SlideShare a Scribd company logo
1 of 14
Download to read offline
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 1
Turbo Machines
18ME54
Course Coordinator
Mr. THANMAY J. S
Assistant Professor
Department of Mechanical Engineering
VVIET Mysore
Module 02: Energy exchange in Turbo machines
Course Learning Objectives
Analyze the energy transfer in Turbo machine with degree of reaction and utilization factor
Course Outcomes
At the end of the course the student will be able to Analyze the energy transfer in Turbo machine
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 2
Contents
Modal 02: Question Number 3 a & 3 b
i. Basic Introduction
ii. Euler’s turbine equation
iii. Alternate form of Euler’s turbine equation
iv. Components of energy transfer
v. Degree of Reaction
vi. Velocity triangles for different values of degree of reaction
vii. Utilization factor
viii. Relation between degree of reaction and Utilization factor
ix. List of Formulas
x. Previous Year Question papers
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 3
Basic Introduction
Parameter Position in Velocity Triangle
Rotor Speed or tangential speed or peripheral
speed of the shaft π‘ˆ =
πœ‹π·π‘
60
In velocity triangle is always horizontal
Velocity of fluid (steam, water, air, jet) or Absolute
velocity of fluid (𝑉).
Fluid Angle at inlet or nozzle exit angle (Impulse
turbine), exit angle of guide (fixed) blade is (Ξ±1)
with the direction of π‘ˆ
Absolute Velocity at is to be resolved into two
components
1) Along tangential direction and is called as tangential
component velocity of fluid Vu1 (Tangential or whirl
velocity Vw1) along horizontal direction (along U)
2)Along axial direction in axial turbomachine (Vax1)
is called as axial component, along radial direction in
radial flow turbomachine (Vrd1) is called as radial
component.
Axial and radial direction represented in velocity
triangle in Y direction
Vector difference between absolute velocity of the
fluid and tangential speed of rotor is called as relative
velocity and in velocity diagram this is the line
connecting tip of U and V as given below and arrow
opposes V and Vr follows U.
Direction of Vr is the moving vane angle (vane
(blade)angle, runner vane (blade) angle, moving vane
(blade) angle) and it is denoted by Ξ².
𝑉𝑒1 = 𝑉1 cos𝛼1; 𝑉𝑓1 = 𝑉1 𝑠𝑖𝑛𝛼1; π‘‘π‘Žπ‘›π›½1 =
𝑉𝑓1
𝑉𝑒1 βˆ’ π‘ˆ1
;π‘‰π‘Ÿ1 = 𝑉𝑓1 𝑠𝑖𝑛𝛽1
Similarly, outlet Triangle is also represented:
π‘ˆ2 and 𝑉2 are emerging from single point and line
joining tip of 𝑉2 and π‘ˆ2is relative velocity at outlet
𝑉𝑒2 = π‘‰π‘Ÿ2 π‘π‘œπ‘ π›½2 βˆ’ π‘ˆ2; 𝑉𝑓2 = π‘‰π‘Ÿ2 𝑠𝑖𝑛𝛽2
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 4
Euler’s turbine equation
The Euler turbine equation relates the power added to or removed from the flow, to
characteristics of a rotating blade row. The equation is based on the concepts of conservation
of angular momentum and conservation of energy.
Assumptions:
a) Fluid flow through the turbomachine is steady flow.
b) Mass flow rate is constant and the state of the fluid does not vary with time.
c) Rate of energy transfer at the rotor is constant.
d) Heat and work interactions between the rotor and its surroundings take place at a constant rate.
e) Velocity is uniform over any area normal to the flow.
m = mass flow rate
Ο‰ = Angular speed of the rotor
r1 and r2= radius of rotor at inlet and exit
Vu1 and Vu2 = tangential velocity components of fluid ant inlet and exit
U1 and U2 = tangential velocity components of rotor at entry and exit
Angular Momentum
Angular momentum at entry = mass flow rate X Tangential Velocity of fluid X radius of rotor
π΄π‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š π‘Žπ‘‘ π‘’π‘›π‘‘π‘Ÿπ‘¦ = π‘š Γ— 𝑉𝑒1 Γ— π‘Ÿ1
Angular momentum at exit = mass flow rate X Tangential Velocity of fluid X radius of rotor
π΄π‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š π‘Žπ‘‘ 𝑒π‘₯𝑖𝑑 = π‘š Γ— 𝑉𝑒2 Γ— π‘Ÿ2
According to Newton’s II law of motion; Torque exerted by the rotor = change of angular
momentum
Change in Angular momentum
Change in Angular momentum = Angular momentum at exit - Angular momentum at entry
πΆβ„Žπ‘Žπ‘›π‘”π‘’ 𝑖𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š = π‘š Γ— 𝑉𝑒2 Γ— π‘Ÿ2 βˆ’ π‘š Γ— 𝑉𝑒1 Γ— π‘Ÿ1 = π‘š(𝑉𝑒2. π‘Ÿ2 βˆ’ 𝑉𝑒1. π‘Ÿ1)
∴ Torque exerted by the rotor T = π‘š(𝑉𝑒2. π‘Ÿ2 βˆ’ 𝑉𝑒1. π‘Ÿ1)
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 5
Power Transmitted
Power Transmitted = Angular Velocity Γ— Torque = Ο‰ Γ— T
𝑃 = Ο‰ Γ— π‘š(𝑉𝑒2. π‘Ÿ2 βˆ’ 𝑉𝑒1. π‘Ÿ1) = π‘š(𝑉𝑒2. π‘Ÿ2. Ο‰ βˆ’ 𝑉𝑒1. π‘Ÿ1. Ο‰)
𝑃 = π‘š(𝑉𝑒2. π‘Ÿ2. Ο‰ βˆ’ 𝑉𝑒1. π‘Ÿ1. Ο‰)
Tangential Speed or Blade Speed
Tangential Speed (U) = Angular Velocity (Ο‰) Γ— radius(r) ∴ U = Ο‰ Γ— r
∴ π‘ƒπ‘œπ‘€π‘’π‘Ÿ π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘šπ‘–π‘‘π‘‘π‘’π‘‘ 𝑃 = π‘š(𝑉𝑒2. π‘Ÿ2. Ο‰ βˆ’ 𝑉𝑒1. π‘Ÿ1. Ο‰) 𝑀𝑖𝑙𝑙 𝑏𝑒
𝑃 = π‘š(𝑉𝑒2. π‘ˆ2 βˆ’ 𝑉𝑒1. π‘ˆ1)
𝑻𝒉𝒆 𝑬𝒍𝒖𝒆𝒓′
π‘»π’–π’“π’ƒπ’Šπ’π’† π‘¬π’’π’–π’‚π’•π’Šπ’π’ π’Šπ’” π’ˆπ’Šπ’—π’†π’ 𝒂𝒔
Power Absorbing Turbo Machines Power Generation Turbo Machines
Vu2 . U2 > Vu1 . U1 Vu1 . U1 > Vu2 . U2
𝑷 = π’Ž(π‘½π’–πŸ. π‘ΌπŸ βˆ’ π‘½π’–πŸ. π‘ΌπŸ) 𝑷 = π’Ž(π‘½π’–πŸ. π‘ΌπŸ βˆ’ π‘½π’–πŸ. π‘ΌπŸ)
Alternate form of Euler’s turbine equation
Inlet Velocity Triangle Outlet Velocity Triangle
𝑉1
2
= 𝑉𝑓1
2
+ 𝑉𝑒1
2
𝑉𝑓1
2
= 𝑉1
2
βˆ’ 𝑉𝑒1
2
𝑉2
2
= 𝑉𝑓2
2
+ 𝑉𝑒2
2
𝑉𝑓2
2
= 𝑉2
2
βˆ’ 𝑉𝑒2
2
π‘‰π‘Ÿ1
2
= 𝑉𝑓1
2
+ π‘‰π‘Ÿπ‘’1
2
𝑏𝑒𝑑 π‘‰π‘Ÿπ‘’1 = π‘ˆ1 βˆ’ 𝑉𝑒1
π‘Žπ‘™π‘ π‘œ 𝑉𝑓1
2
= 𝑉1
2
βˆ’ 𝑉𝑒1
2
π‘‰π‘Ÿ1
2
= 𝑉𝑓1
2
+ (π‘ˆ1 βˆ’ 𝑉𝑒1
2)
π‘‰π‘Ÿ2
2
= 𝑉𝑓2
2
+ π‘‰π‘Ÿπ‘’2
2
𝑏𝑒𝑑 π‘‰π‘Ÿπ‘’2 = π‘ˆ2 βˆ’ 𝑉𝑒2
π‘Žπ‘™π‘ π‘œ 𝑉𝑓2
2
= 𝑉2
2
βˆ’ 𝑉𝑒2
2
π‘‰π‘Ÿ2
2
= 𝑉𝑓2
2
+ (π‘ˆ2 βˆ’ 𝑉𝑒2 )2
∴ π‘‰π‘Ÿ1
2
= 𝑉1
2
βˆ’ 𝑉𝑒1
2
+ (π‘ˆ1 βˆ’ 𝑉𝑒1
2)
π‘‰π‘Ÿ1
2
= 𝑉1
2
βˆ’ 𝑉𝑒12
+ π‘ˆ1
2
+ 𝑉𝑒12
βˆ’ 2𝑉𝑒1π‘ˆ1
∴ π‘‰π‘Ÿ2
2
= 𝑉2
2
βˆ’ 𝑉𝑒22
+ (π‘ˆ2 βˆ’ 𝑉𝑒2 )2
π‘‰π‘Ÿ2
2
= 𝑉2
2
βˆ’ 𝑉𝑒2
2
+ π‘ˆ2
2
+ 𝑉𝑒2
2
βˆ’ 2𝑉𝑒2π‘ˆ2
∴ 2𝑉𝑒1π‘ˆ1 = 𝑉1
2
+ π‘ˆ1
2
βˆ’ π‘‰π‘Ÿ1
2
∴ 2𝑉𝑒2π‘ˆ2 = 𝑉2
2
+ π‘ˆ2
2
βˆ’ π‘‰π‘Ÿ2
2
π‘½π’–πŸπ‘ΌπŸ =
(π‘½πŸ
𝟐
+ π‘ΌπŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
𝟐
π‘½π’–πŸπ‘ΌπŸ =
(π‘½πŸ
𝟐
+ π‘ΌπŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
𝟐
By Euler’s Turbine Equation
Power Absorbing Turbo Machines Power Generation Turbo Machines
𝑃 = (𝑉𝑒2. π‘ˆ2 βˆ’ 𝑉𝑒1. π‘ˆ1) 𝑃 = (𝑉𝑒1. π‘ˆ1 βˆ’ 𝑉𝑒2. π‘ˆ2)
𝑃 =
(𝑉2
2+π‘ˆ2
2βˆ’π‘‰π‘Ÿ2
2)
2
βˆ’
(𝑉1
2+π‘ˆ1
2βˆ’π‘‰π‘Ÿ1
2)
2
𝑃 =
(𝑉1
2+π‘ˆ1
2βˆ’π‘‰π‘Ÿ1
2)
2
βˆ’
(𝑉2
2+π‘ˆ2
2βˆ’π‘‰π‘Ÿ2
2)
2
𝑷 =
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
𝑷 =
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 6
Components of energy transfer
By Euler’s Turbine Equation or Energy Equation
Power Absorbing Turbo Machines Power Generation Turbo Machines
𝑷 =
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
) 𝑷 =
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
First component: It is the change in the absolute kinetic energy and which causes a change in the dynamic head
or dynamic pressure of the fluid through the machine.
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
)
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
)
Second component: It is the change in the centrifugal energy of the fluid in the motion. This is due to the change
in the radius of rotation of the fluid. This causes a change in the static head or static pressure of the fluid through
the rotor.
𝟏
𝟐
(π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
)
𝟏
𝟐
(π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
)
Third component: It is the change in the relative kinetic energy and which causes a
𝟏
𝟐
(π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
𝟏
𝟐
(π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
Degree of Reaction (𝑹)
Degree of Reaction (R) is the ratio of Energy Transfer due to Static Enthalpy change to Total
Energy Transfer due to Total Enthalpy change in a rotor.
Or
The degree of reaction is also defined as the ratio of energy transfer due to the change in static
pressure in the rotor to total energy transfer due to the change in total pressure in the rotor.
𝑹 =
π‘Ίπ’•π’‚π’•π’Šπ’„ 𝒉𝒆𝒂𝒅
𝑻𝒐𝒕𝒂𝒍 𝒉𝒆𝒂𝒅
=
