SlideShare a Scribd company logo
1 of 32
๐‘ฌ๐’๐’†๐’„๐’•๐’“๐’Š๐’„๐’‚๐’ ๐‘ท๐’†๐’“๐’‡๐’๐’“๐’Ž๐’‚๐’๐’„๐’† ๐’‚๐’๐’‚๐’๐’š๐’”๐’Š๐’” ๐’๐’‡
๐‘บ๐’š๐’๐’„๐’‰๐’“๐’๐’๐’๐’–๐’” ๐’Ž๐’‚๐’„๐’‰๐’Š๐’๐’† ๐’Š๐’ ๐’‚๐’„๐’„๐’๐’“๐’…๐’‚๐’๐’„๐’† ๐’˜๐’Š๐’•๐’‰
๐’…๐’’๐ŸŽ ๐‘ป๐’•๐’‚๐’๐’”๐’‡๐’๐’“๐’Ž๐’‚๐’•๐’Š๐’๐’ & ๐’‘๐’†๐’“ ๐’–๐’๐’Š๐’• ๐’“๐’†๐’‘๐’“๐’†๐’”๐’†๐’๐’•๐’‚๐’•๐’Š๐’๐’
Prepared by : Pralay Roy
Part time PhD Scholar
Enrollment No. DT21EE002
Department of Electrical &
Electronics Engg.
N.I.T, Mizoram
1)Basic equations of mutual inductance between stator and rotor winding (vary
periodically with ฮธ) as given by following:
๐‘™๐‘Ž๐‘“๐‘‘ = ๐ฟ๐‘Ž๐‘“๐‘‘ cos ๐œƒ (1)
๐‘™๐‘Ž๐‘˜๐‘‘ = ๐ฟ๐‘Ž๐‘˜๐‘‘ cos ๐œƒ (2)
๐‘™๐‘Ž๐‘˜๐‘ž = ๐ฟ๐‘Ž๐‘˜๐‘ž cos ๐œƒ +
๐œ‹
2
(3)
The ๐’…๐’’๐ŸŽ Transformation of rotor circuit flux linkages may be explore as
follows:
ัฐ๐‘“๐‘‘ = ๐ฟ๐‘“๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘“๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘“๐‘‘[๐‘–๐‘Ž cos ๐œƒ + ๐‘–๐‘ cos ๐œƒ โˆ’
2๐œ‹
3
+ ๐‘–๐‘ cos ๐œƒ +
2๐œ‹
3
(1a)
ัฐ๐‘˜๐‘‘ = ๐ฟ๐‘“๐‘˜๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘˜๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘˜๐‘‘[๐‘–๐‘Ž cos ๐œƒ + ๐‘–๐‘ cos ๐œƒ โˆ’
2๐œ‹
3
+ ๐‘–๐‘ cos ๐œƒ +
2๐œ‹
3
(2a)
ัฐ๐‘“๐‘‘ = ๐ฟ๐‘˜๐‘˜๐‘ž๐‘–๐‘˜๐‘ž + ๐ฟ๐‘Ž๐‘˜๐‘ž[๐‘–๐‘Ž sin ๐œƒ + ๐‘–๐‘ sin ๐œƒ โˆ’
2๐œ‹
3
+ ๐‘–๐‘ sin ๐œƒ +
2๐œ‹
3
(3a)
Basic equations of stator circuit three phase voltage equations and flux linkages:
๐‘’๐‘Ž =
๐‘‘ัฐ๐‘Ž
๐‘‘๐‘™
โˆ’ ๐‘–๐‘Ž๐‘…๐‘Ž = ๐‘ัฐ๐‘Ž โˆ’ ๐‘–๐‘Ž๐‘…๐‘Ž (4)
๐‘’๐‘ = ๐‘ัฐ๐‘ โˆ’ ๐‘–๐‘๐‘…๐‘ (5)
๐‘’๐‘ = ๐‘ัฐ๐‘ โˆ’ ๐‘–๐‘๐‘…๐‘ (6)
And
ัฐ๐‘Ž =
โˆ’๐‘–๐‘Ž ๐ฟ๐‘Ž๐‘Ž0 + ๐ฟ๐‘Ž๐‘Ž2 cos 2๐œƒ + ๐‘–๐‘ ๐ฟ๐‘Ž๐‘0 + ๐ฟ๐‘Ž๐‘Ž2 cos 2๐œƒ +
2๐œ‹
3
+ ๐‘–๐‘ ๐ฟ๐‘Ž๐‘0 + ๐ฟ๐‘Ž๐‘Ž2 cos 2๐œƒ โˆ’
2๐œ‹
3
+
๐‘–๐‘“๐‘‘๐ฟ๐‘Ž๐‘“๐‘‘ cos ๐œƒ + ๐‘–๐‘˜๐‘‘๐ฟ๐‘Ž๐‘˜๐‘‘ cos ๐œƒ โˆ’ ๐‘–๐‘˜๐‘ž๐ฟ๐‘Ž๐‘˜๐‘ž sin ๐œƒ (7)
ัฐ๐‘ = ๐‘–๐‘Ž ๐ฟ๐‘Ž๐‘0 + ๐ฟ๐‘Ž๐‘Ž2 cos 2๐œƒ +
๐œ‹
3
โˆ’ ๐‘–๐‘ ๐ฟ๐‘Ž๐‘Ž0 + ๐ฟ๐‘Ž๐‘Ž2 cos 2๐œƒ โˆ’
2๐œ‹
3
+ ๐‘–๐‘[๐ฟ๐‘Ž๐‘0 +
The previous six equations are associated with stator circuits together with the
following equations of rotor circuit which can completely describe the electrical
operation of Synchronous Machine.
Basic equations of rotor circuit voltage equations
๐‘’๐‘“๐‘‘ = ๐‘ัฐ๐‘“๐‘‘ + ๐‘…๐‘“๐‘‘๐‘–๐‘“๐‘‘ (10)
0 = ๐‘ัฐ๐‘˜๐‘‘ + ๐‘…๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ (11)
0 = ๐‘ัฐ๐‘˜๐‘ž + ๐‘…๐‘˜๐‘ž๐‘–๐‘˜๐‘ž (12)
The Transformation of stator phase currents into new variables as follows:
๐‘–๐‘‘ = ๐‘˜๐‘‘ ๐‘–๐‘Ž cos ๐œƒ + ๐‘–๐‘ cos ๐œƒ โˆ’
2๐œ‹
3
+ ๐‘–๐‘ cos ๐œƒ +
2๐œ‹
3
(13)
๐‘–๐‘ž = โˆ’๐‘˜๐‘ž ๐‘–๐‘Ž sin ๐œƒ + ๐‘–๐‘ sin ๐œƒ โˆ’
2๐œ‹
3
+ ๐‘–๐‘ sin ๐œƒ +
2๐œ‹
3
(14)
For balanced condition the peak values of ๐’Š๐’… &
๐’Š๐’’ ๐š๐ซ๐ž ๐ž๐ช๐ฎ๐š๐ฅ ๐ญ๐จ ๐ญ๐ก๐ž ๐ฉ๐ข๐œ๐ค ๐š๐ฅ๐ฎ๐ž ๐จ๐Ÿ ๐ฌ๐ญ๐š๐ญ๐จ๐ซ ๐œ๐ฎ๐ซ๐ซ๐ž๐ง๐ญ ๐š๐ฌ ๐ฌ๐ก๐จ๐ฐ๐ง ๐ข๐ง ๐›๐ž๐ฅ๐ฅ๐จ๐ฐ.
For balanced condition,
๐‘–๐‘Ž = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก (15)
๐‘–๐‘ = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก โˆ’
2๐œ‹
3
(16)
๐‘–๐‘ = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก +
2๐œ‹
3
(17)
Substituting in equation (13), we get,
๐‘–๐‘‘
= ๐‘˜๐‘‘ ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก cos ๐œƒ + ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก
Transformed Matrix of ๐’‚๐’ƒ๐’„ phase variables to the ๐’…๐’’๐ŸŽ variable can be written in
matrix form as following:
๐‘–๐‘‘
๐‘–๐‘ž
๐‘–0
=
cos ๐œƒ cos ๐œƒ โˆ’
2๐œ‹
3
cos ๐œƒ +
2๐œ‹
3
โˆ’sin ๐œƒ โˆ’sin ๐œƒ โˆ’
2๐œ‹
3
โˆ’ sin ๐œƒ +
2๐œ‹
3
1
2
1
2
1
2
๐‘–๐‘Ž
๐‘–๐‘
๐‘–๐‘
(19)
The inverse transformation is given by,
๐‘–๐‘Ž
๐‘–๐‘
๐‘–๐‘
=
cos ๐œƒ โˆ’sin ๐œƒ 1
cos ๐œƒ โˆ’
2๐œ‹
3
โˆ’sin ๐œƒ โˆ’
2๐œ‹
3
1
cos ๐œƒ +
2๐œ‹
3
โˆ’ sin ๐œƒ +
2๐œ‹
3
1
๐‘–๐‘‘
๐‘–๐‘ž
๐‘–0
(20)
The above transformation can also be applied to Stator flux linkages and voltages.
Stator flux linkages in ๐’…๐’’๐ŸŽ components :Using the expressions of ัฐ๐’‚ , ัฐ๐’ƒ & ัฐ๐’„
from equation 7,8,9 , transforming the flux linkages into ๐’…๐’’๐ŸŽ components (as in
equation 19)and with suitable reduction in trigonometric term we obtain the
following expressions:
ัฐ๐‘‘
ัฐ๐‘ž
ัฐ0
=
2
3
cos ๐œƒ cos ๐œƒ โˆ’
2๐œ‹
3
cos ๐œƒ +
2๐œ‹
3
โˆ’sin ๐œƒ โˆ’sin ๐œƒ โˆ’
2๐œ‹
3
โˆ’ sin ๐œƒ +
2๐œ‹
3
1
2
1
2
1
2
ัฐ๐‘Ž
ัฐ๐‘
ัฐ๐‘
(21)
Stator Flux linkages in ๐’…๐’’๐ŸŽ components
ัฐ๐‘‘ = โˆ’ ๐ฟ๐‘Ž๐‘Ž0 + ๐ฟ๐‘Ž๐‘0 +
3
2
๐ฟ๐‘Ž๐‘Ž2 ๐‘–๐‘‘ + ๐ฟ๐‘Ž๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘Ž๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ (22)
ัฐ๐‘ž = โˆ’ ๐ฟ๐‘Ž๐‘Ž0 + ๐ฟ๐‘Ž๐‘0 โˆ’
3
2
๐ฟ๐‘Ž๐‘Ž2 ๐‘–๐‘ž + ๐ฟ๐‘Ž๐‘˜๐‘ž๐‘–๐‘˜๐‘ž (23)
ัฐ0 = โˆ’ ๐ฟ๐‘Ž๐‘Ž0 โˆ’ 2๐ฟ๐‘Ž๐‘0 ๐‘–0 (24)
Defining the following new inductances:
๐ฟ๐‘‘ = ๐ฟ๐‘Ž๐‘Ž0 + ๐ฟ๐‘Ž๐‘๐‘œ +
3
2
๐ฟ๐‘Ž๐‘Ž2 (25)
๐ฟ๐‘ž = ๐ฟ๐‘Ž๐‘Ž0 + ๐ฟ๐‘Ž๐‘๐‘œ โˆ’
3
2
๐ฟ๐‘Ž๐‘Ž2 (26)
๐ฟ0 = ๐ฟ๐‘Ž๐‘Ž0 โˆ’ 2๐ฟ๐‘Ž๐‘๐‘œ +
3
2
๐ฟ๐‘Ž๐‘Ž2 (27)
Modified expressions of flux linkages with the help of new defined inductances:
ัฐ๐‘‘ = โˆ’๐ฟ๐‘‘๐‘–๐‘‘ + ๐ฟ๐‘Ž๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘Ž๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ (28)
ัฐ๐‘ž = โˆ’๐ฟ๐‘ž๐‘–๐‘ž + ๐ฟ๐‘Ž๐‘˜๐‘ž๐‘–๐‘˜๐‘ž (29)
ัฐ0 = โˆ’๐ฟ0๐‘–0 (30)
Rotor flux linkages in ๐’…๐’’๐ŸŽ components:
ัฐ๐‘“๐‘‘ = ๐ฟ๐‘“๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘“๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ โˆ’
3
2
๐ฟ๐‘Ž๐‘“๐‘‘๐‘–๐‘‘ (31)
ัฐ๐‘˜๐‘‘ = ๐ฟ๐‘“๐‘˜๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘˜๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ โˆ’
3
2
๐ฟ๐‘Ž๐‘˜๐‘‘๐‘–๐‘‘ (32)
ัฐ๐‘˜๐‘ž = ๐ฟ๐‘˜๐‘˜๐‘ž๐‘–๐‘˜๐‘ž โˆ’
3
2
๐ฟ๐‘Ž๐‘˜๐‘ž๐‘–๐‘ž (33)
All the inductances are seen to be constant, i.e. they are independent of the rotor
position.
