SlideShare a Scribd company logo
1 of 15
Download to read offline
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 1
Turbo Machines
18ME54
Course Coordinator
Mr. THANMAY J. S
Assistant Professor
Department of Mechanical Engineering
VVIET Mysore
Module 02: General Analysis of Turbo machines
Course Learning Objectives
Analyze the energy transfer in Radial and Axial flow Turbo machine with degree of reaction
and utilization factor
Course Outcomes
At the end of the course the student will be able to analyze the energy transfer in Turbo machine
with degree of reaction and utilization factor for Radial and Axial flow type Turbo Machines.
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 2
Contents
Modal 02: Question Number 4 a & 4 b General Analysis of Turbo machines
i. Radial flow compressors and pumps โ€“ general analysis,
ii. Effect of blade discharge angle on energy transfer
iii. Expression for degree of reaction,
iv. Effect of blade discharge angle on degree of reaction,
v. Effect of blade discharge angle on performance,
vi. General analysis of axial flow pumps and compressors,
vii. Expression for degree of reaction and Utilization factor in Axial Flow Turbine
viii. Derivation of General Equations
Previous Year Question papers
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 3
i. Radial flow compressors and pumps โ€“ general analysis
In a radial flow machine, the two ends of the rotor blade have different linear velocities. The velocity
triangles are constructed with these blade velocities as the bases. In general, the velocity triangle at
the smaller radius is made up of lower velocities and that at the larger radius is made up of higher
velocities. When U is small, V and Vr are also comparatively small; when U is large, V and Vr are
also large. This is how the pumps and compressors are evolved with radially outward flow, with higher
energy at the outlet, at the outer radius. For the same reason, the radial flow turbines are inward flow
turbines, with discharge velocities of smaller magnitudes and therefore with lower values of exit
losses.
General Velocity Triangle
Radial Flow Machines:(Centrifugal Pumps, Centrifugal Blowers and Centrifugal Compressors)
Radial flow compressors and pumps are radial outward flow turbomachines, here fluid flows across
the rotor blades radially from inner radius (hub radius) to outer radius (tip radius) of the rotor.
Therefore radial compressors and pumps are also known as centrifugal turbomachines.
The velocity triangles for the blade of an impeller of a radially outward flow machine are generally of
the form as shown in figure below. (The variations from this general form may be considered step-by-
step.) The absolute fluid velocity (๐‘ฝ๐Ÿ) at the inlet is shown at (๐œถ๐Ÿ = ๐Ÿ—๐ŸŽยฐ) o to the blade
velocity(๐‘ผ๐Ÿ). In compressors or pumps of smaller sizes, guide vanes are not present to direct the fluid
into the impeller at any particular angle. Hence, the fluid enters the impeller in a radial direction,
giving rise to (๐‘ฝ๐’–๐Ÿ = ๐ŸŽ) . Since the fluid enters and leaves the rotor at different radius
(๐‘ผ๐Ÿ โ‰  ๐‘ผ๐Ÿ ๐’‚๐’๐’… ๐‘ผ๐Ÿ > ๐‘ฝ๐’–๐Ÿ). In centrifugal compressor or pump usually the absolute velocity at the
entry has no tangential component.
Velocity Triangle for Radial Flow Compressor and Pump
Radial Flow Compressors and Pumps: (Power Absorbing Turbo Machines)
๐๐ฒ ๐„๐ฎ๐ฅ๐ž๐ซโ€™๐ฌ ๐“๐ฎ๐ซ๐›๐ข๐ง๐ž ๐„๐ช๐ฎ๐š๐ญ๐ข๐จ๐ง ๐‘ท = (๐‘ฝ๐’–๐Ÿ. ๐‘ผ๐Ÿ โˆ’ ๐‘ฝ๐’–๐Ÿ. ๐‘ผ๐Ÿ)
๐’ƒ๐’–๐’• ๐‘ฝ๐’–๐Ÿ = ๐ŸŽ
โˆด ๐‘ƒ = (๐‘‰๐‘ข2. ๐‘ˆ2)
๐‘ค๐‘’ ๐‘˜๐‘›๐‘œ๐‘ค ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘‹ = ๐‘ˆ2 โˆ’ ๐‘‰๐‘ข2
๐ถ๐‘œ๐‘ก ๐›ฝ2 =
๐‘‹
๐‘‰๐‘“2
โ‰ซ ๐‘ฟ = ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ
๐‘‡โ„Ž๐‘’๐‘› ๐‘‰๐‘ข2 = ๐‘ˆ2 โˆ’ ๐‘‰๐‘“2 ๐ถ๐‘œ๐‘ก ๐›ฝ2
โˆด ๐‘ƒ = (๐‘‰๐‘ข2. ๐‘ˆ2) ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘ค๐‘Ÿ๐‘–๐‘ก๐‘ก๐‘’๐‘› ๐‘Ž๐‘ 
๐‘ท = ๐‘ผ๐Ÿ(๐‘ผ๐Ÿ โˆ’ ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ)
Or
๐‘ท = (๐‘ผ๐Ÿ
๐Ÿ
โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ)
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 4
ii. Effect of blade discharge angle on energy transfer
a) When ฮฒ2 is less than 90o
, that is, when the blades are bent backward to the direction of
rotation of the rotor, the slope of the line is negative. As the flow rate increases, Vf2
increases, and along with it, Vu2 decreases. Consequently, the specific work (or head)
reduces as the flow rate is increased.
b) When ฮฒ2 is equal to 90o
, the variation in the flow rate or the variation in Vf2 does not
affect Vu2. The specific work (or head) remains constant.
c) When ฮฒ2 is more than 90o
, that is, when the blades are bent forward, the slope of the line
is positive. As the flow rate is increased, Vu2 also increases. Therefore, the specific work
(or head) also increases.
iii. Expression for Degree of Reaction
๐‘๐‘ข๐‘ก ๐‘Ž๐‘๐‘๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘” ๐‘ก๐‘œ ๐ผ๐‘›๐‘™๐‘’๐‘ก ๐ถ๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘‰1 = ๐‘‰
๐‘“1 ๐‘ ๐‘œ ๐‘‰1
2
= ๐‘‰
๐‘“1
2
= ๐‘‰
๐‘“2
2
๐‘Ž๐‘›๐‘‘ ๐‘“๐‘œ๐‘Ÿ ๐‘‚๐‘ข๐‘ก๐‘™๐‘’๐‘ก ๐‘‰2
2
= ๐‘‰๐‘ˆ2
2
+ ๐‘‰
๐‘“2
2
โˆด ๐‘… =
๐‘ˆ2 ๐‘‰๐‘ˆ2 โˆ’
( ๐‘‰๐‘ˆ2
2
+ ๐‘‰๐‘“2
2
โˆ’ ๐‘‰๐‘“1
2
)
2
๐‘ˆ2 ๐‘‰๐‘ˆ2
= ๐‘ˆ2 ๐‘‰๐‘ˆ2 โˆ’
( ๐‘‰๐‘ˆ2
2
+ ๐‘‰๐‘“2
2
โˆ’ ๐‘‰๐‘“1
2
)
2๐‘ˆ2 ๐‘‰๐‘ˆ2
โˆด ๐‘น = ๐Ÿ โˆ’ (
๐‘ฝ๐‘ผ ๐Ÿ
๐Ÿ๐‘ผ๐Ÿ
)
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 5
iv. Effect of blade discharge angle on degree of reaction,
๐‘ค๐‘’ ๐‘˜๐‘›๐‘œ๐‘ค ๐‘กโ„Ž๐‘Ž๐‘ก ๐ท๐‘’๐‘”๐‘Ÿ๐‘’๐‘’ ๐‘œ๐‘“ ๐‘…๐‘’๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘… = 1 โˆ’ (
๐‘‰๐‘ˆ2
2๐‘ˆ2
) ๐‘“๐‘œ๐‘Ÿ ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘™ ๐น๐‘™๐‘œ๐‘ค ๐‘‡๐‘ข๐‘Ÿ๐‘๐‘œ ๐‘€๐‘Ž๐‘โ„Ž๐‘–๐‘›๐‘’๐‘ 
๐‘๐‘ข๐‘ก ๐‘Ž๐‘๐‘๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘” ๐‘ก๐‘œ ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘ก๐‘Ÿ๐‘–๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘ฝ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ โˆ’ ๐‘ฟ
๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ cot(๐›ฝ2) = (
๐‘๐‘œ๐‘ 
๐‘ ๐‘–๐‘›
) =
๐ด๐‘‘๐‘—๐‘Ž๐‘๐‘’๐‘›๐‘ก ๐‘ ๐‘–๐‘‘๐‘’
๐‘‚๐‘๐‘๐‘–๐‘ ๐‘–๐‘ก๐‘’ ๐‘ ๐‘–๐‘‘๐‘’
=
๐‘‹
๐‘‰๐‘“2
โˆด ๐‘ฟ = ๐‘ฝ๐’‡๐Ÿ ๐œ๐จ๐ญ(๐œท๐Ÿ)
๐‘ ๐‘œ, ๐‘‰๐‘ˆ2 = ๐‘ˆ2 โˆ’ ๐‘‹ โ‰ซ ๐‘ฝ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ โˆ’ ๐‘ฝ๐’‡๐Ÿ ๐œ๐จ๐ญ(๐œท๐Ÿ)
๐‘’๐‘”๐‘Ÿ๐‘’๐‘’ ๐‘œ๐‘“ ๐‘…๐‘’๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘… = 1 โˆ’ (
๐‘‰๐‘ˆ2
2๐‘ˆ2
) โ‰ซ ๐‘… = 1 โˆ’ (
๐‘ˆ2 โˆ’ ๐‘‰๐‘“2 cot(๐›ฝ2)
2๐‘ˆ2
)
๐‘๐‘ฆ ๐‘Ÿ๐‘’๐‘ ๐‘œ๐‘™๐‘ฃ๐‘–๐‘›๐‘” ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘น =
๐Ÿ
๐Ÿ
[๐Ÿ + (
๐‘ฝ๐’‡๐Ÿ
๐Ÿ๐‘ผ๐Ÿ
)๐œ๐จ๐ญ(๐œท๐Ÿ)]
๐‘‡โ„Ž๐‘–๐‘  ๐‘Ÿ๐‘’๐‘ ๐‘ข๐‘™๐‘ก ๐‘–๐‘  ๐‘Ž๐‘๐‘๐‘™๐‘–๐‘๐‘Ž๐‘๐‘™๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐›ผ1 = 90ยฐ ๐‘ ๐‘œ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘‰1 = ๐น2 = ๐‘ˆ1 ๐‘Ž๐‘›๐‘‘ ๐‘‰๐‘ข1 = 0
a) When ฮฒ2, in the above conditions, becomes equal to
158.2o
, the degree of reaction reduces to zero, the
machine becomes impulse type, and the centrifugal
head balances the relative velocity head.
(R = 0 at ฮฒ2 =158.2o
)
b) If the reference values of ฮฒ1 and D2/D1 were chosen
then the nature of variation of R would be the same, but
the values would be different
(W = 0 at ฮฒ2 = 26.5o
; R = (2 + cot ฮฒ2)/4.
v. Effect of blade discharge angle on performance,
๐‘ท = (๐‘ผ๐Ÿ
๐Ÿ
โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ)
In a Power Absorbing Turbo Machines like a pump, a blower, or a compressor is usually run
by a motor of constant speed N, Hence, ๐‘ผ๐Ÿ =
๐…๐‘ซ๐‘ต
๐Ÿ”๐ŸŽ
is also a constant.
Further(๐‘ฝ๐’‡๐Ÿ), the flow component, can be written as(
๐‘ธ
๐‘จ๐Ÿ
), where๐‘จ๐Ÿis the exit area of the
impeller and (๐‘ธ) is the volume flow rate. This results
๐‘ท = (๐‘ผ๐Ÿ
๐Ÿ
โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ) โ‰ซ (๐‘ผ๐Ÿ
๐Ÿ
โˆ’ ๐‘ผ๐Ÿ . (
๐‘ธ
๐‘จ๐Ÿ
) ๐‘ช๐’๐’• ๐œท๐Ÿ)
= (๐‘ช๐Ÿ โˆ’ ๐‘ช๐Ÿ. ๐‘ธ) โ‰ซ
Where ๐‘ช๐Ÿ = ๐‘ผ๐Ÿ
๐Ÿ
and๐‘ช๐Ÿ = (
๐‘ผ๐Ÿ
๐‘จ๐Ÿ
) ๐‘ช๐’๐’• ๐œท๐Ÿ.
๐‘ท = (๐‘ช๐Ÿ โˆ’ ๐‘ช๐Ÿ. ๐‘ธ)
The performance of a machine is the totality of the specific work or energy transfer, the
reaction, the power consumption, the efficiency, and so on. Equation (๐‘ท) represents the energy
transfer (W) in a radial flow pump or compressor. In a pump, the head developed may be
written as (W/g). In a compressor, the pressure developed may be written as (W x ฯ). Either
way, (W) is identified as a function of the flow rate (Q).
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 6
The flow rate (Q) is taken as an independent variable that can be varied by the operation
of a valve at the outlet. In practice, the flow rate is as per โ€œdemandโ€ or โ€œload.โ€ A plot of (W)
(or P or H or E to a different scale) on the base of the flow rate (Q), therefore, represents one
of the important characteristics of the machine.
For a given value of the flow rate, there is one more important effect of variation of the
