SlideShare a Scribd company logo
1 of 22
Concept Kit:PWM Buck Converter Average Model All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1 Pre Version
Contents Concept of Simulation Buck Converter Circuit Switches Filter & Load 4.1 Inductor 4.2 Capacitor PWM Controller 5.1 Error Amp. 5.2 PWM Stabilizing the Converter (Example) Load Transient Response Simulation (Example) Type 2 Compensator Calculator Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 2
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3 1.Concept of Simulation Block Diagram: Power Switches Averaged Buck Switch Model Filter & Load Parameter: ,[object Object]
C
ESR
RloadPWM Controller  (Voltage Mode Control) Parameter: ,[object Object]
VREFVOUT VREF Models:
2.Buck Converter Circuit All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4 Power Switches Filter & Load PWM Controller
3.Switches  ,[object Object]
Transfer function of the model is vout = d  vin ,[object Object],iin = d  iout All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 5
4.1 Filter & Load: Inductor All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 6 Inductor Value The output inductor value is selected to set the converter to work in CCM (Continuous Current Mode) or DCM (Discontinuous Current Mode). Calculated by Where LCCM is the inductor that make the converter to work in CCM. VI,max is input maximum voltage RL(max) is load resistance at the minimum output current (IOUT) fosc is switching frequency (1)
4.2 Filter & Load: Capacitor All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 7 Capacitor Value The minimum allowable output capacitor value should be determined by Where IL, RIPPLE is an inductor ripple current, chosen to be 25% of IOUT. VO,RIPPLE is an output ripple voltage. fosc is switching frequency ,[object Object],(2) (3)
[object Object],5.1 PWM Controller: Error Amp.  All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 8 Vo (4) Error Amp.
5.2 PWM Controller: PWM All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 9 The PWM block is used to transfer the error voltage (between FB and REF) to be the duty cycle. The error voltage (vcomp) will be compared with sawtooth signal ( amplitude = VP ) to create the pulse that the duty cycle depends on the vcomp Transfer function of the PWM block is  d = vcomp/ VP GPWM = 1/VP VP Duty cycle (d) is a value from 0 to 1
[object Object],The purpose of the compensator G(s)is to tailor the converter loop gain (frequency response) to make it stable when operated in closed-loop conditions. 5.3 PWM Controller: Compensator All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 10 H(s) G(s) GPWM
6.Stablilizing the Converter  (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 11 Specification: VOUT = 5V VIN = 7 ~ 40V ILOAD = 0.2 ~ 1A L = 330uH,  C = 330uF (ESR = 100m), Rupper = 3.1k, Rlower = 1k, PWM Controller: fOSC = 52kHz VP = 2.5V VREF = 1.23V Task: to find out the element of the Type 2 compensator ( R2, C1, and C2 ) G(s) e.g. Characteristics from National Semiconductor Corp. IC: LM2575
6.Stablilizing the Converter  (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 12 The element of the Type 2 compensator ( R2, C1, and C2 ), that stabilize the converter, can be extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the average models (ac models). Step2 Set C1=1kF, C2=1fF, and R2= calculated value (Rupper//Rlower) as the initial values. Step1 Open the loop with LoL=1kH and CoL=1kF then inject the ac signal to generate Bode plot.
6.Stablilizing the Converter  (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 13 Step3 Select a crossover frequency (fc < fosc/4), for this example, 10kHz is selected. Then complete the table. Calcuted value of the Rupper//Rlower
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 14 6.Stablilizing the Converter  (Example)  If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can be approximate from the characteristics below. from  d = vcomp/ VP Suppose that the error amp. gain is 100. vcomp =gain (-vFB)then  d = (100   (-vFB) ) / VP From the graph on the left, vFB = -25mV 	 VP = (100  (-vFB) ) / d 	VP ≈ (100  (-(-25mV)) ) / 1 	     ≈ 2.5V vFB = -25mV d = 1 (100%) LM2575: Feedback Voltage vs. Duty Cycle
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 15 6.Stablilizing the Converter  (Example) Gain: T(s) = H(s)GPWM Step4 Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table . Phase atfc Tip: To bring cursor to the fc = 10kHz  type “ sfxv(10k) ” in Search Command. Cursor Search
6.Stablilizing the Converter  (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 16 Step5 Select the desired amount of phase margin you need at fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this example K=25 is chosen for Phase margin = 46. R2, C1, and C2 are calculated  K Factor, introduce by Dean Venable, enable the circuit designer to choose a loop cross-over frequency and phase margin, and then determine the necessary component values to achieve these results from a few straight-forward algebraic equations.
6.Stablilizing the Converter  (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 17 The element of the Type 2 compensator ( R2, C1, and C2 ) extraction can be completed by  Type 2 Compensator Calculator (Excel sheet) with the converter average models (ac models) and open-loop simulation. The calculated values of the type 2 elements are, C1=0.778nF, C2=21.6pF, and R2=122.780k. *Analysis directives:  .AC DEC 100 0.1 10MEG