Stator voltage equation in ๐’…๐’’๐ŸŽ components:
Equation 4 to 6 are basic voltage equation in terms of phase flux linkages and
currents.
By applying ๐’…๐’’๐ŸŽ transformation of equation 19,the following equations in terms of
transformed components of voltages, flux linkages and currents results:
๐‘’๐‘‘ = ๐‘ัฐ๐‘‘ โˆ’ ัฐ๐‘ž๐‘๐œƒ โˆ’ ๐‘–๐‘‘๐‘…๐‘Ž (34)
๐‘’๐‘ž = ๐‘ัฐ๐‘ž + ัฐ๐‘‘๐‘๐œƒ โˆ’ ๐‘–๐‘ž๐‘…๐‘Ž (35)
๐‘’0 = ๐‘ัฐ0 โˆ’ ๐‘–0๐‘…๐‘Ž (36)
The terms ัฐ๐‘ž๐‘๐œƒ & ัฐ๐‘‘๐‘๐œƒ are referred to as the Speed Voltages (Due to flux
change in space) and the terms ๐‘ัฐ๐‘‘ & ๐‘ัฐ๐‘ž are referred to as the Transformer
Voltages (due to flux change in time).
Electrical Power & Torque:
The instantaneous three phase power output of Stator is
๐‘ƒ๐‘ก = ๐‘’๐‘Ž๐‘–๐‘Ž + ๐‘’๐‘๐‘–๐‘ + ๐‘’๐‘๐‘–๐‘
Eliminating phase voltages & currents in terms of ๐‘‘๐‘ž0components, we have
๐‘ƒ๐‘ก =
3
2
๐‘’๐‘‘๐‘–๐‘‘ + ๐‘’๐‘ž๐‘–๐‘ž + ๐‘’0๐‘–0 (37)
Under balanced condition , ๐‘’0 = ๐‘–0 = 0& the expression for power is given by
๐‘ƒ๐‘ก =
3
2
๐‘’๐‘‘๐‘–๐‘‘ + ๐‘’๐‘ž๐‘–๐‘ž
Using equation 34 to 36 ,to express the voltage components in terms of flux linkages
and currents, by recognizing ๐œ”๐‘Ÿ as the rotor speed
๐‘‘๐œƒ
๐‘‘๐‘ก
and rearranging, we have
๐‘ƒ๐‘ก =
3
2
๐‘–๐‘‘๐‘ัฐ๐‘‘ + ๐‘–๐‘ž๐‘ัฐ๐‘ž + 2๐‘–0๐‘ัฐ0 + ัฐ๐‘‘๐‘–๐‘ž โˆ’ ัฐ๐‘ž๐‘–๐‘‘ ๐œ”๐‘Ÿ โˆ’ ๐‘–๐‘‘
2
+ ๐‘–๐‘ž
2
+ 2๐‘–0
2
๐‘…๐‘Ž (38)
= ๐‘…๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘Ÿ๐‘š๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘” +
๐‘ƒ๐‘œ๐‘ค๐‘’๐‘Ÿ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘“๐‘’๐‘Ÿ๐‘’๐‘‘ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘–๐‘Ÿ ๐‘”๐‘Ž๐‘ โˆ’ ๐ด๐‘š๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘™๐‘œ๐‘ ๐‘ 
So, expression of air-gap torque
๐‘‡๐‘’ =
3
2
ัฐ๐‘‘๐‘–๐‘ž โˆ’ ัฐ๐‘ž๐‘–๐‘‘ ร—
๐œ”๐‘Ÿ
๐œ”๐‘š๐‘’๐‘โ„Ž
๐‘‡๐‘’ =
3
2
ัฐ๐‘‘๐‘–๐‘ž โˆ’ ัฐ๐‘ž๐‘–๐‘‘ ร—
๐‘ƒ๐‘“
2
(39)
The flux linkage equations 28 to 33, associated with stator or rotor circuit,
together with the voltage equations 34 to 36 for the Stator, the voltage equations
10 to 12 for the rotor and the torque equation 39 describe the dynamic
performance of the machine in terms of the ๐’…๐’’๐ŸŽ components
Physical interpretation of ๐’…๐’’๐ŸŽ transformation
๐‘–๐‘Ž = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก + ๐œ‘ (40)
๐‘–๐‘ = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก + ๐œ‘ โˆ’
2๐œ‹
3
(41)
๐‘–๐‘ = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก + ๐œ‘ +
2๐œ‹
3
(42)
Using ๐‘‘๐‘ž0 transformation
๐‘–๐‘‘ = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก + ๐œ‘ โˆ’ ๐œƒ (43)
๐‘–๐‘ž = โˆ’๐ผ๐‘š cos ๐œ”๐‘ ๐‘ก + ๐œ‘ โˆ’ ๐œƒ (44)
๐‘–0 = 0 (45)
For synchronous operation,
๐œƒ = ๐œ”๐‘Ÿ๐‘ก = ๐œ”๐‘ ๐‘ก
Therefore,
๐‘–๐‘‘ = ๐ผ๐‘š sin ๐œ‘ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
๐‘–๐‘ž = โˆ’๐ผ๐‘š cos ๐œ‘ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
The analysis of the synchronous machine equations in terms of ๐‘‘๐‘ž0 variables is
considerably simpler than in terms of phase quantities, for the following reason:
a) The dynamic performance equations have constant inductances
b) For balanced condition zero sequence quantities disappear
c) For balanced steady state operation, the stator quantities have constant values. For
other mode of operation they vary with time. Stability studies involve also
variations having frequencies below 2-3 Hz.
d) The parameters associated with d and q axes may be directly measured from
terminal test.
Per unit representation:
๐‘„๐‘ข๐‘Ž๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ ๐‘–๐‘› ๐‘๐‘’๐‘Ÿ ๐‘ข๐‘›๐‘–๐‘ก =
๐ด๐‘๐‘ก๐‘ข๐‘Ž๐‘™ ๐‘ž๐‘ข๐‘Ž๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ
๐ต๐‘Ž๐‘ ๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘ž๐‘ข๐‘Ž๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ
Per unit system for the stator quantities:
๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘ƒ๐‘’๐‘Ž๐‘˜ ๐‘‰๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘™๐‘–๐‘›๐‘’ โˆ’ ๐‘ก๐‘œ โˆ’ ๐‘›๐‘’๐‘ข๐‘ก๐‘Ÿ๐‘Ž๐‘™ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’, ๐‘‰๐‘œ๐‘™๐‘ก.
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘ƒ๐‘’๐‘Ž๐‘˜ ๐‘‰๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘™๐‘–๐‘›๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก, ๐ด๐‘š๐‘.
๐‘“๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘…๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ, ๐ป๐‘ง.
The base values of the remaining quantities are automatically set and depend on the
above as follows:
๐œ”๐‘๐‘Ž๐‘ ๐‘’ = 2๐œ‹๐‘“๐‘๐‘Ž๐‘ ๐‘’ electrical radian/sec.
๐œ”๐‘š ๐‘๐‘Ž๐‘ ๐‘’ = ๐œ”๐‘๐‘Ž๐‘ ๐‘’
2
๐‘๐‘“
mechanical radian/sec.
๐‘๐‘  ๐‘๐‘Ž๐‘ ๐‘’ =
๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
, Ohms
๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ =
๐‘๐‘  ๐‘๐‘Ž๐‘ ๐‘’
๐œ”๐‘๐‘Ž๐‘ ๐‘’
, ๐ป๐‘’๐‘›๐‘Ÿ๐‘ฆ
ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ =
๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’
๐œ”๐‘  ๐‘๐‘Ž๐‘ ๐‘’
3- Phase, ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’ = 3๐ธ๐‘…๐‘€๐‘† ๐‘๐‘Ž๐‘ ๐‘’๐ผ๐‘…๐‘€๐‘† ๐‘๐‘Ž๐‘ ๐‘’
= 3
๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’
2
.
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
2
=
3
2
๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘‰๐‘œ๐‘™๐‘ก โˆ’ ๐ด๐‘š๐‘๐‘’๐‘Ÿ๐‘’
๐‘‡๐‘œ๐‘Ÿ๐‘ž๐‘ข๐‘’ ๐‘๐‘Ž๐‘ ๐‘’ =
3 โˆ’ ๐‘ƒโ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’
๐œ”๐‘š ๐‘๐‘Ž๐‘ ๐‘’
=
3
2
๐‘๐‘“
2
ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ , ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘› โˆ’ ๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ๐‘ 
Per unit Stator voltage equations:
From equation (20),
๐‘’๐‘‘ = ๐‘ัฐ๐‘‘ โˆ’ ัฐ๐‘ž๐œ”๐‘Ÿ โˆ’ ๐‘–๐‘‘๐‘…๐‘Ž
Dividing throughout by ๐‘’๐‘๐‘Ž๐‘ ๐‘’ ,and noting that ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’๐‘๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐œ”๐‘ ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ,
We get,
๐‘’๐‘‘
๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’
= ๐‘
1
๐œ”๐‘  ๐‘๐‘Ž๐‘ ๐‘’
.
ัฐ๐‘‘
ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’
โˆ’
ัฐ๐‘ž
ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’
.
๐œ”๐‘Ÿ
๐œ”๐‘๐‘Ž๐‘ ๐‘’
โˆ’
๐‘…๐‘Ž
๐‘๐‘  ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘‘
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
(46)
Expressed in per unit notation,
๐‘’๐‘‘ =
1
๐œ” ๐‘๐‘Ž๐‘ ๐‘’
๐‘ัฐ๐‘‘ โˆ’ ัฐ๐‘ž ๐œ”๐‘Ÿ โˆ’ ๐‘…๐‘Ž ๐‘–๐‘‘ (47)
Time can also be expressed in per unit (or radians) with the base value equal to the time
required for the rotor to move one electrical radian at synchronous speed.