blade outlet angle. For any outlet velocity triangle, as the height of the triangle, (๐‘ฝ๐’‡๐Ÿ) remains
constant, (๐‘ฝ๐’–๐Ÿ) keeps on increasing as the blade outlet angle (๐œท๐Ÿ) increases. This can easily
be seen in Fig. 4.4. This can also be substantiated by above equation where the magnitude of
(๐‘ท) increases as (๐œท๐Ÿ) increases.
The specific work (๐‘ท) will gradually reduce to zero when
๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ = ๐‘ผ๐Ÿ ๐’Š. ๐’†.,
๐‘ช๐’๐’• ๐œท๐Ÿ =
๐‘ผ๐Ÿ
๐‘ฝ๐’‡๐Ÿ
Above figure shows the characteristic in the form of three lines with different slopes.
The lines represent the cases of different values of the blade exit angle(๐œท๐Ÿ). Equation (๐‘ท) and
graph shown above are the outcome of the starting from Eulerโ€™s equation.
The energy transfer, as discussed, is due to the โ€œvane-congruent flow.โ€ The expression for the
actual energy transfer can be obtained when the factors causing the deviation from the vane-
congruent flow are considered.
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 7
vi. General analysis of axial flow pumps and compressors,
In axial flow machines, the blade velocities at the inlet and outlet are equal,
๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ ๐’‚๐’๐’… ๐‘ฝ๐’–๐Ÿ > ๐‘ผ๐Ÿ .
Therefore, the two velocity triangles have equal bases. Both the triangles can be drawn on a
common base. In these kinds of machines, the flow velocity (๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’‡) is assumed to
be constant from inlet to outlet. Axial flow turbines comprise the familiar steam turbines, gas
turbines etc.
=
Energy Equation for Axial Flow Turbo Machine
Power Absorbing Turbo Machines Power Absorbing Turbo Machines
๐‘ท = ๐’Ž(๐‘ฝ๐’–๐Ÿ. ๐‘ผ๐Ÿ โˆ’ ๐‘ฝ๐’–๐Ÿ. ๐‘ผ๐Ÿ) ๐‘ท =
๐Ÿ
๐Ÿ
[(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
) + (๐‘ผ๐Ÿ
๐Ÿ
โˆ’ ๐‘ผ๐Ÿ
๐Ÿ
) + (๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)]
๐’ƒ๐’–๐’• ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ = ๐‘ผ ๐’ƒ๐’–๐’• ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ = ๐‘ผ
โˆด ๐‘ท = ๐‘ผ(๐‘ฝ๐’–๐Ÿ โˆ’ ๐‘ฝ๐’–๐Ÿ) โˆด ๐‘ท =
๐Ÿ
๐Ÿ
[(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
) + (๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)]
Expression for degree of reaction and Utilization factor in Axial Flow Turbine
๐‘ท =
๐Ÿ
๐Ÿ
[(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
) + (๐‘ผ๐Ÿ
๐Ÿ
โˆ’ ๐‘ผ๐Ÿ
๐Ÿ
) + (๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)]
๐’ƒ๐’–๐’• ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ = ๐‘ผ
โˆด ๐‘ท =
๐Ÿ
๐Ÿ
[(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
) + (๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)]
๐’˜๐’† ๐’Œ๐’๐’๐’˜ ๐’•๐’‰๐’‚๐’• ๐‘ซ๐’†๐’ˆ๐’“๐’†๐’† ๐’๐’‡ ๐‘น๐’†๐’‚๐’„๐’•๐’Š๐’๐’ (๐‘น) =
๐‘ป๐’๐’•๐’‚๐’ ๐‘พ๐’๐’“๐’Œโˆ’๐‘ฒ๐’Š๐’๐’†๐’•๐’Š๐’„ ๐‘ช๐’๐’Ž๐’‘๐’๐’๐’†๐’๐’•
๐‘ป๐’๐’•๐’‚๐’ ๐‘พ๐’๐’“๐’Œ
=
๐‘ทโˆ’๐‘ฒ๐‘ฌ
๐‘ท
= ๐Ÿ โˆ’
๐‘ฒ๐‘ฌ
๐‘ท
(๐‘น) =
๐Ÿ
๐Ÿ
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
) +
๐Ÿ
๐Ÿ
(๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
) โˆ’
๐Ÿ
๐Ÿ
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
)
๐Ÿ
๐Ÿ
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
) + (๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)
(๐‘น) =
๐Ÿ
๐Ÿ
(๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)
๐Ÿ
๐Ÿ
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
) + (๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)
๐’๐’“
(๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
) + (๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)
๐’๐’“
๐Ÿ
๐Ÿ
(๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)
๐‘ท
๐’Š๐’‡ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
= ๐‘ฝ๐’“๐Ÿ
๐Ÿ
๐’•๐’‰๐’†๐’ ๐‘น =
๐Ÿ
๐Ÿ
(๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)
๐‘ท
= ๐ŸŽ
๐’˜๐’† ๐‘ฒ๐’๐’๐’˜ ๐’•๐’‰๐’‚๐’• ๐‘ผ๐’•๐’Š๐’๐’Š๐’›๐’‚๐’•๐’Š๐’๐’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ (๐) =
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
) + (๐‘ผ๐Ÿ
๐Ÿ
โˆ’ ๐‘ผ๐Ÿ
๐Ÿ
) + (๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)
(๐‘ฝ๐Ÿ
๐Ÿ
) + (๐‘ผ๐Ÿ
๐Ÿ
โˆ’ ๐‘ผ๐Ÿ
๐Ÿ
) + (๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)
๐’ƒ๐’–๐’• ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ = ๐‘ผ
โˆด ๐‘ผ๐’•๐’Š๐’๐’Š๐’›๐’‚๐’•๐’Š๐’๐’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ (๐) =
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
) + (๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)
(๐‘ฝ๐Ÿ
๐Ÿ
) + (๐‘ฝ๐’“๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐’“๐Ÿ
๐Ÿ
)
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 8
Derivation of General Equations:
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 9
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 10
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 11
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 12
Previous Year Question papers
Modal Question Paper 01 18ME54
4 a)
Obtain an expression for the degree of reaction of axial flow compressor in
terms of rotor blade angles, axial velocity and blade speed. Assume axial
velocity remains constant.
8
๐‘น =
๐Ÿ
๐Ÿ
[๐Ÿ + (
๐‘ฝ๐’‡๐Ÿ
๐Ÿ๐‘ผ๐Ÿ
)๐œ๐จ๐ญ(๐œท๐Ÿ)] ๐‘ท๐’‚๐’ˆ๐’† ๐‘ต๐’ ๐Ÿ“
b)
At a stage of Impulse Turbine the mean blade diameter is 0.75m and its
rotational speed is 3500 rpm. The absolute velocity of the fluid discharging
from a nozzle inclined at 20ยฐ to the plane of the wheel is 275 m/s. If the
utilization factor is 0.9 and the relative velocity of the fluid at the rotor exit is
0.9 times that at the inlet, find the inlet rotor angles. Also find the power output
from the stage for a mass flow rate of 2 kg/s and the axial thrust on the shaft.
12
To solve this problem there are three
assumptions which can be used.
Chose the Method whichever is suitable
Impulse Turbine is Axial flow turbine example: Delaval turbine
๐ท(๐‘š๐‘’๐‘Ž๐‘›) = 0.75๐‘š; ๐‘ = 3500๐‘Ÿ๐‘๐‘š
โˆด ๐‘ˆ =
๐œ‹๐ท๐‘
60
=
๐œ‹ ร— 0.75 ร— 3500
60
= 137.44
๐‘š
๐‘ 
๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ = ๐‘ผ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’ ๐’Ž/๐’”
๐‘ฝ๐Ÿ = ๐Ÿ๐Ÿ•๐Ÿ“
๐’Ž
๐’”
๐’‚๐’• ๐œถ๐Ÿ = ๐Ÿ๐ŸŽยฐ &
๐ = ๐ŸŽ. ๐Ÿ— ๐’‚๐’๐’… ๐‘ฝ๐’“๐Ÿ = ๐ŸŽ. ๐Ÿ—๐‘ฝ๐’“๐Ÿ
๐’‡๐’Š๐’๐’… ๐œท๐Ÿ =? ; ๐‘ท =? ๐’˜๐’‰๐’†๐’ ๐’Ž =
๐Ÿ๐’Œ๐’ˆ
๐’”
& ๐‘ญ๐’‚ =?
๐’”๐’Š๐’๐œถ๐Ÿ =
๐‘ฝ๐’‡๐Ÿ
๐‘ฝ๐Ÿ
๐’‚๐’๐’… ๐’„๐’๐’”๐œถ๐Ÿ =
๐‘ฝ๐’–๐Ÿ
๐‘ฝ๐Ÿ
๐‘ ๐‘–๐‘›๐›ผ1 =
๐‘‰๐‘“1
๐‘‰1
โ‰ซ ๐‘‰๐‘“1 = ๐‘‰1 ร— ๐‘ ๐‘–๐‘›๐›ผ1
๐‘‰๐‘“1 = 275 ร— ๐‘ ๐‘–๐‘›20 = 94.05๐‘š/๐‘ 
๐‘ฝ๐’‡๐Ÿ = ๐Ÿ—๐Ÿ’. ๐ŸŽ๐Ÿ“ ๐’Ž/๐’”
๐‘๐‘œ๐‘ ๐›ผ1 =
๐‘‰๐‘ข1
๐‘‰1
โ‰ซ ๐‘‰๐‘ข1 = ๐‘‰1 ร— ๐‘๐‘œ๐‘ ๐›ผ1 = 275 ร— ๐‘๐‘œ๐‘ 20
= 258.41๐‘š/๐‘ 
๐‘ฝ๐’–๐Ÿ = ๐Ÿ๐Ÿ“๐Ÿ–. ๐Ÿ’๐Ÿ ๐’Ž/๐’”
๐‘ฟ๐Ÿ = ๐‘ฝ๐’–๐Ÿ โˆ’ ๐‘ผ = ๐Ÿ๐Ÿ“๐Ÿ–. ๐Ÿ’๐Ÿ โˆ’ ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ๐ŸŽ. ๐Ÿ—๐Ÿ•๐’Ž/๐’”
๐’•๐’‚๐’๐œท๐Ÿ =
๐‘ฝ๐’‡๐Ÿ
๐‘ฟ๐Ÿ
โ‰ซ
๐œท๐Ÿ = ๐’•๐’‚๐’โˆ’๐Ÿ
(
๐‘ฝ๐’‡๐Ÿ
๐‘ฟ๐Ÿ
) = ๐Ÿ‘๐Ÿ•. ๐Ÿ–๐Ÿ”ยฐ โ‰ˆ ๐Ÿ‘๐Ÿ–ยฐ
๐‘ฝ๐’“๐Ÿ = โˆš๐‘ฝ๐’‡๐Ÿ๐Ÿ + ๐‘ฟ๐Ÿ๐Ÿ = โˆš๐Ÿ—๐Ÿ’. ๐ŸŽ๐Ÿ“๐Ÿ + ๐Ÿ๐Ÿ๐ŸŽ. ๐Ÿ—๐Ÿ•๐Ÿ
= ๐Ÿ๐Ÿ“๐Ÿ‘. ๐Ÿ๐Ÿ๐’Ž/๐’”
๐‘ฝ๐’“๐Ÿ = ๐ŸŽ. ๐Ÿ—๐‘ฝ๐’“๐Ÿ = ๐ŸŽ. ๐Ÿ— ร— ๐Ÿ๐Ÿ“๐Ÿ‘. ๐Ÿ๐Ÿ
๐‘ฝ๐’“๐Ÿ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ—๐ŸŽ ๐’Ž/๐’”
๐‘ผ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’
๐’Ž
๐’”
; ๐‘ฝ๐’“๐Ÿ = ๐Ÿ๐Ÿ“๐Ÿ‘. ๐Ÿ๐Ÿ
๐’Ž
๐’”
; ๐‘ฝ๐’“๐Ÿ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ—๐ŸŽ
๐’Ž
๐’”
; ๐‘ฝ๐’‡๐Ÿ = ๐Ÿ—๐Ÿ’. ๐ŸŽ๐Ÿ“
๐’Ž
๐’”
; ๐‘ฝ๐Ÿ = ๐Ÿ๐Ÿ•๐Ÿ“
๐’Ž
๐’”
; ๐‘ฝ๐’–๐Ÿ = ๐Ÿ๐Ÿ“๐Ÿ–. ๐Ÿ’๐Ÿ ๐’Ž/๐’”
๐‘‰๐‘Ÿ2 = 0.9๐‘‰๐‘Ÿ1 ๐‘ ๐‘œ ๐‘‰๐‘Ÿ2 = ๐‘‰๐‘Ÿ1 ๐‘๐‘Ž๐‘›๐‘›๐‘œ๐‘ก ๐‘๐‘’ ๐‘Ž๐‘ ๐‘ ๐‘ข๐‘š๐‘’๐‘‘
Method01: ๐’‚๐’”๐’”๐’–๐’Ž๐’† ๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’‡๐Ÿ
Method 02: ๐’Š๐’‡ ๐’˜๐’† ๐’‚๐’”๐’”๐’–๐’Ž๐’†
๐œท๐Ÿ = ๐œท๐Ÿ = ๐Ÿ‘๐Ÿ–ยฐ (๐’ƒ๐’๐’‚๐’…๐’†๐’” ๐’‚๐’“๐’† ๐’†๐’’๐’–๐’Š๐’‚๐’๐’ˆ๐’–๐’๐’‚๐’“)
๐’”๐’Š๐’๐œท๐Ÿ =
๐‘ฝ๐’‡๐Ÿ
๐‘ฝ๐’“๐Ÿ
=
๐Ÿ—๐Ÿ’. ๐ŸŽ๐Ÿ“
๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ—๐ŸŽ
= ๐ŸŽ. ๐Ÿ”๐Ÿ– โ‰ซ ๐œท๐Ÿ = ๐’”๐’Š๐’โˆ’๐Ÿ(๐ŸŽ. ๐Ÿ”๐Ÿ–)
= ๐Ÿ’๐Ÿ‘ยฐ
๐’”๐’Š๐’๐œท๐Ÿ =
๐‘ฝ๐’‡๐Ÿ
๐‘ฝ๐’“๐Ÿ
โ‰ซ ๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’”๐’Š๐’๐œท๐Ÿ
๐‘ฝ๐’‡๐Ÿ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ—๐ŸŽ ร— ๐’”๐’Š๐’๐Ÿ‘๐Ÿ– = ๐Ÿ–๐Ÿ’. ๐Ÿ–๐Ÿ—
๐‘ฝ๐’‡๐Ÿ = ๐Ÿ–๐Ÿ’. ๐Ÿ–๐Ÿ—๐’Ž/๐’”
๐’„๐’๐’”๐œท๐Ÿ =
๐‘ฟ๐Ÿ
๐‘ฝ๐’“๐Ÿ
โ‰ซ ๐‘ฟ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’„๐’๐’”๐œท๐Ÿ
๐‘ฟ๐Ÿ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ—๐Ÿ ร— ๐’„๐’๐’”๐Ÿ’๐Ÿ‘ = ๐Ÿ๐ŸŽ๐ŸŽ. ๐Ÿ–๐Ÿ“ ๐’Ž/๐’”
๐‘ฟ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’„๐’๐’”๐œท๐Ÿ < ๐‘ผ ๐’”๐’ ๐’๐’†๐’ˆ๐’‚๐’•๐’Š๐’—๐’† ๐’‚๐’๐’”๐’˜๐’†๐’“
๐‘ฝ๐’–๐Ÿ = ๐‘ฟ๐Ÿ โˆ’ ๐‘ผ = ๐Ÿ๐ŸŽ๐ŸŽ. ๐Ÿ–๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’
๐‘ฝ๐’–๐Ÿ = โˆ’๐Ÿ‘๐Ÿ”. ๐Ÿ“๐Ÿ— ๐’Ž/๐’”
๐’„๐’๐’”๐œท๐Ÿ =
๐‘ฟ๐Ÿ
๐‘ฝ๐’“๐Ÿ
โ‰ซ ๐‘ฟ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’„๐’๐’”๐œท๐Ÿ
๐‘ฟ๐Ÿ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ—๐ŸŽ ร— ๐’„๐’๐’”๐Ÿ‘๐Ÿ– = ๐Ÿ๐ŸŽ๐Ÿ–. ๐Ÿ”๐Ÿ”๐’Ž/๐’”
๐‘ฟ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’„๐’๐’”๐œท๐Ÿ < ๐‘ผ ๐’”๐’ ๐’๐’†๐’ˆ๐’‚๐’•๐’Š๐’—๐’† ๐’‚๐’๐’”๐’˜๐’†๐’“
๐‘ฝ๐’–๐Ÿ = ๐‘ฟ๐Ÿ โˆ’ ๐‘ผ = ๐Ÿ๐ŸŽ๐Ÿ–. ๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’
