6: Rational Exponents
 
Solving Equations by Factoring
Solving Equations by FactoringSolving Equations by Factoring
Solving Equations by Factoring
 
Simplifying expressions with negative and zero exponents
Simplifying expressions with negative and zero exponentsSimplifying expressions with negative and zero exponents
Simplifying expressions with negative and zero exponents
 
Quadratic Formula
Quadratic FormulaQuadratic Formula
Quadratic Formula
 
AA Section 2-9
AA Section 2-9AA Section 2-9
AA Section 2-9
 
Solving quadratics with square roots
Solving quadratics with square rootsSolving quadratics with square roots
Solving quadratics with square roots
 
Joint variation
Joint variationJoint variation
Joint variation
 
PC 6.1 Notes
PC 6.1 NotesPC 6.1 Notes
PC 6.1 Notes
 
Quadratic inequalities
Quadratic inequalitiesQuadratic inequalities
Quadratic inequalities
 
Mathematics 9 Lesson 4-A: Direct Variation
Mathematics 9 Lesson 4-A: Direct VariationMathematics 9 Lesson 4-A: Direct Variation
Mathematics 9 Lesson 4-A: Direct Variation
 
Trigonometry: Solving Triangles
Trigonometry:  Solving TrianglesTrigonometry:  Solving Triangles
Trigonometry: Solving Triangles
 
Mathematics 9 Lesson 1-A: Solving Quadratic Equations by Completing the Square
Mathematics 9 Lesson 1-A: Solving Quadratic Equations by Completing the SquareMathematics 9 Lesson 1-A: Solving Quadratic Equations by Completing the Square
Mathematics 9 Lesson 1-A: Solving Quadratic Equations by Completing the Square
 
Mathematics 9 Lesson 4-C: Joint and Combined Variation
Mathematics 9 Lesson 4-C: Joint and Combined VariationMathematics 9 Lesson 4-C: Joint and Combined Variation
Mathematics 9 Lesson 4-C: Joint and Combined Variation
 
Law Of Cosines Presentation
Law Of Cosines PresentationLaw Of Cosines Presentation
Law Of Cosines Presentation
 
7.7 Solving Radical Equations
7.7 Solving Radical Equations7.7 Solving Radical Equations
7.7 Solving Radical Equations
 

Similar to 11X1 T10 07 sum and product of roots (2010)

11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)Nigel Simmons
 
X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)Nigel Simmons
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)Nigel Simmons
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)Nigel Simmons
 
X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)Nigel Simmons
 
11X1 T11 05 the discriminant
11X1 T11 05 the discriminant11X1 T11 05 the discriminant
11X1 T11 05 the discriminantNigel Simmons
 
11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)Nigel Simmons
 
11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)Nigel Simmons
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)Nigel Simmons
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)Nigel Simmons
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomialsNigel Simmons
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)Nigel Simmons
 
04 quadratic equations
04   quadratic equations04   quadratic equations
04 quadratic equationsprofashfaq
 
Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102nurulhanim
 
Algebra 2 benchmark 3 review
Algebra 2 benchmark 3 reviewAlgebra 2 benchmark 3 review
Algebra 2 benchmark 3 reviewjackieeee
 
11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)Nigel Simmons
 
Quadratic equation
Quadratic equation   Quadratic equation
Quadratic equation HOME!
 

Similar to 11X1 T10 07 sum and product of roots (2010) (20)

11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)11 x1 t10 07 sum & product of roots (2012)
11 x1 t10 07 sum & product of roots (2012)
 
X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)X2 t02 03 roots & coefficients (2012)
X2 t02 03 roots & coefficients (2012)
 
11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)11 x1 t01 08 completing the square (2013)
11 x1 t01 08 completing the square (2013)
 
11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)11X1 t01 08 completing the square (2012)
11X1 t01 08 completing the square (2012)
 
X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)X2 T02 03 roots & coefficients (2010)
X2 T02 03 roots & coefficients (2010)
 
11X1 T11 05 the discriminant
11X1 T11 05 the discriminant11X1 T11 05 the discriminant
11X1 T11 05 the discriminant
 
11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)11 x1 t10 05 the discriminant (2012)
11 x1 t10 05 the discriminant (2012)
 
11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)11X1 T11 05 the discriminant (2011)
11X1 T11 05 the discriminant (2011)
 
11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)11 x1 t10 07 sum & product of roots (2013)
11 x1 t10 07 sum & product of roots (2013)
 
