SlideShare a Scribd company logo
1 of 44
Darcy’s law
Groundwater Hydraulics
Daene C. McKinney
Outline
• Properties – Aquifer Storage
• Darcy’s Law
• Hydraulic Conductivity
• Heterogeneity and Anisotropy
• Refraction of Streamlines
• Generalized Darcy’s Law
Aquifer Storage
• Storativity (S) - ability of
an aquifer to store water
• Change in volume of
stored water due to
change in piezometric
head.
• Volume of water released
(taken up) from aquifer
per unit decline (rise) in
piezometric head.
Unit area
Unit decline
in head
Released
water
Aquifer Storage
• Fluid Compressibility (b)
• Aquifer Compressibility (a)
• Confined Aquifer
– Water produced by 2
mechanisms
1. Aquifer compaction due to
increasing effective stress
2. Water expansion due to
decreasing pressure
• Unconfined aquifer
– Water produced by draining
pores
gV a
S = rg(a +fb)
S = Sy  
Unconfined Aquifer Storage
• Storativity of an
unconfined aquifer (Sy,
specific yield) depends
on pore space drainage.
• Some water will remain
in the pores - specific
retention, Sr
• Sy = f – Sr
Unit area
Unit decline
in head
Released
water
Porosity, Specific Yield, & Specific Retention
yr SS f
Confined Aquifer Storage
• Storativity of a confined
aquifer (Ss) depends on
both the compressibility
of the water (b) and the
compressibility of the
porous medium itself
(a).
Unit area
Unit decline
in head
Released
water
Example
• Storage in a sandstone aqufier
• f = 0.1, a = 4x10-7 ft2/lb, b = 2.8x10-8 ft2/lb, g = 62.4 lb/ft3
• ga  2.5x10-5 ft-1 and gbf  1.4x10-7 ft-1
• Solid  Fluid
• 2 orders of magnitude more storage in solid
• b = 100 ft, A = 10 mi2 = 279,000,000 ft2
S = Ss*b = 2.51x10-3
• If head in the aquifer is lowered 3 ft, what volume is released?
V = SAh = 2.1x10-6 ft3
Darcy
http://biosystems.okstate.edu/Darcy/English/index.htm
hL
z1
z2
P1/g
P2/g
Q
Q
L
v
Sand
column
Datum
plane
Area,A
h1 h2
Darcy’s Experiments
• Discharge is
Proportional to
– Area
– Head difference
Inversely proportional to
– Length
• Coefficient of
proportionality is
K = hydraulic conductivity
L
hh
AQ 21 
 Q = -KA
h2 -h1
L
Q = -KA
Dh
L
Darcy’s Data
0
5
10
15
20
25
30
35
0 5 10 15 20
Flow,Q(l/min)
Gradient (m/m)
Set 1, Series 1
Set 1, Series 2
Set 1, Series 3
Set 1, Series 4
Set 2
Hydraulic Conductivity
• Has dimensions of velocity [L/T]
• A combined property of the medium and the fluid
• Ease with which fluid moves through the medium
k = cd2 intrinsic permeability
ρ = density
µ = dynamic viscosity
g = specific weight
Porous medium property
Fluid properties
Hydraulic Conductivity
Groundwater Velocity
• q - Specific discharge
Discharge from a unit cross-
section area of aquifer
formation normal to the
direction of flow.
• v - Average velocity
Average velocity of fluid
flowing per unit cross-
sectional area where flow is
ONLY in pores. A
Q
q 
ff A
Qq
v 
dh = (h2 - h1) = (10 m – 12 m) = -2 m
J = dh/dx = (-2 m)/100 m = -0.02 m/m
q = -KJ = -(1x10-5 m/s) x (-0.02 m/m) = 2x10-7 m/s
Q = qA = (2x10-7 m/s) x 50 m2 = 1x10-5 m3/s
v = q/f = 2x10-7 m/s / 0.3 = 6.6x10-7 m/s
/”
h1 = 12m h2 = 12m
L = 100m
10m
5 m
FlowPorous medium
Example
K = 1x10-5 m/s
f = 0.3
Find q, Q, and v
Hydraulic Gradient
Gradient vector points in the direction of greatest rate of increase of h
Specific discharge vector points in the opposite direction of h
Well Pumping in an Aquifer
Aquifer (plan view)
y
h1 < h2 < h3
x
h1
h2 h3
Well, Q
q
h
Circular hydraulic
head contours
K, conductivity,
Is constant
Hydraulic gradient
Specific discharge
Validity of Darcy’s Law
• We ignored kinetic energy (low velocity)
• We assumed laminar flow
• We can calculate a Reynolds Number for the flow
q = Specific discharge
d10 = effective grain size diameter
• Darcy’s Law is valid for NR < 1 (maybe up to 10)
NR =
rqd10
m
Specific Discharge vs Head Gradient
q
Re = 10
Re = 1
Experiment
shows this
a
tan-1(a)= (1/K)
Darcy Law
predicts this
Estimating Conductivity
Kozeny – Carman Equation
• Kozeny used bundle of capillary tubes model to derive an
expression for permeability in terms of a constant (c) and
the grain size (d)
• So how do we get the parameters we need for this
equation?
2
2
3
2
)1(180
dcdk