More Related Content

What's hot

Psim tutorial- tiristor
Psim tutorial- tiristorPsim tutorial- tiristor
Psim tutorial- tiristor
SENAI
 

What's hot (20)

220kv substation
220kv substation220kv substation
220kv substation
 
Dc–Dc converters
Dc–Dc convertersDc–Dc converters
Dc–Dc converters
 
Lightning arresters
Lightning arrestersLightning arresters
Lightning arresters
 
Inverter ppt
Inverter pptInverter ppt
Inverter ppt
 
Topic 2 - Switch Realization.pptx
Topic 2 - Switch Realization.pptxTopic 2 - Switch Realization.pptx
Topic 2 - Switch Realization.pptx
 
Module 1 introduction to Power Electronics
Module 1 introduction to Power ElectronicsModule 1 introduction to Power Electronics
Module 1 introduction to Power Electronics
 
A Two-Input Dual Active Bridge Converter for a Smart User Network Using Integ...
A Two-Input Dual Active Bridge Converter for a Smart User Network Using Integ...A Two-Input Dual Active Bridge Converter for a Smart User Network Using Integ...
A Two-Input Dual Active Bridge Converter for a Smart User Network Using Integ...
 
Buck boost converter
Buck boost converterBuck boost converter
Buck boost converter
 
Operational Amplifier Part 1
Operational Amplifier Part 1Operational Amplifier Part 1
Operational Amplifier Part 1
 
Lecture 8 bjt_1
Lecture 8 bjt_1Lecture 8 bjt_1
Lecture 8 bjt_1
 
Emitter bias method of transistor biasing
Emitter bias method of transistor biasingEmitter bias method of transistor biasing
Emitter bias method of transistor biasing
 
Types of snubber circuits | Design of snubber for flyback converter | Simulat...
Types of snubber circuits | Design of snubber for flyback converter | Simulat...Types of snubber circuits | Design of snubber for flyback converter | Simulat...
Types of snubber circuits | Design of snubber for flyback converter | Simulat...
 
Boost converter
Boost converterBoost converter
Boost converter
 
Rectifier
RectifierRectifier
Rectifier
 
Electrical machine lab
Electrical machine labElectrical machine lab
Electrical machine lab
 
Three phase transformer ( vector groups)
Three phase  transformer ( vector groups)Three phase  transformer ( vector groups)
Three phase transformer ( vector groups)
 
Psim tutorial- tiristor
Psim tutorial- tiristorPsim tutorial- tiristor
Psim tutorial- tiristor
 
Understanding TL431 Operation - Basic Operation and Power Supply Compensation
Understanding TL431 Operation - Basic Operation and Power Supply CompensationUnderstanding TL431 Operation - Basic Operation and Power Supply Compensation
Understanding TL431 Operation - Basic Operation and Power Supply Compensation
 
Understanding transformer vector group
Understanding transformer vector groupUnderstanding transformer vector group
Understanding transformer vector group
 
Sinusoidal Steady State Ananlysis
Sinusoidal Steady State AnanlysisSinusoidal Steady State Ananlysis
Sinusoidal Steady State Ananlysis
 

Similar to PWM Buck Converter using Average Model

Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
Tsuyoshi Horigome
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
cuashok07
 

Similar to PWM Buck Converter using Average Model (20)

「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT「SPICEの活用方法」セミナー資料(28JAN2011) PPT
「SPICEの活用方法」セミナー資料(28JAN2011) PPT
 
PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)PWM Step-down Converter(NJM2309)
PWM Step-down Converter(NJM2309)
 
PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション PSpiceで位相余裕度シミュレーション
PSpiceで位相余裕度シミュレーション
 
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
Spiceを活用した電源回路シミュレーションセミナーテキスト 18 feb2015
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書電流臨界モード方式PFC制御回路の解説書
電流臨界モード方式PFC制御回路の解説書
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)Flyback Converter using PWM IC(LTspice Version)
Flyback Converter using PWM IC(LTspice Version)
 
Final Project
Final ProjectFinal Project
Final Project
 
Chapter two Part two.pptx
Chapter two Part two.pptxChapter two Part two.pptx
Chapter two Part two.pptx
 
Design and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applicationsDesign and implementation of cyclo converter for high frequency applications
Design and implementation of cyclo converter for high frequency applications
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
PPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).pptPPT FINAL (1)-1 (1).ppt
PPT FINAL (1)-1 (1).ppt
 