π‘Ίπ’•π’‚π’•π’Šπ’„ π’†π’π’•π’‰π’‚π’π’‘π’š π’„π’‰π’‚π’π’ˆπ’†
𝑻𝒐𝒕𝒂𝒍 π’†π’π’•π’‰π’‚π’π’‘π’š π’„π’‰π’‚π’π’ˆπ’†
=
πœŸπ’‰
πœŸπ’‰πŸŽ
πœŸπ’‰ =
𝟏
𝟐
(π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
"𝑬" 𝒐𝒓 "𝒆" 𝒐𝒓 "𝑷" = πœŸπ’‰πŸŽ =
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
∴ 𝑅 =
π›₯β„Ž
π›₯β„Ž0
=
𝟏
𝟐
(π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐)
𝑹 =
(π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
𝑹 =
𝑷 βˆ’
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
)
𝑷
π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑷 =
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 7
Velocity triangles for different values of degree of reaction [ R=0, R=0.5, R=1]
Case 01) When R =0
(i.e., Impulse type Vr1 = Vr2, and hence Ξ²1= Ξ²2)
Energy transfer occurs purely due to the change in
absolute kinetic energy. Zero degree of reaction is the
characteristics of Impulse machine i.e Vr1 = Vr2.
Here energy transfer is purely due to change in dynamic
pressure. (U1=U2)
𝑹 =
(π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
𝑹 =
(𝟎) + (𝟎)
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (𝟎) + (𝟎)
= 0
Case 02) When R = 0.5
(i.e., 50% Reaction axial flow)
This implies U1= U2, V1 = Vr2, V2=Vr1 and Vf1 = Vf2.
For symmetric Velocity Ξ±2 = Ξ²1 and Ξ±1= Ξ²2. Energy
transfer occurs initially by impulse action and then by
reaction.
𝑹 =
(π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
𝑹 =
(𝟎) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (𝟎) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
=
1
2
Case 03) When R = 1
(i.e., 100% Fully reaction)
In this case V1 = V2, U1 = U2 and V2>Vr1
Energy transfer occurs purely due to change in relative
Kinetic Energy of fluid. The rotor acts both as the nozzle
and as the energy transfer device, so energy transfer is
purely due to change in static pressure
𝑹 =
(π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
𝑹 =
(𝟎) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
(𝟎) + (𝟎) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
= 1
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 8
Utilization factor (𝝐)
The utilization factor is the ratio of the ideal (Euler) work output to the energy available for conversion
into work. Under ideal conditions, it should be possible to utilize all of the kinetic energy of the fluid at
the rotor inlet and also the increase in kinetic energy obtained in the rotor due to static pressure drop
(i.e., the reaction effect).
Thus the Energy avilable for conversion of Work is
π‘·π‘¨π’—π’‚π’Šπ’π’‚π’ƒπ’π’† =
𝟏
𝟐
[(π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)]
Total work output is
"E" 𝒐𝒓 "e" 𝒐𝒓 P 𝒐𝒓 "πœŸπ’‰πŸŽ" =
𝟏
𝟐
[(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)]
∴ π‘ˆπ‘‘π‘–π‘™π‘–π‘§π‘Žπ‘‘π‘–π‘œπ‘› πΉπ‘Žπ‘π‘‘π‘œπ‘Ÿ (πœ–) =
𝑃
π‘ƒπ΄π‘£π‘Žπ‘–π‘™π‘Žπ‘π‘™π‘’
=
1
2
[(𝑉1
2
βˆ’ 𝑉2
2
) + (π‘ˆ1
2
βˆ’ π‘ˆ2
2
) + (π‘‰π‘Ÿ1
2
βˆ’ π‘‰π‘Ÿ2
2
)]
1
2
[(𝑉1
2) + (π‘ˆ1
2
βˆ’ π‘ˆ2
2) + (π‘‰π‘Ÿ1
2
βˆ’ π‘‰π‘Ÿ2
2)]
∴ π‘Όπ’•π’Šπ’π’Šπ’›π’‚π’•π’Šπ’π’ 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) =
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
𝒐𝒓 π‘Όπ’•π’Šπ’π’Šπ’›π’‚π’•π’Šπ’π’ 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) =
𝟏
𝟐
[(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)]
𝟏
𝟐
[(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐)] +
𝟏
𝟐
(π‘½πŸ
𝟐)
∴ π‘Όπ’•π’Šπ’π’Šπ’›π’‚π’•π’Šπ’π’ 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) =
𝑷
𝑷 +
𝟏
𝟐
(π‘½πŸ
𝟐)
Relation between degree of reaction and Utilization factor
(𝝐) =
(π‘½πŸ
𝟐
βˆ’π‘½πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’π‘Ή π‘½πŸ
𝟐
)
π‘Šπ‘’ π‘˜π‘›π‘œπ‘€ π‘‘β„Žπ‘Žπ‘‘ π·π‘’π‘”π‘Ÿπ‘’π‘’ π‘œπ‘“ π‘…π‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› 𝑹 =
(π‘ΌπŸ
𝟐
βˆ’π‘ΌπŸ
𝟐
)+(π‘½π’“πŸ
𝟐
βˆ’π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’π‘½πŸ
𝟐
)+(π‘ΌπŸ
𝟐
βˆ’π‘ΌπŸ
𝟐
)+(π‘½π’“πŸ
𝟐
βˆ’π‘½π’“πŸ
𝟐
)
By cross multiplication
𝑅(𝑉1
2
βˆ’ 𝑉2
2
) + 𝑅 [(π‘ˆ1
2
βˆ’ π‘ˆ2
2
) + (π‘‰π‘Ÿ1
2
βˆ’ π‘‰π‘Ÿ2
2
)] = (π‘ˆ1
2
βˆ’ π‘ˆ2
2
) + (π‘‰π‘Ÿ1
2
βˆ’ π‘‰π‘Ÿ2
2
)
𝑅(𝑉1
2
βˆ’ 𝑉2
2
) = (1 βˆ’ 𝑅) [(π‘ˆ1
2
βˆ’ π‘ˆ2
2
) + (π‘‰π‘Ÿ1
2
βˆ’ π‘‰π‘Ÿ2
2
)]
𝑹
(πŸβˆ’π‘Ή)
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) = (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
π‘Šπ‘’ π‘Žπ‘™π‘ π‘œ πΎπ‘›π‘œπ‘€ π‘‘β„Žπ‘Žπ‘‘ π‘ˆπ‘‘π‘–π‘™π‘–π‘§π‘Žπ‘‘π‘–π‘œπ‘› πΉπ‘Žπ‘π‘‘π‘œπ‘Ÿ (𝝐) =
(π‘½πŸ
𝟐
βˆ’π‘½πŸ
𝟐
)+(π‘ΌπŸ
𝟐
βˆ’π‘ΌπŸ
𝟐
)+(π‘½π’“πŸ
𝟐
βˆ’π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
)+(π‘ΌπŸ
𝟐
βˆ’π‘ΌπŸ
𝟐
)+(π‘½π’“πŸ
𝟐
βˆ’π‘½π’“πŸ
𝟐
)
(πœ–) =
(𝑉1
2
βˆ’π‘‰2
2
)+
𝑅
(1βˆ’π‘…)
(𝑉1
2
βˆ’π‘‰2
2
)
(𝑉1
2
)+
𝑅
(1βˆ’π‘…)
(𝑉1
2
βˆ’π‘‰2
2
)
(πœ–) =
(1 βˆ’ 𝑅)(𝑉1
2
βˆ’ 𝑉2
2
) + 𝑅 (𝑉1
2
βˆ’ 𝑉2
2
)
(1 βˆ’ 𝑅)(𝑉1
2
) + 𝑅 (𝑉1
2
βˆ’ 𝑉2
2
)
(𝝐) =
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ 𝑹 π‘½πŸ
𝟐
)
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 9
List of Formulas
Basic Trigonometry Cosine Rule
Euler’s Turbine Equation
Power Absorbing Turbo Machines Power Generation Turbo Machines
𝑃 = (𝑉𝑒2. π‘ˆ2 βˆ’ 𝑉𝑒1. π‘ˆ1) 𝑃 = (𝑉𝑒1. π‘ˆ1 βˆ’ 𝑉𝑒2. π‘ˆ2)
𝑷 =
𝟏
𝟐
[(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)] 𝑷 =
𝟏
𝟐
[(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)]
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
)
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
)
Centrifugal Energy
𝟏
𝟐
(π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
)
𝟏
𝟐
(π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
)
Relative Kinetic Energy
𝟏
𝟐
(π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
𝟏
𝟐
(π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
Degree of Reaction (R)
𝑹 =
πœŸπ’‰
πœŸπ’‰πŸŽ
=
𝑷 βˆ’
𝟏
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
)
𝑷
𝑹 =
(π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
Different values of degree of reaction [ R=0, R=0.5, R=1]
When R =0 Vr1 = Vr2, U1=U2 and Ξ²1= Ξ²2
When R = 0.5 = 50% U1= U2, V1 = Vr2, V2=Vr1 and Vf1 = Vf2
When R = 1 = 100% V1 = V2, U1 = U2 and V2>Vr1
π‘Όπ’•π’Šπ’π’Šπ’›π’‚π’•π’Šπ’π’ 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐)
(𝝐) =
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
) + (π‘ΌπŸ
𝟐
βˆ’ π‘ΌπŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
(𝝐) =
𝑷
𝑷 +
𝟏
𝟐
(π‘½πŸ
𝟐)
Relation between degree of reaction and Utilization factor
(𝝐) =
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ 𝑹 π‘½πŸ
𝟐
)
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 10
Previous Year Question papers
18ME54 Model Question Paper -1 with effect from 2020-21(CBCS Scheme)
Module – 2
3 a) Define Degree of reaction. Obtain an expression for Utilization factor in terms of degree of
reaction and absolute velocities.
6
Ans ∴ π‘Όπ’•π’Šπ’π’Šπ’›π’‚π’•π’Šπ’π’ 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) =
𝑬
𝑬+
𝟏
𝟐
(π‘½πŸ
𝟐
)
Page Number 8
b) For 50% degree of reaction axial flow turbomachine, inlet fluid velocity is 230 m/s, out
angle of inlet guide blade is 30Β°, inlet rotor angle is 60Β° and outlet rotor angle is 25Β°. Find
the utilization factor, axial thrust and power output per unit mass flow.
6
Ans
Case 02) When R = 0.5
(i.e., 50% Reaction axial flow)
This implies
U1= U2,
V1 = Vr2,
V2=Vr1 and
Vf1 = Vf2.
For symmetric Velocity
Ξ±2 = Ξ²1 and Ξ±1= Ξ²2.
Given Data: V1 = 230 m/s; Ξ±1=30Β°; Ξ²1= 60Β°; Ξ²2= 25Β°;
Although R = 50% Ξ±2 β‰  Ξ²1 and Ξ±1β‰  Ξ²2 as Vf1 β‰  Vf2.
utilization factor (↋) =?
F(axial) =?
P =?
𝑹 =
(π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
=
1
2
= 0.5
From Inlet Velocity Triangle
𝑉𝑓1 = 𝑉1 sin 𝛼1 π‘‰π‘Ÿ1 =
𝑉𝑓1
𝑠𝑖𝑛𝛽1
π‘ˆ1 = 𝑉1 cos 𝛼1 βˆ’ π‘‰π‘Ÿ1cos 𝛽1 ;
𝑉𝑓1 = 230 sin 30 = 115 π‘š/𝑠 π‘‰π‘Ÿ1 =
115
𝑠𝑖𝑛60
= 132.8 π‘š/𝑠
π‘ˆ1 = 230 cos30 βˆ’ π‘‰π‘Ÿ1 cos60 ;
π‘ˆ1 = 132.8 π‘š/𝑠;
tan 𝛼1 =
𝑉𝑓1
𝑉𝑒1
; 𝑉𝑒1 =
𝑉𝑓1
tanΞ± 1
𝑉𝑒1 =
𝑉𝑓1
tanΞ±1
=
115
tan 30
= 199.18 π‘š/𝑠
π‘½πŸ = πŸπŸ‘πŸŽ π’Ž/𝒔 π‘½π’“πŸ = πŸπŸ‘πŸ. πŸ– π’Ž/𝒔
For 50% Reaction V2=Vr1 = 132.8
(𝝐) =
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ 𝑹 π‘½πŸ
𝟐
)
=
(πŸπŸ‘πŸŽ 𝟐
βˆ’ πŸπŸ‘πŸ. πŸ–πŸ
)
(πŸπŸ‘πŸŽ 𝟐
βˆ’ (𝟎. πŸ“)πŸπŸ‘πŸ.πŸ–πŸ
)
=
πŸ‘πŸ“, πŸπŸ”πŸ’. πŸπŸ”
πŸ’πŸ’, πŸŽπŸ–πŸ. πŸŽπŸ–
= 𝟎. πŸ•πŸ—πŸ—πŸ—