f
f
Kozeny – Carman eq.
Measuring Conductivity
Permeameter Lab Measurements
• Darcy’s Law is useless unless we can measure the
parameters
• Set up a flow pattern such that
– We can derive a solution
– We can produce the flow pattern experimentally
• Hydraulic Conductivity is measured in the lab with a
permeameter
– Steady or unsteady 1-D flow
– Small cylindrical sample of medium
Measuring Conductivity
Constant Head Permeameter
• Flow is steady
• Sample: Right circular cylinder
– Length, L
– Area, A
• Constant head difference (h) is
applied across the sample
producing a flow rate Q
• Darcy’s Law
Continuous Flow
Outflow
Q
Overflow
A
Q = KA
b
L
Sample
head difference
flow
Measuring Conductivity
Falling Head Permeameter
• Flow rate in the tube must equal that in the column
Outflow
Q
Qcolumn = prcolumn
2
K
h
L
Qtube = prtube
2 dh
dt
rtube
rcolumn
æ
è
ç
ö
ø
÷
2
L
K
æ
è
ç
ö
ø
÷
dh
h
= dt
Sample
flow
Initial head
Final head
Heterogeneity and Anisotropy
• Homogeneous
– Properties same at every
point
• Heterogeneous
– Properties different at every
point
• Isotropic
– Properties same in every
direction
• Anisotropic
– Properties different in different
directions
• Often results from stratification
during sedimentation
verticalhorizontal KK 
www.usgs.gov
Example
• a = ???, b = 4.673x10-10 m2/N, g = 9798 N/m3,
• S = 6.8x10-4, b = 50 m, f = 0.25,
• Saquifer = gabb  ???
• Swater = gbfb
• % storage attributable to water expansion
•
• %storage attributable to aquifer expansion
•
Layered Porous Media
(Flow Parallel to Layers)
3K
2K
1K
W
b
1b
2b
3b
1Q
2Q
3Q
h
h2
h1
Piezometric surface
Q
datum
Layered Porous Media
(Flow Perpendicular to Layers)
Q
3K2K1K
b
Q
L
L3L2L1
h1
Piezometric surface
h2
h3
h
Example
• Find average K
Flow Q
Example
• Find average K
Flow Q
Anisotrpoic Porous Media
• General relationship between specific
discharge and hydraulic gradient
K is symmetric, i.e., Kij = Kji.
Principal Directions
• Often we can align the
coordinate axes in the
principal directions of
layering
• Horizontal conductivity
often order of
magnitude larger than
vertical conductivity
qx = -Kxx
¶h
¶x
qy = -Kyy
¶h
¶y
qz = -Kzz
¶h
¶z
qx
qy
qz
é
ë
ê
ê
ê
ù
û
ú
ú
ú
= -
Kxx 0 0
0 Kyy 0
0 0 Kzz
é
ë
ê
ê
ê
ù
û
ú
ú
ú
¶h
¶x
¶h
¶y
¶h
¶z
é
ë
ê
ê
ê
ê
ê
ê
ù
û
ú
ú
ú
ú
ú
ú
Kxx = Kyy = KHoriz >> Kzz = KVert
Groundwater Flow Direction
• Water level
measurements from
three wells can be used
to determine
groundwater flow
direction
Groundwater
Contours
Groundwater
Flow, Q
x
y
z
Head Gradient, J
hk
hj
hi
hi > hj > hk
h1(x1,y1)
h3(x3,y3)
h2(x2,y2)
Groundwater Flow Direction
Magnitude of head gradient =
Angle of head gradient =
Head gradient =
Groundwater Flow Direction
Set of linear equations can be solved for a,
b and c given (xi, hi, i=1, 2, 3)
3 points can be used to
define a plane
Equation of a plane in 2D
Groundwater
Flow, Q
x
y
z
Head Gradient, J
h1(x1,y1)
h3(x3,y3)
h2(x2,y2)
Groundwater Flow Direction
Negative of head gradient in x direction
Negative of head gradient in y direction
Magnitude of head gradient
Direction of flow
x
Well 2
(200 m, 340 m)
55.11 m
Well 1
(0 m,0 m)
57.79 m
Well 3
(190 m, -150 m)
52.80 m
Example
Find:
Magnitude of head gradient
Direction of flow
y
Contour Map of Groundwater Levels
• Contours of
groundwater level
(equipotential lines)
and Flowlines
(perpendicular to
equipotiential lines)
indicate areas of
recharge and discharge
Refraction of Streamlines
• Vertical component of
velocity must be the same
on both sides of interface
• Head continuity along
interface
• So
2K
1K
Upper Formation
12 KK 
y
x
1
2
2q
1q
Lower Formation
qy1
= qy2
q1 cosq1 = q2 sinq2
h1 = h2 @ y = 0
K1
K2
=
tanq1
tanq2
Summary
• Properties – Aquifer Storage
• Darcy’s Law
– Darcy’s Experiment
– Specific Discharge
– Average Velocity
– Validity of Darcy’s Law
• Hydraulic Conductivity
– Permeability
– Kozeny-Carman Equation
– Constant Head Permeameter
– Falling Head Permeameter
• Heterogeneity and Anisotropy
– Layered Porous Media
• Refraction of Streamlines
• Generalized Darcy’s Law
Darcy’s Law
Examples
Example
• a = ???, b = 4.673x10-10 m2/N, g = 9798 N/m3,
• S = 6.8x10-4, b = 50 m, f = 0.25,
• Saquifer = gabb  ???
• Swater = gbfb = (9798 N/m3)(4.673x10-10 m2/N)(0.25)(50 m)
• = 5.72x10-5
• percent of storage coefficient attributable to water expansion
• = Swater /S = 5.72x10-5 /6.8x10-4 *100 = 8.4%
• percent of storage coefficient attributable to aquifer
expansion
• = Saquifer /S = 1 – (Swater /S ) = 91.6%
Example
Flow Q
Kh,A =
K1z1 + K2z2
z1 + z2
=
(2.3 m / d)(15 m)+(12.8 m / d)(15 m)
(15 m)+(15 m)
= 7.55 m / d
ExampleFlow Q
Kv,A =
z1 + z2
z1
K1
+
z2
K2
=
(15 m)+(15 m)
15 m
2.3 m / d
+
15 m
12.8 m / d
= 3.90 m / d
x
 = -5.3 deg
Well 2
(200, 340)
55.11 m
Well 1
(0,0)
57.79 m
Well 3
(190, -150)
52.80 m
Example