11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)11 x1 t15 06 roots & coefficients (2013)
11 x1 t15 06 roots & coefficients (2013)
 
X2 T02 04 forming polynomials
X2 T02 04 forming polynomialsX2 T02 04 forming polynomials
X2 T02 04 forming polynomials
 
11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)11 x1 t10 05 the discriminant (2013)
11 x1 t10 05 the discriminant (2013)
 
0207 ch 2 day 7
0207 ch 2 day 70207 ch 2 day 7
0207 ch 2 day 7
 
1007 ch 10 day 7
1007 ch 10 day 71007 ch 10 day 7
1007 ch 10 day 7
 
04 quadratic equations
04   quadratic equations04   quadratic equations
04 quadratic equations
 
Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102Tutorial 2 -_sem_a102
Tutorial 2 -_sem_a102
 
Algebra practice paper
Algebra practice paperAlgebra practice paper
Algebra practice paper
 
Algebra 2 benchmark 3 review
Algebra 2 benchmark 3 reviewAlgebra 2 benchmark 3 review
Algebra 2 benchmark 3 review
 
11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)11 x1 t10 02 quadratics and other methods (2013)
11 x1 t10 02 quadratics and other methods (2013)
 
Quadratic equation
Quadratic equation   Quadratic equation
Quadratic equation
 

More from Nigel Simmons

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATENigel Simmons
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)Nigel Simmons
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)Nigel Simmons
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)Nigel Simmons
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)Nigel Simmons
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)Nigel Simmons
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)Nigel Simmons
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)Nigel Simmons
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)Nigel Simmons
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)Nigel Simmons
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)Nigel Simmons
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)Nigel Simmons
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)Nigel Simmons
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)Nigel Simmons
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)Nigel Simmons
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)Nigel Simmons
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)Nigel Simmons
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)Nigel Simmons
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremNigel Simmons
 

More from Nigel Simmons (20)

Goodbye slideshare UPDATE
Goodbye slideshare UPDATEGoodbye slideshare UPDATE
Goodbye slideshare UPDATE
 
Goodbye slideshare
Goodbye slideshareGoodbye slideshare
Goodbye slideshare
 
12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)12 x1 t02 02 integrating exponentials (2014)
12 x1 t02 02 integrating exponentials (2014)
 
11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)11 x1 t01 03 factorising (2014)
11 x1 t01 03 factorising (2014)
 
11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)11 x1 t01 02 binomial products (2014)
11 x1 t01 02 binomial products (2014)
 
12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)12 x1 t02 01 differentiating exponentials (2014)
12 x1 t02 01 differentiating exponentials (2014)
 
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 03 integrating derivative on function (2013)
 
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)12 x1 t01 02 differentiating logs (2013)
12 x1 t01 02 differentiating logs (2013)
 
12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)12 x1 t01 01 log laws (2013)
12 x1 t01 01 log laws (2013)
 
X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)X2 t02 04 forming polynomials (2013)
X2 t02 04 forming polynomials (2013)
 
11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)11 x1 t16 07 approximations (2013)
11 x1 t16 07 approximations (2013)
 
11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)11 x1 t16 06 derivative times function (2013)
11 x1 t16 06 derivative times function (2013)
 
11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)11 x1 t16 05 volumes (2013)
11 x1 t16 05 volumes (2013)
 
11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)11 x1 t16 04 areas (2013)
11 x1 t16 04 areas (2013)
 
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)11 x1 t16 03 indefinite integral (2013)
11 x1 t16 03 indefinite integral (2013)
 
11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)11 x1 t16 02 definite integral (2013)
11 x1 t16 02 definite integral (2013)
 
11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)11 x1 t16 01 area under curve (2013)
11 x1 t16 01 area under curve (2013)
 
X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)X2 t01 11 nth roots of unity (2012)
X2 t01 11 nth roots of unity (2012)
 
X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)X2 t01 10 complex & trig (2013)
X2 t01 10 complex & trig (2013)
 
X2 t01 09 de moivres theorem
X2 t01 09 de moivres theoremX2 t01 09 de moivres theorem
X2 t01 09 de moivres theorem
 

Recently uploaded

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfadityarao40181
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 

Recently uploaded (20)

EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Bikash Puri  Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Bikash Puri Delhi reach out to us at 🔝9953056974🔝
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Biting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdfBiting mechanism of poisonous snakes.pdf
Biting mechanism of poisonous snakes.pdf
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)————IMP.OF KSHARA ...
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 

11X1 T10 07 sum and product of roots (2010)

  • 1. Sum and Product of Roots
  • 2. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then;
  • 3. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then; ax 2  bx  c  a  x    x   
  • 4. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then; ax 2  bx  c  a  x    x    ax 2  bx  c  a  x 2   x   x   
  • 5. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then; ax 2  bx  c  a  x    x    ax 2  bx  c  a  x 2   x   x    b c x 2  x   x 2      x   a a
  • 6. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then; ax 2  bx  c  a  x    x    ax 2  bx  c  a  x 2   x   x    b c x 2  x   x 2      x   a a Thus
  • 7. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then; ax 2  bx  c  a  x    x    ax 2  bx  c  a  x 2   x   x    b c x 2  x   x 2      x   a a Thus b    (sum of roots) a
  • 8. Sum and Product of Roots If  and  are the roots of ax 2  bx  c  0, then; ax 2  bx  c  a  x    x    ax 2  bx  c  a  x 2   x   x    b c x 2  x   x 2      x   a a Thus b    (sum of roots) a c   (product of roots) a
  • 9. e.g. (i) Form a quadratic equation whose roots are;
  • 10. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3
  • 11. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3     1
  • 12. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3     1   6
  • 13. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3     1   6 x2  x  6  0
  • 14. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   6 x2  x  6  0
  • 15. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6 x2  x  6  0
  • 16. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1
  • 17. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1 x2  4x 1  0
  • 18. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1 x2  4x 1  0 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find;
  • 19. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1 x2  4x 1  0 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find; a)   
  • 20. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1 x2  4x 1  0 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find; b a)     a 3  2
  • 21. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1 x2  4x 1  0 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find; b b)  a)     a 3  2
  • 22. e.g. (i) Form a quadratic equation whose roots are; a ) 2 and  3 b) 2  5 and 2  5     1   4   6   4  5 x2  x  6  0  1 x2  4x 1  0 (ii ) If  and  are the roots of 2x 2  3 x  1  0, find; b b)   c a)     a a 3 1   2 2
  • 23. c)  2   2
  • 24. c)  2   2       2 2
  • 25. c)  2   2       2 2 1 2     2  3      2  2
  • 26. c)  2   2       2 2 1 2     2  3      2  2 9  1 4 13  4
  • 27. 1 1 c)          2  2 2 2 d)   1 2     2  3      2  2 9  1 4 13  4
  • 28. 1 1   c)          2 d)   2 2 2    1 2     2  3      2  2 9  1 4 13  4
  • 29. 1 1   c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  4
  • 30. 1 1   c)          2 d)   2 2 2     1  2 3 3     2  2  2  2 9 1  1 2 4 13  3  4
  • 31. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0
  • 32. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2
  • 33. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2   2  6
  • 34. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2   2  6 3  6   2
  • 35. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2   2  6   2   m 3  6   2
  • 36. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2   2  6   2   m 3  6 2 2  m   2
  • 37. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2   2  6   2   m 3  6 2 2  m 2  2   m 2   2
  • 38. 1   1 c)          2 d)   2 2 2    1 2     2  3 3      2  2  2 9 1  1 2 4 13  3  4 (iii ) Find the value of m if one root is double the other in x 2  6 x  m  0 Let the roots be  and 2   2  6   2   m 3  6 2 2  m 2  2   m 2   2 m8
  • 39. (iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the reciprocal of the other.
  • 40. (iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the reciprocal of the other. 1 Let the roots be  and 
  • 41. (iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the reciprocal of the other. 1 Let the roots be  and  1 1        2m  1
  • 42. (iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the reciprocal of the other. 1 Let the roots be  and  1 1        2m  1 1 1 2m  1
  • 43. (iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the reciprocal of the other. 1 Let the roots be  and  1 1        2m  1 1 1 2m  1 2m  1  1 2m  2 m 1
  • 44. (iv) Find the values of m in  2m  1 x 2  1  m  x  1  0, if one root is the reciprocal of the other. 1 Let the roots be  and  1 1        2m  1 1 1 2m  1 2m  1  1 2m  2 m 1 Exercise 8H; 3beh, 4bdf, 5, 6, 7abc i, 8, 10, 12, 13cd, 15, 18, 20, 21ac