๐‘ฝ๐’–๐Ÿ = โˆ’๐Ÿ๐Ÿ–. ๐Ÿ•๐Ÿ•๐’Ž/๐’”
๐‘ท
๐’Ž
= ๐‘ผ(๐‘ฝ๐’–๐Ÿ โˆ’ ๐‘ฝ๐’–๐Ÿ) = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ“๐Ÿ–. ๐Ÿ’๐Ÿ โˆ’ (โˆ’๐Ÿ‘๐Ÿ”. ๐Ÿ“๐Ÿ—))
๐‘ท
๐’Ž
= ๐Ÿ’๐ŸŽ๐Ÿ“๐Ÿ’๐Ÿ’. ๐Ÿ– ๐‘พ
๐‘ต๐’๐’•๐’†: ๐’Ž = ๐Ÿ๐’Œ๐’ˆ ๐’๐’๐’• ๐’–๐’”๐’†๐’…
๐‘ท
๐’Ž
= ๐‘ผ(๐‘ฝ๐’–๐Ÿ โˆ’ ๐‘ฝ๐’–๐Ÿ) = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ“๐Ÿ–. ๐Ÿ’๐Ÿ โˆ’ (โˆ’๐Ÿ๐Ÿ–. ๐Ÿ•๐Ÿ•))
๐‘ท
๐’Ž
= ๐Ÿ‘๐Ÿ—๐Ÿ’๐Ÿ•๐ŸŽ. ๐ŸŽ๐Ÿ ๐‘พ
๐‘ต๐’๐’•๐’†: ๐’Ž = ๐Ÿ๐’Œ๐’ˆ ๐’๐’๐’• ๐’–๐’”๐’†๐’…
๐‘ฝ๐Ÿ = โˆš๐‘ฝ๐’‡๐Ÿ๐Ÿ + ๐‘ฝ๐’–๐Ÿ๐Ÿ = โˆš๐Ÿ—๐Ÿ’. ๐ŸŽ๐Ÿ“๐Ÿ + (โˆ’๐Ÿ‘๐Ÿ”. ๐Ÿ“๐Ÿ—๐Ÿ)
๐‘ฝ๐Ÿ = ๐Ÿ๐ŸŽ๐ŸŽ. ๐Ÿ—๐Ÿ
๐’Ž
๐’”
& ๐‘ฝ๐Ÿ = ๐Ÿ๐Ÿ•๐Ÿ“
๐’Ž
๐’”
๐‘ฝ๐Ÿ = โˆš๐‘ฝ๐’‡๐Ÿ๐Ÿ + ๐‘ฝ๐’–๐Ÿ๐Ÿ = โˆš๐Ÿ–๐Ÿ’. ๐Ÿ–๐Ÿ—๐Ÿ + (โˆ’๐Ÿ๐Ÿ–. ๐Ÿ•๐Ÿ•๐Ÿ)
๐‘ฝ๐Ÿ = ๐Ÿ–๐Ÿ—. ๐Ÿ”๐Ÿ‘
๐’Ž
๐’”
& ๐‘ฝ๐Ÿ = ๐Ÿ๐Ÿ•๐Ÿ“
๐’Ž
๐’”
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 13
๐‘ผ๐’•๐’Š๐’๐’Š๐’›๐’‚๐’•๐’Š๐’๐’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ (๐) =
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
)
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘น ๐‘ฝ๐Ÿ
๐Ÿ
)
= ๐ŸŽ. ๐Ÿ—
๐‘ฝ๐Ÿ
๐Ÿ
= ๐’‚; ๐‘ฝ๐Ÿ
๐Ÿ
= ๐’ƒ; ๐‘น = ๐’„ โ‰ซ
(๐’‚ โˆ’ ๐’ƒ)
(๐’‚ โˆ’ ๐’„ ๐’ƒ)
= ๐ŸŽ. ๐Ÿ—
(๐’‚ โˆ’ ๐’„ ๐’ƒ) =
(๐’‚ โˆ’ ๐’ƒ)
๐ŸŽ. ๐Ÿ—
= ๐Ÿ•๐Ÿ๐Ÿ•๐Ÿ๐Ÿ‘. ๐Ÿ“๐Ÿ
(โˆ’๐’„ ๐’ƒ) = ๐Ÿ•๐Ÿ๐Ÿ•๐Ÿ๐Ÿ‘. ๐Ÿ“๐Ÿ โˆ’ ๐’‚ = โˆ’๐Ÿ๐Ÿ—๐Ÿ๐Ÿ. ๐Ÿ’๐Ÿ–
(๐’„ ) =
โˆ’๐Ÿ๐Ÿ—๐Ÿ๐Ÿ. ๐Ÿ’๐Ÿ–
โˆ’๐’ƒ
= ๐ŸŽ. ๐Ÿ๐Ÿ—๐Ÿ“๐Ÿ—
๐‘น = ๐Ÿ‘๐ŸŽ%
๐’•๐’Š๐’๐’Š๐’›๐’‚๐’•๐’Š๐’๐’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ (๐) =
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
)
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘น ๐‘ฝ๐Ÿ
๐Ÿ
)
= ๐ŸŽ. ๐Ÿ—
๐‘ฝ๐Ÿ
๐Ÿ
= ๐’‚; ๐‘ฝ๐Ÿ
๐Ÿ
= ๐’ƒ; ๐‘น = ๐’„ โ‰ซ
(๐’‚ โˆ’ ๐’ƒ)
(๐’‚ โˆ’ ๐’„ ๐’ƒ)
= ๐ŸŽ. ๐Ÿ—
(๐’‚ โˆ’ ๐’„ ๐’ƒ) =
(๐’‚ โˆ’ ๐’ƒ)
๐ŸŽ. ๐Ÿ—
= ๐Ÿ•๐Ÿ“๐Ÿ๐ŸŽ๐Ÿ. ๐Ÿ”๐Ÿ
(โˆ’๐’„ ๐’ƒ) = ๐Ÿ•๐Ÿ“๐Ÿ๐ŸŽ๐Ÿ. ๐Ÿ”๐Ÿ โˆ’ ๐’‚ = โˆ’๐Ÿ“๐Ÿ๐Ÿ‘. ๐Ÿ‘๐Ÿ–
(๐’„ ) =
โˆ’๐Ÿ“๐Ÿ๐Ÿ‘. ๐Ÿ‘๐Ÿ–
โˆ’๐’ƒ
= ๐ŸŽ. ๐ŸŽ๐Ÿ”๐Ÿ“๐Ÿ๐Ÿ’
๐‘น = ๐Ÿ”. ๐Ÿ“๐Ÿ%
๐‘ญ (๐’‚๐’™๐’Š๐’‚๐’) = ๐’Ž(๐‘ฝ๐’‡๐Ÿ โˆ’ ๐‘ฝ๐’‡๐Ÿ) = ๐ŸŽ ๐’‚๐’” ๐‘ฝ๐’‡๐Ÿ
= ๐‘ฝ๐’‡๐Ÿ ๐‘จ๐’”๐’”๐’–๐’Ž๐’‘๐’•๐’Š๐’๐’
๐‘ญ (๐’‚๐’™๐’Š๐’‚๐’) = ๐’Ž(๐‘ฝ๐’‡๐Ÿ โˆ’ ๐‘ฝ๐’‡๐Ÿ) =
Method 03: Assume R=50% or 0.5
๐‘ผ๐’•๐’Š๐’๐’Š๐’›๐’‚๐’•๐’Š๐’๐’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ (๐) =
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
)
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘น ๐‘ฝ๐Ÿ
๐Ÿ
)
= ๐ŸŽ. ๐Ÿ— ๐’˜๐’† ๐’Œ๐’๐’๐’˜ ๐’•๐’‰๐’‚๐’• ๐‘ฝ๐Ÿ = ๐Ÿ๐Ÿ•๐Ÿ“
๐’Ž
๐’”
; ๐‘น = ๐ŸŽ. ๐Ÿ“๐ŸŽ
(๐) =
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘ฝ๐Ÿ
๐Ÿ
)
(๐‘ฝ๐Ÿ
๐Ÿ
โˆ’ ๐‘น ๐‘ฝ๐Ÿ
๐Ÿ
)
= ๐ŸŽ. ๐Ÿ— โ‰ซ (๐) =
(๐’‚ โˆ’ ๐’ƒ)
(๐’‚ โˆ’ ๐‘น ๐’ƒ)
= ๐ŸŽ. ๐Ÿ—
(๐’‚ โˆ’ ๐’ƒ)
(๐’‚ โˆ’ ๐ŸŽ. ๐Ÿ“๐’ƒ)
= ๐ŸŽ. ๐Ÿ— โ‰ซ (๐’‚ โˆ’ ๐’ƒ) = ๐ŸŽ. ๐Ÿ—๐’‚ โˆ’ ๐ŸŽ. ๐Ÿ’๐Ÿ“๐’ƒ
๐’‚ โˆ’ ๐ŸŽ. ๐Ÿ—๐’‚ = ๐’ƒ โˆ’ ๐ŸŽ. ๐Ÿ’๐Ÿ“๐’ƒ
๐’‚(๐Ÿ โˆ’ ๐ŸŽ. ๐Ÿ—)
(๐Ÿ โˆ’ ๐ŸŽ. ๐Ÿ“)
= ๐’ƒ = ๐‘ฝ๐Ÿ
๐Ÿ
=
๐‘ฝ๐Ÿ
๐Ÿ
(๐Ÿ โˆ’ ๐ŸŽ. ๐Ÿ—)
(๐Ÿ โˆ’ ๐ŸŽ. ๐Ÿ“)
= ๐Ÿ๐Ÿ“๐Ÿ๐Ÿ๐Ÿ“
๐‘ฝ๐Ÿ = โˆš๐Ÿ๐Ÿ“๐Ÿ๐Ÿ๐Ÿ“ = ๐Ÿ๐Ÿ๐Ÿ. ๐Ÿ—๐Ÿ–๐’Ž/๐’”
Modal Question Paper 02 18ME54
4
a)
Prove that, with usual notations, the degree of reaction for an axial flow
compressor (assuming constant velocity of flow) is given by
6
Activity Question solved in page Number 11
b)
Draw the inlet and exit velocity triangles for a radial flow power absorbing
turbomachine with (i) Backward curved vane (ii) Radial vane (iii) Forward
vane. Assume inlet whirl velocity to be zero. Also draw the head-capacity
curves for the above 3 types of vanes.
6
Page Number 04
c)
A mixed flow turbine handling water operates under a static head of 65m. In
a steady flow, the static pressure at the rotor inlet is 3.5 atm (gauge). The
absolute velocity at the rotor inlet has no axial component and is directed at
an angle of 25ยบ to the tangent of wheel so that Vu1 is positive. The absolute
velocity at exit purely axial. If the degree of reaction for the machine is 0.47
and utilization factor is 0.896, compute the tangential blade speed at inlet as
well as the inlet blade angle Find also the work output per unit mass flow of
water.
8
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 14
Modal Question Paper 01 18ME54 (2015/2016)
4
a) For an axial flow compressor, derive an expression for degree of reaction. 8
b)
In a radial inward flow turbine the degree of reaction is 0.8 and the utilization factor
of the runner is 0.9. The tangential speeds of the wheel at the inlet and the outlet are
respectively 11m/s and 5.5m/s. Draw the velocity triangles at inlet and outlet assuming
radial velocity is constant and equal to 5m/s. Flow is radial at exit. Find the power
output for a volumetric flow rate of 2๐’Ž๐Ÿ‘
of water per second. (๐Ÿ ๐ŸŽ๐ŸŽ๐ŸŽ. ๐ŸŽ๐ŸŽ
๐ค๐ 
๐ฌ
)
8
๐‘ซ๐’†๐’ˆ๐’“๐’†๐’† ๐’๐’‡ ๐‘น๐’†๐’‚๐’„๐’•๐’Š๐’๐’ (๐‘น) = ๐ŸŽ. ๐Ÿ–; ๐‘ผ๐’•๐’Š๐’๐’Š๐’›๐’‚๐’•๐’Š๐’๐’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ (๐) = ๐ŸŽ. ๐Ÿ— ; ๐‘ผ๐Ÿ = ๐Ÿ๐Ÿ
๐’Ž
๐’”
; ๐‘ผ๐Ÿ = ๐Ÿ“. ๐Ÿ“
๐’Ž
๐’”
; ๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐Ÿ = ๐Ÿ“
๐’Ž
๐’”
; ๐’“๐’‚๐’…๐’Š๐’‚๐’ ๐’๐’–๐’•๐’๐’†๐’• = ๐œถ๐Ÿ =
๐Ÿ—๐ŸŽยฐ; ๐‘ธ = ๐Ÿ
๐’Ž๐Ÿ‘
๐’”
๐’“๐’‚๐’…๐’Š๐’‚๐’ ๐‘ฐ๐’๐’๐’†๐’• = ๐œถ๐Ÿ = ๐Ÿ—๐ŸŽ; ๐’“๐’‚๐’…๐’Š๐’‚๐’ ๐’๐’–๐’•๐’๐’†๐’• = ๐œถ๐Ÿ = ๐Ÿ—๐ŸŽ โˆด ๐‘ฝ๐’–๐Ÿ = ๐ŸŽ
Inlet but for outlet =
Method 1 Method 2
๐‘ท = ๐’Ž(๐‘ผ๐Ÿ
๐Ÿ
โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ) ๐‘ท = ๐’Ž(๐‘ผ๐Ÿ
๐Ÿ
โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ)
(๐) =
(๐‘ฝ๐Ÿ
๐Ÿโˆ’๐‘ฝ๐Ÿ
๐Ÿ)
(๐‘ฝ๐Ÿ
๐Ÿโˆ’๐‘น ๐‘ฝ๐Ÿ
๐Ÿ)
= ๐ŸŽ. ๐Ÿ— =
(๐Ÿ“๐Ÿโˆ’๐‘ฝ๐Ÿ
๐Ÿ)
(๐Ÿ“๐Ÿโˆ’๐ŸŽ.๐Ÿ– ๐‘ฝ๐Ÿ
๐Ÿ)
โ‰ซ
๐‘ฝ๐Ÿ
๐Ÿ
= ๐Ÿ–. ๐Ÿ—๐Ÿ๐Ÿ–๐Ÿ“ โ‰ซ ๐‘ฝ๐Ÿ = ๐Ÿ. ๐Ÿ— = ๐‘ฝ๐’‡๐Ÿ
๐‘ฝ๐’‡๐Ÿ = ๐Ÿ. ๐Ÿ— = ๐‘ฝ๐Ÿ
assuming radial velocity is constant and equal to 5m/s.
๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’‡๐Ÿ = ๐Ÿ“๐’Ž/๐’”
๐’•๐’‚๐’ ๐œท๐Ÿ =
๐‘ฝ๐Ÿ
๐‘ผ๐Ÿ
=
๐Ÿ“
๐Ÿ๐Ÿ
๐’•๐’‚๐’ ๐œท๐Ÿ =
๐‘ฝ๐Ÿ
๐‘ผ๐Ÿ
=
๐Ÿ.๐Ÿ—
๐Ÿ“.๐Ÿ“
๐’•๐’‚๐’ ๐œท๐Ÿ =
๐‘ฝ๐Ÿ
๐‘ผ๐Ÿ
=
๐Ÿ“
๐Ÿ๐Ÿ
๐’•๐’‚๐’ ๐œท๐Ÿ =
๐‘ฝ๐Ÿ
๐‘ผ๐Ÿ
=
๐Ÿ“
๐Ÿ“.๐Ÿ“
โˆด ๐œท๐Ÿ = ๐Ÿ๐Ÿ’. ๐Ÿ’๐Ÿ’ยฐ โˆด ๐œท๐Ÿ = ๐Ÿ๐Ÿ•. ๐Ÿ–๐ŸŽยฐ โˆด ๐œท๐Ÿ = ๐Ÿ๐Ÿ’. ๐Ÿ’๐Ÿ’ยฐ โˆด ๐œท๐Ÿ = ๐Ÿ’๐Ÿ. ๐Ÿ๐Ÿ•ยฐ
๐‘ท = ๐’Ž(๐‘ผ๐Ÿ
๐Ÿ
โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ)
๐‘ท = ๐’Ž(๐Ÿ“. ๐Ÿ“๐Ÿ
โˆ’ ๐Ÿ“. ๐Ÿ“ ร— ๐Ÿ. ๐Ÿ— ร— ๐‘ช๐’๐’• ๐Ÿ๐Ÿ•. ๐Ÿ–๐ŸŽ)
๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ(๐Ÿ“. ๐Ÿ“๐Ÿ
โˆ’ ๐Ÿ“. ๐Ÿ“ ร— ๐Ÿ. ๐Ÿ— ร— ๐Ÿ. ๐Ÿ–๐Ÿ—)
๐‘ท = ๐’Ž(๐‘ผ๐Ÿ
๐Ÿ
โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ)
๐‘ท = ๐’Ž(๐Ÿ“. ๐Ÿ“๐Ÿ
โˆ’ ๐Ÿ“. ๐Ÿ“ ร— ๐Ÿ“ ร— ๐‘ช๐’๐’• ๐Ÿ’๐Ÿ. ๐Ÿ๐Ÿ•)
๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ(๐Ÿ“. ๐Ÿ“๐Ÿ
โˆ’ ๐Ÿ“. ๐Ÿ“ ร— ๐Ÿ“ ร— ๐Ÿ. ๐Ÿ๐ŸŽ)
๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ(๐Ÿ“. ๐Ÿ“๐Ÿ
โˆ’ ๐Ÿ“. ๐Ÿ“ ร— ๐Ÿ. ๐Ÿ— ร— ๐Ÿ. ๐Ÿ–๐Ÿ—)
๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ(๐Ÿ‘๐ŸŽ. ๐Ÿ๐Ÿ“ โˆ’ ๐Ÿ‘๐ŸŽ. ๐Ÿ๐Ÿ“) = ๐ŸŽ
๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ(๐Ÿ“. ๐Ÿ“๐Ÿ
โˆ’ ๐Ÿ“. ๐Ÿ“ ร— ๐Ÿ“ ร— ๐Ÿ. ๐Ÿ๐ŸŽ)
๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ(๐Ÿ‘๐ŸŽ. ๐Ÿ๐Ÿ“ โˆ’ ๐Ÿ‘๐ŸŽ. ๐Ÿ๐Ÿ“) = ๐ŸŽ
Modal Question Paper 02 18ME54 (2015/2016)
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 15
4 a)
Derive the theoretical head capacity relation in case of centrifugal
pump
Discuss the effect of blade angle at outlet on head.
8
b)
Draw the inlet and outlet triangles for an axial flow compressor for which given (1)
Degree of reaction =0.5 (2) inlet blade angle =40โ€™ axial velocity of flow which is
constant throughout = 125m/s (4) RPM =6500 (5) Radius = 0.2m. Calculate the
power required in kW at an air flow rate = 1.5kg/s. Find fluid angles at inlet and
outlet. Blade speed is same at exit and inlet.
8
๐‘น = ๐ŸŽ. ๐Ÿ“
๐œท๐Ÿ = ๐Ÿ’๐ŸŽยฐ
๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’‡๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ“๐’Ž/๐’”
๐‘ต = ๐Ÿ”๐Ÿ“๐ŸŽ๐ŸŽ๐’“๐’‘๐’Ž
๐’“ = ๐ŸŽ. ๐Ÿ๐’Ž ๐’”๐’ ๐‘ซ = ๐ŸŽ. ๐Ÿ’๐’Ž
๐‘ท =? ๐’Ž = ๐Ÿ. ๐Ÿ“ ๐’Œ๐’ˆ/๐’”
๐œถ๐Ÿ =? ; ๐œถ๐Ÿ =? ; ๐œท๐Ÿ =?
๐ท(๐‘š๐‘’๐‘Ž๐‘›) = 0.4๐‘š; ๐‘ = 6500๐‘Ÿ๐‘๐‘š
โˆด ๐‘ˆ =
๐œ‹๐ท๐‘
60
=
๐œ‹ ร— 0.4 ร— 6500
60
= 136.13
๐‘š
๐‘ 
๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ = ๐‘ผ = ๐Ÿ๐Ÿ‘๐Ÿ”. ๐Ÿ๐Ÿ‘ ๐’Ž/๐’”
๐’”๐’Š๐’๐œท๐Ÿ =
๐‘ฝ๐’‡๐Ÿ
๐‘ฝ๐’“๐Ÿ
โ‰ซ ๐‘ฝ๐’“๐Ÿ =
๐‘ฝ๐’‡๐Ÿ
๐’”๐’Š๐’๐œท๐Ÿ
= ๐Ÿ๐Ÿ—๐Ÿ’. ๐Ÿ’๐Ÿ”๐’Ž/๐’”
๐’„๐’๐’”๐œท๐Ÿ =
๐‘ฟ๐Ÿ
๐‘ฝ๐’“๐Ÿ
โ‰ซ ๐‘ฟ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’„๐’๐’”๐œท๐Ÿ
๐‘ฟ๐Ÿ = ๐Ÿ๐Ÿ’๐Ÿ–. ๐Ÿ—๐Ÿ”๐’Ž/๐’” ๐‘ฝ๐’–๐Ÿ = ๐‘ผ + ๐‘ฟ๐Ÿ = ๐Ÿ๐Ÿ–๐Ÿ“. ๐ŸŽ๐Ÿ—๐’Ž/๐’”
When R = 0.5
(i.e., 50% Reaction axial flow)
This implies U1= U2, V1 = Vr2, V2=Vr1 and Vf1 = Vf2. For
symmetric Velocity ฮฑ2 = ฮฒ1 and ฮฑ1= ฮฒ2
๐’•๐’‚๐’๐œถ๐Ÿ =
๐‘ฝ๐’‡๐Ÿ
๐‘ฝ๐’–๐Ÿ
โ‰ซ ๐œถ๐Ÿ = ๐’•๐’‚๐’โˆ’๐Ÿ
(
๐‘ฝ๐’‡๐Ÿ
๐‘ฝ๐’–๐Ÿ
) = ๐Ÿ๐Ÿ‘. ๐Ÿ”๐Ÿ•ยฐ
๐’„๐’๐’” ๐œถ๐Ÿ =
๐‘ฝ๐’–๐Ÿ
๐‘ฝ๐Ÿ
โ‰ซ ๐‘ฝ๐Ÿ =
๐‘ฝ๐’–๐Ÿ
๐’„๐’๐’” ๐œถ๐Ÿ
= ๐Ÿ‘๐Ÿ๐Ÿ. ๐Ÿ๐Ÿ•๐’Ž/๐’”
๐œท๐Ÿ = ๐Ÿ’๐ŸŽยฐ = ๐œถ๐Ÿ
๐œท๐Ÿ = ๐Ÿ๐Ÿ‘. ๐Ÿ”๐Ÿ•ยฐ = ๐œถ๐Ÿ
๐‘ฝ๐Ÿ = ๐‘ฝ๐’“๐Ÿ = ๐Ÿ‘๐Ÿ๐Ÿ. ๐Ÿ๐Ÿ•๐’Ž/๐’”
๐‘ฝ๐Ÿ = ๐‘ฝ๐’“๐Ÿ = ๐Ÿ๐Ÿ—๐Ÿ’. ๐Ÿ’๐Ÿ”๐’Ž/๐’”
๐’„๐’๐’”๐œท๐Ÿ =
๐‘ฟ๐Ÿ
๐‘ฝ๐’“๐Ÿ
โ‰ซ ๐‘ฟ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’„๐’๐’”๐œท๐Ÿ = ๐Ÿ๐Ÿ–๐Ÿ“.
๐ŸŽ๐Ÿ—๐’Ž
๐’”
๐‘ฝ๐’–๐Ÿ = ๐‘ฟ๐Ÿ โˆ’ ๐‘ผ = ๐Ÿ๐Ÿ’๐Ÿ–. ๐Ÿ—๐Ÿ”๐’Ž/๐’”
๐‘ท = ๐’Ž. ๐‘ผ(๐‘ฝ๐’–๐Ÿ โˆ’ ๐‘ฝ๐’–๐Ÿ)
๐‘ท = ๐Ÿ. ๐Ÿ“ ร— ๐Ÿ๐Ÿ‘๐Ÿ”. ๐Ÿ๐Ÿ‘(๐Ÿ๐Ÿ–๐Ÿ“.๐ŸŽ๐Ÿ— โˆ’ ๐Ÿ๐Ÿ’๐Ÿ–. ๐Ÿ—๐Ÿ”) โ‰ซ ๐‘ท = ๐Ÿ๐Ÿ•. ๐Ÿ•๐Ÿ—๐’Œ๐‘พ