More Related Content

What's hot

Ground water hydrology
Ground water hydrologyGround water hydrology
Ground water hydrologySandra4Smiley
 
Modelling of Seawater Intrusion
Modelling of Seawater IntrusionModelling of Seawater Intrusion
Modelling of Seawater IntrusionC. P. Kumar
 
Introduction to groundwater and aquifer
Introduction to groundwater and aquiferIntroduction to groundwater and aquifer
Introduction to groundwater and aquiferPutika Ashfar Khoiri
 
Darcy´s law
Darcy´s lawDarcy´s law
Darcy´s lawoscar
 
Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Amro Elfeki
 
Introduction to Groundwater Modelling
Introduction to Groundwater ModellingIntroduction to Groundwater Modelling
Introduction to Groundwater ModellingC. P. Kumar
 
Principles of groundwater flow
Principles of groundwater flowPrinciples of groundwater flow
Principles of groundwater flowFritz Lejarso
 
Design of tubewell
Design of tubewellDesign of tubewell
Design of tubewell1396Surjeet
 
GROUNDWATER PROVINCES IN INDIA
GROUNDWATER PROVINCES IN INDIAGROUNDWATER PROVINCES IN INDIA
GROUNDWATER PROVINCES IN INDIAharikrishnankch
 
HYDROLOGICAL PROPERTIES OF WATER BEARING STRATA
HYDROLOGICAL PROPERTIES OF WATER BEARING STRATA HYDROLOGICAL PROPERTIES OF WATER BEARING STRATA
HYDROLOGICAL PROPERTIES OF WATER BEARING STRATA Student
 

What's hot (20)

Ground Water Hydrology
Ground Water HydrologyGround Water Hydrology
Ground Water Hydrology
 
Chapter 3 Fetter Properties of Aquifers
Chapter 3 Fetter Properties of AquifersChapter 3 Fetter Properties of Aquifers
Chapter 3 Fetter Properties of Aquifers
 
Ground water hydrology
Ground water hydrologyGround water hydrology
Ground water hydrology
 
Groundwater Hydrology
Groundwater HydrologyGroundwater Hydrology
Groundwater Hydrology
 
Modelling of Seawater Intrusion
Modelling of Seawater IntrusionModelling of Seawater Intrusion
Modelling of Seawater Intrusion
 
Darcys law
Darcys lawDarcys law
Darcys law
 
Sediment Transport
Sediment TransportSediment Transport
Sediment Transport
 
Introduction to groundwater and aquifer
Introduction to groundwater and aquiferIntroduction to groundwater and aquifer
Introduction to groundwater and aquifer
 
Darcy´s law
Darcy´s lawDarcy´s law
Darcy´s law
 
Hydrograph
HydrographHydrograph
Hydrograph
 
Aquifers
AquifersAquifers
Aquifers
 
Aquifer
AquiferAquifer
Aquifer
 
Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)
 
Types of Aquifers
Types of AquifersTypes of Aquifers
Types of Aquifers
 
Introduction to Groundwater Modelling
Introduction to Groundwater ModellingIntroduction to Groundwater Modelling
Introduction to Groundwater Modelling
 
Principles of groundwater flow
Principles of groundwater flowPrinciples of groundwater flow
Principles of groundwater flow
 
Design of tubewell
Design of tubewellDesign of tubewell
Design of tubewell
 
Rock testing
Rock testingRock testing
Rock testing
 
GROUNDWATER PROVINCES IN INDIA
GROUNDWATER PROVINCES IN INDIAGROUNDWATER PROVINCES IN INDIA
GROUNDWATER PROVINCES IN INDIA
 
HYDROLOGICAL PROPERTIES OF WATER BEARING STRATA
HYDROLOGICAL PROPERTIES OF WATER BEARING STRATA HYDROLOGICAL PROPERTIES OF WATER BEARING STRATA
HYDROLOGICAL PROPERTIES OF WATER BEARING STRATA
 

Viewers also liked

Darcy´s law
Darcy´s lawDarcy´s law
Darcy´s lawNatalia
 
Basics of groundwater hydrology in geotechnical engineering oh ga01
Basics of groundwater hydrology in geotechnical engineering oh ga01Basics of groundwater hydrology in geotechnical engineering oh ga01
Basics of groundwater hydrology in geotechnical engineering oh ga01slideshareOmar
 
Chapter 4 groundwater hydrology
Chapter 4 groundwater hydrologyChapter 4 groundwater hydrology
Chapter 4 groundwater hydrologyMohammed Salahat
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in indiaEdhole.com
 
Mathematical Relations
Mathematical RelationsMathematical Relations
Mathematical Relationsmohull
 
مقرر ض جم 315
مقرر ض جم 315مقرر ض جم 315
مقرر ض جم 315Usama Waly
 
Chapter 1 historical perspective of water use
Chapter 1 historical perspective of water useChapter 1 historical perspective of water use
Chapter 1 historical perspective of water useMohammed Salahat
 