𝑉𝑓1 = 𝑉1 sin 𝛼1 = 115π‘š/𝑠
𝑉𝑓2 = π‘‰π‘Ÿ2 sin 𝛽2 = 97.202
𝑭 (π’‚π’™π’Šπ’‚π’) = π’Ž(π‘½π’‡πŸ βˆ’ π‘½π’‡πŸ);
𝐹 (π‘Žπ‘₯π‘–π‘Žπ‘™)
π‘š
= (115 βˆ’ 97.202) = πŸπŸ•. πŸ•πŸ—πŸ• 𝑡 βˆ’ π’Ž/𝒔
π‘·π’π’˜π’†π’“ (𝑷) = π’Žπ‘Ό(π‘½π’–πŸ βˆ’ π‘½π’–πŸ);
𝑷
π’Ž
= (π‘½πŸ π’„π’π’”πœΆπŸ βˆ’ π‘½π’“πŸ π’„π’π’”πœ·πŸ βˆ’ 𝑼)
𝑷 = πŸπŸ‘πŸ. πŸ– Γ— (πŸπŸ—πŸ—. πŸπŸ–πŸ“ βˆ’ πŸ•πŸ“. πŸ”πŸ“) = πŸπŸ”, πŸ’πŸŽπŸ’. πŸ”πŸ•πŸ– = πŸπŸ”. πŸ’πŸŽπŸ’ π’Œπ‘Ύ
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 11
Previous Year Question papers
18ME54 Model Question Paper -2 with effect from 2020-21(CBCS Scheme)
Module – 2
3 a) With the help of velocity triangles at inlet and outlet, derive an alternate form of Euler’s
turbine equation.
b) Show that maximum utilization factor of an axial flow turbine with degree of reaction(
𝟏
πŸ‘
),
the relationship of blade speed U to absolute velocity at rotor inlet V1(speed ratio) is given
byβˆ… =
𝑼
π‘½πŸ
=
𝟏
πŸ’
𝒄𝒐𝒔 𝜢𝟏, where Ξ±1 is the nozzle angle with respect to tangential direction at inlet.
𝑹 =
(π‘ΌπŸ
𝟐
βˆ’π‘ΌπŸ
𝟐
)+(π‘½π’“πŸ
𝟐
βˆ’π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’π‘½πŸ
𝟐
)+(π‘ΌπŸ
𝟐
βˆ’π‘ΌπŸ
𝟐
)+(π‘½π’“πŸ
𝟐
βˆ’π‘½π’“πŸ
𝟐
)
𝒇𝒐𝒓 π’‚π’™π’Šπ’‚π’ π’‡π’π’π’˜ (π‘ΌπŸ = π‘ΌπŸ) 𝒂𝒏𝒅 π‘½π’‡πŸ = π‘½π’‡πŸ = 𝑽𝒇 = π‘½πŸ
∴ 𝑹 =
(π‘½π’“πŸ
𝟐
βˆ’π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’π‘½πŸ
𝟐
)+(π‘½π’“πŸ
𝟐
βˆ’π‘½π’“πŸ
𝟐
)
=
1
3
𝑠𝑖𝑛𝛼1 =
π‘½πŸ
π‘½πŸ
≫ π‘½πŸ = π‘½πŸ 𝑠𝑖𝑛𝛼1
π‘½πŸ
𝟐
= π‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ
π‘½π’“πŸ
𝟐
= π‘½πŸ
𝟐
+ π‘ΌπŸ
π‘½π’“πŸ
𝟐
= π‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ
+ π‘ΌπŸ
𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔 πΆπ‘œπ‘ π‘–π‘›π‘’ 𝑅𝑒𝑙𝑒 π‘‘π‘œ 𝑂𝐴𝐡
π‘½π’“πŸ
𝟐
= π‘½πŸ
𝟐
+ π‘ΌπŸ
βˆ’ πŸπ‘Όπ‘½πŸπ’„π’π’”πœΆπŸ
𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔 π‘½πŸ
𝟐
, π‘½π’“πŸ
𝟐
𝒂𝒏𝒅 π‘½π’“πŸ
𝟐
𝒕𝒐 𝑹
𝑹 =
(π‘½π’“πŸ
𝟐
βˆ’π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’π‘½πŸ
𝟐
)+(π‘½π’“πŸ
𝟐
βˆ’π‘½π’“πŸ
𝟐
)
=
1
3
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) + (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
) = πŸ‘ Γ— (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) = πŸ‘ Γ— (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
) βˆ’ (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
∴ (π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
) = 𝟐 Γ— (π‘½π’“πŸ
𝟐
βˆ’ π‘½π’“πŸ
𝟐
)
𝑆𝑒𝑏𝑠𝑑𝑖𝑑𝑒𝑑𝑖𝑛𝑔 π‘½πŸ
𝟐
, π‘½π’“πŸ
𝟐
𝒂𝒏𝒅 π‘½π’“πŸ
𝟐
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ) = 𝟐 Γ— ((π‘½πŸ
𝟐
+ π‘ΌπŸ
βˆ’ πŸπ‘Όπ‘½πŸπ’„π’π’”πœΆπŸ) βˆ’ (π‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ
+ π‘ΌπŸ
𝟐
))
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ) = 𝟐(π‘½πŸ
𝟐
+ π‘ΌπŸ
βˆ’ πŸπ‘Όπ‘½πŸπ’„π’π’”πœΆπŸ βˆ’ π‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ
βˆ’ π‘ΌπŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ) = 𝟐(π‘½πŸ
𝟐
βˆ’ πŸπ‘Όπ‘½πŸπ’„π’π’”πœΆπŸ βˆ’ π‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ
)
π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ
= πŸπ‘½πŸ
𝟐
βˆ’ πŸ’π‘Όπ‘½πŸπ’„π’π’”πœΆπŸ βˆ’ πŸπ‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ
π‘½πŸ
𝟐
βˆ’ πŸπ‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ
+ πŸπ‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ
= βˆ’πŸ’π‘Όπ‘½πŸπ’„π’π’”πœΆπŸ
βˆ’π‘½πŸ
𝟐
+ π‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ
= βˆ’πŸ’π‘Όπ‘½πŸπ’„π’π’”πœΆπŸ
π‘½πŸ
𝟐
π’”π’Šπ’πœΆπŸπŸ
βˆ’ π‘½πŸ
𝟐
= πŸ’π‘Όπ‘½πŸπ’„π’π’”πœΆπŸ
π‘½πŸ
𝟐
π’„π’π’”πœΆπŸπŸ
= πŸ’π‘Όπ‘½πŸπ’„π’π’”πœΆπŸ
𝟏
πŸ’
π’„π’π’”πœΆπŸπŸ
π’„π’π’”πœΆπŸ
=
π‘Όπ‘½πŸ
π‘½πŸ
𝟐 ≫=
𝑼
π‘½πŸ
=
𝟏
πŸ’
π’„π’π’”πœΆπŸ
𝑺𝒕𝒖𝒅𝒆𝒏𝒕 π‘¨π’„π’•π’Šπ’—π’Šπ’•π’š π’Šπ’‡ 𝑹 =
𝟏
πŸ’
𝒕𝒉𝒆𝒏 π’”π’‰π’π’˜ ≫=
𝑼
π‘½πŸ
=
𝟐
πŸ‘
π’„π’π’”πœΆπŸ
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 12
3 c) The mean rotor blade speed of an axial flow turbine stage with a degree of reaction of 50% is
210 m/s. The steam emerges from the nozzle inclined at 28ΒΊ to the wheel plane, with an axial
velocity component which is equal to the blade speed. Assuming symmetric inlet and outlet
velocity triangles, find the rotor blade angles and the utilization factor. Find also the degree of
reaction to make the utilization a maximum, if the axial velocity and the blade speed as well as
the nozzle remain the same as above.
𝑹 = 𝟎.πŸ“, 𝑼 = 𝟐𝟏𝟎
π’Ž
𝒔
, 𝜢𝟏 = πŸπŸ–Β° π‘½π’‡πŸ = 𝑼 = 𝟐𝟏𝟎
π’Ž
𝒔
,
𝑹 = 𝟎. πŸ“ 𝒕𝒉𝒆𝒏 π‘½π’“πŸ = π‘½πŸ & π‘½π’“πŸ = π‘½πŸ
Case 02) When R = 0.5
(i.e., 50% Reaction axial flow)
This implies
U1= U2,
V1 = Vr2,
V2=Vr1 and
Vf1 = Vf2.
For symmetric Velocity
Ξ±2 = Ξ²1 and Ξ±1= Ξ²2.
tan 𝛼1 =
𝑉𝑓1
𝑉𝑒1
≫ 𝑉𝑒1 =
𝑉𝑓1
tan 𝛼1
=
210
π‘‘π‘Žπ‘›28
= 394.95 π‘‰π‘Ÿ1 =
𝑉𝑓1
𝑠𝑖𝑛𝛽1
tan 𝛽1 =
𝑉𝑓1
𝑉𝑒1 βˆ’ π‘ˆ
=
210
394.95 βˆ’ 210
=
210
184.95
π‘‰π‘Ÿ1 =
115
𝑠𝑖𝑛60
= 132.8 π‘š/𝑠
∴ tan 𝛽1 = 1.13544 ≫ 𝛽1 = tanβˆ’1(1.13544)
𝛽1 = 48.62Β°
𝜢𝟏 = 𝜷𝟐 & 𝜢𝟐 = 𝜷𝟏
𝜢𝟏 = 𝜷𝟐 = πŸπŸ–Β° & 𝜢𝟐 = 𝜷𝟏 = πŸ’πŸ–. πŸ”πŸΒ°
(𝝐) =
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ 𝑹 π‘½πŸ
𝟐
)
sin 𝛼1 =
𝑉𝑓1
𝑉1
≫ 𝑉1 =
𝑉𝑓1
sin 𝛼1
=
210
𝑠𝑖𝑛28
= 447.31
𝑉1 = 447.31 π‘Žπ‘›π‘‘ 𝑉2 = 279.87 & 𝑅 = 0.5
sin 𝛽1 =
𝑉𝑓1
π‘‰π‘Ÿ1
≫ π‘‰π‘Ÿ1 =
𝑉𝑓1
sin𝛽1
=
210
𝑠𝑖𝑛48.62
= 279.87
(𝝐) =
(π‘½πŸ
𝟐
βˆ’ π‘½πŸ
𝟐
)
(π‘½πŸ
𝟐
βˆ’ 𝑹 π‘½πŸ
𝟐
)
=
(πŸ’πŸ’πŸ•. πŸ‘πŸπŸ
βˆ’ πŸπŸ•πŸ—. πŸ–πŸ•πŸ
)
(πŸ’πŸ’πŸ•. πŸ‘πŸπŸ
βˆ’ (𝟎. πŸ“)πŸπŸ•πŸ—. πŸ–πŸ•πŸ
)
(𝝐) = 𝟎. πŸ•πŸ“πŸ•
π‘“π‘œπ‘Ÿ 𝑅 = 50%; 𝑉2 = π‘‰π‘Ÿ1 = 279.87
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 13
Previous Year Question papers
Model Question Paper (CBCS) with effect from 2015-16)
Module – 2
3 a) Derive an alternate form of Euler Turbine equation. 8
b) In an axial flow turbine, the discharge blade angles are 20Β° each for both the stator and the
rotor. The steam speed from the nozzle exit is 140m/s. The ratio of
𝑽𝒂
𝑼
= 𝟎. πŸ• at the entry
and 0.76 at the exit of the rotor blade. Find the rotor inlet blade angle and the power
developed by the blade ring for a mass flow rate of 2.6kg/s.
8
axial flow turbine π‘ˆ1 = π‘ˆ2 = π‘ˆ
the discharge blade angle is 20ΒΊeach, for both the stator and the rotor.
i.e., ∝1= 20ΒΊ; 𝛽2 = 20ΒΊ;
The steam speed at the exit of the fixed blade is 140m/s i.e., 𝑉1 = 140m/s
π‘½π’‚πŸ
𝑼
= 𝟎. πŸ•π‘Žπ‘‘ π‘‘β„Žπ‘’ π‘’π‘›π‘‘π‘Ÿπ‘¦ π‘Žπ‘›π‘‘
π‘½π’‚πŸ
𝑼
= 𝟎.πŸ•πŸ” π‘Žπ‘‘ π‘‘β„Žπ‘’ 𝑒π‘₯𝑖𝑑 π‘œπ‘“ π‘‘β„Žπ‘’ π‘Ÿπ‘œπ‘‘π‘œπ‘Ÿ π‘π‘™π‘Žπ‘‘π‘’
Find the rotor inlet blade angle
power developed by the blade ring
mass flow rate of 2.6kg/s.
𝑃 = (𝑉𝑒1. π‘ˆ1 βˆ’ 𝑉𝑒2. π‘ˆ2)
𝑷 = (π‘½π’–πŸ βˆ’ π‘½π’–πŸ)𝑼
cos𝛼1 =
𝑉𝑒1
𝑉1
≫ 𝑉𝑒1 = 𝑉1 cos𝛼1
𝑉𝑒1 = 140 cos20 ≫ π‘½π’–πŸ = πŸπŸ‘πŸ. πŸ“πŸ“
sin 𝛼1 =
𝑉𝑓1
𝑉1
≫ 𝑉𝑓1 = 𝑉1 sin 𝛼1
𝑉𝑓1 = 140 sin 20 ≫ π‘½π’‡πŸ = πŸ’πŸ•. πŸ–πŸ–
π‘½π’‚πŸ
𝑼
=
π‘½π’‡πŸ
𝑼
=
πŸ’πŸ•.πŸ–πŸ–
𝑼
= 𝟎.πŸ•
47.88
0.7
= 𝑼 = πŸ”πŸ–.πŸ’πŸŽ
π‘½π’‚πŸ
𝑼
=
π‘½π’‡πŸ
𝑼
= 𝟎.πŸ•πŸ”
π‘½π’‡πŸ = 𝟎. πŸ•πŸ” Γ— 𝑼 ≫ π‘½π’‡πŸ = πŸ“πŸ.πŸ—πŸ–
tan𝛽1 =
𝑉𝑓1
𝑉𝑒1 βˆ’ π‘ˆ
=
47.88
131.55 βˆ’ 68.40
𝛽1 = 37.16Β°
sin𝛽2 =
𝑉𝑓2
π‘‰π‘Ÿ2
≫ π‘‰π‘Ÿ2 =
𝑉𝑓2
sin 𝛽2
=
51.98
sin20
π‘½π’“πŸ = πŸπŸ“πŸ. πŸ—πŸ•
cos 𝛽2 =
(𝑉𝑒2 + π‘ˆ)
π‘‰π‘Ÿ2
= (𝑉𝑒2 + π‘ˆ) = cos 𝛽2 π‘‰π‘Ÿ2
𝑉𝑒2 = π‘‰π‘Ÿ2cos 𝛽2 βˆ’ π‘ˆ 𝑉𝑒2 = 151.97cos20 βˆ’ 68.40 ≫ π‘½π’–πŸ = πŸ•πŸ’. πŸ’πŸŽ
𝑷 = (π‘½π’–πŸ βˆ’ π‘½π’–πŸ)𝑼 𝑷 = (πŸπŸ‘πŸ.πŸ“πŸ“ βˆ’ πŸ•πŸ’.πŸ’πŸŽ)πŸ”πŸ–.πŸ’πŸŽ
𝑷 = πŸ‘πŸ—πŸŽπŸ—.πŸŽπŸ” 𝑱
𝑷
π’Ž
=
πŸ‘πŸ—πŸŽπŸ—.πŸŽπŸ”
𝟐.πŸ”
= πŸπŸ“πŸŽπŸ‘.πŸ’πŸ– 𝑱/π’Œπ’ˆ
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 14
Previous Year Question papers
Model Question Paper (CBCS) with effect from 2015-16)
Module – 2
3 a) In a certain turbomachine, the blade speed at exit is twice that at inlet (u2=2u1), the meridian
component of fluid velocity at inlet is equal to that at exit and the blade angle at inlet is 450. Show
that the energy transfer per unit mass and degree of reaction is given 8
b) At a stage of 50% reaction axial flow turbine running at 3000 rpm, the mean blade diameter is 68.5
cm. If the maximum utilization factor for the stage is 0.915, Calculate (a) the inlet and outlet absolute
velocities and (b) the power output. Also, find the power developed for a steam flow rate of 15 kg/s.
8
Case 02) When R = 0.5
(i.e., 50% Reaction axial flow)
This implies
U1= U2,
V1 = Vr2,
V2=Vr1 and
Vf1 = Vf2.
For symmetric Velocity
Ξ±2 = Ξ²1 and Ξ±1= Ξ²2.