ADC LAB MANUAL.docx
ADC LAB MANUAL.docxADC LAB MANUAL.docx
ADC LAB MANUAL.docx
 
15 47-58
15 47-5815 47-58
15 47-58
 
A New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation AmplifierA New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation Amplifier
 
A New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation AmplifierA New Proposal for OFCC-based Instrumentation Amplifier
A New Proposal for OFCC-based Instrumentation Amplifier
 
Time response of first order systems and second order systems
Time response of first order systems and second order systemsTime response of first order systems and second order systems
Time response of first order systems and second order systems
 
Analog Communication Lab Manual
Analog Communication Lab ManualAnalog Communication Lab Manual
Analog Communication Lab Manual
 
OSAMAFINALEMINAR19.pptx
OSAMAFINALEMINAR19.pptxOSAMAFINALEMINAR19.pptx
OSAMAFINALEMINAR19.pptx
 

More from Tsuyoshi Horigome

More from Tsuyoshi Horigome (20)

FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
FedExで書類を送付する場合の設定について(オンライン受付にて登録する場合について)
 
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
Update 46 models(Solar Cell) in SPICE PARK(MAY2024)
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 

Recently uploaded

Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxHarnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
FIDO Alliance
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
FIDO Alliance
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
panagenda
 

Recently uploaded (20)

Intro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджераIntro in Product Management - Коротко про професію продакт менеджера
Intro in Product Management - Коротко про професію продакт менеджера
 
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptxHarnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
Harnessing Passkeys in the Battle Against AI-Powered Cyber Threats.pptx
 
Introduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptxIntroduction to FIDO Authentication and Passkeys.pptx
Introduction to FIDO Authentication and Passkeys.pptx
 
WebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM PerformanceWebAssembly is Key to Better LLM Performance
WebAssembly is Key to Better LLM Performance
 
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdfLinux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
Linux Foundation Edge _ Overview of FDO Software Components _ Randy at Intel.pdf
 
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
Human Expert Website Manual WCAG 2.0 2.1 2.2 Audit - Digital Accessibility Au...
 
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider  Progress from Awareness to Implementation.pptxTales from a Passkey Provider  Progress from Awareness to Implementation.pptx
Tales from a Passkey Provider Progress from Awareness to Implementation.pptx
 
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
Easier, Faster, and More Powerful – Alles Neu macht der Mai -Wir durchleuchte...
 
Extensible Python: Robustness through Addition - PyCon 2024
Extensible Python: Robustness through Addition - PyCon 2024Extensible Python: Robustness through Addition - PyCon 2024
Extensible Python: Robustness through Addition - PyCon 2024
 
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
FDO for Camera, Sensor and Networking Device – Commercial Solutions from VinC...
 
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
TEST BANK For, Information Technology Project Management 9th Edition Kathy Sc...
 
Google I/O Extended 2024 Warsaw
Google I/O Extended 2024 WarsawGoogle I/O Extended 2024 Warsaw
Google I/O Extended 2024 Warsaw
 
Oauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoftOauth 2.0 Introduction and Flows with MuleSoft
Oauth 2.0 Introduction and Flows with MuleSoft
 
Working together SRE & Platform Engineering
Working together SRE & Platform EngineeringWorking together SRE & Platform Engineering
Working together SRE & Platform Engineering
 
WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024WebRTC and SIP not just audio and video @ OpenSIPS 2024
WebRTC and SIP not just audio and video @ OpenSIPS 2024
 
Where to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdfWhere to Learn More About FDO _ Richard at FIDO Alliance.pdf
Where to Learn More About FDO _ Richard at FIDO Alliance.pdf
 
Overview of Hyperledger Foundation
Overview of Hyperledger FoundationOverview of Hyperledger Foundation
Overview of Hyperledger Foundation
 
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
Event-Driven Architecture Masterclass: Engineering a Robust, High-performance...
 
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
1111 ChatGPT Prompts PDF Free Download - Prompts for ChatGPT
 
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
Choosing the Right FDO Deployment Model for Your Application _ Geoffrey at In...
 