2. sistemas de produccion 2 reservorios
2. sistemas de produccion 2 reservorios2. sistemas de produccion 2 reservorios
2. sistemas de produccion 2 reservoriosGeorge Jim
 
2.FLOOD RISK ANALYSIS _PRADYUMNA MACHHKHAND - Copy
2.FLOOD RISK ANALYSIS _PRADYUMNA MACHHKHAND - Copy2.FLOOD RISK ANALYSIS _PRADYUMNA MACHHKHAND - Copy
2.FLOOD RISK ANALYSIS _PRADYUMNA MACHHKHAND - CopyPradyumna Machhkhand
 
Porosity Permeability Relationship in carbonate rock ppt
Porosity Permeability Relationship in carbonate rock pptPorosity Permeability Relationship in carbonate rock ppt
Porosity Permeability Relationship in carbonate rock pptAmar Gaikwad
 
Machine Routing And Channel Design Assignment
Machine Routing And Channel Design AssignmentMachine Routing And Channel Design Assignment
Machine Routing And Channel Design AssignmentBHAGCHAND MEENA
 

Viewers also liked (20)

Darcy´s law
Darcy´s lawDarcy´s law
Darcy´s law
 
Ley de darcy
Ley de darcyLey de darcy
Ley de darcy
 
Chapter 1: Darcy's law
Chapter 1: Darcy's lawChapter 1: Darcy's law
Chapter 1: Darcy's law
 
Basics of groundwater hydrology in geotechnical engineering oh ga01
Basics of groundwater hydrology in geotechnical engineering oh ga01Basics of groundwater hydrology in geotechnical engineering oh ga01
Basics of groundwater hydrology in geotechnical engineering oh ga01
 
Chapter 4 groundwater hydrology
Chapter 4 groundwater hydrologyChapter 4 groundwater hydrology
Chapter 4 groundwater hydrology
 
Ground Water (Unit-V)
Ground Water (Unit-V)Ground Water (Unit-V)
Ground Water (Unit-V)
 
Mba admission in india
Mba admission in indiaMba admission in india
Mba admission in india
 
Mathematical Relations
Mathematical RelationsMathematical Relations
Mathematical Relations
 
Chapter 4 Fetter Principles of groundwater flow
Chapter 4 Fetter Principles of groundwater flowChapter 4 Fetter Principles of groundwater flow
Chapter 4 Fetter Principles of groundwater flow
 
Aquifer test and estimation
Aquifer test and estimationAquifer test and estimation
Aquifer test and estimation
 
مقرر ض جم 315
مقرر ض جم 315مقرر ض جم 315
مقرر ض جم 315
 
darcys law
darcys lawdarcys law
darcys law
 
Groundwater 1
Groundwater 1Groundwater 1
Groundwater 1
 
Chapter 1 historical perspective of water use
Chapter 1 historical perspective of water useChapter 1 historical perspective of water use
Chapter 1 historical perspective of water use
 
2. sistemas de produccion 2 reservorios
2. sistemas de produccion 2 reservorios2. sistemas de produccion 2 reservorios
2. sistemas de produccion 2 reservorios
 
Particle Technology- Fluid Flow in Porous Media
Particle Technology- Fluid Flow in Porous MediaParticle Technology- Fluid Flow in Porous Media
Particle Technology- Fluid Flow in Porous Media
 
2.FLOOD RISK ANALYSIS _PRADYUMNA MACHHKHAND - Copy
2.FLOOD RISK ANALYSIS _PRADYUMNA MACHHKHAND - Copy2.FLOOD RISK ANALYSIS _PRADYUMNA MACHHKHAND - Copy
2.FLOOD RISK ANALYSIS _PRADYUMNA MACHHKHAND - Copy
 
Porosity Permeability Relationship in carbonate rock ppt
Porosity Permeability Relationship in carbonate rock pptPorosity Permeability Relationship in carbonate rock ppt
Porosity Permeability Relationship in carbonate rock ppt
 
Machine Routing And Channel Design Assignment
Machine Routing And Channel Design AssignmentMachine Routing And Channel Design Assignment
Machine Routing And Channel Design Assignment
 
Groundwater hydrology
Groundwater hydrologyGroundwater hydrology
Groundwater hydrology
 

Similar to 03 darcys law

03 darcys law
03 darcys law03 darcys law
03 darcys lawhaiifa25
 
3 - PropAquifers.pptx Hydrogeology Geology
3 - PropAquifers.pptx Hydrogeology Geology3 - PropAquifers.pptx Hydrogeology Geology
3 - PropAquifers.pptx Hydrogeology GeologyMonuKumar183095
 
hydro chapter_7_groundwater_by louy Al hami
hydro chapter_7_groundwater_by louy Al hami hydro chapter_7_groundwater_by louy Al hami
hydro chapter_7_groundwater_by louy Al hami Louy Alhamy
 
SOIL PERMEABILITY PPT
SOIL PERMEABILITY PPTSOIL PERMEABILITY PPT
SOIL PERMEABILITY PPTJISMI JACOB
 
Drainage Engineering (Darcy's law)
Drainage Engineering (Darcy's law)Drainage Engineering (Darcy's law)
Drainage Engineering (Darcy's law)Latif Hyder Wadho
 
Chapter 4 Hydraulic Characteristics of Soil.pdf
Chapter 4  Hydraulic Characteristics of Soil.pdfChapter 4  Hydraulic Characteristics of Soil.pdf
Chapter 4 Hydraulic Characteristics of Soil.pdfmatiozil2436
 
radial flow pumping test
radial flow pumping testradial flow pumping test
radial flow pumping testFatonah Munsai
 