๐‘ก๐‘๐‘Ž๐‘ ๐‘’ =
1
๐œ”๐‘๐‘Ž๐‘ ๐‘’
=
1
2๐œ‹๐‘“๐‘๐‘Ž๐‘ ๐‘’
(48)
With time in per unit equation 47 may be written as
๐‘’๐‘‘ = ๐‘ัฐ๐‘‘ โˆ’ ัฐ๐‘ž ๐œ”๐‘Ÿ โˆ’ ๐‘…๐‘Ž ๐‘–๐‘‘ (49)
Comparing equation 20 with equation 49 , we see that the form of the original equation
is unchanged, when all quantities involved are expressed in per unit
Similarly per unit form of equation 35 and 36 are
๐‘’๐‘ž = ๐‘ ัฐ๐‘‘ + ัฐ๐‘‘ ๐œ”๐‘Ÿ โˆ’ ๐‘…๐‘Ž ๐‘–๐‘ž (50)
๐‘’0 = ๐‘ ัฐ๐‘‘ โˆ’ ๐‘…๐‘Ž ๐‘–0 (51)
Where,
๐‘ =
๐‘‘
๐‘‘๐‘ก
=
1
๐œ”๐‘๐‘Ž๐‘ ๐‘’
๐‘‘
๐‘‘๐‘ก
=
๐‘
๐œ”๐‘๐‘Ž๐‘ ๐‘’
(52)
Per Unit Rotor voltage equation:
From equation 10 dividing throughout by,
๐‘’๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐œ”๐‘๐‘Ž๐‘ ๐‘’ัฐ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
Per unit field voltage equation may written as:
๐‘’๐‘“๐‘‘ = ๐‘ัฐ๐‘“๐‘‘ + ๐‘…๐‘“๐‘‘๐‘–๐‘“๐‘‘
(53)
Similarly the per unit form of equation 11 and 12
0 = ๐‘ัฐ๐‘˜๐‘‘ + ๐‘…๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ (54)
0 = ๐‘ัฐ๐‘˜๐‘ž + ๐‘…๐‘˜๐‘ž๐‘–๐‘˜๐‘ž (55)
Per unit stator flux linkage equations:
Using the basic relationship ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ the per unit form of equations
28,29 & 30 may be written as
ัฐ๐‘‘ = โˆ’๐ฟ๐‘‘๐‘–๐‘‘ + ๐ฟ๐‘Ž๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘Ž๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ (56)
ัฐ๐‘ž = โˆ’๐ฟ๐‘ž๐‘–๐‘ž + ๐ฟ๐‘Ž๐‘˜๐‘ž๐‘–๐‘ž (57)
ัฐ0 = โˆ’๐ฟ0๐‘–0 (58)
Where by definition:
๐ฟ๐‘Ž๐‘“๐‘‘ =
๐ฟ๐‘Ž๐‘“๐‘‘
๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
(59)
๐ฟ๐‘Ž๐‘˜๐‘‘ =
๐ฟ๐‘Ž๐‘˜๐‘‘
๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
(60)
๐ฟ๐‘Ž๐‘˜๐‘ž =
๐ฟ๐‘Ž๐‘˜๐‘ž
๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
(61)
Per unit rotor flux linkage equations:
Similarly in per unit form equations 31,32 & 33, become
ัฐ๐‘“๐‘‘ = ๐ฟ๐‘“๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘“๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘“๐‘‘๐‘–๐‘‘ (62)
ัฐ๐‘˜๐‘‘ = ๐ฟ๐‘“๐‘˜๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘˜๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘˜๐‘‘๐‘–๐‘‘ (63)
ัฐ๐‘˜๐‘ž = ๐ฟ๐‘˜๐‘˜๐‘ž๐‘–๐‘˜๐‘ž โˆ’ ๐ฟ๐‘Ž๐‘˜๐‘ž๐‘–๐‘ž (64)
Where by definition:
๐ฟ๐‘“๐‘‘๐‘Ž =
3
2
.
๐ฟ๐‘Ž๐‘“๐‘‘
๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
(65)
๐ฟ๐‘“๐‘˜๐‘‘ =
๐ฟ๐‘“๐‘˜๐‘‘
๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
(66)
๐ฟ๐‘˜๐‘‘๐‘Ž =
3
2
.
๐ฟ๐‘Ž๐‘˜๐‘‘
๐ฟ๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
(67)
๐ฟ๐‘˜๐‘‘๐‘“ =
๐ฟ๐‘“๐‘˜๐‘‘
๐ฟ๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
(68)
๐ฟ๐‘˜๐‘ž๐‘Ž =
3
2
.
๐ฟ๐‘Ž๐‘˜๐‘ž
๐ฟ๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’
(69)
Per unit system of Rotor:
Some Important information:
1) ๐ฟ๐‘Ž๐‘“๐‘‘ = ๐ฟ๐‘“๐‘‘๐‘Ž
2) ๐ฟ๐‘Ž๐‘“๐‘‘ = ๐ฟ๐‘Ž๐‘˜๐‘‘
In order to have ๐ฟ๐‘“๐‘˜๐‘‘ = ๐ฟ๐‘˜๐‘‘๐‘“ so that the reciprocity is achieved, from equation 66 and
68 ,it is necessary to have
๐ฟ๐‘“๐‘˜๐‘‘
๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
=
๐ฟ๐‘“๐‘˜๐‘‘
๐ฟ๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐ฟ๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
2
= ๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
2
(70)
Multiply by ๐œ”๐‘๐‘Ž๐‘ ๐‘’ gives,
๐œ”๐‘๐‘Ž๐‘ ๐‘’๐ฟ๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
2
= ๐œ”๐‘๐‘Ž๐‘ ๐‘’๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
2
Since,
๐œ”๐‘๐‘Ž๐‘ ๐‘’๐ฟ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘๐‘Ž๐‘ ๐‘’ = ๐‘’๐‘๐‘Ž๐‘ ๐‘’
๐‘’๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘’๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ (71)
For mutual inductances ๐ฟ๐‘Ž๐‘“๐‘‘ & ๐ฟ๐‘“๐‘‘๐‘Ž to be equal from equation 59 & 65
๐ฟ๐‘Ž๐‘“๐‘‘
๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
=
3
2
.
๐ฟ๐‘Ž๐‘“๐‘‘
๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
Or, ๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
2
=
3
2
. ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
2
Multiply by ๐œ”๐‘๐‘Ž๐‘ ๐‘’ and noting that ๐œ”๐ฟ๐‘– = ๐‘’, we get
๐‘’๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ =
3
2
. ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (72)
=
3
2
๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’
2
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
2
= 3 ๐‘โ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด ๐‘๐‘Ž๐‘ ๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘†๐‘ก๐‘Ž๐‘ก๐‘œ๐‘Ÿ
Similarly in order ๐ฟ๐‘Ž๐‘˜๐‘‘=๐ฟ๐‘˜๐‘‘๐‘Ž and ๐ฟ๐‘Ž๐‘˜๐‘ž=๐ฟ๐‘˜๐‘ž๐‘Ž
๐‘’๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ =
3
2
. ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (73)
And
๐‘’๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ =
3
2
. ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (74)
This equations imply that the VA base in all rotor circuit must be the same and equal
to the stator 3 phase VA base.
The stator leakage inductances in the two axes are nearly equal denoting the leakage
inductance ๐ฟ๐‘™ and mutual inductance by ๐ฟ๐‘Ž๐‘‘ and ๐ฟ๐‘Ž๐‘ž :
๐ฟ๐‘‘ = ๐ฟ๐‘™ + ๐ฟ๐‘Ž๐‘‘ (75)
And
๐ฟ๐‘ž = ๐ฟ๐‘™ + ๐ฟ๐‘Ž๐‘ž (76)
In order to make all the per unit mutual inductances between the stator and rotor
circuits in the d axis equal, from equations 59 and 60, it follows that
๐ฟ๐‘Ž๐‘‘ =
๐ฟ๐‘Ž๐‘‘
๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’
= ๐ฟ๐‘Ž๐‘“๐‘‘ =
๐ฟ๐‘Ž๐‘“๐‘‘
๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
= ๐ฟ๐‘Ž๐‘˜๐‘‘ =
๐ฟ๐‘Ž๐‘˜๐‘‘
๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’
.
๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
Therefore,
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ =
๐ฟ๐‘Ž๐‘‘
๐ฟ๐‘Ž๐‘“๐‘‘
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (77)
๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ =
๐ฟ๐‘Ž๐‘‘
๐ฟ๐‘Ž๐‘˜๐‘‘
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (78)
Similarly , for the q axis mutual inductances ๐ฟ๐‘Ž๐‘ž and ๐ฟ๐‘Ž๐‘˜๐‘ž to be equal,
๐‘–๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ =
๐ฟ๐‘Ž๐‘ž
๐ฟ๐‘Ž๐‘˜๐‘ž
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (79)
This completes the choice of rotor base quantities.
Per unit Power and Torque :
The instantaneous power at the machine terminal as per equation 37,
๐‘ƒ๐‘ก =
3
2
๐‘’๐‘‘๐‘–๐‘‘ + ๐‘’๐‘ž๐‘–๐‘ž + ๐‘’0๐‘–0
Dividing by base three phase VA=
3
2
๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’
The per unit expression may be written as,
๐‘ƒ๐‘ก = ๐‘’๐‘‘๐‘–๐‘‘ + ๐‘’๐‘ž๐‘–๐‘ž + 2๐‘’0๐‘–0 (80)
Similarly, with base torque=
3
2
๐‘๐‘“
2
ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ,the per unit form of equation 39 is
๐‘‡๐‘’ = ัฐ๐‘‘๐‘–๐‘ž โˆ’ ัฐ๐‘ž๐‘–๐‘‘ (81)
Per unit reactance
๐‘‹๐‘‘ = 2๐œ‹๐‘“๐ฟ๐‘‘ โ„ฆ
Dividing by ๐‘๐‘๐‘Ž๐‘ ๐‘’ = 2๐œ‹๐‘“๐‘๐‘Ž๐‘ ๐‘’๐ฟ๐‘๐‘Ž๐‘ ๐‘’
๐‘‹๐‘‘
๐‘๐‘๐‘Ž๐‘ ๐‘’
=
2๐œ‹๐‘“
2๐œ‹๐‘“๐‘๐‘Ž๐‘ ๐‘’
.
๐ฟ๐‘‘
๐ฟ๐‘๐‘Ž๐‘ ๐‘’
If ๐‘“ = ๐‘“๐‘๐‘Ž๐‘ ๐‘’ ,per unit values of ๐‘‹๐‘‘ & ๐ฟ๐‘‘ are equal. So in case of Synchronous machine
symbols associated with reactance are often used to denote per unit inductance.
Summary of per unit equations:
Stator base quantities:
3 phase ๐‘ฝ๐‘จ๐’ƒ๐’‚๐’”๐’†= Volt ampere rating of machine, VA
๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’= Peak phase to neutral related voltage, V
๐‘“๐‘๐‘Ž๐‘ ๐‘’ =Rated frequency, Hz
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘๐‘’๐‘Ž๐‘˜ ๐‘™๐‘–๐‘›๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก , ๐ด๐‘š๐‘
=
3 ๐‘ƒโ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’
3
2 ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’
๐‘๐‘  ๐‘๐‘Ž๐‘ ๐‘’ =
๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘ ๐‘๐‘Ž๐‘ ๐‘’
, โ„ฆ
Where,๐œ”๐‘๐‘Ž๐‘ ๐‘’ = 2๐œ‹๐‘“๐‘๐‘Ž๐‘ ๐‘’ elect. rad/sec.
๐œ”๐‘š ๐‘๐‘Ž๐‘ ๐‘’ = ๐œ”๐‘๐‘Ž๐‘ ๐‘’
2
๐‘๐‘“
mech. Rad /sec.
๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ =
๐‘๐‘  ๐‘๐‘Ž๐‘ ๐‘’
๐œ”๐‘๐‘Ž๐‘ ๐‘’
, Henry
ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’, Wb-turns
Rotor base quantities:
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ =
๐ฟ๐‘Ž๐‘‘
๐ฟ๐‘Ž๐‘“๐‘‘
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ , Amp
๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ =
๐ฟ๐‘Ž๐‘‘
๐ฟ๐‘Ž๐‘˜๐‘‘
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ , Amp
๐‘–๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ =
๐ฟ๐‘Ž๐‘ž
๐ฟ๐‘Ž๐‘˜๐‘ž
๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ , Amp
๐‘’๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ =
3 ๐‘โ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
, volt
๐‘๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ =
๐‘’๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
, โ„ฆ
=
3 ๐‘โ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
2
๐‘๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ =
3 ๐‘โ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
2 โ„ฆ
๐‘๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ =
3 ๐‘โ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’
๐‘–๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’
2 โ„ฆ
Rotor base quantities:
๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ =
๐‘๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐œ”๐‘๐‘Ž๐‘ ๐‘’
, Henry
๐ฟ๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ =
๐‘๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’
๐œ”๐‘๐‘Ž๐‘ ๐‘’
, Henry
๐ฟ๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ =
๐‘๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’
๐œ”๐‘๐‘Ž๐‘ ๐‘’
, Henry
๐‘ก๐‘๐‘Ž๐‘ ๐‘’ =
1
๐œ”๐‘๐‘Ž๐‘ ๐‘’
, Sec.