PWM Buck Converter using Average Model

  • 1. Concept Kit:PWM Buck Converter Average Model All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1 Pre Version
  • 2. Contents Concept of Simulation Buck Converter Circuit Switches Filter & Load 4.1 Inductor 4.2 Capacitor PWM Controller 5.1 Error Amp. 5.2 PWM Stabilizing the Converter (Example) Load Transient Response Simulation (Example) Type 2 Compensator Calculator Simulation Index All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 2
  • 3.
  • 4. C
  • 5. ESR
  • 6.
  • 8. 2.Buck Converter Circuit All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4 Power Switches Filter & Load PWM Controller
  • 9.
  • 10.
  • 11. 4.1 Filter & Load: Inductor All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 6 Inductor Value The output inductor value is selected to set the converter to work in CCM (Continuous Current Mode) or DCM (Discontinuous Current Mode). Calculated by Where LCCM is the inductor that make the converter to work in CCM. VI,max is input maximum voltage RL(max) is load resistance at the minimum output current (IOUT) fosc is switching frequency (1)
  • 12.
  • 13.
  • 14. 5.2 PWM Controller: PWM All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 9 The PWM block is used to transfer the error voltage (between FB and REF) to be the duty cycle. The error voltage (vcomp) will be compared with sawtooth signal ( amplitude = VP ) to create the pulse that the duty cycle depends on the vcomp Transfer function of the PWM block is d = vcomp/ VP GPWM = 1/VP VP Duty cycle (d) is a value from 0 to 1
  • 15.
  • 16. 6.Stablilizing the Converter (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 11 Specification: VOUT = 5V VIN = 7 ~ 40V ILOAD = 0.2 ~ 1A L = 330uH, C = 330uF (ESR = 100m), Rupper = 3.1k, Rlower = 1k, PWM Controller: fOSC = 52kHz VP = 2.5V VREF = 1.23V Task: to find out the element of the Type 2 compensator ( R2, C1, and C2 ) G(s) e.g. Characteristics from National Semiconductor Corp. IC: LM2575
  • 17. 6.Stablilizing the Converter (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 12 The element of the Type 2 compensator ( R2, C1, and C2 ), that stabilize the converter, can be extracted by using Type 2 Compensator Calculator (Excel sheet) and open-loop simulation with the average models (ac models). Step2 Set C1=1kF, C2=1fF, and R2= calculated value (Rupper//Rlower) as the initial values. Step1 Open the loop with LoL=1kH and CoL=1kF then inject the ac signal to generate Bode plot.
  • 18. 6.Stablilizing the Converter (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 13 Step3 Select a crossover frequency (fc < fosc/4), for this example, 10kHz is selected. Then complete the table. Calcuted value of the Rupper//Rlower
  • 19. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 14 6.Stablilizing the Converter (Example)  If the VP ( sawtooth signal amplitude ) does not informed by the datasheet, It can be approximate from the characteristics below. from d = vcomp/ VP Suppose that the error amp. gain is 100. vcomp =gain (-vFB)then d = (100  (-vFB) ) / VP From the graph on the left, vFB = -25mV VP = (100  (-vFB) ) / d VP ≈ (100  (-(-25mV)) ) / 1 ≈ 2.5V vFB = -25mV d = 1 (100%) LM2575: Feedback Voltage vs. Duty Cycle
  • 20. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 15 6.Stablilizing the Converter (Example) Gain: T(s) = H(s)GPWM Step4 Read the Gain and Phase value at the crossover frequency (10kHz) from the Bode plot, Then put the values to the table . Phase atfc Tip: To bring cursor to the fc = 10kHz type “ sfxv(10k) ” in Search Command. Cursor Search
  • 21. 6.Stablilizing the Converter (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 16 Step5 Select the desired amount of phase margin you need at fc ( > 45 ). Then change the K value until it gives the satisfied phase margin, for this example K=25 is chosen for Phase margin = 46. R2, C1, and C2 are calculated  K Factor, introduce by Dean Venable, enable the circuit designer to choose a loop cross-over frequency and phase margin, and then determine the necessary component values to achieve these results from a few straight-forward algebraic equations.
  • 22. 6.Stablilizing the Converter (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 17 The element of the Type 2 compensator ( R2, C1, and C2 ) extraction can be completed by Type 2 Compensator Calculator (Excel sheet) with the converter average models (ac models) and open-loop simulation. The calculated values of the type 2 elements are, C1=0.778nF, C2=21.6pF, and R2=122.780k. *Analysis directives: .AC DEC 100 0.1 10MEG
  • 23. All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 18 6.Stablilizing the Converter (Example) Gain: T(s) = H(s) G(s)GPWM Phase atfc Phase margin = 45.930 at the cross-over frequency - fc = 9.778kHz. Tip: To bring cursor to the cross-over point (gain = 0dB) type “ sfle(0) ” in Search Command. Cursor Search
  • 24. 7. Load Transient Response Simulation (Example) All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 19 The converter, that have been stabilized, are connected with step-load to perform load transient response simulation. 5V/2.5 = 0.2A step to 0.2+0.8=1.0A load *Analysis directives: .TRAN 0 20ms 0 1u
  • 25.
  • 26.