More Related Content

What's hot

Theory of machines solution of exercise
Theory of machines solution of exerciseTheory of machines solution of exercise
Theory of machines solution of exerciseSaif al-din ali
Β 
Shaft subjected to bending moment only (2)
Shaft subjected to bending moment only (2)Shaft subjected to bending moment only (2)
Shaft subjected to bending moment only (2)abdul ahad noohani
Β 
Mechanical Vibration
Mechanical VibrationMechanical Vibration
Mechanical VibrationAnkur Shukla
Β 
Pelton turbine
Pelton turbinePelton turbine
Pelton turbineRahulBhatiya1
Β 
Impact of jet
Impact of jetImpact of jet
Impact of jetkrishna khot
Β 
Velocity Triangle for Moving Blade of an impulse Turbine
Velocity Triangle for Moving Blade of an impulse TurbineVelocity Triangle for Moving Blade of an impulse Turbine
Velocity Triangle for Moving Blade of an impulse TurbineShowhanur Rahman
Β 
Design of flywheel theory and numericals prof. sagar a dhotare
Design of flywheel theory and numericals   prof. sagar a dhotareDesign of flywheel theory and numericals   prof. sagar a dhotare
Design of flywheel theory and numericals prof. sagar a dhotareSagar Dhotare
Β 
UNIT - III NORMAL & OBLIQUE SHOCKS
UNIT - III NORMAL & OBLIQUE SHOCKSUNIT - III NORMAL & OBLIQUE SHOCKS
UNIT - III NORMAL & OBLIQUE SHOCKSsureshkcet
Β 
Mechanical Vibrations all slides
Mechanical Vibrations all slidesMechanical Vibrations all slides
Mechanical Vibrations all slidesEbrahim Hanash
Β 
A preparation for interview engineering mechanics
A preparation for interview  engineering mechanicsA preparation for interview  engineering mechanics
A preparation for interview engineering mechanicsDr. Ramesh B
Β 
Performance of-turbines
Performance of-turbinesPerformance of-turbines
Performance of-turbinesMd Sujon Babu
Β 
Characteristic curves of a turbine
Characteristic curves of a turbineCharacteristic curves of a turbine
Characteristic curves of a turbineSabir Ahmed
Β 
DYNAMIC FORCE ANALYSIS BEST PPT
DYNAMIC FORCE ANALYSIS BEST PPT DYNAMIC FORCE ANALYSIS BEST PPT
DYNAMIC FORCE ANALYSIS BEST PPT PRATHAMESH DESHPANDE
Β 
Turbomachine Module01.pptx
Turbomachine Module01.pptxTurbomachine Module01.pptx
Turbomachine Module01.pptxVinothKumarG25
Β 

What's hot (20)

Theory of machines solution of exercise
Theory of machines solution of exerciseTheory of machines solution of exercise
Theory of machines solution of exercise
Β 
Shaft subjected to bending moment only (2)
Shaft subjected to bending moment only (2)Shaft subjected to bending moment only (2)
Shaft subjected to bending moment only (2)
Β 
Francis Turbine
Francis Turbine Francis Turbine
Francis Turbine
Β 
DYNAMICS OF MACHINES UNIT-1 BY Mr.P.RAMACHANDRAN/AP/MECH/KIT/CBE
DYNAMICS OF MACHINES UNIT-1 BY Mr.P.RAMACHANDRAN/AP/MECH/KIT/CBEDYNAMICS OF MACHINES UNIT-1 BY Mr.P.RAMACHANDRAN/AP/MECH/KIT/CBE
DYNAMICS OF MACHINES UNIT-1 BY Mr.P.RAMACHANDRAN/AP/MECH/KIT/CBE
Β 
Mechanical Vibration
Mechanical VibrationMechanical Vibration
Mechanical Vibration
Β 
Designing of fly wheel
Designing of fly wheelDesigning of fly wheel
Designing of fly wheel
Β 
Pelton turbine
Pelton turbinePelton turbine
Pelton turbine
Β 
Impact of jet
Impact of jetImpact of jet
Impact of jet
Β 
Velocity Triangle for Moving Blade of an impulse Turbine
Velocity Triangle for Moving Blade of an impulse TurbineVelocity Triangle for Moving Blade of an impulse Turbine
Velocity Triangle for Moving Blade of an impulse Turbine
Β 
Turbines
TurbinesTurbines
Turbines
Β 
Design of flywheel theory and numericals prof. sagar a dhotare
Design of flywheel theory and numericals   prof. sagar a dhotareDesign of flywheel theory and numericals   prof. sagar a dhotare
Design of flywheel theory and numericals prof. sagar a dhotare
Β 
UNIT - III NORMAL & OBLIQUE SHOCKS
UNIT - III NORMAL & OBLIQUE SHOCKSUNIT - III NORMAL & OBLIQUE SHOCKS
UNIT - III NORMAL & OBLIQUE SHOCKS
Β 
Impact of jets
Impact of jetsImpact of jets
Impact of jets
Β 
Mechanical Vibrations all slides
Mechanical Vibrations all slidesMechanical Vibrations all slides
Mechanical Vibrations all slides
Β 
A preparation for interview engineering mechanics
A preparation for interview  engineering mechanicsA preparation for interview  engineering mechanics
A preparation for interview engineering mechanics
Β 
Performance of-turbines
Performance of-turbinesPerformance of-turbines
Performance of-turbines
Β 
Screw jack project_1
Screw jack project_1Screw jack project_1
Screw jack project_1
Β 
Characteristic curves of a turbine
Characteristic curves of a turbineCharacteristic curves of a turbine
Characteristic curves of a turbine
Β 
DYNAMIC FORCE ANALYSIS BEST PPT
DYNAMIC FORCE ANALYSIS BEST PPT DYNAMIC FORCE ANALYSIS BEST PPT
DYNAMIC FORCE ANALYSIS BEST PPT
Β 
Turbomachine Module01.pptx
Turbomachine Module01.pptxTurbomachine Module01.pptx
Turbomachine Module01.pptx
Β 

Similar to 18 me54 turbo machines module 02 question no 3a & 3b

EEE 411 power system stability analysis .pptx
EEE 411 power system stability analysis .pptxEEE 411 power system stability analysis .pptx
EEE 411 power system stability analysis .pptxShoilieChakma
Β 
Propulsion 2 notes
Propulsion 2 notesPropulsion 2 notes
Propulsion 2 notesAghilesh V
Β 
18053522.pdf
18053522.pdf18053522.pdf
18053522.pdfLucasMogaka
Β 
T2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxKeith Vaugh
Β 
Saqib aeroelasticity cw
Saqib aeroelasticity cwSaqib aeroelasticity cw
Saqib aeroelasticity cwSagar Chawla
Β 
Poynting theorem & Poynting vector
Poynting theorem & Poynting vectorPoynting theorem & Poynting vector
Poynting theorem & Poynting vectorVIKRAMSINGH1697
Β 
Revised PPT on Week 2 Lecture.pptx
Revised PPT on Week 2 Lecture.pptxRevised PPT on Week 2 Lecture.pptx
Revised PPT on Week 2 Lecture.pptxpralayroy2
Β 
Dynamic systems-analysis-4
Dynamic systems-analysis-4Dynamic systems-analysis-4
Dynamic systems-analysis-4belal emira
Β 
Dq0 transformation & per unit representation of synchronous machine.pptx
Dq0 transformation & per unit representation of synchronous machine.pptxDq0 transformation & per unit representation of synchronous machine.pptx
Dq0 transformation & per unit representation of synchronous machine.pptxpralayroy2
Β 
FUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdfFUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdfWasswaderrick3
Β 
FLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdfFLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdfWasswaderrick3
Β 
StaticAeroelasticity apuntes, vibraciones
StaticAeroelasticity apuntes, vibracionesStaticAeroelasticity apuntes, vibraciones
StaticAeroelasticity apuntes, vibracionesAlejandroOrtiz278049
Β 
Swing equation
Swing equationSwing equation
Swing equationDarshil Shah
Β 
A2 PHYSICS - Notes.pdf
A2 PHYSICS - Notes.pdfA2 PHYSICS - Notes.pdf
A2 PHYSICS - Notes.pdfLuisa Polanco
Β 
Couette type mhd flow with suction and injection under constant pressure grad...
Couette type mhd flow with suction and injection under constant pressure grad...Couette type mhd flow with suction and injection under constant pressure grad...
Couette type mhd flow with suction and injection under constant pressure grad...eSAT Journals
Β 
Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gateSoumith V
Β 
Vectors in mechanics
Vectors in mechanicsVectors in mechanics
Vectors in mechanicsMaurice Verreck
Β 

Similar to 18 me54 turbo machines module 02 question no 3a & 3b (20)

EEE 411 power system stability analysis .pptx
EEE 411 power system stability analysis .pptxEEE 411 power system stability analysis .pptx
EEE 411 power system stability analysis .pptx
Β 
Propulsion 2 notes
Propulsion 2 notesPropulsion 2 notes
Propulsion 2 notes
Β 
18053522.pdf
18053522.pdf18053522.pdf
18053522.pdf
Β 
T2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptx
Β 
Ijmet 10 01_044
Ijmet 10 01_044Ijmet 10 01_044
Ijmet 10 01_044
Β 
Presentation1
Presentation1Presentation1
Presentation1
Β 
Saqib aeroelasticity cw
Saqib aeroelasticity cwSaqib aeroelasticity cw
Saqib aeroelasticity cw
Β 
Circular Motion
Circular MotionCircular Motion
Circular Motion
Β 
Poynting theorem & Poynting vector
Poynting theorem & Poynting vectorPoynting theorem & Poynting vector
Poynting theorem & Poynting vector
Β 
Revised PPT on Week 2 Lecture.pptx
Revised PPT on Week 2 Lecture.pptxRevised PPT on Week 2 Lecture.pptx
Revised PPT on Week 2 Lecture.pptx
Β 
Dynamic systems-analysis-4
Dynamic systems-analysis-4Dynamic systems-analysis-4
Dynamic systems-analysis-4
Β 
Dq0 transformation & per unit representation of synchronous machine.pptx
Dq0 transformation & per unit representation of synchronous machine.pptxDq0 transformation & per unit representation of synchronous machine.pptx
Dq0 transformation & per unit representation of synchronous machine.pptx
Β 
FUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdfFUNDAMENTALS OF FLUID FLOW.pdf
FUNDAMENTALS OF FLUID FLOW.pdf
Β 
FLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdfFLUID MECHANICS DEMYSTIFIED.pdf
FLUID MECHANICS DEMYSTIFIED.pdf
Β 
StaticAeroelasticity apuntes, vibraciones
StaticAeroelasticity apuntes, vibracionesStaticAeroelasticity apuntes, vibraciones
StaticAeroelasticity apuntes, vibraciones
Β 
Swing equation
Swing equationSwing equation
Swing equation
Β 
A2 PHYSICS - Notes.pdf
A2 PHYSICS - Notes.pdfA2 PHYSICS - Notes.pdf
A2 PHYSICS - Notes.pdf
Β 
Couette type mhd flow with suction and injection under constant pressure grad...
Couette type mhd flow with suction and injection under constant pressure grad...Couette type mhd flow with suction and injection under constant pressure grad...
Couette type mhd flow with suction and injection under constant pressure grad...
Β 
Fluid mechanics notes for gate
Fluid mechanics notes for gateFluid mechanics notes for gate
Fluid mechanics notes for gate
Β 
Vectors in mechanics
Vectors in mechanicsVectors in mechanics
Vectors in mechanics
Β 