More Related Content

What's hot

Turbomachinery presentation
Turbomachinery presentationTurbomachinery presentation
Turbomachinery presentationBilal Merchant
ย 
Degree of reaction
Degree of reactionDegree of reaction
Degree of reactionHarshit Jain
ย 
Centrifugal pumps
Centrifugal pumpsCentrifugal pumps
Centrifugal pumpsraghunath santha
ย 
18 me54 turbo machines module 04 question no 7a 7b &and 8a - 8b
18 me54 turbo machines module 04 question no 7a   7b &and 8a - 8b18 me54 turbo machines module 04 question no 7a   7b &and 8a - 8b
18 me54 turbo machines module 04 question no 7a 7b &and 8a - 8bTHANMAY JS
ย 
Hydraulic Pumps
Hydraulic PumpsHydraulic Pumps
Hydraulic PumpsABEESH KIRAN A
ย 
Francis Turbine
Francis TurbineFrancis Turbine
Francis TurbineSharad Walia
ย 
Francis turbine
Francis turbineFrancis turbine
Francis turbineMd Sujon Babu
ย 
reciprocating compressor
reciprocating compressorreciprocating compressor
reciprocating compressorRajesh Sharma
ย 
Performance testing of IC engine
Performance testing of IC enginePerformance testing of IC engine
Performance testing of IC engineINDRAKUMAR PADWANI
ย 
Hydraulics & pneumatics (AU) unit-I
Hydraulics & pneumatics (AU)   unit-IHydraulics & pneumatics (AU)   unit-I
Hydraulics & pneumatics (AU) unit-IArul Prakasam G
ย 
centrifugal compressor.pptx
centrifugal compressor.pptxcentrifugal compressor.pptx
centrifugal compressor.pptxraviprakashsaini
ย 
Impulse turbine
Impulse turbineImpulse turbine
Impulse turbineamrit raj
ย 
Flywheel and governors
Flywheel and governorsFlywheel and governors
Flywheel and governorsTrisham Garg
ย 
STEAM NOZZLE AND STEAM TURBINE
STEAM NOZZLE AND STEAM TURBINESTEAM NOZZLE AND STEAM TURBINE
STEAM NOZZLE AND STEAM TURBINEDHAMMADIP KAMBLE
ย 
Governing of the Turbine | Fluid Mechanics
Governing of the Turbine | Fluid MechanicsGoverning of the Turbine | Fluid Mechanics
Governing of the Turbine | Fluid MechanicsSatish Taji
ย 
FLYWHEELS
FLYWHEELSFLYWHEELS
FLYWHEELSKunj Thummar
ย 
Watt Governor
Watt GovernorWatt Governor
Watt GovernorPriyanshu
ย 
CENTRIFUGAL PUMP_FLUID POWER ENGINEERING_GTU BE SEM 5th
CENTRIFUGAL PUMP_FLUID POWER ENGINEERING_GTU BE SEM 5thCENTRIFUGAL PUMP_FLUID POWER ENGINEERING_GTU BE SEM 5th
CENTRIFUGAL PUMP_FLUID POWER ENGINEERING_GTU BE SEM 5thDhruv Parekh
ย 
Steam turbine
Steam turbineSteam turbine
Steam turbineRavi97246
ย 

What's hot (20)

Turbomachinery presentation
Turbomachinery presentationTurbomachinery presentation
Turbomachinery presentation
ย 
Degree of reaction
Degree of reactionDegree of reaction
Degree of reaction
ย 
Centrifugal pumps
Centrifugal pumpsCentrifugal pumps
Centrifugal pumps
ย 
18 me54 turbo machines module 04 question no 7a 7b &and 8a - 8b
18 me54 turbo machines module 04 question no 7a   7b &and 8a - 8b18 me54 turbo machines module 04 question no 7a   7b &and 8a - 8b
18 me54 turbo machines module 04 question no 7a 7b &and 8a - 8b
ย 
Hydraulic Pumps
Hydraulic PumpsHydraulic Pumps
Hydraulic Pumps
ย 
Francis Turbine
Francis TurbineFrancis Turbine
Francis Turbine
ย 
Dynamics of Machinery Unit IV
Dynamics of Machinery Unit IVDynamics of Machinery Unit IV
Dynamics of Machinery Unit IV
ย 
Francis turbine
Francis turbineFrancis turbine
Francis turbine
ย 
reciprocating compressor
reciprocating compressorreciprocating compressor
reciprocating compressor
ย 
Performance testing of IC engine
Performance testing of IC enginePerformance testing of IC engine
Performance testing of IC engine
ย 
Hydraulics & pneumatics (AU) unit-I
Hydraulics & pneumatics (AU)   unit-IHydraulics & pneumatics (AU)   unit-I
Hydraulics & pneumatics (AU) unit-I
ย 
centrifugal compressor.pptx
centrifugal compressor.pptxcentrifugal compressor.pptx
centrifugal compressor.pptx
ย 
Impulse turbine
Impulse turbineImpulse turbine
Impulse turbine
ย 
Flywheel and governors
Flywheel and governorsFlywheel and governors
Flywheel and governors
ย 
STEAM NOZZLE AND STEAM TURBINE
STEAM NOZZLE AND STEAM TURBINESTEAM NOZZLE AND STEAM TURBINE
STEAM NOZZLE AND STEAM TURBINE
ย 
Governing of the Turbine | Fluid Mechanics
Governing of the Turbine | Fluid MechanicsGoverning of the Turbine | Fluid Mechanics
Governing of the Turbine | Fluid Mechanics
ย 
FLYWHEELS
FLYWHEELSFLYWHEELS
FLYWHEELS
ย 
Watt Governor
Watt GovernorWatt Governor
Watt Governor
ย 
CENTRIFUGAL PUMP_FLUID POWER ENGINEERING_GTU BE SEM 5th
CENTRIFUGAL PUMP_FLUID POWER ENGINEERING_GTU BE SEM 5thCENTRIFUGAL PUMP_FLUID POWER ENGINEERING_GTU BE SEM 5th
CENTRIFUGAL PUMP_FLUID POWER ENGINEERING_GTU BE SEM 5th
ย 
Steam turbine
Steam turbineSteam turbine
Steam turbine
ย 

Similar to Analysis of Energy Transfer in Radial and Axial Turbo Machines

Propulsion 2 notes
Propulsion 2 notesPropulsion 2 notes
Propulsion 2 notesAghilesh V
ย 
18 me54 turbo machines module 03 question no 6a &amp; 6b
18 me54 turbo machines module 03 question no 6a &amp; 6b18 me54 turbo machines module 03 question no 6a &amp; 6b
18 me54 turbo machines module 03 question no 6a &amp; 6bTHANMAY JS
ย 
T2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxKeith Vaugh
ย 
EEE 411 power system stability analysis .pptx
EEE 411 power system stability analysis .pptxEEE 411 power system stability analysis .pptx
EEE 411 power system stability analysis .pptxShoilieChakma
ย 
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation ControlMINAL RADE
ย 
2.Inertia Forces FINAL PPT.pdf .
2.Inertia Forces FINAL PPT.pdf                 .2.Inertia Forces FINAL PPT.pdf                 .
2.Inertia Forces FINAL PPT.pdf .happycocoman
ย 
2.Inertia Forces-1ppt.pdf .
2.Inertia Forces-1ppt.pdf                   .2.Inertia Forces-1ppt.pdf                   .
2.Inertia Forces-1ppt.pdf .happycocoman
ย 
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power CyclesAPPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power CyclesTHANMAY JS
ย 
Dynamic systems-analysis-4
Dynamic systems-analysis-4Dynamic systems-analysis-4
Dynamic systems-analysis-4belal emira
ย 
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...IJERA Editor
ย 
Turning moment diagram
Turning moment diagramTurning moment diagram
Turning moment diagramMohan Kumar S
ย 
Turning moment diagram
Turning moment diagramTurning moment diagram
Turning moment diagramMohan Kumar S
ย 
18 me54 turbo machines module 05 question no 9a & 9b
18 me54 turbo machines module 05 question no 9a & 9b18 me54 turbo machines module 05 question no 9a & 9b
18 me54 turbo machines module 05 question no 9a & 9bTHANMAY JS
ย 
Circular Motion
Circular MotionCircular Motion
Circular MotionYatendra Kumar
ย 
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlageDoug Yang-Hsu Liao
ย 
Dq0 transformation & per unit representation of synchronous machine.pptx
Dq0 transformation & per unit representation of synchronous machine.pptxDq0 transformation & per unit representation of synchronous machine.pptx
Dq0 transformation & per unit representation of synchronous machine.pptxpralayroy2
ย 
Design of flywheel theory and numericals prof. sagar a dhotare
Design of flywheel theory and numericals   prof. sagar a dhotareDesign of flywheel theory and numericals   prof. sagar a dhotare
Design of flywheel theory and numericals prof. sagar a dhotareSagar Dhotare
ย 
MATHEMATICAL MODELLING FOR ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO...
MATHEMATICAL MODELLING FOR ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO...MATHEMATICAL MODELLING FOR ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO...
MATHEMATICAL MODELLING FOR ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO...ijiert bestjournal
ย 
Dynamics of machines-1
Dynamics of machines-1Dynamics of machines-1
Dynamics of machines-1Godwin Pithalis
ย 

Similar to Analysis of Energy Transfer in Radial and Axial Turbo Machines (20)

Propulsion 2 notes
Propulsion 2 notesPropulsion 2 notes
Propulsion 2 notes
ย 
18 me54 turbo machines module 03 question no 6a &amp; 6b
18 me54 turbo machines module 03 question no 6a &amp; 6b18 me54 turbo machines module 03 question no 6a &amp; 6b
18 me54 turbo machines module 03 question no 6a &amp; 6b
ย 
T2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptxT2b - Momentum of Fluids 2023.pptx
T2b - Momentum of Fluids 2023.pptx
ย 
EEE 411 power system stability analysis .pptx
EEE 411 power system stability analysis .pptxEEE 411 power system stability analysis .pptx
EEE 411 power system stability analysis .pptx
ย 
Automatic Generation Control
Automatic Generation ControlAutomatic Generation Control
Automatic Generation Control
ย 
2.Inertia Forces FINAL PPT.pdf .
2.Inertia Forces FINAL PPT.pdf                 .2.Inertia Forces FINAL PPT.pdf                 .
2.Inertia Forces FINAL PPT.pdf .
ย 
2.Inertia Forces-1ppt.pdf .
2.Inertia Forces-1ppt.pdf                   .2.Inertia Forces-1ppt.pdf                   .
2.Inertia Forces-1ppt.pdf .
ย 
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power CyclesAPPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
APPLIED THERMODYNAMICS 18ME42 Module 03: Vapour Power Cycles
ย 
Dynamic systems-analysis-4
Dynamic systems-analysis-4Dynamic systems-analysis-4
Dynamic systems-analysis-4
ย 
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...
Pwm Control Strategy for Controlling Of Parallel Rectifiers In Single Phase T...
ย 
Turning moment diagram
Turning moment diagramTurning moment diagram
Turning moment diagram
ย 
Turning moment diagram
Turning moment diagramTurning moment diagram
Turning moment diagram
ย 
18 me54 turbo machines module 05 question no 9a & 9b
18 me54 turbo machines module 05 question no 9a & 9b18 me54 turbo machines module 05 question no 9a & 9b
18 me54 turbo machines module 05 question no 9a & 9b
ย 
Circular Motion
Circular MotionCircular Motion
Circular Motion
ย 
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
5_ISMTII2015_1281_VAWT_ShiehHsiao_et.al_manuscript_15Juli2015_vorlage
ย 
Nozzles
NozzlesNozzles
Nozzles
ย 
Dq0 transformation & per unit representation of synchronous machine.pptx
Dq0 transformation & per unit representation of synchronous machine.pptxDq0 transformation & per unit representation of synchronous machine.pptx
Dq0 transformation & per unit representation of synchronous machine.pptx
ย 
Design of flywheel theory and numericals prof. sagar a dhotare
Design of flywheel theory and numericals   prof. sagar a dhotareDesign of flywheel theory and numericals   prof. sagar a dhotare
Design of flywheel theory and numericals prof. sagar a dhotare
ย 
MATHEMATICAL MODELLING FOR ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO...
MATHEMATICAL MODELLING FOR ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO...MATHEMATICAL MODELLING FOR ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO...
MATHEMATICAL MODELLING FOR ANALYSIS OF CHANGE IN SHAPE OF SUCTION MANIFOLD TO...
ย 
Dynamics of machines-1
Dynamics of machines-1Dynamics of machines-1
Dynamics of machines-1
ย 