Modeling dispersion under unsteady groundwater flow conditions
Modeling dispersion under unsteady groundwater flow conditionsModeling dispersion under unsteady groundwater flow conditions
Modeling dispersion under unsteady groundwater flow conditionsAmro Elfeki
 
Bentuk bentang alam fluvial, materi kuliah semester 2
Bentuk bentang alam fluvial, materi kuliah semester 2Bentuk bentang alam fluvial, materi kuliah semester 2
Bentuk bentang alam fluvial, materi kuliah semester 2Turyadi3
 
Permeability of Soils & Seepage Analysis
Permeability of Soils & Seepage AnalysisPermeability of Soils & Seepage Analysis
Permeability of Soils & Seepage Analysiswasim shaikh
 
Introduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative PermeabilityIntroduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative PermeabilityM.T.H Group
 
C2VSim Workshop 4 - C2VSim Groundwater Representation
C2VSim Workshop 4 - C2VSim Groundwater RepresentationC2VSim Workshop 4 - C2VSim Groundwater Representation
C2VSim Workshop 4 - C2VSim Groundwater RepresentationCharlie Brush
 

Similar to 03 darcys law (20)

03 darcys law
03 darcys law03 darcys law
03 darcys law
 
Ch02intro
Ch02introCh02intro
Ch02intro
 
Permeability
Permeability Permeability
Permeability
 
L2 darcys law
L2 darcys lawL2 darcys law
L2 darcys law
 
05 groundwater flow equations
05 groundwater flow equations05 groundwater flow equations
05 groundwater flow equations
 
3 - PropAquifers.pptx Hydrogeology Geology
3 - PropAquifers.pptx Hydrogeology Geology3 - PropAquifers.pptx Hydrogeology Geology
3 - PropAquifers.pptx Hydrogeology Geology
 
hydro chapter_7_groundwater_by louy Al hami
hydro chapter_7_groundwater_by louy Al hami hydro chapter_7_groundwater_by louy Al hami
hydro chapter_7_groundwater_by louy Al hami
 
SOIL PERMEABILITY PPT
SOIL PERMEABILITY PPTSOIL PERMEABILITY PPT
SOIL PERMEABILITY PPT
 
Majid Gw Final Ppt
Majid Gw Final PptMajid Gw Final Ppt
Majid Gw Final Ppt
 
Drainage Engineering (Darcy's law)
Drainage Engineering (Darcy's law)Drainage Engineering (Darcy's law)
Drainage Engineering (Darcy's law)
 
Chapter 4 Hydraulic Characteristics of Soil.pdf
Chapter 4  Hydraulic Characteristics of Soil.pdfChapter 4  Hydraulic Characteristics of Soil.pdf
Chapter 4 Hydraulic Characteristics of Soil.pdf
 
4 - PrinGW.pptx
4 - PrinGW.pptx4 - PrinGW.pptx
4 - PrinGW.pptx
 
radial flow pumping test
radial flow pumping testradial flow pumping test
radial flow pumping test
 
Modeling dispersion under unsteady groundwater flow conditions
Modeling dispersion under unsteady groundwater flow conditionsModeling dispersion under unsteady groundwater flow conditions
Modeling dispersion under unsteady groundwater flow conditions
 
2012 pe review__hyd_
2012 pe review__hyd_2012 pe review__hyd_
2012 pe review__hyd_
 
Darcy law
Darcy lawDarcy law
Darcy law
 
Bentuk bentang alam fluvial, materi kuliah semester 2
Bentuk bentang alam fluvial, materi kuliah semester 2Bentuk bentang alam fluvial, materi kuliah semester 2
Bentuk bentang alam fluvial, materi kuliah semester 2
 
Permeability of Soils & Seepage Analysis
Permeability of Soils & Seepage AnalysisPermeability of Soils & Seepage Analysis
Permeability of Soils & Seepage Analysis
 
Introduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative PermeabilityIntroduction Effective Permeability & Relative Permeability
Introduction Effective Permeability & Relative Permeability
 
C2VSim Workshop 4 - C2VSim Groundwater Representation
C2VSim Workshop 4 - C2VSim Groundwater RepresentationC2VSim Workshop 4 - C2VSim Groundwater Representation
C2VSim Workshop 4 - C2VSim Groundwater Representation
 

More from Usama Waly

تخطيط الموارد البشرية بالتطبيق على المؤسسات الخيرية
تخطيط الموارد البشرية بالتطبيق على المؤسسات الخيريةتخطيط الموارد البشرية بالتطبيق على المؤسسات الخيرية
تخطيط الموارد البشرية بالتطبيق على المؤسسات الخيريةUsama Waly
 
المواصفات الفنية للابار و وحدة الضخ
المواصفات الفنية للابار و وحدة الضخالمواصفات الفنية للابار و وحدة الضخ
المواصفات الفنية للابار و وحدة الضخUsama Waly
 
الامداد المستدام للمياه 1 2
الامداد المستدام للمياه 1 2الامداد المستدام للمياه 1 2
الامداد المستدام للمياه 1 2Usama Waly
 
الامداد المستدام للمياه 1
الامداد المستدام للمياه 1الامداد المستدام للمياه 1
الامداد المستدام للمياه 1Usama Waly
 
Word 2007 mustafa_issma3el
Word 2007 mustafa_issma3elWord 2007 mustafa_issma3el
Word 2007 mustafa_issma3elUsama Waly
 
Random 140624014545-phpapp01 2
Random 140624014545-phpapp01 2Random 140624014545-phpapp01 2
Random 140624014545-phpapp01 2Usama Waly
 