More from THANMAY JS

Multimedia and Animation 20CS21P Portfolio.pdf
Multimedia and Animation 20CS21P Portfolio.pdfMultimedia and Animation 20CS21P Portfolio.pdf
Multimedia and Animation 20CS21P Portfolio.pdfTHANMAY JS
Β 
Fundamentals of Automation Technology 20EE43P Portfolio.pdf
Fundamentals of Automation Technology 20EE43P Portfolio.pdfFundamentals of Automation Technology 20EE43P Portfolio.pdf
Fundamentals of Automation Technology 20EE43P Portfolio.pdfTHANMAY JS
Β 
Elements of Industrial Automation Portfolio.pdf
Elements of Industrial Automation Portfolio.pdfElements of Industrial Automation Portfolio.pdf
Elements of Industrial Automation Portfolio.pdfTHANMAY JS
Β 
Fundamentals of Computer 20CS11T Chapter 5.pdf
Fundamentals of Computer 20CS11T Chapter 5.pdfFundamentals of Computer 20CS11T Chapter 5.pdf
Fundamentals of Computer 20CS11T Chapter 5.pdfTHANMAY JS
Β 
Fundamentals of Computer 20CS11T Chapter 4.pdf
Fundamentals of Computer 20CS11T Chapter 4.pdfFundamentals of Computer 20CS11T Chapter 4.pdf
Fundamentals of Computer 20CS11T Chapter 4.pdfTHANMAY JS
Β 
Fundamentals of Computer 20CS11T Chapter 3.pdf
Fundamentals of Computer 20CS11T Chapter 3.pdfFundamentals of Computer 20CS11T Chapter 3.pdf
Fundamentals of Computer 20CS11T Chapter 3.pdfTHANMAY JS
Β 
Fundamentals of Computer 20CS11T Chapter 2.pdf
Fundamentals of Computer 20CS11T Chapter 2.pdfFundamentals of Computer 20CS11T Chapter 2.pdf
Fundamentals of Computer 20CS11T Chapter 2.pdfTHANMAY JS
Β 
Fundamentals of Computer 20CS11T.pdf
Fundamentals of Computer 20CS11T.pdfFundamentals of Computer 20CS11T.pdf
Fundamentals of Computer 20CS11T.pdfTHANMAY JS
Β 
Elements of Industrial Automation Week 09 Notes.pdf
Elements of Industrial Automation Week 09 Notes.pdfElements of Industrial Automation Week 09 Notes.pdf
Elements of Industrial Automation Week 09 Notes.pdfTHANMAY JS
Β 
Elements of Industrial Automation Week 08 Notes.pdf
Elements of Industrial Automation Week 08 Notes.pdfElements of Industrial Automation Week 08 Notes.pdf
Elements of Industrial Automation Week 08 Notes.pdfTHANMAY JS
Β 
Elements of Industrial Automation Week 07 Notes.pdf
Elements of Industrial Automation Week 07 Notes.pdfElements of Industrial Automation Week 07 Notes.pdf
Elements of Industrial Automation Week 07 Notes.pdfTHANMAY JS
Β 
Elements of Industrial Automation Week 06 Notes.pdf
Elements of Industrial Automation Week 06 Notes.pdfElements of Industrial Automation Week 06 Notes.pdf
Elements of Industrial Automation Week 06 Notes.pdfTHANMAY JS
Β 
Elements of Industrial Automation Week 05 Notes.pdf
Elements of Industrial Automation Week 05 Notes.pdfElements of Industrial Automation Week 05 Notes.pdf
Elements of Industrial Automation Week 05 Notes.pdfTHANMAY JS
Β 
Elements of Industrial Automation Week 04 Notes.pdf
Elements of Industrial Automation Week 04 Notes.pdfElements of Industrial Automation Week 04 Notes.pdf
Elements of Industrial Automation Week 04 Notes.pdfTHANMAY JS
Β 
Elements of Industrial Automation Week 03 Notes.pdf
Elements of Industrial Automation Week 03 Notes.pdfElements of Industrial Automation Week 03 Notes.pdf
Elements of Industrial Automation Week 03 Notes.pdfTHANMAY JS
Β 
Elements of Industrial Automation Week 02 Notes.pdf
Elements of Industrial Automation Week 02 Notes.pdfElements of Industrial Automation Week 02 Notes.pdf
Elements of Industrial Automation Week 02 Notes.pdfTHANMAY JS
Β 
Elements of Industrial Automation Week 01 Notes.pdf
Elements of Industrial Automation Week 01 Notes.pdfElements of Industrial Automation Week 01 Notes.pdf
Elements of Industrial Automation Week 01 Notes.pdfTHANMAY JS
Β 
Automation and Robotics Week 08 Theory Notes 20ME51I.pdf
Automation and Robotics Week 08 Theory Notes 20ME51I.pdfAutomation and Robotics Week 08 Theory Notes 20ME51I.pdf
Automation and Robotics Week 08 Theory Notes 20ME51I.pdfTHANMAY JS
Β 
Automation and Robotics Week 07 Theory Notes 20ME51I.pdf
Automation and Robotics Week 07 Theory Notes 20ME51I.pdfAutomation and Robotics Week 07 Theory Notes 20ME51I.pdf
Automation and Robotics Week 07 Theory Notes 20ME51I.pdfTHANMAY JS
Β 
Automation and Robotics Week 06 Theory Notes 20ME51I.pdf
Automation and Robotics Week 06 Theory Notes 20ME51I.pdfAutomation and Robotics Week 06 Theory Notes 20ME51I.pdf
Automation and Robotics Week 06 Theory Notes 20ME51I.pdfTHANMAY JS
Β 

More from THANMAY JS (20)

Multimedia and Animation 20CS21P Portfolio.pdf
Multimedia and Animation 20CS21P Portfolio.pdfMultimedia and Animation 20CS21P Portfolio.pdf
Multimedia and Animation 20CS21P Portfolio.pdf
Β 
Fundamentals of Automation Technology 20EE43P Portfolio.pdf
Fundamentals of Automation Technology 20EE43P Portfolio.pdfFundamentals of Automation Technology 20EE43P Portfolio.pdf
Fundamentals of Automation Technology 20EE43P Portfolio.pdf
Β 
Elements of Industrial Automation Portfolio.pdf
Elements of Industrial Automation Portfolio.pdfElements of Industrial Automation Portfolio.pdf
Elements of Industrial Automation Portfolio.pdf
Β 
Fundamentals of Computer 20CS11T Chapter 5.pdf
Fundamentals of Computer 20CS11T Chapter 5.pdfFundamentals of Computer 20CS11T Chapter 5.pdf
Fundamentals of Computer 20CS11T Chapter 5.pdf
Β 
Fundamentals of Computer 20CS11T Chapter 4.pdf
Fundamentals of Computer 20CS11T Chapter 4.pdfFundamentals of Computer 20CS11T Chapter 4.pdf
Fundamentals of Computer 20CS11T Chapter 4.pdf
Β 
Fundamentals of Computer 20CS11T Chapter 3.pdf
Fundamentals of Computer 20CS11T Chapter 3.pdfFundamentals of Computer 20CS11T Chapter 3.pdf
Fundamentals of Computer 20CS11T Chapter 3.pdf
Β 
Fundamentals of Computer 20CS11T Chapter 2.pdf
Fundamentals of Computer 20CS11T Chapter 2.pdfFundamentals of Computer 20CS11T Chapter 2.pdf
Fundamentals of Computer 20CS11T Chapter 2.pdf
Β 
Fundamentals of Computer 20CS11T.pdf
Fundamentals of Computer 20CS11T.pdfFundamentals of Computer 20CS11T.pdf
Fundamentals of Computer 20CS11T.pdf
Β 
Elements of Industrial Automation Week 09 Notes.pdf
Elements of Industrial Automation Week 09 Notes.pdfElements of Industrial Automation Week 09 Notes.pdf
Elements of Industrial Automation Week 09 Notes.pdf
Β 
Elements of Industrial Automation Week 08 Notes.pdf
Elements of Industrial Automation Week 08 Notes.pdfElements of Industrial Automation Week 08 Notes.pdf
Elements of Industrial Automation Week 08 Notes.pdf
Β 
Elements of Industrial Automation Week 07 Notes.pdf
Elements of Industrial Automation Week 07 Notes.pdfElements of Industrial Automation Week 07 Notes.pdf
Elements of Industrial Automation Week 07 Notes.pdf
Β 
Elements of Industrial Automation Week 06 Notes.pdf
Elements of Industrial Automation Week 06 Notes.pdfElements of Industrial Automation Week 06 Notes.pdf
Elements of Industrial Automation Week 06 Notes.pdf
Β 
Elements of Industrial Automation Week 05 Notes.pdf
Elements of Industrial Automation Week 05 Notes.pdfElements of Industrial Automation Week 05 Notes.pdf
Elements of Industrial Automation Week 05 Notes.pdf
Β 
Elements of Industrial Automation Week 04 Notes.pdf
Elements of Industrial Automation Week 04 Notes.pdfElements of Industrial Automation Week 04 Notes.pdf
Elements of Industrial Automation Week 04 Notes.pdf
Β 
Elements of Industrial Automation Week 03 Notes.pdf
Elements of Industrial Automation Week 03 Notes.pdfElements of Industrial Automation Week 03 Notes.pdf
Elements of Industrial Automation Week 03 Notes.pdf
Β 
Elements of Industrial Automation Week 02 Notes.pdf
Elements of Industrial Automation Week 02 Notes.pdfElements of Industrial Automation Week 02 Notes.pdf
Elements of Industrial Automation Week 02 Notes.pdf
Β 
Elements of Industrial Automation Week 01 Notes.pdf
Elements of Industrial Automation Week 01 Notes.pdfElements of Industrial Automation Week 01 Notes.pdf
Elements of Industrial Automation Week 01 Notes.pdf
Β 
Automation and Robotics Week 08 Theory Notes 20ME51I.pdf
Automation and Robotics Week 08 Theory Notes 20ME51I.pdfAutomation and Robotics Week 08 Theory Notes 20ME51I.pdf
Automation and Robotics Week 08 Theory Notes 20ME51I.pdf
Β 
Automation and Robotics Week 07 Theory Notes 20ME51I.pdf
Automation and Robotics Week 07 Theory Notes 20ME51I.pdfAutomation and Robotics Week 07 Theory Notes 20ME51I.pdf
Automation and Robotics Week 07 Theory Notes 20ME51I.pdf
Β 
Automation and Robotics Week 06 Theory Notes 20ME51I.pdf
Automation and Robotics Week 06 Theory Notes 20ME51I.pdfAutomation and Robotics Week 06 Theory Notes 20ME51I.pdf
Automation and Robotics Week 06 Theory Notes 20ME51I.pdf
Β 

Recently uploaded

Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
Β 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
Β 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
Β 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
Β 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
Β 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersChitralekhaTherkar
Β 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
Β 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
Β 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionSafetyChain Software
Β 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docxPoojaSen20
Β 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
Β 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
Β 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxRoyAbrique
Β 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesFatimaKhan178732
Β 

Recently uploaded (20)

Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Β 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
Β 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
Β 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
Β 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Β 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
Β 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
Β 
Micromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of PowdersMicromeritics - Fundamental and Derived Properties of Powders
Micromeritics - Fundamental and Derived Properties of Powders
Β 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
Β 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
Β 
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Β 
Mastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory InspectionMastering the Unannounced Regulatory Inspection
Mastering the Unannounced Regulatory Inspection
Β 
MENTAL STATUS EXAMINATION format.docx
MENTAL     STATUS EXAMINATION format.docxMENTAL     STATUS EXAMINATION format.docx
MENTAL STATUS EXAMINATION format.docx
Β 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
Β 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
Β 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
Β 
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptxContemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Contemporary philippine arts from the regions_PPT_Module_12 [Autosaved] (1).pptx
Β 
Separation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and ActinidesSeparation of Lanthanides/ Lanthanides and Actinides
Separation of Lanthanides/ Lanthanides and Actinides
Β 