๐‘‡๐‘๐‘Ž๐‘ ๐‘’ =
3 ๐‘โ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’
๐œ”๐‘š ๐‘๐‘Ž๐‘ ๐‘’
, Nm
Complete Set of per unit equations:
In view of the ๐ฟ๐‘Ž๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’per unit system chosen ,in per unit
๐ฟ๐‘Ž๐‘“๐‘‘ = ๐ฟ๐‘“๐‘‘๐‘Ž = ๐ฟ๐‘Ž๐‘˜๐‘‘ = ๐ฟ๐‘˜๐‘‘๐‘Ž = ๐ฟ๐‘Ž๐‘‘
๐ฟ๐‘Ž๐‘˜๐‘ž = ๐ฟ๐‘˜๐‘ž๐‘Ž = ๐ฟ๐‘Ž๐‘ž
๐ฟ๐‘“๐‘˜๐‘‘=๐ฟ๐‘˜๐‘‘๐‘“
Per unit Stator voltage equation
๐‘’๐‘‘ = ๐‘ัฐ๐‘‘ โˆ’ ัฐ๐‘ž๐œ”๐‘Ÿ โˆ’ ๐‘–๐‘‘๐‘…๐‘Ž (82)
๐‘’๐‘ž = ๐‘ัฐ๐‘ž + ัฐ๐‘‘๐œ”๐‘Ÿ โˆ’ ๐‘–๐‘ž๐‘…๐‘Ž (83)
๐‘’0 = ๐‘ัฐ0 โˆ’ ๐‘–0๐‘…๐‘Ž (84)
Per unit Rotor voltage equation
๐‘’๐‘“๐‘‘ = ๐‘ัฐ๐‘“๐‘‘ + ๐‘…๐‘“๐‘‘๐‘–๐‘“๐‘‘ (85)
0 = ๐‘ัฐ1๐‘‘ + ๐‘…1๐‘‘๐‘–1๐‘‘ (86)
0 = ๐‘ัฐ1๐‘ž + ๐‘…1๐‘ž๐‘–1๐‘ž (87)
0 = ๐‘ัฐ2๐‘‘ + ๐‘…2๐‘‘๐‘–2๐‘‘ (88)
Per unit stator flux linkage equations:
ัฐ๐‘‘ = โˆ’ ๐ฟ๐‘Ž๐‘‘ + ๐ฟ๐‘™ ๐‘–๐‘‘ + ๐ฟ๐‘Ž๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘Ž๐‘‘๐‘–1๐‘‘ (89)
ัฐ๐‘ž = โˆ’ ๐ฟ๐‘Ž๐‘ž + ๐ฟ๐‘™ ๐‘–๐‘ž + ๐ฟ๐‘Ž๐‘ž๐‘–1๐‘ž + ๐ฟ๐‘Ž๐‘ž๐‘–2๐‘ž (90)
ัฐ0 = โˆ’๐ฟ0๐‘–0 (91)
Per unit Rotor Flux linkage equations:
ัฐ๐‘“๐‘‘ = ๐ฟ๐‘“๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘“1๐‘‘๐‘–1๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘‘๐‘–๐‘‘ (92)
ัฐ1๐‘‘ = ๐ฟ๐‘“1๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ11๐‘‘๐‘–1๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘‘๐‘–๐‘‘ (93)
ัฐ1๐‘ž = ๐ฟ11๐‘ž๐‘–1๐‘ž + ๐ฟ๐‘Ž๐‘ž๐‘–2๐‘ž โˆ’ ๐ฟ๐‘Ž๐‘ž๐‘–๐‘ž (94)
ัฐ2๐‘ž = ๐ฟ๐‘Ž๐‘ž๐‘–1๐‘ž + ๐ฟ22๐‘ž๐‘–2๐‘ž โˆ’ ๐ฟ๐‘Ž๐‘ž๐‘–๐‘ž (95)
Per unit Air- gap Torque:
๐‘‡๐‘’ = ัฐ๐‘‘๐‘–๐‘ž โˆ’ ัฐ๐‘ž๐‘–๐‘‘ (96)
Steady state analysis:
Voltage , current & flux relationships
At steady State zero sequenced components are absent and ๐œ”๐‘Ÿ = ๐œ”๐‘  = 1
With ๐‘ัฐ terms are set to zero in equation 86,87 and 88
๐‘…1๐‘‘๐‘–๐‘–๐‘‘ = ๐‘…1๐‘ž๐‘–1๐‘ž = ๐‘…2๐‘ž๐‘–2๐‘ž = 0 (97)
The per unit machine equations (82 to 96) under balanced steady state conditions,
become
๐‘’๐‘‘ = โˆ’ัฐ๐‘ž๐œ”๐‘Ÿ โˆ’ ๐‘–๐‘‘๐‘…๐‘Ž (98)
๐‘’๐‘ž = โˆ’ัฐ๐‘‘๐œ”๐‘Ÿ โˆ’ ๐‘–๐‘ž๐‘…๐‘Ž (99)
๐‘’๐‘“๐‘‘ = ๐‘–๐‘“๐‘‘๐‘…๐‘“๐‘‘ (100)
ัฐ๐‘‘ = โˆ’๐ฟ๐‘‘๐‘–๐‘‘ + ๐ฟ๐‘Ž๐‘‘๐‘–๐‘“๐‘‘ (101)
ัฐ๐‘ž = โˆ’๐ฟ๐‘ž๐‘–๐‘ž (102)
ัฐ๐‘“๐‘‘ = ๐ฟ๐‘“๐‘“๐‘‘๐‘–๐‘“๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘‘๐‘–๐‘‘ (103)
ัฐ1๐‘‘ = ๐ฟ๐‘“1๐‘‘๐‘–๐‘“๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘‘๐‘–๐‘‘ (104)
ัฐ1๐‘ž = ัฐ2๐‘ž = โˆ’๐ฟ๐‘Ž๐‘ž๐‘–๐‘ž (105)
Field current:
From equation 101,
๐‘–๐‘“๐‘‘ =
ัฐ๐‘‘+๐ฟ๐‘‘๐‘–๐‘‘
๐ฟ๐‘Ž๐‘‘
(106)
Substituting for ัฐ๐‘‘in terms of ๐‘’๐‘‘,๐‘–๐‘žfrom equation 99
๐‘–๐‘“๐‘‘ =
๐‘’๐‘ž+๐‘…๐‘Ž๐‘–๐‘ž+๐œ”๐‘Ÿ๐ฟ๐‘‘๐‘–๐‘‘
๐œ”๐‘Ÿ๐ฟ๐‘Ž๐‘‘
(107)
Replacing the product of synchronous speed and inductance L by corresponding
reactance X
๐‘–๐‘“๐‘‘ =
๐‘’๐‘ž+๐‘…๐‘Ž๐‘–๐‘ž+๐‘‹๐‘‘๐‘–๐‘‘
๐‘‹๐‘Ž๐‘‘
(108)
Phasor representation:
Stator phase voltages in balanced steady state condition may be written as
๐‘’๐‘Ž = ๐ธ๐‘š cos ๐œ”๐‘ ๐‘ก + ๐›ผ (109)
๐‘’๐‘ = ๐ธ๐‘š cos ๐œ”๐‘ ๐‘ก โˆ’
2๐œ‹
3
+ ๐›ผ (110)
๐‘’๐‘ = ๐ธ๐‘š cos ๐œ”๐‘ ๐‘ก +
2๐œ‹
3
+ ๐›ผ (111)
Stator phase voltages in balanced steady state condition in ๐’…๐’’๐ŸŽ components we get
๐‘’๐‘‘ = ๐ธ๐‘š cos ๐œ”๐‘ ๐‘ก + ๐›ผ โˆ’ ๐œƒ (112)
๐‘’๐‘ž = ๐ธ๐‘š sin ๐œ”๐‘ ๐‘ก + ๐›ผ โˆ’ ๐œƒ (113)
The angle ฮธ by which the d axis leads the axis of phase ๐‘Ž is given by
๐œƒ = ๐œ”๐‘Ÿ๐‘ก + ๐œƒ0 (114)
Where ๐œƒ0 is the value of ๐œƒ at ๐‘ก = 0.
With ๐œ”๐‘Ÿ equal to ๐œ”๐‘  at synchronous speed, substitution for ๐œƒ in equation 112 & 113
yields
๐‘’๐‘‘ = ๐ธ๐‘š cos ๐›ผ โˆ’ ๐œƒ0 (115)
๐‘’๐‘ž = ๐ธ๐‘š sin ๐›ผ โˆ’ ๐œƒ0 (116)
Using ๐ธ๐‘ก to denote per unit rms value of armature terminal voltage and the per unit rms
and peak values are equal
๐‘’๐‘‘ = ๐ธ๐‘š cos ๐›ผ โˆ’ ๐œƒ0 (117)
๐‘’๐‘ž = ๐ธ๐‘š sin ๐›ผ โˆ’ ๐œƒ0 (118)
Revised PPT on Week 2 Lecture.pptx

More Related Content

Similar to Revised PPT on Week 2 Lecture.pptx

Perturbation
PerturbationPerturbation
Perturbation
BHAVANAR12
ย 

Similar to Revised PPT on Week 2 Lecture.pptx (20)

1 power system dyn (2)we
1 power system dyn  (2)we1 power system dyn  (2)we
1 power system dyn (2)we
ย 
Network analysis unit 2
Network analysis unit 2Network analysis unit 2
Network analysis unit 2
ย 
Other RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptxOther RLC resonant circuits and Bode Plots 2024.pptx
Other RLC resonant circuits and Bode Plots 2024.pptx
ย 
On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...On the dynamic behavior of the current in the condenser of a boost converter ...
On the dynamic behavior of the current in the condenser of a boost converter ...
ย 
Simulation of three-phase bridge rectifier using MATLAB/ SIMULINK for harmoni...
Simulation of three-phase bridge rectifier using MATLAB/ SIMULINK for harmoni...Simulation of three-phase bridge rectifier using MATLAB/ SIMULINK for harmoni...
Simulation of three-phase bridge rectifier using MATLAB/ SIMULINK for harmoni...
ย 
Compensation using power electronic devices
Compensation using power electronic devicesCompensation using power electronic devices
Compensation using power electronic devices
ย 
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
Comparative Analysis of PID, SMC, SMC with PID Controller for Speed Control o...
ย 
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...Lecture Notes:  EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
Lecture Notes: EEEC6430310 Electromagnetic Fields And Waves - Maxwell's Equa...
ย 
Investigation of auto-oscilational regimes of the system by dynamic nonlinear...
Investigation of auto-oscilational regimes of the system by dynamic nonlinear...Investigation of auto-oscilational regimes of the system by dynamic nonlinear...
Investigation of auto-oscilational regimes of the system by dynamic nonlinear...
ย 
G1013238
G1013238G1013238
G1013238
ย 
Optimized, Low-Power Dissipative and Precise Pulsating Constant Current Sourc...
Optimized, Low-Power Dissipative and Precise Pulsating Constant Current Sourc...Optimized, Low-Power Dissipative and Precise Pulsating Constant Current Sourc...
Optimized, Low-Power Dissipative and Precise Pulsating Constant Current Sourc...
ย 
Modeling and simulation of pmsm
Modeling and simulation of pmsmModeling and simulation of pmsm
Modeling and simulation of pmsm
ย 
18053522.pdf
18053522.pdf18053522.pdf
18053522.pdf
ย 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
ย 
Bt044436441
Bt044436441Bt044436441
Bt044436441
ย 
WATTMETER CONSTRUCTION AND TORQUE EQAUTION
WATTMETER CONSTRUCTION AND TORQUE EQAUTIONWATTMETER CONSTRUCTION AND TORQUE EQAUTION
WATTMETER CONSTRUCTION AND TORQUE EQAUTION
ย 
Perturbation
PerturbationPerturbation
Perturbation
ย 
Three phase diode.pdf
Three phase diode.pdfThree phase diode.pdf
Three phase diode.pdf
ย 
ECNG 3015 Industrial and Commercial Electrical Systems
ECNG 3015   Industrial and Commercial Electrical SystemsECNG 3015   Industrial and Commercial Electrical Systems
ECNG 3015 Industrial and Commercial Electrical Systems
ย 
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
Effect of Magnetic Field on Peristaltic Flow of Williamson Fluid in a Symmetr...