More from THANMAY JS

Multimedia and Animation 20CS21P Portfolio.pdf
Multimedia and Animation 20CS21P Portfolio.pdfMultimedia and Animation 20CS21P Portfolio.pdf
Multimedia and Animation 20CS21P Portfolio.pdfTHANMAY JS
ย 
Fundamentals of Automation Technology 20EE43P Portfolio.pdf
Fundamentals of Automation Technology 20EE43P Portfolio.pdfFundamentals of Automation Technology 20EE43P Portfolio.pdf
Fundamentals of Automation Technology 20EE43P Portfolio.pdfTHANMAY JS
ย 
Elements of Industrial Automation Portfolio.pdf
Elements of Industrial Automation Portfolio.pdfElements of Industrial Automation Portfolio.pdf
Elements of Industrial Automation Portfolio.pdfTHANMAY JS
ย 
Fundamentals of Computer 20CS11T Chapter 5.pdf
Fundamentals of Computer 20CS11T Chapter 5.pdfFundamentals of Computer 20CS11T Chapter 5.pdf
Fundamentals of Computer 20CS11T Chapter 5.pdfTHANMAY JS
ย 
Fundamentals of Computer 20CS11T Chapter 4.pdf
Fundamentals of Computer 20CS11T Chapter 4.pdfFundamentals of Computer 20CS11T Chapter 4.pdf
Fundamentals of Computer 20CS11T Chapter 4.pdfTHANMAY JS
ย 
Fundamentals of Computer 20CS11T Chapter 3.pdf
Fundamentals of Computer 20CS11T Chapter 3.pdfFundamentals of Computer 20CS11T Chapter 3.pdf
Fundamentals of Computer 20CS11T Chapter 3.pdfTHANMAY JS
ย 
Fundamentals of Computer 20CS11T Chapter 2.pdf
Fundamentals of Computer 20CS11T Chapter 2.pdfFundamentals of Computer 20CS11T Chapter 2.pdf
Fundamentals of Computer 20CS11T Chapter 2.pdfTHANMAY JS
ย 
Fundamentals of Computer 20CS11T.pdf
Fundamentals of Computer 20CS11T.pdfFundamentals of Computer 20CS11T.pdf
Fundamentals of Computer 20CS11T.pdfTHANMAY JS
ย 
Elements of Industrial Automation Week 09 Notes.pdf
Elements of Industrial Automation Week 09 Notes.pdfElements of Industrial Automation Week 09 Notes.pdf
Elements of Industrial Automation Week 09 Notes.pdfTHANMAY JS
ย 
Elements of Industrial Automation Week 08 Notes.pdf
Elements of Industrial Automation Week 08 Notes.pdfElements of Industrial Automation Week 08 Notes.pdf
Elements of Industrial Automation Week 08 Notes.pdfTHANMAY JS
ย 
Elements of Industrial Automation Week 07 Notes.pdf
Elements of Industrial Automation Week 07 Notes.pdfElements of Industrial Automation Week 07 Notes.pdf
Elements of Industrial Automation Week 07 Notes.pdfTHANMAY JS
ย 
Elements of Industrial Automation Week 06 Notes.pdf
Elements of Industrial Automation Week 06 Notes.pdfElements of Industrial Automation Week 06 Notes.pdf
Elements of Industrial Automation Week 06 Notes.pdfTHANMAY JS
ย 
Elements of Industrial Automation Week 05 Notes.pdf
Elements of Industrial Automation Week 05 Notes.pdfElements of Industrial Automation Week 05 Notes.pdf
Elements of Industrial Automation Week 05 Notes.pdfTHANMAY JS
ย 
Elements of Industrial Automation Week 04 Notes.pdf
Elements of Industrial Automation Week 04 Notes.pdfElements of Industrial Automation Week 04 Notes.pdf
Elements of Industrial Automation Week 04 Notes.pdfTHANMAY JS
ย 
Elements of Industrial Automation Week 03 Notes.pdf
Elements of Industrial Automation Week 03 Notes.pdfElements of Industrial Automation Week 03 Notes.pdf
Elements of Industrial Automation Week 03 Notes.pdfTHANMAY JS
ย 
Elements of Industrial Automation Week 02 Notes.pdf
Elements of Industrial Automation Week 02 Notes.pdfElements of Industrial Automation Week 02 Notes.pdf
Elements of Industrial Automation Week 02 Notes.pdfTHANMAY JS
ย 
Elements of Industrial Automation Week 01 Notes.pdf
Elements of Industrial Automation Week 01 Notes.pdfElements of Industrial Automation Week 01 Notes.pdf
Elements of Industrial Automation Week 01 Notes.pdfTHANMAY JS
ย 
Automation and Robotics Week 08 Theory Notes 20ME51I.pdf
Automation and Robotics Week 08 Theory Notes 20ME51I.pdfAutomation and Robotics Week 08 Theory Notes 20ME51I.pdf
Automation and Robotics Week 08 Theory Notes 20ME51I.pdfTHANMAY JS
ย 
Automation and Robotics Week 07 Theory Notes 20ME51I.pdf
Automation and Robotics Week 07 Theory Notes 20ME51I.pdfAutomation and Robotics Week 07 Theory Notes 20ME51I.pdf
Automation and Robotics Week 07 Theory Notes 20ME51I.pdfTHANMAY JS
ย 
Automation and Robotics Week 06 Theory Notes 20ME51I.pdf
Automation and Robotics Week 06 Theory Notes 20ME51I.pdfAutomation and Robotics Week 06 Theory Notes 20ME51I.pdf
Automation and Robotics Week 06 Theory Notes 20ME51I.pdfTHANMAY JS
ย 

More from THANMAY JS (20)

Multimedia and Animation 20CS21P Portfolio.pdf
Multimedia and Animation 20CS21P Portfolio.pdfMultimedia and Animation 20CS21P Portfolio.pdf
Multimedia and Animation 20CS21P Portfolio.pdf
ย 
Fundamentals of Automation Technology 20EE43P Portfolio.pdf
Fundamentals of Automation Technology 20EE43P Portfolio.pdfFundamentals of Automation Technology 20EE43P Portfolio.pdf
Fundamentals of Automation Technology 20EE43P Portfolio.pdf
ย 
Elements of Industrial Automation Portfolio.pdf
Elements of Industrial Automation Portfolio.pdfElements of Industrial Automation Portfolio.pdf
Elements of Industrial Automation Portfolio.pdf
ย 
Fundamentals of Computer 20CS11T Chapter 5.pdf
Fundamentals of Computer 20CS11T Chapter 5.pdfFundamentals of Computer 20CS11T Chapter 5.pdf
Fundamentals of Computer 20CS11T Chapter 5.pdf
ย 
Fundamentals of Computer 20CS11T Chapter 4.pdf
Fundamentals of Computer 20CS11T Chapter 4.pdfFundamentals of Computer 20CS11T Chapter 4.pdf
Fundamentals of Computer 20CS11T Chapter 4.pdf
ย 
Fundamentals of Computer 20CS11T Chapter 3.pdf
Fundamentals of Computer 20CS11T Chapter 3.pdfFundamentals of Computer 20CS11T Chapter 3.pdf
Fundamentals of Computer 20CS11T Chapter 3.pdf
ย 
Fundamentals of Computer 20CS11T Chapter 2.pdf
Fundamentals of Computer 20CS11T Chapter 2.pdfFundamentals of Computer 20CS11T Chapter 2.pdf
Fundamentals of Computer 20CS11T Chapter 2.pdf
ย 
Fundamentals of Computer 20CS11T.pdf
Fundamentals of Computer 20CS11T.pdfFundamentals of Computer 20CS11T.pdf
Fundamentals of Computer 20CS11T.pdf
ย 
Elements of Industrial Automation Week 09 Notes.pdf
Elements of Industrial Automation Week 09 Notes.pdfElements of Industrial Automation Week 09 Notes.pdf
Elements of Industrial Automation Week 09 Notes.pdf
ย 
Elements of Industrial Automation Week 08 Notes.pdf
Elements of Industrial Automation Week 08 Notes.pdfElements of Industrial Automation Week 08 Notes.pdf
Elements of Industrial Automation Week 08 Notes.pdf
ย 
Elements of Industrial Automation Week 07 Notes.pdf
Elements of Industrial Automation Week 07 Notes.pdfElements of Industrial Automation Week 07 Notes.pdf
Elements of Industrial Automation Week 07 Notes.pdf
ย 
Elements of Industrial Automation Week 06 Notes.pdf
Elements of Industrial Automation Week 06 Notes.pdfElements of Industrial Automation Week 06 Notes.pdf
Elements of Industrial Automation Week 06 Notes.pdf
ย 
Elements of Industrial Automation Week 05 Notes.pdf
Elements of Industrial Automation Week 05 Notes.pdfElements of Industrial Automation Week 05 Notes.pdf
Elements of Industrial Automation Week 05 Notes.pdf
ย 
Elements of Industrial Automation Week 04 Notes.pdf
Elements of Industrial Automation Week 04 Notes.pdfElements of Industrial Automation Week 04 Notes.pdf
Elements of Industrial Automation Week 04 Notes.pdf
ย 
Elements of Industrial Automation Week 03 Notes.pdf
Elements of Industrial Automation Week 03 Notes.pdfElements of Industrial Automation Week 03 Notes.pdf
Elements of Industrial Automation Week 03 Notes.pdf
ย 
Elements of Industrial Automation Week 02 Notes.pdf
Elements of Industrial Automation Week 02 Notes.pdfElements of Industrial Automation Week 02 Notes.pdf
Elements of Industrial Automation Week 02 Notes.pdf
ย 
Elements of Industrial Automation Week 01 Notes.pdf
Elements of Industrial Automation Week 01 Notes.pdfElements of Industrial Automation Week 01 Notes.pdf
Elements of Industrial Automation Week 01 Notes.pdf
ย 
Automation and Robotics Week 08 Theory Notes 20ME51I.pdf
Automation and Robotics Week 08 Theory Notes 20ME51I.pdfAutomation and Robotics Week 08 Theory Notes 20ME51I.pdf
Automation and Robotics Week 08 Theory Notes 20ME51I.pdf
ย 
Automation and Robotics Week 07 Theory Notes 20ME51I.pdf
Automation and Robotics Week 07 Theory Notes 20ME51I.pdfAutomation and Robotics Week 07 Theory Notes 20ME51I.pdf
Automation and Robotics Week 07 Theory Notes 20ME51I.pdf
ย 
Automation and Robotics Week 06 Theory Notes 20ME51I.pdf
Automation and Robotics Week 06 Theory Notes 20ME51I.pdfAutomation and Robotics Week 06 Theory Notes 20ME51I.pdf
Automation and Robotics Week 06 Theory Notes 20ME51I.pdf
ย 

Recently uploaded

Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
ย 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
ย 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
ย 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
ย 
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
ย 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxEyham Joco
ย 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
ย 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
ย 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...M56BOOKSTORE PRODUCT/SERVICE
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
ย 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerunnathinaik
ย 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
ย 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
ย 
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,Virag Sontakke
ย 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
ย 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
ย 

Recently uploaded (20)

Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
ย 
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Tilak Nagar Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
ย 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
ย 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
ย 
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
โ€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
ย 
Types of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptxTypes of Journalistic Writing Grade 8.pptx
Types of Journalistic Writing Grade 8.pptx
ย 
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”Model Call Girl in Bikash Puri  Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
Model Call Girl in Bikash Puri Delhi reach out to us at ๐Ÿ”9953056974๐Ÿ”
ย 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
ย 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
ย 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
ย 
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...
KSHARA STURA .pptx---KSHARA KARMA THERAPY (CAUSTIC THERAPY)โ€”โ€”โ€”โ€”IMP.OF KSHARA ...
ย 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
ย 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
ย 
internship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developerinternship ppt on smartinternz platform as salesforce developer
internship ppt on smartinternz platform as salesforce developer
ย 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
ย 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
ย 
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
เคญเคพเคฐเคค-เคฐเฅ‹เคฎ เคตเฅเคฏเคพเคชเคพเคฐ.pptx, Indo-Roman Trade,
ย 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
ย 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ย 

