This document discusses dimensional analysis and similitude. It defines dimensional analysis as the study of relations between physical quantities based on their units and dimensions. Dimensional analysis involves identifying the base quantities like length, mass, time that physical quantities are measured in. Dimensional analysis is useful for checking equations for dimensional homogeneity and developing scaling laws. The document discusses Rayleigh's and Buckingham π theorem methods of dimensional analysis. It also discusses the three types of similitude required for model analysis: geometric, kinematic and dynamic similitude. Finally, it defines several common dimensionless numbers like Reynolds number, Froude number, Euler number, Weber number and Mach number in terms of dominant forces.