ย 

Recently uploaded

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
Epec Engineered Technologies
ย 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
dollysharma2066
ย 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
dharasingh5698
ย 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Kandungan 087776558899
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
sivaprakash250
ย 

Recently uploaded (20)

Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
ย 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
ย 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
ย 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
ย 
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
Hazard Identification (HAZID) vs. Hazard and Operability (HAZOP): A Comparati...
ย 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
ย 
Unit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdfUnit 1 - Soil Classification and Compaction.pdf
Unit 1 - Soil Classification and Compaction.pdf
ย 
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance BookingCall Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
Call Girls Wakad Call Me 7737669865 Budget Friendly No Advance Booking
ย 
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
FULL ENJOY Call Girls In Mahipalpur Delhi Contact Us 8377877756
ย 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
ย 
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdfONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ONLINE FOOD ORDER SYSTEM PROJECT REPORT.pdf
ย 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
ย 
chapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineeringchapter 5.pptx: drainage and irrigation engineering
chapter 5.pptx: drainage and irrigation engineering
ย 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
ย 
Unit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdfUnit 2- Effective stress & Permeability.pdf
Unit 2- Effective stress & Permeability.pdf
ย 
Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
ย 
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
ย 
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak HamilCara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
Cara Menggugurkan Sperma Yang Masuk Rahim Biyar Tidak Hamil
ย 
Work-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptxWork-Permit-Receiver-in-Saudi-Aramco.pptx
Work-Permit-Receiver-in-Saudi-Aramco.pptx
ย 
UNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its PerformanceUNIT - IV - Air Compressors and its Performance
UNIT - IV - Air Compressors and its Performance
ย 

Revised PPT on Week 2 Lecture.pptx

  • 1. ๐‘ฌ๐’๐’†๐’„๐’•๐’“๐’Š๐’„๐’‚๐’ ๐‘ท๐’†๐’“๐’‡๐’๐’“๐’Ž๐’‚๐’๐’„๐’† ๐’‚๐’๐’‚๐’๐’š๐’”๐’Š๐’” ๐’๐’‡ ๐‘บ๐’š๐’๐’„๐’‰๐’“๐’๐’๐’๐’–๐’” ๐’Ž๐’‚๐’„๐’‰๐’Š๐’๐’† ๐’Š๐’ ๐’‚๐’„๐’„๐’๐’“๐’…๐’‚๐’๐’„๐’† ๐’˜๐’Š๐’•๐’‰ ๐’…๐’’๐ŸŽ ๐‘ป๐’•๐’‚๐’๐’”๐’‡๐’๐’“๐’Ž๐’‚๐’•๐’Š๐’๐’ & ๐’‘๐’†๐’“ ๐’–๐’๐’Š๐’• ๐’“๐’†๐’‘๐’“๐’†๐’”๐’†๐’๐’•๐’‚๐’•๐’Š๐’๐’ Prepared by : Pralay Roy Part time PhD Scholar Enrollment No. DT21EE002 Department of Electrical & Electronics Engg. N.I.T, Mizoram
  • 2. 1)Basic equations of mutual inductance between stator and rotor winding (vary periodically with ฮธ) as given by following: ๐‘™๐‘Ž๐‘“๐‘‘ = ๐ฟ๐‘Ž๐‘“๐‘‘ cos ๐œƒ (1) ๐‘™๐‘Ž๐‘˜๐‘‘ = ๐ฟ๐‘Ž๐‘˜๐‘‘ cos ๐œƒ (2) ๐‘™๐‘Ž๐‘˜๐‘ž = ๐ฟ๐‘Ž๐‘˜๐‘ž cos ๐œƒ + ๐œ‹ 2 (3) The ๐’…๐’’๐ŸŽ Transformation of rotor circuit flux linkages may be explore as follows: ัฐ๐‘“๐‘‘ = ๐ฟ๐‘“๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘“๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘“๐‘‘[๐‘–๐‘Ž cos ๐œƒ + ๐‘–๐‘ cos ๐œƒ โˆ’ 2๐œ‹ 3 + ๐‘–๐‘ cos ๐œƒ + 2๐œ‹ 3 (1a) ัฐ๐‘˜๐‘‘ = ๐ฟ๐‘“๐‘˜๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘˜๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘˜๐‘‘[๐‘–๐‘Ž cos ๐œƒ + ๐‘–๐‘ cos ๐œƒ โˆ’ 2๐œ‹ 3 + ๐‘–๐‘ cos ๐œƒ + 2๐œ‹ 3 (2a) ัฐ๐‘“๐‘‘ = ๐ฟ๐‘˜๐‘˜๐‘ž๐‘–๐‘˜๐‘ž + ๐ฟ๐‘Ž๐‘˜๐‘ž[๐‘–๐‘Ž sin ๐œƒ + ๐‘–๐‘ sin ๐œƒ โˆ’ 2๐œ‹ 3 + ๐‘–๐‘ sin ๐œƒ + 2๐œ‹ 3 (3a)
  • 3. Basic equations of stator circuit three phase voltage equations and flux linkages: ๐‘’๐‘Ž = ๐‘‘ัฐ๐‘Ž ๐‘‘๐‘™ โˆ’ ๐‘–๐‘Ž๐‘…๐‘Ž = ๐‘ัฐ๐‘Ž โˆ’ ๐‘–๐‘Ž๐‘…๐‘Ž (4) ๐‘’๐‘ = ๐‘ัฐ๐‘ โˆ’ ๐‘–๐‘๐‘…๐‘ (5) ๐‘’๐‘ = ๐‘ัฐ๐‘ โˆ’ ๐‘–๐‘๐‘…๐‘ (6) And ัฐ๐‘Ž = โˆ’๐‘–๐‘Ž ๐ฟ๐‘Ž๐‘Ž0 + ๐ฟ๐‘Ž๐‘Ž2 cos 2๐œƒ + ๐‘–๐‘ ๐ฟ๐‘Ž๐‘0 + ๐ฟ๐‘Ž๐‘Ž2 cos 2๐œƒ + 2๐œ‹ 3 + ๐‘–๐‘ ๐ฟ๐‘Ž๐‘0 + ๐ฟ๐‘Ž๐‘Ž2 cos 2๐œƒ โˆ’ 2๐œ‹ 3 + ๐‘–๐‘“๐‘‘๐ฟ๐‘Ž๐‘“๐‘‘ cos ๐œƒ + ๐‘–๐‘˜๐‘‘๐ฟ๐‘Ž๐‘˜๐‘‘ cos ๐œƒ โˆ’ ๐‘–๐‘˜๐‘ž๐ฟ๐‘Ž๐‘˜๐‘ž sin ๐œƒ (7) ัฐ๐‘ = ๐‘–๐‘Ž ๐ฟ๐‘Ž๐‘0 + ๐ฟ๐‘Ž๐‘Ž2 cos 2๐œƒ + ๐œ‹ 3 โˆ’ ๐‘–๐‘ ๐ฟ๐‘Ž๐‘Ž0 + ๐ฟ๐‘Ž๐‘Ž2 cos 2๐œƒ โˆ’ 2๐œ‹ 3 + ๐‘–๐‘[๐ฟ๐‘Ž๐‘0 +
  • 4. The previous six equations are associated with stator circuits together with the following equations of rotor circuit which can completely describe the electrical operation of Synchronous Machine. Basic equations of rotor circuit voltage equations ๐‘’๐‘“๐‘‘ = ๐‘ัฐ๐‘“๐‘‘ + ๐‘…๐‘“๐‘‘๐‘–๐‘“๐‘‘ (10) 0 = ๐‘ัฐ๐‘˜๐‘‘ + ๐‘…๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ (11) 0 = ๐‘ัฐ๐‘˜๐‘ž + ๐‘…๐‘˜๐‘ž๐‘–๐‘˜๐‘ž (12) The Transformation of stator phase currents into new variables as follows: ๐‘–๐‘‘ = ๐‘˜๐‘‘ ๐‘–๐‘Ž cos ๐œƒ + ๐‘–๐‘ cos ๐œƒ โˆ’ 2๐œ‹ 3 + ๐‘–๐‘ cos ๐œƒ + 2๐œ‹ 3 (13) ๐‘–๐‘ž = โˆ’๐‘˜๐‘ž ๐‘–๐‘Ž sin ๐œƒ + ๐‘–๐‘ sin ๐œƒ โˆ’ 2๐œ‹ 3 + ๐‘–๐‘ sin ๐œƒ + 2๐œ‹ 3 (14) For balanced condition the peak values of ๐’Š๐’… & ๐’Š๐’’ ๐š๐ซ๐ž ๐ž๐ช๐ฎ๐š๐ฅ ๐ญ๐จ ๐ญ๐ก๐ž ๐ฉ๐ข๐œ๐ค ๐š๐ฅ๐ฎ๐ž ๐จ๐Ÿ ๐ฌ๐ญ๐š๐ญ๐จ๐ซ ๐œ๐ฎ๐ซ๐ซ๐ž๐ง๐ญ ๐š๐ฌ ๐ฌ๐ก๐จ๐ฐ๐ง ๐ข๐ง ๐›๐ž๐ฅ๐ฅ๐จ๐ฐ. For balanced condition, ๐‘–๐‘Ž = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก (15) ๐‘–๐‘ = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก โˆ’ 2๐œ‹ 3 (16) ๐‘–๐‘ = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก + 2๐œ‹ 3 (17)
  • 5. Substituting in equation (13), we get, ๐‘–๐‘‘ = ๐‘˜๐‘‘ ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก cos ๐œƒ + ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก
  • 6. Transformed Matrix of ๐’‚๐’ƒ๐’„ phase variables to the ๐’…๐’’๐ŸŽ variable can be written in matrix form as following: ๐‘–๐‘‘ ๐‘–๐‘ž ๐‘–0 = cos ๐œƒ cos ๐œƒ โˆ’ 2๐œ‹ 3 cos ๐œƒ + 2๐œ‹ 3 โˆ’sin ๐œƒ โˆ’sin ๐œƒ โˆ’ 2๐œ‹ 3 โˆ’ sin ๐œƒ + 2๐œ‹ 3 1 2 1 2 1 2 ๐‘–๐‘Ž ๐‘–๐‘ ๐‘–๐‘ (19) The inverse transformation is given by, ๐‘–๐‘Ž ๐‘–๐‘ ๐‘–๐‘ = cos ๐œƒ โˆ’sin ๐œƒ 1 cos ๐œƒ โˆ’ 2๐œ‹ 3 โˆ’sin ๐œƒ โˆ’ 2๐œ‹ 3 1 cos ๐œƒ + 2๐œ‹ 3 โˆ’ sin ๐œƒ + 2๐œ‹ 3 1 ๐‘–๐‘‘ ๐‘–๐‘ž ๐‘–0 (20) The above transformation can also be applied to Stator flux linkages and voltages.