18 me54 turbo machines module 02 question no 3a & 3b

  • 1. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 1 Turbo Machines 18ME54 Course Coordinator Mr. THANMAY J. S Assistant Professor Department of Mechanical Engineering VVIET Mysore Module 02: Energy exchange in Turbo machines Course Learning Objectives Analyze the energy transfer in Turbo machine with degree of reaction and utilization factor Course Outcomes At the end of the course the student will be able to Analyze the energy transfer in Turbo machine
  • 2. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 2 Contents Modal 02: Question Number 3 a & 3 b i. Basic Introduction ii. Euler’s turbine equation iii. Alternate form of Euler’s turbine equation iv. Components of energy transfer v. Degree of Reaction vi. Velocity triangles for different values of degree of reaction vii. Utilization factor viii. Relation between degree of reaction and Utilization factor ix. List of Formulas x. Previous Year Question papers
  • 3. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 3 Basic Introduction Parameter Position in Velocity Triangle Rotor Speed or tangential speed or peripheral speed of the shaft π‘ˆ = πœ‹π·π‘ 60 In velocity triangle is always horizontal Velocity of fluid (steam, water, air, jet) or Absolute velocity of fluid (𝑉). Fluid Angle at inlet or nozzle exit angle (Impulse turbine), exit angle of guide (fixed) blade is (Ξ±1) with the direction of π‘ˆ Absolute Velocity at is to be resolved into two components 1) Along tangential direction and is called as tangential component velocity of fluid Vu1 (Tangential or whirl velocity Vw1) along horizontal direction (along U) 2)Along axial direction in axial turbomachine (Vax1) is called as axial component, along radial direction in radial flow turbomachine (Vrd1) is called as radial component. Axial and radial direction represented in velocity triangle in Y direction Vector difference between absolute velocity of the fluid and tangential speed of rotor is called as relative velocity and in velocity diagram this is the line connecting tip of U and V as given below and arrow opposes V and Vr follows U. Direction of Vr is the moving vane angle (vane (blade)angle, runner vane (blade) angle, moving vane (blade) angle) and it is denoted by Ξ². 𝑉𝑒1 = 𝑉1 cos𝛼1; 𝑉𝑓1 = 𝑉1 𝑠𝑖𝑛𝛼1; π‘‘π‘Žπ‘›π›½1 = 𝑉𝑓1 𝑉𝑒1 βˆ’ π‘ˆ1 ;π‘‰π‘Ÿ1 = 𝑉𝑓1 𝑠𝑖𝑛𝛽1 Similarly, outlet Triangle is also represented: π‘ˆ2 and 𝑉2 are emerging from single point and line joining tip of 𝑉2 and π‘ˆ2is relative velocity at outlet 𝑉𝑒2 = π‘‰π‘Ÿ2 π‘π‘œπ‘ π›½2 βˆ’ π‘ˆ2; 𝑉𝑓2 = π‘‰π‘Ÿ2 𝑠𝑖𝑛𝛽2
  • 4. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 4 Euler’s turbine equation The Euler turbine equation relates the power added to or removed from the flow, to characteristics of a rotating blade row. The equation is based on the concepts of conservation of angular momentum and conservation of energy. Assumptions: a) Fluid flow through the turbomachine is steady flow. b) Mass flow rate is constant and the state of the fluid does not vary with time. c) Rate of energy transfer at the rotor is constant. d) Heat and work interactions between the rotor and its surroundings take place at a constant rate. e) Velocity is uniform over any area normal to the flow. m = mass flow rate Ο‰ = Angular speed of the rotor r1 and r2= radius of rotor at inlet and exit Vu1 and Vu2 = tangential velocity components of fluid ant inlet and exit U1 and U2 = tangential velocity components of rotor at entry and exit Angular Momentum Angular momentum at entry = mass flow rate X Tangential Velocity of fluid X radius of rotor π΄π‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š π‘Žπ‘‘ π‘’π‘›π‘‘π‘Ÿπ‘¦ = π‘š Γ— 𝑉𝑒1 Γ— π‘Ÿ1 Angular momentum at exit = mass flow rate X Tangential Velocity of fluid X radius of rotor π΄π‘›π‘”π‘’π‘™π‘Žπ‘Ÿ π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š π‘Žπ‘‘ 𝑒π‘₯𝑖𝑑 = π‘š Γ— 𝑉𝑒2 Γ— π‘Ÿ2 According to Newton’s II law of motion; Torque exerted by the rotor = change of angular momentum Change in Angular momentum Change in Angular momentum = Angular momentum at exit - Angular momentum at entry πΆβ„Žπ‘Žπ‘›π‘”π‘’ 𝑖𝑛 π‘šπ‘œπ‘šπ‘’π‘›π‘‘π‘’π‘š = π‘š Γ— 𝑉𝑒2 Γ— π‘Ÿ2 βˆ’ π‘š Γ— 𝑉𝑒1 Γ— π‘Ÿ1 = π‘š(𝑉𝑒2. π‘Ÿ2 βˆ’ 𝑉𝑒1. π‘Ÿ1) ∴ Torque exerted by the rotor T = π‘š(𝑉𝑒2. π‘Ÿ2 βˆ’ 𝑉𝑒1. π‘Ÿ1)
  • 5. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 5 Power Transmitted Power Transmitted = Angular Velocity Γ— Torque = Ο‰ Γ— T 𝑃 = Ο‰ Γ— π‘š(𝑉𝑒2. π‘Ÿ2 βˆ’ 𝑉𝑒1. π‘Ÿ1) = π‘š(𝑉𝑒2. π‘Ÿ2. Ο‰ βˆ’ 𝑉𝑒1. π‘Ÿ1. Ο‰) 𝑃 = π‘š(𝑉𝑒2. π‘Ÿ2. Ο‰ βˆ’ 𝑉𝑒1. π‘Ÿ1. Ο‰) Tangential Speed or Blade Speed Tangential Speed (U) = Angular Velocity (Ο‰) Γ— radius(r) ∴ U = Ο‰ Γ— r ∴ π‘ƒπ‘œπ‘€π‘’π‘Ÿ π‘‡π‘Ÿπ‘Žπ‘›π‘ π‘šπ‘–π‘‘π‘‘π‘’π‘‘ 𝑃 = π‘š(𝑉𝑒2. π‘Ÿ2. Ο‰ βˆ’ 𝑉𝑒1. π‘Ÿ1. Ο‰) 𝑀𝑖𝑙𝑙 𝑏𝑒 𝑃 = π‘š(𝑉𝑒2. π‘ˆ2 βˆ’ 𝑉𝑒1. π‘ˆ1) 𝑻𝒉𝒆 𝑬𝒍𝒖𝒆𝒓′ π‘»π’–π’“π’ƒπ’Šπ’π’† π‘¬π’’π’–π’‚π’•π’Šπ’π’ π’Šπ’” π’ˆπ’Šπ’—π’†π’ 𝒂𝒔 Power Absorbing Turbo Machines Power Generation Turbo Machines Vu2 . U2 > Vu1 . U1 Vu1 . U1 > Vu2 . U2 𝑷 = π’Ž(π‘½π’–πŸ. π‘ΌπŸ βˆ’ π‘½π’–πŸ. π‘ΌπŸ) 𝑷 = π’Ž(π‘½π’–πŸ. π‘ΌπŸ βˆ’ π‘½π’–πŸ. π‘ΌπŸ) Alternate form of Euler’s turbine equation Inlet Velocity Triangle Outlet Velocity Triangle 𝑉1 2 = 𝑉𝑓1 2 + 𝑉𝑒1 2 𝑉𝑓1 2 = 𝑉1 2 βˆ’ 𝑉𝑒1 2 𝑉2 2 = 𝑉𝑓2 2 + 𝑉𝑒2 2 𝑉𝑓2 2 = 𝑉2 2 βˆ’ 𝑉𝑒2 2 π‘‰π‘Ÿ1 2 = 𝑉𝑓1 2 + π‘‰π‘Ÿπ‘’1 2 𝑏𝑒𝑑 π‘‰π‘Ÿπ‘’1 = π‘ˆ1 βˆ’ 𝑉𝑒1 π‘Žπ‘™π‘ π‘œ 𝑉𝑓1 2 = 𝑉1 2 βˆ’ 𝑉𝑒1 2 π‘‰π‘Ÿ1 2 = 𝑉𝑓1 2 + (π‘ˆ1 βˆ’ 𝑉𝑒1 2) π‘‰π‘Ÿ2 2 = 𝑉𝑓2 2 + π‘‰π‘Ÿπ‘’2 2 𝑏𝑒𝑑 π‘‰π‘Ÿπ‘’2 = π‘ˆ2 βˆ’ 𝑉𝑒2 π‘Žπ‘™π‘ π‘œ 𝑉𝑓2 2 = 𝑉2 2 βˆ’ 𝑉𝑒2 2 π‘‰π‘Ÿ2 2 = 𝑉𝑓2 2 + (π‘ˆ2 βˆ’ 𝑉𝑒2 )2 ∴ π‘‰π‘Ÿ1 2 = 𝑉1 2 βˆ’ 𝑉𝑒1 2 + (π‘ˆ1 βˆ’ 𝑉𝑒1 2) π‘‰π‘Ÿ1 2 = 𝑉1 2 βˆ’ 𝑉𝑒12 + π‘ˆ1 2 + 𝑉𝑒12 βˆ’ 2𝑉𝑒1π‘ˆ1 ∴ π‘‰π‘Ÿ2 2 = 𝑉2 2 βˆ’ 𝑉𝑒22 + (π‘ˆ2 βˆ’ 𝑉𝑒2 )2 π‘‰π‘Ÿ2 2 = 𝑉2 2 βˆ’ 𝑉𝑒2 2 + π‘ˆ2 2 + 𝑉𝑒2 2 βˆ’ 2𝑉𝑒2π‘ˆ2 ∴ 2𝑉𝑒1π‘ˆ1 = 𝑉1 2 + π‘ˆ1 2 βˆ’ π‘‰π‘Ÿ1 2 ∴ 2𝑉𝑒2π‘ˆ2 = 𝑉2 2 + π‘ˆ2 2 βˆ’ π‘‰π‘Ÿ2 2 π‘½π’–πŸπ‘ΌπŸ = (π‘½πŸ 𝟐 + π‘ΌπŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝟐 π‘½π’–πŸπ‘ΌπŸ = (π‘½πŸ 𝟐 + π‘ΌπŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝟐 By Euler’s Turbine Equation Power Absorbing Turbo Machines Power Generation Turbo Machines 𝑃 = (𝑉𝑒2. π‘ˆ2 βˆ’ 𝑉𝑒1. π‘ˆ1) 𝑃 = (𝑉𝑒1. π‘ˆ1 βˆ’ 𝑉𝑒2. π‘ˆ2) 𝑃 = (𝑉2 2+π‘ˆ2 2βˆ’π‘‰π‘Ÿ2 2) 2 βˆ’ (𝑉1 2+π‘ˆ1 2βˆ’π‘‰π‘Ÿ1 2) 2 𝑃 = (𝑉1 2+π‘ˆ1 2βˆ’π‘‰π‘Ÿ1 2) 2 βˆ’ (𝑉2 2+π‘ˆ2 2βˆ’π‘‰π‘Ÿ2 2) 2 𝑷 = 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝑷 = 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 )
  • 6. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 6 Components of energy transfer By Euler’s Turbine Equation or Energy Equation Power Absorbing Turbo Machines Power Generation Turbo Machines 𝑷 = 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝑷 = 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) First component: It is the change in the absolute kinetic energy and which causes a change in the dynamic head or dynamic pressure of the fluid through the machine. 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) Second component: It is the change in the centrifugal energy of the fluid in the motion. This is due to the change in the radius of rotation of the fluid. This causes a change in the static head or static pressure of the fluid through the rotor. 𝟏 𝟐 (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) 𝟏 𝟐 (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) Third component: It is the change in the relative kinetic energy and which causes a 𝟏 𝟐 (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝟏 𝟐 (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) Degree of Reaction (𝑹) Degree of Reaction (R) is the ratio of Energy Transfer due to Static Enthalpy change to Total Energy Transfer due to Total Enthalpy change in a rotor. Or The degree of reaction is also defined as the ratio of energy transfer due to the change in static pressure in the rotor to total energy transfer due to the change in total pressure in the rotor. 𝑹 = π‘Ίπ’•π’‚π’•π’Šπ’„ 𝒉𝒆𝒂𝒅 𝑻𝒐𝒕𝒂𝒍 𝒉𝒆𝒂𝒅 = π‘Ίπ’•π’‚π’•π’Šπ’„ π’†π’π’•π’‰π’‚π’π’‘π’š π’„π’‰π’‚π’π’ˆπ’† 𝑻𝒐𝒕𝒂𝒍 π’†π’π’•π’‰π’‚π’π’‘π’š π’„π’‰π’‚π’π’ˆπ’† = πœŸπ’‰ πœŸπ’‰πŸŽ πœŸπ’‰ = 𝟏 𝟐 (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) "𝑬" 𝒐𝒓 "𝒆" 𝒐𝒓 "𝑷" = πœŸπ’‰πŸŽ = 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) ∴ 𝑅 = π›₯β„Ž π›₯β„Ž0 = 𝟏 𝟐 (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐) 𝑹 = (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝑹 = 𝑷 βˆ’ 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) 𝑷 π‘€β„Žπ‘’π‘Ÿπ‘’ 𝑷 = 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 )