Analysis of Energy Transfer in Radial and Axial Turbo Machines

  • 1. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 1 Turbo Machines 18ME54 Course Coordinator Mr. THANMAY J. S Assistant Professor Department of Mechanical Engineering VVIET Mysore Module 02: General Analysis of Turbo machines Course Learning Objectives Analyze the energy transfer in Radial and Axial flow Turbo machine with degree of reaction and utilization factor Course Outcomes At the end of the course the student will be able to analyze the energy transfer in Turbo machine with degree of reaction and utilization factor for Radial and Axial flow type Turbo Machines.
  • 2. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 2 Contents Modal 02: Question Number 4 a & 4 b General Analysis of Turbo machines i. Radial flow compressors and pumps โ€“ general analysis, ii. Effect of blade discharge angle on energy transfer iii. Expression for degree of reaction, iv. Effect of blade discharge angle on degree of reaction, v. Effect of blade discharge angle on performance, vi. General analysis of axial flow pumps and compressors, vii. Expression for degree of reaction and Utilization factor in Axial Flow Turbine viii. Derivation of General Equations Previous Year Question papers
  • 3. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 3 i. Radial flow compressors and pumps โ€“ general analysis In a radial flow machine, the two ends of the rotor blade have different linear velocities. The velocity triangles are constructed with these blade velocities as the bases. In general, the velocity triangle at the smaller radius is made up of lower velocities and that at the larger radius is made up of higher velocities. When U is small, V and Vr are also comparatively small; when U is large, V and Vr are also large. This is how the pumps and compressors are evolved with radially outward flow, with higher energy at the outlet, at the outer radius. For the same reason, the radial flow turbines are inward flow turbines, with discharge velocities of smaller magnitudes and therefore with lower values of exit losses. General Velocity Triangle Radial Flow Machines:(Centrifugal Pumps, Centrifugal Blowers and Centrifugal Compressors) Radial flow compressors and pumps are radial outward flow turbomachines, here fluid flows across the rotor blades radially from inner radius (hub radius) to outer radius (tip radius) of the rotor. Therefore radial compressors and pumps are also known as centrifugal turbomachines. The velocity triangles for the blade of an impeller of a radially outward flow machine are generally of the form as shown in figure below. (The variations from this general form may be considered step-by- step.) The absolute fluid velocity (๐‘ฝ๐Ÿ) at the inlet is shown at (๐œถ๐Ÿ = ๐Ÿ—๐ŸŽยฐ) o to the blade velocity(๐‘ผ๐Ÿ). In compressors or pumps of smaller sizes, guide vanes are not present to direct the fluid into the impeller at any particular angle. Hence, the fluid enters the impeller in a radial direction, giving rise to (๐‘ฝ๐’–๐Ÿ = ๐ŸŽ) . Since the fluid enters and leaves the rotor at different radius (๐‘ผ๐Ÿ โ‰  ๐‘ผ๐Ÿ ๐’‚๐’๐’… ๐‘ผ๐Ÿ > ๐‘ฝ๐’–๐Ÿ). In centrifugal compressor or pump usually the absolute velocity at the entry has no tangential component. Velocity Triangle for Radial Flow Compressor and Pump Radial Flow Compressors and Pumps: (Power Absorbing Turbo Machines) ๐๐ฒ ๐„๐ฎ๐ฅ๐ž๐ซโ€™๐ฌ ๐“๐ฎ๐ซ๐›๐ข๐ง๐ž ๐„๐ช๐ฎ๐š๐ญ๐ข๐จ๐ง ๐‘ท = (๐‘ฝ๐’–๐Ÿ. ๐‘ผ๐Ÿ โˆ’ ๐‘ฝ๐’–๐Ÿ. ๐‘ผ๐Ÿ) ๐’ƒ๐’–๐’• ๐‘ฝ๐’–๐Ÿ = ๐ŸŽ โˆด ๐‘ƒ = (๐‘‰๐‘ข2. ๐‘ˆ2) ๐‘ค๐‘’ ๐‘˜๐‘›๐‘œ๐‘ค ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘‹ = ๐‘ˆ2 โˆ’ ๐‘‰๐‘ข2 ๐ถ๐‘œ๐‘ก ๐›ฝ2 = ๐‘‹ ๐‘‰๐‘“2 โ‰ซ ๐‘ฟ = ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ ๐‘‡โ„Ž๐‘’๐‘› ๐‘‰๐‘ข2 = ๐‘ˆ2 โˆ’ ๐‘‰๐‘“2 ๐ถ๐‘œ๐‘ก ๐›ฝ2 โˆด ๐‘ƒ = (๐‘‰๐‘ข2. ๐‘ˆ2) ๐‘๐‘Ž๐‘› ๐‘๐‘’ ๐‘ค๐‘Ÿ๐‘–๐‘ก๐‘ก๐‘’๐‘› ๐‘Ž๐‘  ๐‘ท = ๐‘ผ๐Ÿ(๐‘ผ๐Ÿ โˆ’ ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ) Or ๐‘ท = (๐‘ผ๐Ÿ ๐Ÿ โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ)
  • 4. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 4 ii. Effect of blade discharge angle on energy transfer a) When ฮฒ2 is less than 90o , that is, when the blades are bent backward to the direction of rotation of the rotor, the slope of the line is negative. As the flow rate increases, Vf2 increases, and along with it, Vu2 decreases. Consequently, the specific work (or head) reduces as the flow rate is increased. b) When ฮฒ2 is equal to 90o , the variation in the flow rate or the variation in Vf2 does not affect Vu2. The specific work (or head) remains constant. c) When ฮฒ2 is more than 90o , that is, when the blades are bent forward, the slope of the line is positive. As the flow rate is increased, Vu2 also increases. Therefore, the specific work (or head) also increases. iii. Expression for Degree of Reaction ๐‘๐‘ข๐‘ก ๐‘Ž๐‘๐‘๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘” ๐‘ก๐‘œ ๐ผ๐‘›๐‘™๐‘’๐‘ก ๐ถ๐‘œ๐‘›๐‘‘๐‘–๐‘ก๐‘–๐‘œ๐‘› ๐‘‰1 = ๐‘‰ ๐‘“1 ๐‘ ๐‘œ ๐‘‰1 2 = ๐‘‰ ๐‘“1 2 = ๐‘‰ ๐‘“2 2 ๐‘Ž๐‘›๐‘‘ ๐‘“๐‘œ๐‘Ÿ ๐‘‚๐‘ข๐‘ก๐‘™๐‘’๐‘ก ๐‘‰2 2 = ๐‘‰๐‘ˆ2 2 + ๐‘‰ ๐‘“2 2 โˆด ๐‘… = ๐‘ˆ2 ๐‘‰๐‘ˆ2 โˆ’ ( ๐‘‰๐‘ˆ2 2 + ๐‘‰๐‘“2 2 โˆ’ ๐‘‰๐‘“1 2 ) 2 ๐‘ˆ2 ๐‘‰๐‘ˆ2 = ๐‘ˆ2 ๐‘‰๐‘ˆ2 โˆ’ ( ๐‘‰๐‘ˆ2 2 + ๐‘‰๐‘“2 2 โˆ’ ๐‘‰๐‘“1 2 ) 2๐‘ˆ2 ๐‘‰๐‘ˆ2 โˆด ๐‘น = ๐Ÿ โˆ’ ( ๐‘ฝ๐‘ผ ๐Ÿ ๐Ÿ๐‘ผ๐Ÿ )
  • 5. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 5 iv. Effect of blade discharge angle on degree of reaction, ๐‘ค๐‘’ ๐‘˜๐‘›๐‘œ๐‘ค ๐‘กโ„Ž๐‘Ž๐‘ก ๐ท๐‘’๐‘”๐‘Ÿ๐‘’๐‘’ ๐‘œ๐‘“ ๐‘…๐‘’๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘… = 1 โˆ’ ( ๐‘‰๐‘ˆ2 2๐‘ˆ2 ) ๐‘“๐‘œ๐‘Ÿ ๐‘…๐‘Ž๐‘‘๐‘–๐‘Ž๐‘™ ๐น๐‘™๐‘œ๐‘ค ๐‘‡๐‘ข๐‘Ÿ๐‘๐‘œ ๐‘€๐‘Ž๐‘โ„Ž๐‘–๐‘›๐‘’๐‘  ๐‘๐‘ข๐‘ก ๐‘Ž๐‘๐‘๐‘œ๐‘Ÿ๐‘‘๐‘–๐‘›๐‘” ๐‘ก๐‘œ ๐‘‰๐‘’๐‘™๐‘œ๐‘๐‘–๐‘ก๐‘ฆ ๐‘ก๐‘Ÿ๐‘–๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘ฝ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ โˆ’ ๐‘ฟ ๐‘คโ„Ž๐‘’๐‘Ÿ๐‘’ cot(๐›ฝ2) = ( ๐‘๐‘œ๐‘  ๐‘ ๐‘–๐‘› ) = ๐ด๐‘‘๐‘—๐‘Ž๐‘๐‘’๐‘›๐‘ก ๐‘ ๐‘–๐‘‘๐‘’ ๐‘‚๐‘๐‘๐‘–๐‘ ๐‘–๐‘ก๐‘’ ๐‘ ๐‘–๐‘‘๐‘’ = ๐‘‹ ๐‘‰๐‘“2 โˆด ๐‘ฟ = ๐‘ฝ๐’‡๐Ÿ ๐œ๐จ๐ญ(๐œท๐Ÿ) ๐‘ ๐‘œ, ๐‘‰๐‘ˆ2 = ๐‘ˆ2 โˆ’ ๐‘‹ โ‰ซ ๐‘ฝ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ โˆ’ ๐‘ฝ๐’‡๐Ÿ ๐œ๐จ๐ญ(๐œท๐Ÿ) ๐‘’๐‘”๐‘Ÿ๐‘’๐‘’ ๐‘œ๐‘“ ๐‘…๐‘’๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘› ๐‘… = 1 โˆ’ ( ๐‘‰๐‘ˆ2 2๐‘ˆ2 ) โ‰ซ ๐‘… = 1 โˆ’ ( ๐‘ˆ2 โˆ’ ๐‘‰๐‘“2 cot(๐›ฝ2) 2๐‘ˆ2 ) ๐‘๐‘ฆ ๐‘Ÿ๐‘’๐‘ ๐‘œ๐‘™๐‘ฃ๐‘–๐‘›๐‘” ๐‘ค๐‘’ ๐‘”๐‘’๐‘ก ๐‘น = ๐Ÿ ๐Ÿ [๐Ÿ + ( ๐‘ฝ๐’‡๐Ÿ ๐Ÿ๐‘ผ๐Ÿ )๐œ๐จ๐ญ(๐œท๐Ÿ)] ๐‘‡โ„Ž๐‘–๐‘  ๐‘Ÿ๐‘’๐‘ ๐‘ข๐‘™๐‘ก ๐‘–๐‘  ๐‘Ž๐‘๐‘๐‘™๐‘–๐‘๐‘Ž๐‘๐‘™๐‘’ ๐‘“๐‘œ๐‘Ÿ ๐›ผ1 = 90ยฐ ๐‘ ๐‘œ ๐‘กโ„Ž๐‘Ž๐‘ก ๐‘‰1 = ๐น2 = ๐‘ˆ1 ๐‘Ž๐‘›๐‘‘ ๐‘‰๐‘ข1 = 0 a) When ฮฒ2, in the above conditions, becomes equal to 158.2o , the degree of reaction reduces to zero, the machine becomes impulse type, and the centrifugal head balances the relative velocity head. (R = 0 at ฮฒ2 =158.2o ) b) If the reference values of ฮฒ1 and D2/D1 were chosen then the nature of variation of R would be the same, but the values would be different (W = 0 at ฮฒ2 = 26.5o ; R = (2 + cot ฮฒ2)/4. v. Effect of blade discharge angle on performance, ๐‘ท = (๐‘ผ๐Ÿ ๐Ÿ โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ) In a Power Absorbing Turbo Machines like a pump, a blower, or a compressor is usually run by a motor of constant speed N, Hence, ๐‘ผ๐Ÿ = ๐…๐‘ซ๐‘ต ๐Ÿ”๐ŸŽ is also a constant. Further(๐‘ฝ๐’‡๐Ÿ), the flow component, can be written as( ๐‘ธ ๐‘จ๐Ÿ ), where๐‘จ๐Ÿis the exit area of the impeller and (๐‘ธ) is the volume flow rate. This results ๐‘ท = (๐‘ผ๐Ÿ ๐Ÿ โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ) โ‰ซ (๐‘ผ๐Ÿ ๐Ÿ โˆ’ ๐‘ผ๐Ÿ . ( ๐‘ธ ๐‘จ๐Ÿ ) ๐‘ช๐’๐’• ๐œท๐Ÿ) = (๐‘ช๐Ÿ โˆ’ ๐‘ช๐Ÿ. ๐‘ธ) โ‰ซ Where ๐‘ช๐Ÿ = ๐‘ผ๐Ÿ ๐Ÿ and๐‘ช๐Ÿ = ( ๐‘ผ๐Ÿ ๐‘จ๐Ÿ ) ๐‘ช๐’๐’• ๐œท๐Ÿ. ๐‘ท = (๐‘ช๐Ÿ โˆ’ ๐‘ช๐Ÿ. ๐‘ธ) The performance of a machine is the totality of the specific work or energy transfer, the reaction, the power consumption, the efficiency, and so on. Equation (๐‘ท) represents the energy transfer (W) in a radial flow pump or compressor. In a pump, the head developed may be written as (W/g). In a compressor, the pressure developed may be written as (W x ฯ). Either way, (W) is identified as a function of the flow rate (Q).