  • 7. Stator flux linkages in ๐’…๐’’๐ŸŽ components :Using the expressions of ัฐ๐’‚ , ัฐ๐’ƒ & ัฐ๐’„ from equation 7,8,9 , transforming the flux linkages into ๐’…๐’’๐ŸŽ components (as in equation 19)and with suitable reduction in trigonometric term we obtain the following expressions: ัฐ๐‘‘ ัฐ๐‘ž ัฐ0 = 2 3 cos ๐œƒ cos ๐œƒ โˆ’ 2๐œ‹ 3 cos ๐œƒ + 2๐œ‹ 3 โˆ’sin ๐œƒ โˆ’sin ๐œƒ โˆ’ 2๐œ‹ 3 โˆ’ sin ๐œƒ + 2๐œ‹ 3 1 2 1 2 1 2 ัฐ๐‘Ž ัฐ๐‘ ัฐ๐‘ (21) Stator Flux linkages in ๐’…๐’’๐ŸŽ components ัฐ๐‘‘ = โˆ’ ๐ฟ๐‘Ž๐‘Ž0 + ๐ฟ๐‘Ž๐‘0 + 3 2 ๐ฟ๐‘Ž๐‘Ž2 ๐‘–๐‘‘ + ๐ฟ๐‘Ž๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘Ž๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ (22) ัฐ๐‘ž = โˆ’ ๐ฟ๐‘Ž๐‘Ž0 + ๐ฟ๐‘Ž๐‘0 โˆ’ 3 2 ๐ฟ๐‘Ž๐‘Ž2 ๐‘–๐‘ž + ๐ฟ๐‘Ž๐‘˜๐‘ž๐‘–๐‘˜๐‘ž (23) ัฐ0 = โˆ’ ๐ฟ๐‘Ž๐‘Ž0 โˆ’ 2๐ฟ๐‘Ž๐‘0 ๐‘–0 (24) Defining the following new inductances: ๐ฟ๐‘‘ = ๐ฟ๐‘Ž๐‘Ž0 + ๐ฟ๐‘Ž๐‘๐‘œ + 3 2 ๐ฟ๐‘Ž๐‘Ž2 (25) ๐ฟ๐‘ž = ๐ฟ๐‘Ž๐‘Ž0 + ๐ฟ๐‘Ž๐‘๐‘œ โˆ’ 3 2 ๐ฟ๐‘Ž๐‘Ž2 (26) ๐ฟ0 = ๐ฟ๐‘Ž๐‘Ž0 โˆ’ 2๐ฟ๐‘Ž๐‘๐‘œ + 3 2 ๐ฟ๐‘Ž๐‘Ž2 (27)
  • 8. Modified expressions of flux linkages with the help of new defined inductances: ัฐ๐‘‘ = โˆ’๐ฟ๐‘‘๐‘–๐‘‘ + ๐ฟ๐‘Ž๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘Ž๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ (28) ัฐ๐‘ž = โˆ’๐ฟ๐‘ž๐‘–๐‘ž + ๐ฟ๐‘Ž๐‘˜๐‘ž๐‘–๐‘˜๐‘ž (29) ัฐ0 = โˆ’๐ฟ0๐‘–0 (30) Rotor flux linkages in ๐’…๐’’๐ŸŽ components: ัฐ๐‘“๐‘‘ = ๐ฟ๐‘“๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘“๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ โˆ’ 3 2 ๐ฟ๐‘Ž๐‘“๐‘‘๐‘–๐‘‘ (31) ัฐ๐‘˜๐‘‘ = ๐ฟ๐‘“๐‘˜๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘˜๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ โˆ’ 3 2 ๐ฟ๐‘Ž๐‘˜๐‘‘๐‘–๐‘‘ (32) ัฐ๐‘˜๐‘ž = ๐ฟ๐‘˜๐‘˜๐‘ž๐‘–๐‘˜๐‘ž โˆ’ 3 2 ๐ฟ๐‘Ž๐‘˜๐‘ž๐‘–๐‘ž (33) All the inductances are seen to be constant, i.e. they are independent of the rotor position.
  • 9. Stator voltage equation in ๐’…๐’’๐ŸŽ components: Equation 4 to 6 are basic voltage equation in terms of phase flux linkages and currents. By applying ๐’…๐’’๐ŸŽ transformation of equation 19,the following equations in terms of transformed components of voltages, flux linkages and currents results: ๐‘’๐‘‘ = ๐‘ัฐ๐‘‘ โˆ’ ัฐ๐‘ž๐‘๐œƒ โˆ’ ๐‘–๐‘‘๐‘…๐‘Ž (34) ๐‘’๐‘ž = ๐‘ัฐ๐‘ž + ัฐ๐‘‘๐‘๐œƒ โˆ’ ๐‘–๐‘ž๐‘…๐‘Ž (35) ๐‘’0 = ๐‘ัฐ0 โˆ’ ๐‘–0๐‘…๐‘Ž (36) The terms ัฐ๐‘ž๐‘๐œƒ & ัฐ๐‘‘๐‘๐œƒ are referred to as the Speed Voltages (Due to flux change in space) and the terms ๐‘ัฐ๐‘‘ & ๐‘ัฐ๐‘ž are referred to as the Transformer Voltages (due to flux change in time).
  • 10. Electrical Power & Torque: The instantaneous three phase power output of Stator is ๐‘ƒ๐‘ก = ๐‘’๐‘Ž๐‘–๐‘Ž + ๐‘’๐‘๐‘–๐‘ + ๐‘’๐‘๐‘–๐‘ Eliminating phase voltages & currents in terms of ๐‘‘๐‘ž0components, we have ๐‘ƒ๐‘ก = 3 2 ๐‘’๐‘‘๐‘–๐‘‘ + ๐‘’๐‘ž๐‘–๐‘ž + ๐‘’0๐‘–0 (37) Under balanced condition , ๐‘’0 = ๐‘–0 = 0& the expression for power is given by ๐‘ƒ๐‘ก = 3 2 ๐‘’๐‘‘๐‘–๐‘‘ + ๐‘’๐‘ž๐‘–๐‘ž Using equation 34 to 36 ,to express the voltage components in terms of flux linkages and currents, by recognizing ๐œ”๐‘Ÿ as the rotor speed ๐‘‘๐œƒ ๐‘‘๐‘ก and rearranging, we have ๐‘ƒ๐‘ก = 3 2 ๐‘–๐‘‘๐‘ัฐ๐‘‘ + ๐‘–๐‘ž๐‘ัฐ๐‘ž + 2๐‘–0๐‘ัฐ0 + ัฐ๐‘‘๐‘–๐‘ž โˆ’ ัฐ๐‘ž๐‘–๐‘‘ ๐œ”๐‘Ÿ โˆ’ ๐‘–๐‘‘ 2 + ๐‘–๐‘ž 2 + 2๐‘–0 2 ๐‘…๐‘Ž (38) = ๐‘…๐‘Ž๐‘ก๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘Ÿ๐‘š๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘š๐‘Ž๐‘”๐‘›๐‘’๐‘ก๐‘–๐‘ ๐‘’๐‘›๐‘’๐‘Ÿ๐‘” + ๐‘ƒ๐‘œ๐‘ค๐‘’๐‘Ÿ ๐‘ก๐‘Ÿ๐‘Ž๐‘›๐‘ ๐‘“๐‘’๐‘Ÿ๐‘’๐‘‘ ๐‘–๐‘› ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘–๐‘Ÿ ๐‘”๐‘Ž๐‘ โˆ’ ๐ด๐‘š๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ ๐‘™๐‘œ๐‘ ๐‘  So, expression of air-gap torque ๐‘‡๐‘’ = 3 2 ัฐ๐‘‘๐‘–๐‘ž โˆ’ ัฐ๐‘ž๐‘–๐‘‘ ร— ๐œ”๐‘Ÿ ๐œ”๐‘š๐‘’๐‘โ„Ž ๐‘‡๐‘’ = 3 2 ัฐ๐‘‘๐‘–๐‘ž โˆ’ ัฐ๐‘ž๐‘–๐‘‘ ร— ๐‘ƒ๐‘“ 2 (39)
  • 11. The flux linkage equations 28 to 33, associated with stator or rotor circuit, together with the voltage equations 34 to 36 for the Stator, the voltage equations 10 to 12 for the rotor and the torque equation 39 describe the dynamic performance of the machine in terms of the ๐’…๐’’๐ŸŽ components Physical interpretation of ๐’…๐’’๐ŸŽ transformation
  • 12. ๐‘–๐‘Ž = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก + ๐œ‘ (40) ๐‘–๐‘ = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก + ๐œ‘ โˆ’ 2๐œ‹ 3 (41) ๐‘–๐‘ = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก + ๐œ‘ + 2๐œ‹ 3 (42) Using ๐‘‘๐‘ž0 transformation ๐‘–๐‘‘ = ๐ผ๐‘š sin ๐œ”๐‘ ๐‘ก + ๐œ‘ โˆ’ ๐œƒ (43) ๐‘–๐‘ž = โˆ’๐ผ๐‘š cos ๐œ”๐‘ ๐‘ก + ๐œ‘ โˆ’ ๐œƒ (44) ๐‘–0 = 0 (45) For synchronous operation, ๐œƒ = ๐œ”๐‘Ÿ๐‘ก = ๐œ”๐‘ ๐‘ก Therefore, ๐‘–๐‘‘ = ๐ผ๐‘š sin ๐œ‘ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘–๐‘ž = โˆ’๐ผ๐‘š cos ๐œ‘ = ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก
  • 13. The analysis of the synchronous machine equations in terms of ๐‘‘๐‘ž0 variables is considerably simpler than in terms of phase quantities, for the following reason: a) The dynamic performance equations have constant inductances b) For balanced condition zero sequence quantities disappear c) For balanced steady state operation, the stator quantities have constant values. For other mode of operation they vary with time. Stability studies involve also variations having frequencies below 2-3 Hz. d) The parameters associated with d and q axes may be directly measured from terminal test. Per unit representation: ๐‘„๐‘ข๐‘Ž๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ ๐‘–๐‘› ๐‘๐‘’๐‘Ÿ ๐‘ข๐‘›๐‘–๐‘ก = ๐ด๐‘๐‘ก๐‘ข๐‘Ž๐‘™ ๐‘ž๐‘ข๐‘Ž๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ ๐ต๐‘Ž๐‘ ๐‘’ ๐‘ฃ๐‘Ž๐‘™๐‘ข๐‘’ ๐‘ž๐‘ข๐‘Ž๐‘›๐‘ก๐‘–๐‘ก๐‘ฆ
  • 14. Per unit system for the stator quantities: ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘ƒ๐‘’๐‘Ž๐‘˜ ๐‘‰๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘™๐‘–๐‘›๐‘’ โˆ’ ๐‘ก๐‘œ โˆ’ ๐‘›๐‘’๐‘ข๐‘ก๐‘Ÿ๐‘Ž๐‘™ ๐‘ฃ๐‘œ๐‘™๐‘ก๐‘Ž๐‘”๐‘’, ๐‘‰๐‘œ๐‘™๐‘ก. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘ƒ๐‘’๐‘Ž๐‘˜ ๐‘‰๐‘Ž๐‘™๐‘ข๐‘’ ๐‘œ๐‘“ ๐‘Ÿ๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘™๐‘–๐‘›๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก, ๐ด๐‘š๐‘. ๐‘“๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘…๐‘Ž๐‘ก๐‘’๐‘‘ ๐‘“๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘’๐‘›๐‘๐‘ฆ, ๐ป๐‘ง. The base values of the remaining quantities are automatically set and depend on the above as follows: ๐œ”๐‘๐‘Ž๐‘ ๐‘’ = 2๐œ‹๐‘“๐‘๐‘Ž๐‘ ๐‘’ electrical radian/sec. ๐œ”๐‘š ๐‘๐‘Ž๐‘ ๐‘’ = ๐œ”๐‘๐‘Ž๐‘ ๐‘’ 2 ๐‘๐‘“ mechanical radian/sec. ๐‘๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ , Ohms ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐œ”๐‘๐‘Ž๐‘ ๐‘’ , ๐ป๐‘’๐‘›๐‘Ÿ๐‘ฆ ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐œ”๐‘  ๐‘๐‘Ž๐‘ ๐‘’ 3- Phase, ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’ = 3๐ธ๐‘…๐‘€๐‘† ๐‘๐‘Ž๐‘ ๐‘’๐ผ๐‘…๐‘€๐‘† ๐‘๐‘Ž๐‘ ๐‘’ = 3 ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’ 2 . ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ 2 = 3 2 ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘‰๐‘œ๐‘™๐‘ก โˆ’ ๐ด๐‘š๐‘๐‘’๐‘Ÿ๐‘’
  • 15. ๐‘‡๐‘œ๐‘Ÿ๐‘ž๐‘ข๐‘’ ๐‘๐‘Ž๐‘ ๐‘’ = 3 โˆ’ ๐‘ƒโ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’ ๐œ”๐‘š ๐‘๐‘Ž๐‘ ๐‘’ = 3 2 ๐‘๐‘“ 2 ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ , ๐‘๐‘’๐‘ค๐‘ก๐‘œ๐‘› โˆ’ ๐‘š๐‘’๐‘ก๐‘’๐‘Ÿ๐‘  Per unit Stator voltage equations: From equation (20), ๐‘’๐‘‘ = ๐‘ัฐ๐‘‘ โˆ’ ัฐ๐‘ž๐œ”๐‘Ÿ โˆ’ ๐‘–๐‘‘๐‘…๐‘Ž Dividing throughout by ๐‘’๐‘๐‘Ž๐‘ ๐‘’ ,and noting that ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’๐‘๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐œ”๐‘ ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ , We get, ๐‘’๐‘‘ ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘ 1 ๐œ”๐‘  ๐‘๐‘Ž๐‘ ๐‘’ . ัฐ๐‘‘ ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ โˆ’ ัฐ๐‘ž ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ . ๐œ”๐‘Ÿ ๐œ”๐‘๐‘Ž๐‘ ๐‘’ โˆ’ ๐‘…๐‘Ž ๐‘๐‘  ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘‘ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (46) Expressed in per unit notation, ๐‘’๐‘‘ = 1 ๐œ” ๐‘๐‘Ž๐‘ ๐‘’ ๐‘ัฐ๐‘‘ โˆ’ ัฐ๐‘ž ๐œ”๐‘Ÿ โˆ’ ๐‘…๐‘Ž ๐‘–๐‘‘ (47)