  • 7. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 7 Velocity triangles for different values of degree of reaction [ R=0, R=0.5, R=1] Case 01) When R =0 (i.e., Impulse type Vr1 = Vr2, and hence Ξ²1= Ξ²2) Energy transfer occurs purely due to the change in absolute kinetic energy. Zero degree of reaction is the characteristics of Impulse machine i.e Vr1 = Vr2. Here energy transfer is purely due to change in dynamic pressure. (U1=U2) 𝑹 = (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝑹 = (𝟎) + (𝟎) (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (𝟎) + (𝟎) = 0 Case 02) When R = 0.5 (i.e., 50% Reaction axial flow) This implies U1= U2, V1 = Vr2, V2=Vr1 and Vf1 = Vf2. For symmetric Velocity Ξ±2 = Ξ²1 and Ξ±1= Ξ²2. Energy transfer occurs initially by impulse action and then by reaction. 𝑹 = (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝑹 = (𝟎) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (𝟎) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) = 1 2 Case 03) When R = 1 (i.e., 100% Fully reaction) In this case V1 = V2, U1 = U2 and V2>Vr1 Energy transfer occurs purely due to change in relative Kinetic Energy of fluid. The rotor acts both as the nozzle and as the energy transfer device, so energy transfer is purely due to change in static pressure 𝑹 = (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝑹 = (𝟎) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) (𝟎) + (𝟎) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) = 1
  • 8. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 8 Utilization factor (𝝐) The utilization factor is the ratio of the ideal (Euler) work output to the energy available for conversion into work. Under ideal conditions, it should be possible to utilize all of the kinetic energy of the fluid at the rotor inlet and also the increase in kinetic energy obtained in the rotor due to static pressure drop (i.e., the reaction effect). Thus the Energy avilable for conversion of Work is π‘·π‘¨π’—π’‚π’Šπ’π’‚π’ƒπ’π’† = 𝟏 𝟐 [(π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 )] Total work output is "E" 𝒐𝒓 "e" 𝒐𝒓 P 𝒐𝒓 "πœŸπ’‰πŸŽ" = 𝟏 𝟐 [(π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 )] ∴ π‘ˆπ‘‘π‘–π‘™π‘–π‘§π‘Žπ‘‘π‘–π‘œπ‘› πΉπ‘Žπ‘π‘‘π‘œπ‘Ÿ (πœ–) = 𝑃 π‘ƒπ΄π‘£π‘Žπ‘–π‘™π‘Žπ‘π‘™π‘’ = 1 2 [(𝑉1 2 βˆ’ 𝑉2 2 ) + (π‘ˆ1 2 βˆ’ π‘ˆ2 2 ) + (π‘‰π‘Ÿ1 2 βˆ’ π‘‰π‘Ÿ2 2 )] 1 2 [(𝑉1 2) + (π‘ˆ1 2 βˆ’ π‘ˆ2 2) + (π‘‰π‘Ÿ1 2 βˆ’ π‘‰π‘Ÿ2 2)] ∴ π‘Όπ’•π’Šπ’π’Šπ’›π’‚π’•π’Šπ’π’ 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) = (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝒐𝒓 π‘Όπ’•π’Šπ’π’Šπ’›π’‚π’•π’Šπ’π’ 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) = 𝟏 𝟐 [(π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 )] 𝟏 𝟐 [(π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐)] + 𝟏 𝟐 (π‘½πŸ 𝟐) ∴ π‘Όπ’•π’Šπ’π’Šπ’›π’‚π’•π’Šπ’π’ 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) = 𝑷 𝑷 + 𝟏 𝟐 (π‘½πŸ 𝟐) Relation between degree of reaction and Utilization factor (𝝐) = (π‘½πŸ 𝟐 βˆ’π‘½πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’π‘Ή π‘½πŸ 𝟐 ) π‘Šπ‘’ π‘˜π‘›π‘œπ‘€ π‘‘β„Žπ‘Žπ‘‘ π·π‘’π‘”π‘Ÿπ‘’π‘’ π‘œπ‘“ π‘…π‘’π‘Žπ‘π‘‘π‘–π‘œπ‘› 𝑹 = (π‘ΌπŸ 𝟐 βˆ’π‘ΌπŸ 𝟐 )+(π‘½π’“πŸ 𝟐 βˆ’π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’π‘½πŸ 𝟐 )+(π‘ΌπŸ 𝟐 βˆ’π‘ΌπŸ 𝟐 )+(π‘½π’“πŸ 𝟐 βˆ’π‘½π’“πŸ 𝟐 ) By cross multiplication 𝑅(𝑉1 2 βˆ’ 𝑉2 2 ) + 𝑅 [(π‘ˆ1 2 βˆ’ π‘ˆ2 2 ) + (π‘‰π‘Ÿ1 2 βˆ’ π‘‰π‘Ÿ2 2 )] = (π‘ˆ1 2 βˆ’ π‘ˆ2 2 ) + (π‘‰π‘Ÿ1 2 βˆ’ π‘‰π‘Ÿ2 2 ) 𝑅(𝑉1 2 βˆ’ 𝑉2 2 ) = (1 βˆ’ 𝑅) [(π‘ˆ1 2 βˆ’ π‘ˆ2 2 ) + (π‘‰π‘Ÿ1 2 βˆ’ π‘‰π‘Ÿ2 2 )] 𝑹 (πŸβˆ’π‘Ή) (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) = (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) π‘Šπ‘’ π‘Žπ‘™π‘ π‘œ πΎπ‘›π‘œπ‘€ π‘‘β„Žπ‘Žπ‘‘ π‘ˆπ‘‘π‘–π‘™π‘–π‘§π‘Žπ‘‘π‘–π‘œπ‘› πΉπ‘Žπ‘π‘‘π‘œπ‘Ÿ (𝝐) = (π‘½πŸ 𝟐 βˆ’π‘½πŸ 𝟐 )+(π‘ΌπŸ 𝟐 βˆ’π‘ΌπŸ 𝟐 )+(π‘½π’“πŸ 𝟐 βˆ’π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 )+(π‘ΌπŸ 𝟐 βˆ’π‘ΌπŸ 𝟐 )+(π‘½π’“πŸ 𝟐 βˆ’π‘½π’“πŸ 𝟐 ) (πœ–) = (𝑉1 2 βˆ’π‘‰2 2 )+ 𝑅 (1βˆ’π‘…) (𝑉1 2 βˆ’π‘‰2 2 ) (𝑉1 2 )+ 𝑅 (1βˆ’π‘…) (𝑉1 2 βˆ’π‘‰2 2 ) (πœ–) = (1 βˆ’ 𝑅)(𝑉1 2 βˆ’ 𝑉2 2 ) + 𝑅 (𝑉1 2 βˆ’ 𝑉2 2 ) (1 βˆ’ 𝑅)(𝑉1 2 ) + 𝑅 (𝑉1 2 βˆ’ 𝑉2 2 ) (𝝐) = (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ 𝑹 π‘½πŸ 𝟐 )
  • 9. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 9 List of Formulas Basic Trigonometry Cosine Rule Euler’s Turbine Equation Power Absorbing Turbo Machines Power Generation Turbo Machines 𝑃 = (𝑉𝑒2. π‘ˆ2 βˆ’ 𝑉𝑒1. π‘ˆ1) 𝑃 = (𝑉𝑒1. π‘ˆ1 βˆ’ 𝑉𝑒2. π‘ˆ2) 𝑷 = 𝟏 𝟐 [(π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 )] 𝑷 = 𝟏 𝟐 [(π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 )] 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) Centrifugal Energy 𝟏 𝟐 (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) 𝟏 𝟐 (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) Relative Kinetic Energy 𝟏 𝟐 (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝟏 𝟐 (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) Degree of Reaction (R) 𝑹 = πœŸπ’‰ πœŸπ’‰πŸŽ = 𝑷 βˆ’ 𝟏 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) 𝑷 𝑹 = (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) Different values of degree of reaction [ R=0, R=0.5, R=1] When R =0 Vr1 = Vr2, U1=U2 and Ξ²1= Ξ²2 When R = 0.5 = 50% U1= U2, V1 = Vr2, V2=Vr1 and Vf1 = Vf2 When R = 1 = 100% V1 = V2, U1 = U2 and V2>Vr1 π‘Όπ’•π’Šπ’π’Šπ’›π’‚π’•π’Šπ’π’ 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) (𝝐) = (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 ) + (π‘ΌπŸ 𝟐 βˆ’ π‘ΌπŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) (𝝐) = 𝑷 𝑷 + 𝟏 𝟐 (π‘½πŸ 𝟐) Relation between degree of reaction and Utilization factor (𝝐) = (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ 𝑹 π‘½πŸ 𝟐 )
  • 10. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 10 Previous Year Question papers 18ME54 Model Question Paper -1 with effect from 2020-21(CBCS Scheme) Module – 2 3 a) Define Degree of reaction. Obtain an expression for Utilization factor in terms of degree of reaction and absolute velocities. 6 Ans ∴ π‘Όπ’•π’Šπ’π’Šπ’›π’‚π’•π’Šπ’π’ 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) = 𝑬 𝑬+ 𝟏 𝟐 (π‘½πŸ 𝟐 ) Page Number 8 b) For 50% degree of reaction axial flow turbomachine, inlet fluid velocity is 230 m/s, out angle of inlet guide blade is 30Β°, inlet rotor angle is 60Β° and outlet rotor angle is 25Β°. Find the utilization factor, axial thrust and power output per unit mass flow. 6 Ans Case 02) When R = 0.5 (i.e., 50% Reaction axial flow) This implies U1= U2, V1 = Vr2, V2=Vr1 and Vf1 = Vf2. For symmetric Velocity Ξ±2 = Ξ²1 and Ξ±1= Ξ²2. Given Data: V1 = 230 m/s; Ξ±1=30Β°; Ξ²1= 60Β°; Ξ²2= 25Β°; Although R = 50% Ξ±2 β‰  Ξ²1 and Ξ±1β‰  Ξ²2 as Vf1 β‰  Vf2. utilization factor (↋) =? F(axial) =? P =? 𝑹 = (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) = 1 2 = 0.5 From Inlet Velocity Triangle 𝑉𝑓1 = 𝑉1 sin 𝛼1 π‘‰π‘Ÿ1 = 𝑉𝑓1 𝑠𝑖𝑛𝛽1 π‘ˆ1 = 𝑉1 cos 𝛼1 βˆ’ π‘‰π‘Ÿ1cos 𝛽1 ; 𝑉𝑓1 = 230 sin 30 = 115 π‘š/𝑠 π‘‰π‘Ÿ1 = 115 𝑠𝑖𝑛60 = 132.8 π‘š/𝑠 π‘ˆ1 = 230 cos30 βˆ’ π‘‰π‘Ÿ1 cos60 ; π‘ˆ1 = 132.8 π‘š/𝑠; tan 𝛼1 = 𝑉𝑓1 𝑉𝑒1 ; 𝑉𝑒1 = 𝑉𝑓1 tanΞ± 1 𝑉𝑒1 = 𝑉𝑓1 tanΞ±1 = 115 tan 30 = 199.18 π‘š/𝑠 π‘½πŸ = πŸπŸ‘πŸŽ π’Ž/𝒔 π‘½π’“πŸ = πŸπŸ‘πŸ. πŸ– π’Ž/𝒔 For 50% Reaction V2=Vr1 = 132.8 (𝝐) = (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ 𝑹 π‘½πŸ 𝟐 ) = (πŸπŸ‘πŸŽ 𝟐 βˆ’ πŸπŸ‘πŸ. πŸ–πŸ ) (πŸπŸ‘πŸŽ 𝟐 βˆ’ (𝟎. πŸ“)πŸπŸ‘πŸ.πŸ–πŸ ) = πŸ‘πŸ“, πŸπŸ”πŸ’. πŸπŸ” πŸ’πŸ’, πŸŽπŸ–πŸ. πŸŽπŸ– = 𝟎. πŸ•πŸ—πŸ—πŸ— 𝑉𝑓1 = 𝑉1 sin 𝛼1 = 115π‘š/𝑠 𝑉𝑓2 = π‘‰π‘Ÿ2 sin 𝛽2 = 97.202 𝑭 (π’‚π’™π’Šπ’‚π’) = π’Ž(π‘½π’‡πŸ βˆ’ π‘½π’‡πŸ); 𝐹 (π‘Žπ‘₯π‘–π‘Žπ‘™) π‘š = (115 βˆ’ 97.202) = πŸπŸ•. πŸ•πŸ—πŸ• 𝑡 βˆ’ π’Ž/𝒔 π‘·π’π’˜π’†π’“ (𝑷) = π’Žπ‘Ό(π‘½π’–πŸ βˆ’ π‘½π’–πŸ); 𝑷 π’Ž = (π‘½πŸ π’„π’π’”πœΆπŸ βˆ’ π‘½π’“πŸ π’„π’π’”πœ·πŸ βˆ’ 𝑼) 𝑷 = πŸπŸ‘πŸ. πŸ– Γ— (πŸπŸ—πŸ—. πŸπŸ–πŸ“ βˆ’ πŸ•πŸ“. πŸ”πŸ“) = πŸπŸ”, πŸ’πŸŽπŸ’. πŸ”πŸ•πŸ– = πŸπŸ”. πŸ’πŸŽπŸ’ π’Œπ‘Ύ