  • 6. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 6 The flow rate (Q) is taken as an independent variable that can be varied by the operation of a valve at the outlet. In practice, the flow rate is as per โ€œdemandโ€ or โ€œload.โ€ A plot of (W) (or P or H or E to a different scale) on the base of the flow rate (Q), therefore, represents one of the important characteristics of the machine. For a given value of the flow rate, there is one more important effect of variation of the blade outlet angle. For any outlet velocity triangle, as the height of the triangle, (๐‘ฝ๐’‡๐Ÿ) remains constant, (๐‘ฝ๐’–๐Ÿ) keeps on increasing as the blade outlet angle (๐œท๐Ÿ) increases. This can easily be seen in Fig. 4.4. This can also be substantiated by above equation where the magnitude of (๐‘ท) increases as (๐œท๐Ÿ) increases. The specific work (๐‘ท) will gradually reduce to zero when ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ = ๐‘ผ๐Ÿ ๐’Š. ๐’†., ๐‘ช๐’๐’• ๐œท๐Ÿ = ๐‘ผ๐Ÿ ๐‘ฝ๐’‡๐Ÿ Above figure shows the characteristic in the form of three lines with different slopes. The lines represent the cases of different values of the blade exit angle(๐œท๐Ÿ). Equation (๐‘ท) and graph shown above are the outcome of the starting from Eulerโ€™s equation. The energy transfer, as discussed, is due to the โ€œvane-congruent flow.โ€ The expression for the actual energy transfer can be obtained when the factors causing the deviation from the vane- congruent flow are considered.
  • 7. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 7 vi. General analysis of axial flow pumps and compressors, In axial flow machines, the blade velocities at the inlet and outlet are equal, ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ ๐’‚๐’๐’… ๐‘ฝ๐’–๐Ÿ > ๐‘ผ๐Ÿ . Therefore, the two velocity triangles have equal bases. Both the triangles can be drawn on a common base. In these kinds of machines, the flow velocity (๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’‡) is assumed to be constant from inlet to outlet. Axial flow turbines comprise the familiar steam turbines, gas turbines etc. = Energy Equation for Axial Flow Turbo Machine Power Absorbing Turbo Machines Power Absorbing Turbo Machines ๐‘ท = ๐’Ž(๐‘ฝ๐’–๐Ÿ. ๐‘ผ๐Ÿ โˆ’ ๐‘ฝ๐’–๐Ÿ. ๐‘ผ๐Ÿ) ๐‘ท = ๐Ÿ ๐Ÿ [(๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) + (๐‘ผ๐Ÿ ๐Ÿ โˆ’ ๐‘ผ๐Ÿ ๐Ÿ ) + (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ )] ๐’ƒ๐’–๐’• ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ = ๐‘ผ ๐’ƒ๐’–๐’• ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ = ๐‘ผ โˆด ๐‘ท = ๐‘ผ(๐‘ฝ๐’–๐Ÿ โˆ’ ๐‘ฝ๐’–๐Ÿ) โˆด ๐‘ท = ๐Ÿ ๐Ÿ [(๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) + (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ )] Expression for degree of reaction and Utilization factor in Axial Flow Turbine ๐‘ท = ๐Ÿ ๐Ÿ [(๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) + (๐‘ผ๐Ÿ ๐Ÿ โˆ’ ๐‘ผ๐Ÿ ๐Ÿ ) + (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ )] ๐’ƒ๐’–๐’• ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ = ๐‘ผ โˆด ๐‘ท = ๐Ÿ ๐Ÿ [(๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) + (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ )] ๐’˜๐’† ๐’Œ๐’๐’๐’˜ ๐’•๐’‰๐’‚๐’• ๐‘ซ๐’†๐’ˆ๐’“๐’†๐’† ๐’๐’‡ ๐‘น๐’†๐’‚๐’„๐’•๐’Š๐’๐’ (๐‘น) = ๐‘ป๐’๐’•๐’‚๐’ ๐‘พ๐’๐’“๐’Œโˆ’๐‘ฒ๐’Š๐’๐’†๐’•๐’Š๐’„ ๐‘ช๐’๐’Ž๐’‘๐’๐’๐’†๐’๐’• ๐‘ป๐’๐’•๐’‚๐’ ๐‘พ๐’๐’“๐’Œ = ๐‘ทโˆ’๐‘ฒ๐‘ฌ ๐‘ท = ๐Ÿ โˆ’ ๐‘ฒ๐‘ฌ ๐‘ท (๐‘น) = ๐Ÿ ๐Ÿ (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) + ๐Ÿ ๐Ÿ (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ ) โˆ’ ๐Ÿ ๐Ÿ (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) ๐Ÿ ๐Ÿ (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) + (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ ) (๐‘น) = ๐Ÿ ๐Ÿ (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ ) ๐Ÿ ๐Ÿ (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) + (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ ) ๐’๐’“ (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ ) (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) + (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ ) ๐’๐’“ ๐Ÿ ๐Ÿ (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ ) ๐‘ท ๐’Š๐’‡ ๐‘ฝ๐’“๐Ÿ ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ๐Ÿ ๐’•๐’‰๐’†๐’ ๐‘น = ๐Ÿ ๐Ÿ (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ ) ๐‘ท = ๐ŸŽ ๐’˜๐’† ๐‘ฒ๐’๐’๐’˜ ๐’•๐’‰๐’‚๐’• ๐‘ผ๐’•๐’Š๐’๐’Š๐’›๐’‚๐’•๐’Š๐’๐’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ (๐) = (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) + (๐‘ผ๐Ÿ ๐Ÿ โˆ’ ๐‘ผ๐Ÿ ๐Ÿ ) + (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ ) (๐‘ฝ๐Ÿ ๐Ÿ ) + (๐‘ผ๐Ÿ ๐Ÿ โˆ’ ๐‘ผ๐Ÿ ๐Ÿ ) + (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ ) ๐’ƒ๐’–๐’• ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ = ๐‘ผ โˆด ๐‘ผ๐’•๐’Š๐’๐’Š๐’›๐’‚๐’•๐’Š๐’๐’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ (๐) = (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) + (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ ) (๐‘ฝ๐Ÿ ๐Ÿ ) + (๐‘ฝ๐’“๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐’“๐Ÿ ๐Ÿ )
  • 8. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 8 Derivation of General Equations:
  • 9. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 9
  • 10. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 10
  • 11. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 11
  • 12. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 12 Previous Year Question papers Modal Question Paper 01 18ME54 4 a) Obtain an expression for the degree of reaction of axial flow compressor in terms of rotor blade angles, axial velocity and blade speed. Assume axial velocity remains constant. 8 ๐‘น = ๐Ÿ ๐Ÿ [๐Ÿ + ( ๐‘ฝ๐’‡๐Ÿ ๐Ÿ๐‘ผ๐Ÿ )๐œ๐จ๐ญ(๐œท๐Ÿ)] ๐‘ท๐’‚๐’ˆ๐’† ๐‘ต๐’ ๐Ÿ“ b) At a stage of Impulse Turbine the mean blade diameter is 0.75m and its rotational speed is 3500 rpm. The absolute velocity of the fluid discharging from a nozzle inclined at 20ยฐ to the plane of the wheel is 275 m/s. If the utilization factor is 0.9 and the relative velocity of the fluid at the rotor exit is 0.9 times that at the inlet, find the inlet rotor angles. Also find the power output from the stage for a mass flow rate of 2 kg/s and the axial thrust on the shaft. 12 To solve this problem there are three assumptions which can be used. Chose the Method whichever is suitable Impulse Turbine is Axial flow turbine example: Delaval turbine ๐ท(๐‘š๐‘’๐‘Ž๐‘›) = 0.75๐‘š; ๐‘ = 3500๐‘Ÿ๐‘๐‘š โˆด ๐‘ˆ = ๐œ‹๐ท๐‘ 60 = ๐œ‹ ร— 0.75 ร— 3500 60 = 137.44 ๐‘š ๐‘  ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ = ๐‘ผ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’ ๐’Ž/๐’” ๐‘ฝ๐Ÿ = ๐Ÿ๐Ÿ•๐Ÿ“ ๐’Ž ๐’” ๐’‚๐’• ๐œถ๐Ÿ = ๐Ÿ๐ŸŽยฐ & ๐ = ๐ŸŽ. ๐Ÿ— ๐’‚๐’๐’… ๐‘ฝ๐’“๐Ÿ = ๐ŸŽ. ๐Ÿ—๐‘ฝ๐’“๐Ÿ ๐’‡๐’Š๐’๐’… ๐œท๐Ÿ =? ; ๐‘ท =? ๐’˜๐’‰๐’†๐’ ๐’Ž = ๐Ÿ๐’Œ๐’ˆ ๐’” & ๐‘ญ๐’‚ =? ๐’”๐’Š๐’๐œถ๐Ÿ = ๐‘ฝ๐’‡๐Ÿ ๐‘ฝ๐Ÿ ๐’‚๐’๐’… ๐’„๐’๐’”๐œถ๐Ÿ = ๐‘ฝ๐’–๐Ÿ ๐‘ฝ๐Ÿ ๐‘ ๐‘–๐‘›๐›ผ1 = ๐‘‰๐‘“1 ๐‘‰1 โ‰ซ ๐‘‰๐‘“1 = ๐‘‰1 ร— ๐‘ ๐‘–๐‘›๐›ผ1 ๐‘‰๐‘“1 = 275 ร— ๐‘ ๐‘–๐‘›20 = 94.05๐‘š/๐‘  ๐‘ฝ๐’‡๐Ÿ = ๐Ÿ—๐Ÿ’. ๐ŸŽ๐Ÿ“ ๐’Ž/๐’” ๐‘๐‘œ๐‘ ๐›ผ1 = ๐‘‰๐‘ข1 ๐‘‰1 โ‰ซ ๐‘‰๐‘ข1 = ๐‘‰1 ร— ๐‘๐‘œ๐‘ ๐›ผ1 = 275 ร— ๐‘๐‘œ๐‘ 20 = 258.41๐‘š/๐‘  ๐‘ฝ๐’–๐Ÿ = ๐Ÿ๐Ÿ“๐Ÿ–. ๐Ÿ’๐Ÿ ๐’Ž/๐’” ๐‘ฟ๐Ÿ = ๐‘ฝ๐’–๐Ÿ โˆ’ ๐‘ผ = ๐Ÿ๐Ÿ“๐Ÿ–. ๐Ÿ’๐Ÿ โˆ’ ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’ = ๐Ÿ๐Ÿ๐ŸŽ. ๐Ÿ—๐Ÿ•๐’Ž/๐’” ๐’•๐’‚๐’๐œท๐Ÿ = ๐‘ฝ๐’‡๐Ÿ ๐‘ฟ๐Ÿ โ‰ซ ๐œท๐Ÿ = ๐’•๐’‚๐’โˆ’๐Ÿ ( ๐‘ฝ๐’‡๐Ÿ ๐‘ฟ๐Ÿ ) = ๐Ÿ‘๐Ÿ•. ๐Ÿ–๐Ÿ”ยฐ โ‰ˆ ๐Ÿ‘๐Ÿ–ยฐ ๐‘ฝ๐’“๐Ÿ = โˆš๐‘ฝ๐’‡๐Ÿ๐Ÿ + ๐‘ฟ๐Ÿ๐Ÿ = โˆš๐Ÿ—๐Ÿ’. ๐ŸŽ๐Ÿ“๐Ÿ + ๐Ÿ๐Ÿ๐ŸŽ. ๐Ÿ—๐Ÿ•๐Ÿ = ๐Ÿ๐Ÿ“๐Ÿ‘. ๐Ÿ๐Ÿ๐’Ž/๐’” ๐‘ฝ๐’“๐Ÿ = ๐ŸŽ. ๐Ÿ—๐‘ฝ๐’“๐Ÿ = ๐ŸŽ. ๐Ÿ— ร— ๐Ÿ๐Ÿ“๐Ÿ‘. ๐Ÿ๐Ÿ ๐‘ฝ๐’“๐Ÿ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ—๐ŸŽ ๐’Ž/๐’” ๐‘ผ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’ ๐’Ž ๐’” ; ๐‘ฝ๐’“๐Ÿ = ๐Ÿ๐Ÿ“๐Ÿ‘. ๐Ÿ๐Ÿ ๐’Ž ๐’” ; ๐‘ฝ๐’“๐Ÿ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ—๐ŸŽ ๐’Ž ๐’” ; ๐‘ฝ๐’‡๐Ÿ = ๐Ÿ—๐Ÿ’. ๐ŸŽ๐Ÿ“ ๐’Ž ๐’” ; ๐‘ฝ๐Ÿ = ๐Ÿ๐Ÿ•๐Ÿ“ ๐’Ž ๐’” ; ๐‘ฝ๐’–๐Ÿ = ๐Ÿ๐Ÿ“๐Ÿ–. ๐Ÿ’๐Ÿ ๐’Ž/๐’” ๐‘‰๐‘Ÿ2 = 0.9๐‘‰๐‘Ÿ1 ๐‘ ๐‘œ ๐‘‰๐‘Ÿ2 = ๐‘‰๐‘Ÿ1 ๐‘๐‘Ž๐‘›๐‘›๐‘œ๐‘ก ๐‘๐‘’ ๐‘Ž๐‘ ๐‘ ๐‘ข๐‘š๐‘’๐‘‘ Method01: ๐’‚๐’”๐’”๐’–๐’Ž๐’† ๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’‡๐Ÿ Method 02: ๐’Š๐’‡ ๐’˜๐’† ๐’‚๐’”๐’”๐’–๐’Ž๐’† ๐œท๐Ÿ = ๐œท๐Ÿ = ๐Ÿ‘๐Ÿ–ยฐ (๐’ƒ๐’๐’‚๐’…๐’†๐’” ๐’‚๐’“๐’† ๐’†๐’’๐’–๐’Š๐’‚๐’๐’ˆ๐’–๐’๐’‚๐’“) ๐’”๐’Š๐’๐œท๐Ÿ = ๐‘ฝ๐’‡๐Ÿ ๐‘ฝ๐’“๐Ÿ = ๐Ÿ—๐Ÿ’. ๐ŸŽ๐Ÿ“ ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ—๐ŸŽ = ๐ŸŽ. ๐Ÿ”๐Ÿ– โ‰ซ ๐œท๐Ÿ = ๐’”๐’Š๐’โˆ’๐Ÿ(๐ŸŽ. ๐Ÿ”๐Ÿ–) = ๐Ÿ’๐Ÿ‘ยฐ ๐’”๐’Š๐’๐œท๐Ÿ = ๐‘ฝ๐’‡๐Ÿ ๐‘ฝ๐’“๐Ÿ โ‰ซ ๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’”๐’Š๐’๐œท๐Ÿ ๐‘ฝ๐’‡๐Ÿ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ—๐ŸŽ ร— ๐’”๐’Š๐’๐Ÿ‘๐Ÿ– = ๐Ÿ–๐Ÿ’. ๐Ÿ–๐Ÿ— ๐‘ฝ๐’‡๐Ÿ = ๐Ÿ–๐Ÿ’. ๐Ÿ–๐Ÿ—๐’Ž/๐’” ๐’„๐’๐’”๐œท๐Ÿ = ๐‘ฟ๐Ÿ ๐‘ฝ๐’“๐Ÿ โ‰ซ ๐‘ฟ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’„๐’๐’”๐œท๐Ÿ ๐‘ฟ๐Ÿ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ—๐Ÿ ร— ๐’„๐’๐’”๐Ÿ’๐Ÿ‘ = ๐Ÿ๐ŸŽ๐ŸŽ. ๐Ÿ–๐Ÿ“ ๐’Ž/๐’” ๐‘ฟ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’„๐’๐’”๐œท๐Ÿ < ๐‘ผ ๐’”๐’ ๐’๐’†๐’ˆ๐’‚๐’•๐’Š๐’—๐’† ๐’‚๐’๐’”๐’˜๐’†๐’“ ๐‘ฝ๐’–๐Ÿ = ๐‘ฟ๐Ÿ โˆ’ ๐‘ผ = ๐Ÿ๐ŸŽ๐ŸŽ. ๐Ÿ–๐Ÿ“ โˆ’ ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’ ๐‘ฝ๐’–๐Ÿ = โˆ’๐Ÿ‘๐Ÿ”. ๐Ÿ“๐Ÿ— ๐’Ž/๐’” ๐’„๐’๐’”๐œท๐Ÿ = ๐‘ฟ๐Ÿ ๐‘ฝ๐’“๐Ÿ โ‰ซ ๐‘ฟ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’„๐’๐’”๐œท๐Ÿ ๐‘ฟ๐Ÿ = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ—๐ŸŽ ร— ๐’„๐’๐’”๐Ÿ‘๐Ÿ– = ๐Ÿ๐ŸŽ๐Ÿ–. ๐Ÿ”๐Ÿ”๐’Ž/๐’” ๐‘ฟ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’„๐’๐’”๐œท๐Ÿ < ๐‘ผ ๐’”๐’ ๐’๐’†๐’ˆ๐’‚๐’•๐’Š๐’—๐’† ๐’‚๐’๐’”๐’˜๐’†๐’“ ๐‘ฝ๐’–๐Ÿ = ๐‘ฟ๐Ÿ โˆ’ ๐‘ผ = ๐Ÿ๐ŸŽ๐Ÿ–. ๐Ÿ”๐Ÿ” โˆ’ ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’ ๐‘ฝ๐’–๐Ÿ = โˆ’๐Ÿ๐Ÿ–. ๐Ÿ•๐Ÿ•๐’Ž/๐’” ๐‘ท ๐’Ž = ๐‘ผ(๐‘ฝ๐’–๐Ÿ โˆ’ ๐‘ฝ๐’–๐Ÿ) = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ“๐Ÿ–. ๐Ÿ’๐Ÿ โˆ’ (โˆ’๐Ÿ‘๐Ÿ”. ๐Ÿ“๐Ÿ—)) ๐‘ท ๐’Ž = ๐Ÿ’๐ŸŽ๐Ÿ“๐Ÿ’๐Ÿ’. ๐Ÿ– ๐‘พ ๐‘ต๐’๐’•๐’†: ๐’Ž = ๐Ÿ๐’Œ๐’ˆ ๐’๐’๐’• ๐’–๐’”๐’†๐’… ๐‘ท ๐’Ž = ๐‘ผ(๐‘ฝ๐’–๐Ÿ โˆ’ ๐‘ฝ๐’–๐Ÿ) = ๐Ÿ๐Ÿ‘๐Ÿ•. ๐Ÿ’๐Ÿ’(๐Ÿ๐Ÿ“๐Ÿ–. ๐Ÿ’๐Ÿ โˆ’ (โˆ’๐Ÿ๐Ÿ–. ๐Ÿ•๐Ÿ•)) ๐‘ท ๐’Ž = ๐Ÿ‘๐Ÿ—๐Ÿ’๐Ÿ•๐ŸŽ. ๐ŸŽ๐Ÿ ๐‘พ ๐‘ต๐’๐’•๐’†: ๐’Ž = ๐Ÿ๐’Œ๐’ˆ ๐’๐’๐’• ๐’–๐’”๐’†๐’… ๐‘ฝ๐Ÿ = โˆš๐‘ฝ๐’‡๐Ÿ๐Ÿ + ๐‘ฝ๐’–๐Ÿ๐Ÿ = โˆš๐Ÿ—๐Ÿ’. ๐ŸŽ๐Ÿ“๐Ÿ + (โˆ’๐Ÿ‘๐Ÿ”. ๐Ÿ“๐Ÿ—๐Ÿ) ๐‘ฝ๐Ÿ = ๐Ÿ๐ŸŽ๐ŸŽ. ๐Ÿ—๐Ÿ ๐’Ž ๐’” & ๐‘ฝ๐Ÿ = ๐Ÿ๐Ÿ•๐Ÿ“ ๐’Ž ๐’” ๐‘ฝ๐Ÿ = โˆš๐‘ฝ๐’‡๐Ÿ๐Ÿ + ๐‘ฝ๐’–๐Ÿ๐Ÿ = โˆš๐Ÿ–๐Ÿ’. ๐Ÿ–๐Ÿ—๐Ÿ + (โˆ’๐Ÿ๐Ÿ–. ๐Ÿ•๐Ÿ•๐Ÿ) ๐‘ฝ๐Ÿ = ๐Ÿ–๐Ÿ—. ๐Ÿ”๐Ÿ‘ ๐’Ž ๐’” & ๐‘ฝ๐Ÿ = ๐Ÿ๐Ÿ•๐Ÿ“ ๐’Ž ๐’”