  • 16. Time can also be expressed in per unit (or radians) with the base value equal to the time required for the rotor to move one electrical radian at synchronous speed. ๐‘ก๐‘๐‘Ž๐‘ ๐‘’ = 1 ๐œ”๐‘๐‘Ž๐‘ ๐‘’ = 1 2๐œ‹๐‘“๐‘๐‘Ž๐‘ ๐‘’ (48) With time in per unit equation 47 may be written as ๐‘’๐‘‘ = ๐‘ัฐ๐‘‘ โˆ’ ัฐ๐‘ž ๐œ”๐‘Ÿ โˆ’ ๐‘…๐‘Ž ๐‘–๐‘‘ (49) Comparing equation 20 with equation 49 , we see that the form of the original equation is unchanged, when all quantities involved are expressed in per unit Similarly per unit form of equation 35 and 36 are ๐‘’๐‘ž = ๐‘ ัฐ๐‘‘ + ัฐ๐‘‘ ๐œ”๐‘Ÿ โˆ’ ๐‘…๐‘Ž ๐‘–๐‘ž (50) ๐‘’0 = ๐‘ ัฐ๐‘‘ โˆ’ ๐‘…๐‘Ž ๐‘–0 (51) Where, ๐‘ = ๐‘‘ ๐‘‘๐‘ก = 1 ๐œ”๐‘๐‘Ž๐‘ ๐‘’ ๐‘‘ ๐‘‘๐‘ก = ๐‘ ๐œ”๐‘๐‘Ž๐‘ ๐‘’ (52)
  • 17. Per Unit Rotor voltage equation: From equation 10 dividing throughout by, ๐‘’๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐œ”๐‘๐‘Ž๐‘ ๐‘’ัฐ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ Per unit field voltage equation may written as: ๐‘’๐‘“๐‘‘ = ๐‘ัฐ๐‘“๐‘‘ + ๐‘…๐‘“๐‘‘๐‘–๐‘“๐‘‘ (53) Similarly the per unit form of equation 11 and 12 0 = ๐‘ัฐ๐‘˜๐‘‘ + ๐‘…๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ (54) 0 = ๐‘ัฐ๐‘˜๐‘ž + ๐‘…๐‘˜๐‘ž๐‘–๐‘˜๐‘ž (55) Per unit stator flux linkage equations: Using the basic relationship ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ the per unit form of equations 28,29 & 30 may be written as ัฐ๐‘‘ = โˆ’๐ฟ๐‘‘๐‘–๐‘‘ + ๐ฟ๐‘Ž๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘Ž๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ (56) ัฐ๐‘ž = โˆ’๐ฟ๐‘ž๐‘–๐‘ž + ๐ฟ๐‘Ž๐‘˜๐‘ž๐‘–๐‘ž (57) ัฐ0 = โˆ’๐ฟ0๐‘–0 (58)
  • 18. Where by definition: ๐ฟ๐‘Ž๐‘“๐‘‘ = ๐ฟ๐‘Ž๐‘“๐‘‘ ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (59) ๐ฟ๐‘Ž๐‘˜๐‘‘ = ๐ฟ๐‘Ž๐‘˜๐‘‘ ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (60) ๐ฟ๐‘Ž๐‘˜๐‘ž = ๐ฟ๐‘Ž๐‘˜๐‘ž ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (61) Per unit rotor flux linkage equations: Similarly in per unit form equations 31,32 & 33, become ัฐ๐‘“๐‘‘ = ๐ฟ๐‘“๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘“๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘“๐‘‘๐‘–๐‘‘ (62) ัฐ๐‘˜๐‘‘ = ๐ฟ๐‘“๐‘˜๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘˜๐‘˜๐‘‘๐‘–๐‘˜๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘˜๐‘‘๐‘–๐‘‘ (63) ัฐ๐‘˜๐‘ž = ๐ฟ๐‘˜๐‘˜๐‘ž๐‘–๐‘˜๐‘ž โˆ’ ๐ฟ๐‘Ž๐‘˜๐‘ž๐‘–๐‘ž (64)
  • 19. Where by definition: ๐ฟ๐‘“๐‘‘๐‘Ž = 3 2 . ๐ฟ๐‘Ž๐‘“๐‘‘ ๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ (65) ๐ฟ๐‘“๐‘˜๐‘‘ = ๐ฟ๐‘“๐‘˜๐‘‘ ๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ (66) ๐ฟ๐‘˜๐‘‘๐‘Ž = 3 2 . ๐ฟ๐‘Ž๐‘˜๐‘‘ ๐ฟ๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ (67) ๐ฟ๐‘˜๐‘‘๐‘“ = ๐ฟ๐‘“๐‘˜๐‘‘ ๐ฟ๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ (68) ๐ฟ๐‘˜๐‘ž๐‘Ž = 3 2 . ๐ฟ๐‘Ž๐‘˜๐‘ž ๐ฟ๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ (69) Per unit system of Rotor: Some Important information: 1) ๐ฟ๐‘Ž๐‘“๐‘‘ = ๐ฟ๐‘“๐‘‘๐‘Ž 2) ๐ฟ๐‘Ž๐‘“๐‘‘ = ๐ฟ๐‘Ž๐‘˜๐‘‘
  • 20. In order to have ๐ฟ๐‘“๐‘˜๐‘‘ = ๐ฟ๐‘˜๐‘‘๐‘“ so that the reciprocity is achieved, from equation 66 and 68 ,it is necessary to have ๐ฟ๐‘“๐‘˜๐‘‘ ๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘“๐‘˜๐‘‘ ๐ฟ๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐ฟ๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ 2 = ๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ 2 (70) Multiply by ๐œ”๐‘๐‘Ž๐‘ ๐‘’ gives, ๐œ”๐‘๐‘Ž๐‘ ๐‘’๐ฟ๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ 2 = ๐œ”๐‘๐‘Ž๐‘ ๐‘’๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ 2 Since, ๐œ”๐‘๐‘Ž๐‘ ๐‘’๐ฟ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘๐‘Ž๐‘ ๐‘’ = ๐‘’๐‘๐‘Ž๐‘ ๐‘’ ๐‘’๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘’๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ (71) For mutual inductances ๐ฟ๐‘Ž๐‘“๐‘‘ & ๐ฟ๐‘“๐‘‘๐‘Ž to be equal from equation 59 & 65 ๐ฟ๐‘Ž๐‘“๐‘‘ ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = 3 2 . ๐ฟ๐‘Ž๐‘“๐‘‘ ๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ Or, ๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ 2 = 3 2 . ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ 2
  • 21. Multiply by ๐œ”๐‘๐‘Ž๐‘ ๐‘’ and noting that ๐œ”๐ฟ๐‘– = ๐‘’, we get ๐‘’๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = 3 2 . ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (72) = 3 2 ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’ 2 ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ 2 = 3 ๐‘โ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด ๐‘๐‘Ž๐‘ ๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐‘†๐‘ก๐‘Ž๐‘ก๐‘œ๐‘Ÿ Similarly in order ๐ฟ๐‘Ž๐‘˜๐‘‘=๐ฟ๐‘˜๐‘‘๐‘Ž and ๐ฟ๐‘Ž๐‘˜๐‘ž=๐ฟ๐‘˜๐‘ž๐‘Ž ๐‘’๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = 3 2 . ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (73) And ๐‘’๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ = 3 2 . ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’. ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (74) This equations imply that the VA base in all rotor circuit must be the same and equal to the stator 3 phase VA base.
  • 22. The stator leakage inductances in the two axes are nearly equal denoting the leakage inductance ๐ฟ๐‘™ and mutual inductance by ๐ฟ๐‘Ž๐‘‘ and ๐ฟ๐‘Ž๐‘ž : ๐ฟ๐‘‘ = ๐ฟ๐‘™ + ๐ฟ๐‘Ž๐‘‘ (75) And ๐ฟ๐‘ž = ๐ฟ๐‘™ + ๐ฟ๐‘Ž๐‘ž (76) In order to make all the per unit mutual inductances between the stator and rotor circuits in the d axis equal, from equations 59 and 60, it follows that ๐ฟ๐‘Ž๐‘‘ = ๐ฟ๐‘Ž๐‘‘ ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘Ž๐‘“๐‘‘ = ๐ฟ๐‘Ž๐‘“๐‘‘ ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘Ž๐‘˜๐‘‘ = ๐ฟ๐‘Ž๐‘˜๐‘‘ ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ . ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ Therefore, ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘Ž๐‘‘ ๐ฟ๐‘Ž๐‘“๐‘‘ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (77) ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘Ž๐‘‘ ๐ฟ๐‘Ž๐‘˜๐‘‘ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (78) Similarly , for the q axis mutual inductances ๐ฟ๐‘Ž๐‘ž and ๐ฟ๐‘Ž๐‘˜๐‘ž to be equal, ๐‘–๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘Ž๐‘ž ๐ฟ๐‘Ž๐‘˜๐‘ž ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ (79) This completes the choice of rotor base quantities.
  • 23. Per unit Power and Torque : The instantaneous power at the machine terminal as per equation 37, ๐‘ƒ๐‘ก = 3 2 ๐‘’๐‘‘๐‘–๐‘‘ + ๐‘’๐‘ž๐‘–๐‘ž + ๐‘’0๐‘–0 Dividing by base three phase VA= 3 2 ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ The per unit expression may be written as, ๐‘ƒ๐‘ก = ๐‘’๐‘‘๐‘–๐‘‘ + ๐‘’๐‘ž๐‘–๐‘ž + 2๐‘’0๐‘–0 (80) Similarly, with base torque= 3 2 ๐‘๐‘“ 2 ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ,the per unit form of equation 39 is ๐‘‡๐‘’ = ัฐ๐‘‘๐‘–๐‘ž โˆ’ ัฐ๐‘ž๐‘–๐‘‘ (81) Per unit reactance ๐‘‹๐‘‘ = 2๐œ‹๐‘“๐ฟ๐‘‘ โ„ฆ Dividing by ๐‘๐‘๐‘Ž๐‘ ๐‘’ = 2๐œ‹๐‘“๐‘๐‘Ž๐‘ ๐‘’๐ฟ๐‘๐‘Ž๐‘ ๐‘’ ๐‘‹๐‘‘ ๐‘๐‘๐‘Ž๐‘ ๐‘’ = 2๐œ‹๐‘“ 2๐œ‹๐‘“๐‘๐‘Ž๐‘ ๐‘’ . ๐ฟ๐‘‘ ๐ฟ๐‘๐‘Ž๐‘ ๐‘’ If ๐‘“ = ๐‘“๐‘๐‘Ž๐‘ ๐‘’ ,per unit values of ๐‘‹๐‘‘ & ๐ฟ๐‘‘ are equal. So in case of Synchronous machine symbols associated with reactance are often used to denote per unit inductance.