  • 11. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 11 Previous Year Question papers 18ME54 Model Question Paper -2 with effect from 2020-21(CBCS Scheme) Module – 2 3 a) With the help of velocity triangles at inlet and outlet, derive an alternate form of Euler’s turbine equation. b) Show that maximum utilization factor of an axial flow turbine with degree of reaction( 𝟏 πŸ‘ ), the relationship of blade speed U to absolute velocity at rotor inlet V1(speed ratio) is given byβˆ… = 𝑼 π‘½πŸ = 𝟏 πŸ’ 𝒄𝒐𝒔 𝜢𝟏, where Ξ±1 is the nozzle angle with respect to tangential direction at inlet. 𝑹 = (π‘ΌπŸ 𝟐 βˆ’π‘ΌπŸ 𝟐 )+(π‘½π’“πŸ 𝟐 βˆ’π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’π‘½πŸ 𝟐 )+(π‘ΌπŸ 𝟐 βˆ’π‘ΌπŸ 𝟐 )+(π‘½π’“πŸ 𝟐 βˆ’π‘½π’“πŸ 𝟐 ) 𝒇𝒐𝒓 π’‚π’™π’Šπ’‚π’ π’‡π’π’π’˜ (π‘ΌπŸ = π‘ΌπŸ) 𝒂𝒏𝒅 π‘½π’‡πŸ = π‘½π’‡πŸ = 𝑽𝒇 = π‘½πŸ ∴ 𝑹 = (π‘½π’“πŸ 𝟐 βˆ’π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’π‘½πŸ 𝟐 )+(π‘½π’“πŸ 𝟐 βˆ’π‘½π’“πŸ 𝟐 ) = 1 3 𝑠𝑖𝑛𝛼1 = π‘½πŸ π‘½πŸ ≫ π‘½πŸ = π‘½πŸ 𝑠𝑖𝑛𝛼1 π‘½πŸ 𝟐 = π‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ π‘½π’“πŸ 𝟐 = π‘½πŸ 𝟐 + π‘ΌπŸ π‘½π’“πŸ 𝟐 = π‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ + π‘ΌπŸ 𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔 πΆπ‘œπ‘ π‘–π‘›π‘’ 𝑅𝑒𝑙𝑒 π‘‘π‘œ 𝑂𝐴𝐡 π‘½π’“πŸ 𝟐 = π‘½πŸ 𝟐 + π‘ΌπŸ βˆ’ πŸπ‘Όπ‘½πŸπ’„π’π’”πœΆπŸ 𝐴𝑝𝑝𝑙𝑦𝑖𝑛𝑔 π‘½πŸ 𝟐 , π‘½π’“πŸ 𝟐 𝒂𝒏𝒅 π‘½π’“πŸ 𝟐 𝒕𝒐 𝑹 𝑹 = (π‘½π’“πŸ 𝟐 βˆ’π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’π‘½πŸ 𝟐 )+(π‘½π’“πŸ 𝟐 βˆ’π‘½π’“πŸ 𝟐 ) = 1 3 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) + (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) = πŸ‘ Γ— (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) = πŸ‘ Γ— (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) βˆ’ (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) ∴ (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) = 𝟐 Γ— (π‘½π’“πŸ 𝟐 βˆ’ π‘½π’“πŸ 𝟐 ) 𝑆𝑒𝑏𝑠𝑑𝑖𝑑𝑒𝑑𝑖𝑛𝑔 π‘½πŸ 𝟐 , π‘½π’“πŸ 𝟐 𝒂𝒏𝒅 π‘½π’“πŸ 𝟐 (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ) = 𝟐 Γ— ((π‘½πŸ 𝟐 + π‘ΌπŸ βˆ’ πŸπ‘Όπ‘½πŸπ’„π’π’”πœΆπŸ) βˆ’ (π‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ + π‘ΌπŸ 𝟐 )) (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ) = 𝟐(π‘½πŸ 𝟐 + π‘ΌπŸ βˆ’ πŸπ‘Όπ‘½πŸπ’„π’π’”πœΆπŸ βˆ’ π‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ βˆ’ π‘ΌπŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ) = 𝟐(π‘½πŸ 𝟐 βˆ’ πŸπ‘Όπ‘½πŸπ’„π’π’”πœΆπŸ βˆ’ π‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ ) π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ = πŸπ‘½πŸ 𝟐 βˆ’ πŸ’π‘Όπ‘½πŸπ’„π’π’”πœΆπŸ βˆ’ πŸπ‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ π‘½πŸ 𝟐 βˆ’ πŸπ‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ + πŸπ‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ = βˆ’πŸ’π‘Όπ‘½πŸπ’„π’π’”πœΆπŸ βˆ’π‘½πŸ 𝟐 + π‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ = βˆ’πŸ’π‘Όπ‘½πŸπ’„π’π’”πœΆπŸ π‘½πŸ 𝟐 π’”π’Šπ’πœΆπŸπŸ βˆ’ π‘½πŸ 𝟐 = πŸ’π‘Όπ‘½πŸπ’„π’π’”πœΆπŸ π‘½πŸ 𝟐 π’„π’π’”πœΆπŸπŸ = πŸ’π‘Όπ‘½πŸπ’„π’π’”πœΆπŸ 𝟏 πŸ’ π’„π’π’”πœΆπŸπŸ π’„π’π’”πœΆπŸ = π‘Όπ‘½πŸ π‘½πŸ 𝟐 ≫= 𝑼 π‘½πŸ = 𝟏 πŸ’ π’„π’π’”πœΆπŸ 𝑺𝒕𝒖𝒅𝒆𝒏𝒕 π‘¨π’„π’•π’Šπ’—π’Šπ’•π’š π’Šπ’‡ 𝑹 = 𝟏 πŸ’ 𝒕𝒉𝒆𝒏 π’”π’‰π’π’˜ ≫= 𝑼 π‘½πŸ = 𝟐 πŸ‘ π’„π’π’”πœΆπŸ
  • 12. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 12 3 c) The mean rotor blade speed of an axial flow turbine stage with a degree of reaction of 50% is 210 m/s. The steam emerges from the nozzle inclined at 28ΒΊ to the wheel plane, with an axial velocity component which is equal to the blade speed. Assuming symmetric inlet and outlet velocity triangles, find the rotor blade angles and the utilization factor. Find also the degree of reaction to make the utilization a maximum, if the axial velocity and the blade speed as well as the nozzle remain the same as above. 𝑹 = 𝟎.πŸ“, 𝑼 = 𝟐𝟏𝟎 π’Ž 𝒔 , 𝜢𝟏 = πŸπŸ–Β° π‘½π’‡πŸ = 𝑼 = 𝟐𝟏𝟎 π’Ž 𝒔 , 𝑹 = 𝟎. πŸ“ 𝒕𝒉𝒆𝒏 π‘½π’“πŸ = π‘½πŸ & π‘½π’“πŸ = π‘½πŸ Case 02) When R = 0.5 (i.e., 50% Reaction axial flow) This implies U1= U2, V1 = Vr2, V2=Vr1 and Vf1 = Vf2. For symmetric Velocity Ξ±2 = Ξ²1 and Ξ±1= Ξ²2. tan 𝛼1 = 𝑉𝑓1 𝑉𝑒1 ≫ 𝑉𝑒1 = 𝑉𝑓1 tan 𝛼1 = 210 π‘‘π‘Žπ‘›28 = 394.95 π‘‰π‘Ÿ1 = 𝑉𝑓1 𝑠𝑖𝑛𝛽1 tan 𝛽1 = 𝑉𝑓1 𝑉𝑒1 βˆ’ π‘ˆ = 210 394.95 βˆ’ 210 = 210 184.95 π‘‰π‘Ÿ1 = 115 𝑠𝑖𝑛60 = 132.8 π‘š/𝑠 ∴ tan 𝛽1 = 1.13544 ≫ 𝛽1 = tanβˆ’1(1.13544) 𝛽1 = 48.62Β° 𝜢𝟏 = 𝜷𝟐 & 𝜢𝟐 = 𝜷𝟏 𝜢𝟏 = 𝜷𝟐 = πŸπŸ–Β° & 𝜢𝟐 = 𝜷𝟏 = πŸ’πŸ–. πŸ”πŸΒ° (𝝐) = (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ 𝑹 π‘½πŸ 𝟐 ) sin 𝛼1 = 𝑉𝑓1 𝑉1 ≫ 𝑉1 = 𝑉𝑓1 sin 𝛼1 = 210 𝑠𝑖𝑛28 = 447.31 𝑉1 = 447.31 π‘Žπ‘›π‘‘ 𝑉2 = 279.87 & 𝑅 = 0.5 sin 𝛽1 = 𝑉𝑓1 π‘‰π‘Ÿ1 ≫ π‘‰π‘Ÿ1 = 𝑉𝑓1 sin𝛽1 = 210 𝑠𝑖𝑛48.62 = 279.87 (𝝐) = (π‘½πŸ 𝟐 βˆ’ π‘½πŸ 𝟐 ) (π‘½πŸ 𝟐 βˆ’ 𝑹 π‘½πŸ 𝟐 ) = (πŸ’πŸ’πŸ•. πŸ‘πŸπŸ βˆ’ πŸπŸ•πŸ—. πŸ–πŸ•πŸ ) (πŸ’πŸ’πŸ•. πŸ‘πŸπŸ βˆ’ (𝟎. πŸ“)πŸπŸ•πŸ—. πŸ–πŸ•πŸ ) (𝝐) = 𝟎. πŸ•πŸ“πŸ• π‘“π‘œπ‘Ÿ 𝑅 = 50%; 𝑉2 = π‘‰π‘Ÿ1 = 279.87
  • 13. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 13 Previous Year Question papers Model Question Paper (CBCS) with effect from 2015-16) Module – 2 3 a) Derive an alternate form of Euler Turbine equation. 8 b) In an axial flow turbine, the discharge blade angles are 20Β° each for both the stator and the rotor. The steam speed from the nozzle exit is 140m/s. The ratio of 𝑽𝒂 𝑼 = 𝟎. πŸ• at the entry and 0.76 at the exit of the rotor blade. Find the rotor inlet blade angle and the power developed by the blade ring for a mass flow rate of 2.6kg/s. 8 axial flow turbine π‘ˆ1 = π‘ˆ2 = π‘ˆ the discharge blade angle is 20ΒΊeach, for both the stator and the rotor. i.e., ∝1= 20ΒΊ; 𝛽2 = 20ΒΊ; The steam speed at the exit of the fixed blade is 140m/s i.e., 𝑉1 = 140m/s π‘½π’‚πŸ 𝑼 = 𝟎. πŸ•π‘Žπ‘‘ π‘‘β„Žπ‘’ π‘’π‘›π‘‘π‘Ÿπ‘¦ π‘Žπ‘›π‘‘ π‘½π’‚πŸ 𝑼 = 𝟎.πŸ•πŸ” π‘Žπ‘‘ π‘‘β„Žπ‘’ 𝑒π‘₯𝑖𝑑 π‘œπ‘“ π‘‘β„Žπ‘’ π‘Ÿπ‘œπ‘‘π‘œπ‘Ÿ π‘π‘™π‘Žπ‘‘π‘’ Find the rotor inlet blade angle power developed by the blade ring mass flow rate of 2.6kg/s. 𝑃 = (𝑉𝑒1. π‘ˆ1 βˆ’ 𝑉𝑒2. π‘ˆ2) 𝑷 = (π‘½π’–πŸ βˆ’ π‘½π’–πŸ)𝑼 cos𝛼1 = 𝑉𝑒1 𝑉1 ≫ 𝑉𝑒1 = 𝑉1 cos𝛼1 𝑉𝑒1 = 140 cos20 ≫ π‘½π’–πŸ = πŸπŸ‘πŸ. πŸ“πŸ“ sin 𝛼1 = 𝑉𝑓1 𝑉1 ≫ 𝑉𝑓1 = 𝑉1 sin 𝛼1 𝑉𝑓1 = 140 sin 20 ≫ π‘½π’‡πŸ = πŸ’πŸ•. πŸ–πŸ– π‘½π’‚πŸ 𝑼 = π‘½π’‡πŸ 𝑼 = πŸ’πŸ•.πŸ–πŸ– 𝑼 = 𝟎.πŸ• 47.88 0.7 = 𝑼 = πŸ”πŸ–.πŸ’πŸŽ π‘½π’‚πŸ 𝑼 = π‘½π’‡πŸ 𝑼 = 𝟎.πŸ•πŸ” π‘½π’‡πŸ = 𝟎. πŸ•πŸ” Γ— 𝑼 ≫ π‘½π’‡πŸ = πŸ“πŸ.πŸ—πŸ– tan𝛽1 = 𝑉𝑓1 𝑉𝑒1 βˆ’ π‘ˆ = 47.88 131.55 βˆ’ 68.40 𝛽1 = 37.16Β° sin𝛽2 = 𝑉𝑓2 π‘‰π‘Ÿ2 ≫ π‘‰π‘Ÿ2 = 𝑉𝑓2 sin 𝛽2 = 51.98 sin20 π‘½π’“πŸ = πŸπŸ“πŸ. πŸ—πŸ• cos 𝛽2 = (𝑉𝑒2 + π‘ˆ) π‘‰π‘Ÿ2 = (𝑉𝑒2 + π‘ˆ) = cos 𝛽2 π‘‰π‘Ÿ2 𝑉𝑒2 = π‘‰π‘Ÿ2cos 𝛽2 βˆ’ π‘ˆ 𝑉𝑒2 = 151.97cos20 βˆ’ 68.40 ≫ π‘½π’–πŸ = πŸ•πŸ’. πŸ’πŸŽ 𝑷 = (π‘½π’–πŸ βˆ’ π‘½π’–πŸ)𝑼 𝑷 = (πŸπŸ‘πŸ.πŸ“πŸ“ βˆ’ πŸ•πŸ’.πŸ’πŸŽ)πŸ”πŸ–.πŸ’πŸŽ 𝑷 = πŸ‘πŸ—πŸŽπŸ—.πŸŽπŸ” 𝑱 𝑷 π’Ž = πŸ‘πŸ—πŸŽπŸ—.πŸŽπŸ” 𝟐.πŸ” = πŸπŸ“πŸŽπŸ‘.πŸ’πŸ– 𝑱/π’Œπ’ˆ
  • 14. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 14 Previous Year Question papers Model Question Paper (CBCS) with effect from 2015-16) Module – 2 3 a) In a certain turbomachine, the blade speed at exit is twice that at inlet (u2=2u1), the meridian component of fluid velocity at inlet is equal to that at exit and the blade angle at inlet is 450. Show that the energy transfer per unit mass and degree of reaction is given 8 b) At a stage of 50% reaction axial flow turbine running at 3000 rpm, the mean blade diameter is 68.5 cm. If the maximum utilization factor for the stage is 0.915, Calculate (a) the inlet and outlet absolute velocities and (b) the power output. Also, find the power developed for a steam flow rate of 15 kg/s. 8 Case 02) When R = 0.5 (i.e., 50% Reaction axial flow) This implies U1= U2, V1 = Vr2, V2=Vr1 and Vf1 = Vf2. For symmetric Velocity Ξ±2 = Ξ²1 and Ξ±1= Ξ²2.