  • 13. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 13 ๐‘ผ๐’•๐’Š๐’๐’Š๐’›๐’‚๐’•๐’Š๐’๐’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ (๐) = (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘น ๐‘ฝ๐Ÿ ๐Ÿ ) = ๐ŸŽ. ๐Ÿ— ๐‘ฝ๐Ÿ ๐Ÿ = ๐’‚; ๐‘ฝ๐Ÿ ๐Ÿ = ๐’ƒ; ๐‘น = ๐’„ โ‰ซ (๐’‚ โˆ’ ๐’ƒ) (๐’‚ โˆ’ ๐’„ ๐’ƒ) = ๐ŸŽ. ๐Ÿ— (๐’‚ โˆ’ ๐’„ ๐’ƒ) = (๐’‚ โˆ’ ๐’ƒ) ๐ŸŽ. ๐Ÿ— = ๐Ÿ•๐Ÿ๐Ÿ•๐Ÿ๐Ÿ‘. ๐Ÿ“๐Ÿ (โˆ’๐’„ ๐’ƒ) = ๐Ÿ•๐Ÿ๐Ÿ•๐Ÿ๐Ÿ‘. ๐Ÿ“๐Ÿ โˆ’ ๐’‚ = โˆ’๐Ÿ๐Ÿ—๐Ÿ๐Ÿ. ๐Ÿ’๐Ÿ– (๐’„ ) = โˆ’๐Ÿ๐Ÿ—๐Ÿ๐Ÿ. ๐Ÿ’๐Ÿ– โˆ’๐’ƒ = ๐ŸŽ. ๐Ÿ๐Ÿ—๐Ÿ“๐Ÿ— ๐‘น = ๐Ÿ‘๐ŸŽ% ๐’•๐’Š๐’๐’Š๐’›๐’‚๐’•๐’Š๐’๐’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ (๐) = (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘น ๐‘ฝ๐Ÿ ๐Ÿ ) = ๐ŸŽ. ๐Ÿ— ๐‘ฝ๐Ÿ ๐Ÿ = ๐’‚; ๐‘ฝ๐Ÿ ๐Ÿ = ๐’ƒ; ๐‘น = ๐’„ โ‰ซ (๐’‚ โˆ’ ๐’ƒ) (๐’‚ โˆ’ ๐’„ ๐’ƒ) = ๐ŸŽ. ๐Ÿ— (๐’‚ โˆ’ ๐’„ ๐’ƒ) = (๐’‚ โˆ’ ๐’ƒ) ๐ŸŽ. ๐Ÿ— = ๐Ÿ•๐Ÿ“๐Ÿ๐ŸŽ๐Ÿ. ๐Ÿ”๐Ÿ (โˆ’๐’„ ๐’ƒ) = ๐Ÿ•๐Ÿ“๐Ÿ๐ŸŽ๐Ÿ. ๐Ÿ”๐Ÿ โˆ’ ๐’‚ = โˆ’๐Ÿ“๐Ÿ๐Ÿ‘. ๐Ÿ‘๐Ÿ– (๐’„ ) = โˆ’๐Ÿ“๐Ÿ๐Ÿ‘. ๐Ÿ‘๐Ÿ– โˆ’๐’ƒ = ๐ŸŽ. ๐ŸŽ๐Ÿ”๐Ÿ“๐Ÿ๐Ÿ’ ๐‘น = ๐Ÿ”. ๐Ÿ“๐Ÿ% ๐‘ญ (๐’‚๐’™๐’Š๐’‚๐’) = ๐’Ž(๐‘ฝ๐’‡๐Ÿ โˆ’ ๐‘ฝ๐’‡๐Ÿ) = ๐ŸŽ ๐’‚๐’” ๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’‡๐Ÿ ๐‘จ๐’”๐’”๐’–๐’Ž๐’‘๐’•๐’Š๐’๐’ ๐‘ญ (๐’‚๐’™๐’Š๐’‚๐’) = ๐’Ž(๐‘ฝ๐’‡๐Ÿ โˆ’ ๐‘ฝ๐’‡๐Ÿ) = Method 03: Assume R=50% or 0.5 ๐‘ผ๐’•๐’Š๐’๐’Š๐’›๐’‚๐’•๐’Š๐’๐’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ (๐) = (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘น ๐‘ฝ๐Ÿ ๐Ÿ ) = ๐ŸŽ. ๐Ÿ— ๐’˜๐’† ๐’Œ๐’๐’๐’˜ ๐’•๐’‰๐’‚๐’• ๐‘ฝ๐Ÿ = ๐Ÿ๐Ÿ•๐Ÿ“ ๐’Ž ๐’” ; ๐‘น = ๐ŸŽ. ๐Ÿ“๐ŸŽ (๐) = (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘ฝ๐Ÿ ๐Ÿ ) (๐‘ฝ๐Ÿ ๐Ÿ โˆ’ ๐‘น ๐‘ฝ๐Ÿ ๐Ÿ ) = ๐ŸŽ. ๐Ÿ— โ‰ซ (๐) = (๐’‚ โˆ’ ๐’ƒ) (๐’‚ โˆ’ ๐‘น ๐’ƒ) = ๐ŸŽ. ๐Ÿ— (๐’‚ โˆ’ ๐’ƒ) (๐’‚ โˆ’ ๐ŸŽ. ๐Ÿ“๐’ƒ) = ๐ŸŽ. ๐Ÿ— โ‰ซ (๐’‚ โˆ’ ๐’ƒ) = ๐ŸŽ. ๐Ÿ—๐’‚ โˆ’ ๐ŸŽ. ๐Ÿ’๐Ÿ“๐’ƒ ๐’‚ โˆ’ ๐ŸŽ. ๐Ÿ—๐’‚ = ๐’ƒ โˆ’ ๐ŸŽ. ๐Ÿ’๐Ÿ“๐’ƒ ๐’‚(๐Ÿ โˆ’ ๐ŸŽ. ๐Ÿ—) (๐Ÿ โˆ’ ๐ŸŽ. ๐Ÿ“) = ๐’ƒ = ๐‘ฝ๐Ÿ ๐Ÿ = ๐‘ฝ๐Ÿ ๐Ÿ (๐Ÿ โˆ’ ๐ŸŽ. ๐Ÿ—) (๐Ÿ โˆ’ ๐ŸŽ. ๐Ÿ“) = ๐Ÿ๐Ÿ“๐Ÿ๐Ÿ๐Ÿ“ ๐‘ฝ๐Ÿ = โˆš๐Ÿ๐Ÿ“๐Ÿ๐Ÿ๐Ÿ“ = ๐Ÿ๐Ÿ๐Ÿ. ๐Ÿ—๐Ÿ–๐’Ž/๐’” Modal Question Paper 02 18ME54 4 a) Prove that, with usual notations, the degree of reaction for an axial flow compressor (assuming constant velocity of flow) is given by 6 Activity Question solved in page Number 11 b) Draw the inlet and exit velocity triangles for a radial flow power absorbing turbomachine with (i) Backward curved vane (ii) Radial vane (iii) Forward vane. Assume inlet whirl velocity to be zero. Also draw the head-capacity curves for the above 3 types of vanes. 6 Page Number 04 c) A mixed flow turbine handling water operates under a static head of 65m. In a steady flow, the static pressure at the rotor inlet is 3.5 atm (gauge). The absolute velocity at the rotor inlet has no axial component and is directed at an angle of 25ยบ to the tangent of wheel so that Vu1 is positive. The absolute velocity at exit purely axial. If the degree of reaction for the machine is 0.47 and utilization factor is 0.896, compute the tangential blade speed at inlet as well as the inlet blade angle Find also the work output per unit mass flow of water. 8
  • 14. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 14 Modal Question Paper 01 18ME54 (2015/2016) 4 a) For an axial flow compressor, derive an expression for degree of reaction. 8 b) In a radial inward flow turbine the degree of reaction is 0.8 and the utilization factor of the runner is 0.9. The tangential speeds of the wheel at the inlet and the outlet are respectively 11m/s and 5.5m/s. Draw the velocity triangles at inlet and outlet assuming radial velocity is constant and equal to 5m/s. Flow is radial at exit. Find the power output for a volumetric flow rate of 2๐’Ž๐Ÿ‘ of water per second. (๐Ÿ ๐ŸŽ๐ŸŽ๐ŸŽ. ๐ŸŽ๐ŸŽ ๐ค๐  ๐ฌ ) 8 ๐‘ซ๐’†๐’ˆ๐’“๐’†๐’† ๐’๐’‡ ๐‘น๐’†๐’‚๐’„๐’•๐’Š๐’๐’ (๐‘น) = ๐ŸŽ. ๐Ÿ–; ๐‘ผ๐’•๐’Š๐’๐’Š๐’›๐’‚๐’•๐’Š๐’๐’ ๐‘ญ๐’‚๐’„๐’•๐’๐’“ (๐) = ๐ŸŽ. ๐Ÿ— ; ๐‘ผ๐Ÿ = ๐Ÿ๐Ÿ ๐’Ž ๐’” ; ๐‘ผ๐Ÿ = ๐Ÿ“. ๐Ÿ“ ๐’Ž ๐’” ; ๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐Ÿ = ๐Ÿ“ ๐’Ž ๐’” ; ๐’“๐’‚๐’…๐’Š๐’‚๐’ ๐’๐’–๐’•๐’๐’†๐’• = ๐œถ๐Ÿ = ๐Ÿ—๐ŸŽยฐ; ๐‘ธ = ๐Ÿ ๐’Ž๐Ÿ‘ ๐’” ๐’“๐’‚๐’…๐’Š๐’‚๐’ ๐‘ฐ๐’๐’๐’†๐’• = ๐œถ๐Ÿ = ๐Ÿ—๐ŸŽ; ๐’“๐’‚๐’…๐’Š๐’‚๐’ ๐’๐’–๐’•๐’๐’†๐’• = ๐œถ๐Ÿ = ๐Ÿ—๐ŸŽ โˆด ๐‘ฝ๐’–๐Ÿ = ๐ŸŽ Inlet but for outlet = Method 1 Method 2 ๐‘ท = ๐’Ž(๐‘ผ๐Ÿ ๐Ÿ โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ) ๐‘ท = ๐’Ž(๐‘ผ๐Ÿ ๐Ÿ โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ) (๐) = (๐‘ฝ๐Ÿ ๐Ÿโˆ’๐‘ฝ๐Ÿ ๐Ÿ) (๐‘ฝ๐Ÿ ๐Ÿโˆ’๐‘น ๐‘ฝ๐Ÿ ๐Ÿ) = ๐ŸŽ. ๐Ÿ— = (๐Ÿ“๐Ÿโˆ’๐‘ฝ๐Ÿ ๐Ÿ) (๐Ÿ“๐Ÿโˆ’๐ŸŽ.๐Ÿ– ๐‘ฝ๐Ÿ ๐Ÿ) โ‰ซ ๐‘ฝ๐Ÿ ๐Ÿ = ๐Ÿ–. ๐Ÿ—๐Ÿ๐Ÿ–๐Ÿ“ โ‰ซ ๐‘ฝ๐Ÿ = ๐Ÿ. ๐Ÿ— = ๐‘ฝ๐’‡๐Ÿ ๐‘ฝ๐’‡๐Ÿ = ๐Ÿ. ๐Ÿ— = ๐‘ฝ๐Ÿ assuming radial velocity is constant and equal to 5m/s. ๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’‡๐Ÿ = ๐Ÿ“๐’Ž/๐’” ๐’•๐’‚๐’ ๐œท๐Ÿ = ๐‘ฝ๐Ÿ ๐‘ผ๐Ÿ = ๐Ÿ“ ๐Ÿ๐Ÿ ๐’•๐’‚๐’ ๐œท๐Ÿ = ๐‘ฝ๐Ÿ ๐‘ผ๐Ÿ = ๐Ÿ.๐Ÿ— ๐Ÿ“.๐Ÿ“ ๐’•๐’‚๐’ ๐œท๐Ÿ = ๐‘ฝ๐Ÿ ๐‘ผ๐Ÿ = ๐Ÿ“ ๐Ÿ๐Ÿ ๐’•๐’‚๐’ ๐œท๐Ÿ = ๐‘ฝ๐Ÿ ๐‘ผ๐Ÿ = ๐Ÿ“ ๐Ÿ“.๐Ÿ“ โˆด ๐œท๐Ÿ = ๐Ÿ๐Ÿ’. ๐Ÿ’๐Ÿ’ยฐ โˆด ๐œท๐Ÿ = ๐Ÿ๐Ÿ•. ๐Ÿ–๐ŸŽยฐ โˆด ๐œท๐Ÿ = ๐Ÿ๐Ÿ’. ๐Ÿ’๐Ÿ’ยฐ โˆด ๐œท๐Ÿ = ๐Ÿ’๐Ÿ. ๐Ÿ๐Ÿ•ยฐ ๐‘ท = ๐’Ž(๐‘ผ๐Ÿ ๐Ÿ โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ) ๐‘ท = ๐’Ž(๐Ÿ“. ๐Ÿ“๐Ÿ โˆ’ ๐Ÿ“. ๐Ÿ“ ร— ๐Ÿ. ๐Ÿ— ร— ๐‘ช๐’๐’• ๐Ÿ๐Ÿ•. ๐Ÿ–๐ŸŽ) ๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ(๐Ÿ“. ๐Ÿ“๐Ÿ โˆ’ ๐Ÿ“. ๐Ÿ“ ร— ๐Ÿ. ๐Ÿ— ร— ๐Ÿ. ๐Ÿ–๐Ÿ—) ๐‘ท = ๐’Ž(๐‘ผ๐Ÿ ๐Ÿ โˆ’ ๐‘ผ๐Ÿ . ๐‘ฝ๐’‡๐Ÿ ๐‘ช๐’๐’• ๐œท๐Ÿ) ๐‘ท = ๐’Ž(๐Ÿ“. ๐Ÿ“๐Ÿ โˆ’ ๐Ÿ“. ๐Ÿ“ ร— ๐Ÿ“ ร— ๐‘ช๐’๐’• ๐Ÿ’๐Ÿ. ๐Ÿ๐Ÿ•) ๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ(๐Ÿ“. ๐Ÿ“๐Ÿ โˆ’ ๐Ÿ“. ๐Ÿ“ ร— ๐Ÿ“ ร— ๐Ÿ. ๐Ÿ๐ŸŽ) ๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ(๐Ÿ“. ๐Ÿ“๐Ÿ โˆ’ ๐Ÿ“. ๐Ÿ“ ร— ๐Ÿ. ๐Ÿ— ร— ๐Ÿ. ๐Ÿ–๐Ÿ—) ๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ(๐Ÿ‘๐ŸŽ. ๐Ÿ๐Ÿ“ โˆ’ ๐Ÿ‘๐ŸŽ. ๐Ÿ๐Ÿ“) = ๐ŸŽ ๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ(๐Ÿ“. ๐Ÿ“๐Ÿ โˆ’ ๐Ÿ“. ๐Ÿ“ ร— ๐Ÿ“ ร— ๐Ÿ. ๐Ÿ๐ŸŽ) ๐‘ท = ๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ(๐Ÿ‘๐ŸŽ. ๐Ÿ๐Ÿ“ โˆ’ ๐Ÿ‘๐ŸŽ. ๐Ÿ๐Ÿ“) = ๐ŸŽ Modal Question Paper 02 18ME54 (2015/2016)
  • 15. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 15 4 a) Derive the theoretical head capacity relation in case of centrifugal pump Discuss the effect of blade angle at outlet on head. 8 b) Draw the inlet and outlet triangles for an axial flow compressor for which given (1) Degree of reaction =0.5 (2) inlet blade angle =40โ€™ axial velocity of flow which is constant throughout = 125m/s (4) RPM =6500 (5) Radius = 0.2m. Calculate the power required in kW at an air flow rate = 1.5kg/s. Find fluid angles at inlet and outlet. Blade speed is same at exit and inlet. 8 ๐‘น = ๐ŸŽ. ๐Ÿ“ ๐œท๐Ÿ = ๐Ÿ’๐ŸŽยฐ ๐‘ฝ๐’‡๐Ÿ = ๐‘ฝ๐’‡๐Ÿ = ๐Ÿ๐Ÿ๐Ÿ“๐’Ž/๐’” ๐‘ต = ๐Ÿ”๐Ÿ“๐ŸŽ๐ŸŽ๐’“๐’‘๐’Ž ๐’“ = ๐ŸŽ. ๐Ÿ๐’Ž ๐’”๐’ ๐‘ซ = ๐ŸŽ. ๐Ÿ’๐’Ž ๐‘ท =? ๐’Ž = ๐Ÿ. ๐Ÿ“ ๐’Œ๐’ˆ/๐’” ๐œถ๐Ÿ =? ; ๐œถ๐Ÿ =? ; ๐œท๐Ÿ =? ๐ท(๐‘š๐‘’๐‘Ž๐‘›) = 0.4๐‘š; ๐‘ = 6500๐‘Ÿ๐‘๐‘š โˆด ๐‘ˆ = ๐œ‹๐ท๐‘ 60 = ๐œ‹ ร— 0.4 ร— 6500 60 = 136.13 ๐‘š ๐‘  ๐‘ผ๐Ÿ = ๐‘ผ๐Ÿ = ๐‘ผ = ๐Ÿ๐Ÿ‘๐Ÿ”. ๐Ÿ๐Ÿ‘ ๐’Ž/๐’” ๐’”๐’Š๐’๐œท๐Ÿ = ๐‘ฝ๐’‡๐Ÿ ๐‘ฝ๐’“๐Ÿ โ‰ซ ๐‘ฝ๐’“๐Ÿ = ๐‘ฝ๐’‡๐Ÿ ๐’”๐’Š๐’๐œท๐Ÿ = ๐Ÿ๐Ÿ—๐Ÿ’. ๐Ÿ’๐Ÿ”๐’Ž/๐’” ๐’„๐’๐’”๐œท๐Ÿ = ๐‘ฟ๐Ÿ ๐‘ฝ๐’“๐Ÿ โ‰ซ ๐‘ฟ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’„๐’๐’”๐œท๐Ÿ ๐‘ฟ๐Ÿ = ๐Ÿ๐Ÿ’๐Ÿ–. ๐Ÿ—๐Ÿ”๐’Ž/๐’” ๐‘ฝ๐’–๐Ÿ = ๐‘ผ + ๐‘ฟ๐Ÿ = ๐Ÿ๐Ÿ–๐Ÿ“. ๐ŸŽ๐Ÿ—๐’Ž/๐’” When R = 0.5 (i.e., 50% Reaction axial flow) This implies U1= U2, V1 = Vr2, V2=Vr1 and Vf1 = Vf2. For symmetric Velocity ฮฑ2 = ฮฒ1 and ฮฑ1= ฮฒ2 ๐’•๐’‚๐’๐œถ๐Ÿ = ๐‘ฝ๐’‡๐Ÿ ๐‘ฝ๐’–๐Ÿ โ‰ซ ๐œถ๐Ÿ = ๐’•๐’‚๐’โˆ’๐Ÿ ( ๐‘ฝ๐’‡๐Ÿ ๐‘ฝ๐’–๐Ÿ ) = ๐Ÿ๐Ÿ‘. ๐Ÿ”๐Ÿ•ยฐ ๐’„๐’๐’” ๐œถ๐Ÿ = ๐‘ฝ๐’–๐Ÿ ๐‘ฝ๐Ÿ โ‰ซ ๐‘ฝ๐Ÿ = ๐‘ฝ๐’–๐Ÿ ๐’„๐’๐’” ๐œถ๐Ÿ = ๐Ÿ‘๐Ÿ๐Ÿ. ๐Ÿ๐Ÿ•๐’Ž/๐’” ๐œท๐Ÿ = ๐Ÿ’๐ŸŽยฐ = ๐œถ๐Ÿ ๐œท๐Ÿ = ๐Ÿ๐Ÿ‘. ๐Ÿ”๐Ÿ•ยฐ = ๐œถ๐Ÿ ๐‘ฝ๐Ÿ = ๐‘ฝ๐’“๐Ÿ = ๐Ÿ‘๐Ÿ๐Ÿ. ๐Ÿ๐Ÿ•๐’Ž/๐’” ๐‘ฝ๐Ÿ = ๐‘ฝ๐’“๐Ÿ = ๐Ÿ๐Ÿ—๐Ÿ’. ๐Ÿ’๐Ÿ”๐’Ž/๐’” ๐’„๐’๐’”๐œท๐Ÿ = ๐‘ฟ๐Ÿ ๐‘ฝ๐’“๐Ÿ โ‰ซ ๐‘ฟ๐Ÿ = ๐‘ฝ๐’“๐Ÿ ร— ๐’„๐’๐’”๐œท๐Ÿ = ๐Ÿ๐Ÿ–๐Ÿ“. ๐ŸŽ๐Ÿ—๐’Ž ๐’” ๐‘ฝ๐’–๐Ÿ = ๐‘ฟ๐Ÿ โˆ’ ๐‘ผ = ๐Ÿ๐Ÿ’๐Ÿ–. ๐Ÿ—๐Ÿ”๐’Ž/๐’” ๐‘ท = ๐’Ž. ๐‘ผ(๐‘ฝ๐’–๐Ÿ โˆ’ ๐‘ฝ๐’–๐Ÿ) ๐‘ท = ๐Ÿ. ๐Ÿ“ ร— ๐Ÿ๐Ÿ‘๐Ÿ”. ๐Ÿ๐Ÿ‘(๐Ÿ๐Ÿ–๐Ÿ“.๐ŸŽ๐Ÿ— โˆ’ ๐Ÿ๐Ÿ’๐Ÿ–. ๐Ÿ—๐Ÿ”) โ‰ซ ๐‘ท = ๐Ÿ๐Ÿ•. ๐Ÿ•๐Ÿ—๐’Œ๐‘พ