Random 140624014545-phpapp01
Random 140624014545-phpapp01Random 140624014545-phpapp01
Random 140624014545-phpapp01Usama Waly
 
Random 120923121945-phpapp01
Random 120923121945-phpapp01Random 120923121945-phpapp01
Random 120923121945-phpapp01Usama Waly
 
Quality management-system-procedure
Quality management-system-procedureQuality management-system-procedure
Quality management-system-procedureUsama Waly
 
Pumping tests, epa guidance
Pumping tests, epa guidancePumping tests, epa guidance
Pumping tests, epa guidanceUsama Waly
 
Ohsas18001 2007checklist-150527072502-lva1-app6892
Ohsas18001 2007checklist-150527072502-lva1-app6892Ohsas18001 2007checklist-150527072502-lva1-app6892
Ohsas18001 2007checklist-150527072502-lva1-app6892Usama Waly
 
List of procedures_in_ims_procedure_manual_kit-1
List of procedures_in_ims_procedure_manual_kit-1List of procedures_in_ims_procedure_manual_kit-1
List of procedures_in_ims_procedure_manual_kit-1Usama Waly
 
Le cycle d-eau
Le cycle d-eauLe cycle d-eau
Le cycle d-eauUsama Waly
 
Isostandard190112002arabic 12672451615219-phpapp02
Isostandard190112002arabic 12672451615219-phpapp02Isostandard190112002arabic 12672451615219-phpapp02
Isostandard190112002arabic 12672451615219-phpapp02Usama Waly
 
Iso14001checklistarabic 150526101702-lva1-app6892
Iso14001checklistarabic 150526101702-lva1-app6892Iso14001checklistarabic 150526101702-lva1-app6892
Iso14001checklistarabic 150526101702-lva1-app6892Usama Waly
 
Iso14001 2015-150217070515-conversion-gate02
Iso14001 2015-150217070515-conversion-gate02Iso14001 2015-150217070515-conversion-gate02
Iso14001 2015-150217070515-conversion-gate02Usama Waly
 
Iso9001 2015-141224101232-conversion-gate01 2
Iso9001 2015-141224101232-conversion-gate01 2Iso9001 2015-141224101232-conversion-gate01 2
Iso9001 2015-141224101232-conversion-gate01 2Usama Waly
 

More from Usama Waly (20)

تخطيط الموارد البشرية بالتطبيق على المؤسسات الخيرية
تخطيط الموارد البشرية بالتطبيق على المؤسسات الخيريةتخطيط الموارد البشرية بالتطبيق على المؤسسات الخيرية
تخطيط الموارد البشرية بالتطبيق على المؤسسات الخيرية
 
المواصفات الفنية للابار و وحدة الضخ
المواصفات الفنية للابار و وحدة الضخالمواصفات الفنية للابار و وحدة الضخ
المواصفات الفنية للابار و وحدة الضخ
 
الامداد المستدام للمياه 1 2
الامداد المستدام للمياه 1 2الامداد المستدام للمياه 1 2
الامداد المستدام للمياه 1 2
 
الامداد المستدام للمياه 1
الامداد المستدام للمياه 1الامداد المستدام للمياه 1
الامداد المستدام للمياه 1
 
Wp20 03
Wp20 03Wp20 03
Wp20 03
 
Word 2007 mustafa_issma3el
Word 2007 mustafa_issma3elWord 2007 mustafa_issma3el
Word 2007 mustafa_issma3el
 
Two
TwoTwo
Two
 
Sopaqu
SopaquSopaqu
Sopaqu
 
Random 140624014545-phpapp01 2
Random 140624014545-phpapp01 2Random 140624014545-phpapp01 2
Random 140624014545-phpapp01 2
 
Random 140624014545-phpapp01
Random 140624014545-phpapp01Random 140624014545-phpapp01
Random 140624014545-phpapp01
 
Random 120923121945-phpapp01
Random 120923121945-phpapp01Random 120923121945-phpapp01
Random 120923121945-phpapp01
 
Quality management-system-procedure
Quality management-system-procedureQuality management-system-procedure
Quality management-system-procedure
 
Pumping tests, epa guidance
Pumping tests, epa guidancePumping tests, epa guidance
Pumping tests, epa guidance
 
Ohsas18001 2007checklist-150527072502-lva1-app6892
Ohsas18001 2007checklist-150527072502-lva1-app6892Ohsas18001 2007checklist-150527072502-lva1-app6892
Ohsas18001 2007checklist-150527072502-lva1-app6892
 
List of procedures_in_ims_procedure_manual_kit-1
List of procedures_in_ims_procedure_manual_kit-1List of procedures_in_ims_procedure_manual_kit-1
List of procedures_in_ims_procedure_manual_kit-1
 
Le cycle d-eau
Le cycle d-eauLe cycle d-eau
Le cycle d-eau
 
Isostandard190112002arabic 12672451615219-phpapp02
Isostandard190112002arabic 12672451615219-phpapp02Isostandard190112002arabic 12672451615219-phpapp02
Isostandard190112002arabic 12672451615219-phpapp02
 
Iso14001checklistarabic 150526101702-lva1-app6892
Iso14001checklistarabic 150526101702-lva1-app6892Iso14001checklistarabic 150526101702-lva1-app6892
Iso14001checklistarabic 150526101702-lva1-app6892
 
Iso14001 2015-150217070515-conversion-gate02
Iso14001 2015-150217070515-conversion-gate02Iso14001 2015-150217070515-conversion-gate02
Iso14001 2015-150217070515-conversion-gate02
 