  • 24. Summary of per unit equations: Stator base quantities: 3 phase ๐‘ฝ๐‘จ๐’ƒ๐’‚๐’”๐’†= Volt ampere rating of machine, VA ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’= Peak phase to neutral related voltage, V ๐‘“๐‘๐‘Ž๐‘ ๐‘’ =Rated frequency, Hz ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘๐‘’๐‘Ž๐‘˜ ๐‘™๐‘–๐‘›๐‘’ ๐‘๐‘ข๐‘Ÿ๐‘Ÿ๐‘’๐‘›๐‘ก , ๐ด๐‘š๐‘ = 3 ๐‘ƒโ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’ 3 2 ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘’๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘ ๐‘๐‘Ž๐‘ ๐‘’ , โ„ฆ Where,๐œ”๐‘๐‘Ž๐‘ ๐‘’ = 2๐œ‹๐‘“๐‘๐‘Ž๐‘ ๐‘’ elect. rad/sec. ๐œ”๐‘š ๐‘๐‘Ž๐‘ ๐‘’ = ๐œ”๐‘๐‘Ž๐‘ ๐‘’ 2 ๐‘๐‘“ mech. Rad /sec. ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐œ”๐‘๐‘Ž๐‘ ๐‘’ , Henry ัฐ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘  ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’, Wb-turns
  • 25. Rotor base quantities: ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘Ž๐‘‘ ๐ฟ๐‘Ž๐‘“๐‘‘ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ , Amp ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘Ž๐‘‘ ๐ฟ๐‘Ž๐‘˜๐‘‘ ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ , Amp ๐‘–๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ = ๐ฟ๐‘Ž๐‘ž ๐ฟ๐‘Ž๐‘˜๐‘ž ๐‘–๐‘  ๐‘๐‘Ž๐‘ ๐‘’ , Amp ๐‘’๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = 3 ๐‘โ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ , volt ๐‘๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘’๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ , โ„ฆ = 3 ๐‘โ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ 2 ๐‘๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = 3 ๐‘โ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ 2 โ„ฆ ๐‘๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ = 3 ๐‘โ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’ ๐‘–๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ 2 โ„ฆ
  • 26. Rotor base quantities: ๐ฟ๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘๐‘“๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐œ”๐‘๐‘Ž๐‘ ๐‘’ , Henry ๐ฟ๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘๐‘˜๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’ ๐œ”๐‘๐‘Ž๐‘ ๐‘’ , Henry ๐ฟ๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ = ๐‘๐‘˜๐‘ž ๐‘๐‘Ž๐‘ ๐‘’ ๐œ”๐‘๐‘Ž๐‘ ๐‘’ , Henry ๐‘ก๐‘๐‘Ž๐‘ ๐‘’ = 1 ๐œ”๐‘๐‘Ž๐‘ ๐‘’ , Sec. ๐‘‡๐‘๐‘Ž๐‘ ๐‘’ = 3 ๐‘โ„Ž๐‘Ž๐‘ ๐‘’ ๐‘‰๐ด๐‘๐‘Ž๐‘ ๐‘’ ๐œ”๐‘š ๐‘๐‘Ž๐‘ ๐‘’ , Nm
  • 27. Complete Set of per unit equations: In view of the ๐ฟ๐‘Ž๐‘‘ ๐‘๐‘Ž๐‘ ๐‘’per unit system chosen ,in per unit ๐ฟ๐‘Ž๐‘“๐‘‘ = ๐ฟ๐‘“๐‘‘๐‘Ž = ๐ฟ๐‘Ž๐‘˜๐‘‘ = ๐ฟ๐‘˜๐‘‘๐‘Ž = ๐ฟ๐‘Ž๐‘‘ ๐ฟ๐‘Ž๐‘˜๐‘ž = ๐ฟ๐‘˜๐‘ž๐‘Ž = ๐ฟ๐‘Ž๐‘ž ๐ฟ๐‘“๐‘˜๐‘‘=๐ฟ๐‘˜๐‘‘๐‘“ Per unit Stator voltage equation ๐‘’๐‘‘ = ๐‘ัฐ๐‘‘ โˆ’ ัฐ๐‘ž๐œ”๐‘Ÿ โˆ’ ๐‘–๐‘‘๐‘…๐‘Ž (82) ๐‘’๐‘ž = ๐‘ัฐ๐‘ž + ัฐ๐‘‘๐œ”๐‘Ÿ โˆ’ ๐‘–๐‘ž๐‘…๐‘Ž (83) ๐‘’0 = ๐‘ัฐ0 โˆ’ ๐‘–0๐‘…๐‘Ž (84) Per unit Rotor voltage equation ๐‘’๐‘“๐‘‘ = ๐‘ัฐ๐‘“๐‘‘ + ๐‘…๐‘“๐‘‘๐‘–๐‘“๐‘‘ (85) 0 = ๐‘ัฐ1๐‘‘ + ๐‘…1๐‘‘๐‘–1๐‘‘ (86) 0 = ๐‘ัฐ1๐‘ž + ๐‘…1๐‘ž๐‘–1๐‘ž (87) 0 = ๐‘ัฐ2๐‘‘ + ๐‘…2๐‘‘๐‘–2๐‘‘ (88)
  • 28. Per unit stator flux linkage equations: ัฐ๐‘‘ = โˆ’ ๐ฟ๐‘Ž๐‘‘ + ๐ฟ๐‘™ ๐‘–๐‘‘ + ๐ฟ๐‘Ž๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘Ž๐‘‘๐‘–1๐‘‘ (89) ัฐ๐‘ž = โˆ’ ๐ฟ๐‘Ž๐‘ž + ๐ฟ๐‘™ ๐‘–๐‘ž + ๐ฟ๐‘Ž๐‘ž๐‘–1๐‘ž + ๐ฟ๐‘Ž๐‘ž๐‘–2๐‘ž (90) ัฐ0 = โˆ’๐ฟ0๐‘–0 (91) Per unit Rotor Flux linkage equations: ัฐ๐‘“๐‘‘ = ๐ฟ๐‘“๐‘“๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ๐‘“1๐‘‘๐‘–1๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘‘๐‘–๐‘‘ (92) ัฐ1๐‘‘ = ๐ฟ๐‘“1๐‘‘๐‘–๐‘“๐‘‘ + ๐ฟ11๐‘‘๐‘–1๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘‘๐‘–๐‘‘ (93) ัฐ1๐‘ž = ๐ฟ11๐‘ž๐‘–1๐‘ž + ๐ฟ๐‘Ž๐‘ž๐‘–2๐‘ž โˆ’ ๐ฟ๐‘Ž๐‘ž๐‘–๐‘ž (94) ัฐ2๐‘ž = ๐ฟ๐‘Ž๐‘ž๐‘–1๐‘ž + ๐ฟ22๐‘ž๐‘–2๐‘ž โˆ’ ๐ฟ๐‘Ž๐‘ž๐‘–๐‘ž (95) Per unit Air- gap Torque: ๐‘‡๐‘’ = ัฐ๐‘‘๐‘–๐‘ž โˆ’ ัฐ๐‘ž๐‘–๐‘‘ (96)
  • 29. Steady state analysis: Voltage , current & flux relationships At steady State zero sequenced components are absent and ๐œ”๐‘Ÿ = ๐œ”๐‘  = 1 With ๐‘ัฐ terms are set to zero in equation 86,87 and 88 ๐‘…1๐‘‘๐‘–๐‘–๐‘‘ = ๐‘…1๐‘ž๐‘–1๐‘ž = ๐‘…2๐‘ž๐‘–2๐‘ž = 0 (97) The per unit machine equations (82 to 96) under balanced steady state conditions, become ๐‘’๐‘‘ = โˆ’ัฐ๐‘ž๐œ”๐‘Ÿ โˆ’ ๐‘–๐‘‘๐‘…๐‘Ž (98) ๐‘’๐‘ž = โˆ’ัฐ๐‘‘๐œ”๐‘Ÿ โˆ’ ๐‘–๐‘ž๐‘…๐‘Ž (99) ๐‘’๐‘“๐‘‘ = ๐‘–๐‘“๐‘‘๐‘…๐‘“๐‘‘ (100) ัฐ๐‘‘ = โˆ’๐ฟ๐‘‘๐‘–๐‘‘ + ๐ฟ๐‘Ž๐‘‘๐‘–๐‘“๐‘‘ (101) ัฐ๐‘ž = โˆ’๐ฟ๐‘ž๐‘–๐‘ž (102) ัฐ๐‘“๐‘‘ = ๐ฟ๐‘“๐‘“๐‘‘๐‘–๐‘“๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘‘๐‘–๐‘‘ (103) ัฐ1๐‘‘ = ๐ฟ๐‘“1๐‘‘๐‘–๐‘“๐‘‘ โˆ’ ๐ฟ๐‘Ž๐‘‘๐‘–๐‘‘ (104) ัฐ1๐‘ž = ัฐ2๐‘ž = โˆ’๐ฟ๐‘Ž๐‘ž๐‘–๐‘ž (105)
  • 30. Field current: From equation 101, ๐‘–๐‘“๐‘‘ = ัฐ๐‘‘+๐ฟ๐‘‘๐‘–๐‘‘ ๐ฟ๐‘Ž๐‘‘ (106) Substituting for ัฐ๐‘‘in terms of ๐‘’๐‘‘,๐‘–๐‘žfrom equation 99 ๐‘–๐‘“๐‘‘ = ๐‘’๐‘ž+๐‘…๐‘Ž๐‘–๐‘ž+๐œ”๐‘Ÿ๐ฟ๐‘‘๐‘–๐‘‘ ๐œ”๐‘Ÿ๐ฟ๐‘Ž๐‘‘ (107) Replacing the product of synchronous speed and inductance L by corresponding reactance X ๐‘–๐‘“๐‘‘ = ๐‘’๐‘ž+๐‘…๐‘Ž๐‘–๐‘ž+๐‘‹๐‘‘๐‘–๐‘‘ ๐‘‹๐‘Ž๐‘‘ (108) Phasor representation: Stator phase voltages in balanced steady state condition may be written as ๐‘’๐‘Ž = ๐ธ๐‘š cos ๐œ”๐‘ ๐‘ก + ๐›ผ (109) ๐‘’๐‘ = ๐ธ๐‘š cos ๐œ”๐‘ ๐‘ก โˆ’ 2๐œ‹ 3 + ๐›ผ (110) ๐‘’๐‘ = ๐ธ๐‘š cos ๐œ”๐‘ ๐‘ก + 2๐œ‹ 3 + ๐›ผ (111) Stator phase voltages in balanced steady state condition in ๐’…๐’’๐ŸŽ components we get ๐‘’๐‘‘ = ๐ธ๐‘š cos ๐œ”๐‘ ๐‘ก + ๐›ผ โˆ’ ๐œƒ (112) ๐‘’๐‘ž = ๐ธ๐‘š sin ๐œ”๐‘ ๐‘ก + ๐›ผ โˆ’ ๐œƒ (113)
  • 31. The angle ฮธ by which the d axis leads the axis of phase ๐‘Ž is given by ๐œƒ = ๐œ”๐‘Ÿ๐‘ก + ๐œƒ0 (114) Where ๐œƒ0 is the value of ๐œƒ at ๐‘ก = 0. With ๐œ”๐‘Ÿ equal to ๐œ”๐‘  at synchronous speed, substitution for ๐œƒ in equation 112 & 113 yields ๐‘’๐‘‘ = ๐ธ๐‘š cos ๐›ผ โˆ’ ๐œƒ0 (115) ๐‘’๐‘ž = ๐ธ๐‘š sin ๐›ผ โˆ’ ๐œƒ0 (116) Using ๐ธ๐‘ก to denote per unit rms value of armature terminal voltage and the per unit rms and peak values are equal ๐‘’๐‘‘ = ๐ธ๐‘š cos ๐›ผ โˆ’ ๐œƒ0 (117) ๐‘’๐‘ž = ๐ธ๐‘š sin ๐›ผ โˆ’ ๐œƒ0 (118)