Iso9001 2015-141224101232-conversion-gate01 2
Iso9001 2015-141224101232-conversion-gate01 2Iso9001 2015-141224101232-conversion-gate01 2
Iso9001 2015-141224101232-conversion-gate01 2
 

03 darcys law

  • 2. Outline • Properties – Aquifer Storage • Darcy’s Law • Hydraulic Conductivity • Heterogeneity and Anisotropy • Refraction of Streamlines • Generalized Darcy’s Law
  • 3. Aquifer Storage • Storativity (S) - ability of an aquifer to store water • Change in volume of stored water due to change in piezometric head. • Volume of water released (taken up) from aquifer per unit decline (rise) in piezometric head. Unit area Unit decline in head Released water
  • 4. Aquifer Storage • Fluid Compressibility (b) • Aquifer Compressibility (a) • Confined Aquifer – Water produced by 2 mechanisms 1. Aquifer compaction due to increasing effective stress 2. Water expansion due to decreasing pressure • Unconfined aquifer – Water produced by draining pores gV a S = rg(a +fb) S = Sy  
  • 5. Unconfined Aquifer Storage • Storativity of an unconfined aquifer (Sy, specific yield) depends on pore space drainage. • Some water will remain in the pores - specific retention, Sr • Sy = f – Sr Unit area Unit decline in head Released water
  • 6. Porosity, Specific Yield, & Specific Retention yr SS f
  • 7. Confined Aquifer Storage • Storativity of a confined aquifer (Ss) depends on both the compressibility of the water (b) and the compressibility of the porous medium itself (a). Unit area Unit decline in head Released water
  • 8. Example • Storage in a sandstone aqufier • f = 0.1, a = 4x10-7 ft2/lb, b = 2.8x10-8 ft2/lb, g = 62.4 lb/ft3 • ga  2.5x10-5 ft-1 and gbf  1.4x10-7 ft-1 • Solid  Fluid • 2 orders of magnitude more storage in solid • b = 100 ft, A = 10 mi2 = 279,000,000 ft2 S = Ss*b = 2.51x10-3 • If head in the aquifer is lowered 3 ft, what volume is released? V = SAh = 2.1x10-6 ft3
  • 10. hL z1 z2 P1/g P2/g Q Q L v Sand column Datum plane Area,A h1 h2 Darcy’s Experiments • Discharge is Proportional to – Area – Head difference Inversely proportional to – Length • Coefficient of proportionality is K = hydraulic conductivity L hh AQ 21   Q = -KA h2 -h1 L Q = -KA Dh L
  • 11. Darcy’s Data 0 5 10 15 20 25 30 35 0 5 10 15 20 Flow,Q(l/min) Gradient (m/m) Set 1, Series 1 Set 1, Series 2 Set 1, Series 3 Set 1, Series 4 Set 2
  • 12. Hydraulic Conductivity • Has dimensions of velocity [L/T] • A combined property of the medium and the fluid • Ease with which fluid moves through the medium k = cd2 intrinsic permeability ρ = density µ = dynamic viscosity g = specific weight Porous medium property Fluid properties
  • 14. Groundwater Velocity • q - Specific discharge Discharge from a unit cross- section area of aquifer formation normal to the direction of flow. • v - Average velocity Average velocity of fluid flowing per unit cross- sectional area where flow is ONLY in pores. A Q q  ff A Qq v 
  • 15. dh = (h2 - h1) = (10 m – 12 m) = -2 m J = dh/dx = (-2 m)/100 m = -0.02 m/m q = -KJ = -(1x10-5 m/s) x (-0.02 m/m) = 2x10-7 m/s Q = qA = (2x10-7 m/s) x 50 m2 = 1x10-5 m3/s v = q/f = 2x10-7 m/s / 0.3 = 6.6x10-7 m/s /” h1 = 12m h2 = 12m L = 100m 10m 5 m FlowPorous medium Example K = 1x10-5 m/s f = 0.3 Find q, Q, and v
  • 16. Hydraulic Gradient Gradient vector points in the direction of greatest rate of increase of h Specific discharge vector points in the opposite direction of h
  • 17. Well Pumping in an Aquifer Aquifer (plan view) y h1 < h2 < h3 x h1 h2 h3 Well, Q q h Circular hydraulic head contours K, conductivity, Is constant Hydraulic gradient Specific discharge
  • 18. Validity of Darcy’s Law • We ignored kinetic energy (low velocity) • We assumed laminar flow • We can calculate a Reynolds Number for the flow q = Specific discharge d10 = effective grain size diameter • Darcy’s Law is valid for NR < 1 (maybe up to 10) NR = rqd10 m
  • 19. Specific Discharge vs Head Gradient q Re = 10 Re = 1 Experiment shows this a tan-1(a)= (1/K) Darcy Law predicts this
  • 20. Estimating Conductivity Kozeny – Carman Equation • Kozeny used bundle of capillary tubes model to derive an expression for permeability in terms of a constant (c) and the grain size (d) • So how do we get the parameters we need for this equation? 2 2 3 2 )1(180 dcdk           f f Kozeny – Carman eq.
  • 21. Measuring Conductivity Permeameter Lab Measurements • Darcy’s Law is useless unless we can measure the parameters • Set up a flow pattern such that – We can derive a solution – We can produce the flow pattern experimentally • Hydraulic Conductivity is measured in the lab with a permeameter – Steady or unsteady 1-D flow – Small cylindrical sample of medium
  • 22. Measuring Conductivity Constant Head Permeameter • Flow is steady • Sample: Right circular cylinder – Length, L – Area, A • Constant head difference (h) is applied across the sample producing a flow rate Q • Darcy’s Law Continuous Flow Outflow Q Overflow A Q = KA b L Sample head difference flow
  • 23. Measuring Conductivity Falling Head Permeameter • Flow rate in the tube must equal that in the column Outflow Q Qcolumn = prcolumn 2 K h L Qtube = prtube 2 dh dt rtube rcolumn æ è ç ö ø ÷ 2 L K æ è ç ö ø ÷ dh h = dt Sample flow Initial head Final head
  • 24. Heterogeneity and Anisotropy • Homogeneous – Properties same at every point • Heterogeneous – Properties different at every point • Isotropic – Properties same in every direction • Anisotropic – Properties different in different directions • Often results from stratification during sedimentation verticalhorizontal KK  www.usgs.gov
  • 25. Example • a = ???, b = 4.673x10-10 m2/N, g = 9798 N/m3, • S = 6.8x10-4, b = 50 m, f = 0.25, • Saquifer = gabb  ??? • Swater = gbfb • % storage attributable to water expansion • • %storage attributable to aquifer expansion •
  • 26. Layered Porous Media (Flow Parallel to Layers) 3K 2K 1K W b 1b 2b 3b 1Q 2Q 3Q h h2 h1 Piezometric surface Q datum
  • 27. Layered Porous Media (Flow Perpendicular to Layers) Q 3K2K1K b Q L L3L2L1 h1 Piezometric surface h2 h3 h
  • 30. Anisotrpoic Porous Media • General relationship between specific discharge and hydraulic gradient K is symmetric, i.e., Kij = Kji.
  • 31. Principal Directions • Often we can align the coordinate axes in the principal directions of layering • Horizontal conductivity often order of magnitude larger than vertical conductivity qx = -Kxx ¶h ¶x qy = -Kyy ¶h ¶y qz = -Kzz ¶h ¶z qx qy qz é ë ê ê ê ù û ú ú ú = - Kxx 0 0 0 Kyy 0 0 0 Kzz é ë ê ê ê ù û ú ú ú ¶h ¶x ¶h ¶y ¶h ¶z é ë ê ê ê ê ê ê ù û ú ú ú ú ú ú Kxx = Kyy = KHoriz >> Kzz = KVert
  • 32. Groundwater Flow Direction • Water level measurements from three wells can be used to determine groundwater flow direction Groundwater Contours Groundwater Flow, Q x y z Head Gradient, J hk hj hi hi > hj > hk h1(x1,y1) h3(x3,y3) h2(x2,y2)
  • 33. Groundwater Flow Direction Magnitude of head gradient = Angle of head gradient = Head gradient =
  • 34. Groundwater Flow Direction Set of linear equations can be solved for a, b and c given (xi, hi, i=1, 2, 3) 3 points can be used to define a plane Equation of a plane in 2D Groundwater Flow, Q x y z Head Gradient, J h1(x1,y1) h3(x3,y3) h2(x2,y2)
  • 35. Groundwater Flow Direction Negative of head gradient in x direction Negative of head gradient in y direction Magnitude of head gradient Direction of flow
  • 36. x Well 2 (200 m, 340 m) 55.11 m Well 1 (0 m,0 m) 57.79 m Well 3 (190 m, -150 m) 52.80 m Example Find: Magnitude of head gradient Direction of flow y
  • 37. Contour Map of Groundwater Levels • Contours of groundwater level (equipotential lines) and Flowlines (perpendicular to equipotiential lines) indicate areas of recharge and discharge
  • 38. Refraction of Streamlines • Vertical component of velocity must be the same on both sides of interface • Head continuity along interface • So 2K 1K Upper Formation 12 KK  y x 1 2 2q 1q Lower Formation qy1 = qy2 q1 cosq1 = q2 sinq2 h1 = h2 @ y = 0 K1 K2 = tanq1 tanq2
  • 39. Summary • Properties – Aquifer Storage • Darcy’s Law – Darcy’s Experiment – Specific Discharge – Average Velocity – Validity of Darcy’s Law • Hydraulic Conductivity – Permeability – Kozeny-Carman Equation – Constant Head Permeameter – Falling Head Permeameter • Heterogeneity and Anisotropy – Layered Porous Media • Refraction of Streamlines • Generalized Darcy’s Law
  • 41. Example • a = ???, b = 4.673x10-10 m2/N, g = 9798 N/m3, • S = 6.8x10-4, b = 50 m, f = 0.25, • Saquifer = gabb  ??? • Swater = gbfb = (9798 N/m3)(4.673x10-10 m2/N)(0.25)(50 m) • = 5.72x10-5 • percent of storage coefficient attributable to water expansion • = Swater /S = 5.72x10-5 /6.8x10-4 *100 = 8.4% • percent of storage coefficient attributable to aquifer expansion • = Saquifer /S = 1 – (Swater /S ) = 91.6%
  • 42. Example Flow Q Kh,A = K1z1 + K2z2 z1 + z2 = (2.3 m / d)(15 m)+(12.8 m / d)(15 m) (15 m)+(15 m) = 7.55 m / d
  • 43. ExampleFlow Q Kv,A = z1 + z2 z1 K1 + z2 K2 = (15 m)+(15 m) 15 m 2.3 m / d + 15 m 12.8 m / d = 3.90 m / d
  • 44. x  = -5.3 deg Well 2 (200, 340) 55.11 m Well 1 (0,0) 57.79 m Well 3 (190, -150) 52.80 m Example