SlideShare a Scribd company logo
1 of 9
Download to read offline
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 1
Turbo Machines
18ME54
Course Coordinator
Mr. THANMAY J. S
Assistant Professor
Department of Mechanical Engineering
VVIET Mysore
Module 03: Steam Reaction turbine
Course Learning Objectives
Analyze various designs of Reaction turbine and their working principle.
Course Outcomes
Classify, analyze and understand various type of Reaction turbine..
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 2
Contents
Modal 03: Question Number 5 a & 5 b
i. Reaction Turbine (Parsons’s turbine)
ii. Degree of Reaction for Parsons’s turbine
iii. Condition for maximum utilization factor,
iv. Reaction staging.
v. Numerical Problems.
Previous Year Question papers
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 3
Introduction
Classification of Steam Turbine, based on basic working principle
a) Impulse turbine and
b) Reaction turbine
The machine for which the change in static head in the rotor is zero is known impulse machine. In these
machines, the energy transfer in the rotor takes place only by the change in dynamic head of the fluid.
In reaction turbine energy transfer in the rotor takes place by change in static and dynamic head of the
fluid.
In reaction turbine 𝑉𝑟2 > 𝑉𝑟1 and generally 𝑉f1 = 𝑉f2 (i.e. flow velocity is constant)
Reaction Turbine (Example: Parson’s Turbine)
In the case of reaction turbine, the moving blades of a turbine are shaped in such a way that the steam
expands and drops in pressure as it passes through them. As a result of pressure decrease in the moving
blade, a reaction force will be produced. This force will make the blades to rotate.
The combined velocity diagram for an axial flow reaction turbine is as shown in figure below.
From data given in the problem, Vf1=Vf2=Vf.
𝑇ℎ𝑒 𝐸𝑙𝑢𝑒𝑟′
𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑎𝑠: 𝑃 = 𝑚(𝑉𝑢1. 𝑈1 ± 𝑉𝑢2. 𝑈2)
𝑓𝑜𝑟 𝑆𝑡𝑒𝑎𝑚 𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝑈1 = 𝑈2 = 𝑈 ∴ 𝑷 = 𝒎𝑼(𝑽𝒖𝟏 + 𝑽𝒖𝟐)
𝑐𝑜𝑡 𝛽1 =
𝑉𝑢1
𝑉𝑓1
∴ 𝑽𝒖𝟏 = 𝒄𝒐𝒕 𝜷𝟏 × 𝑽𝒇𝟏
𝑆𝑖𝑚𝑖𝑙𝑙𝑎𝑟𝑙𝑦 𝑐𝑜𝑡 𝛽2 =
𝑋2 − 𝑈
𝑉𝑓1
∴ 𝑽𝒖𝟐 = 𝑿𝟐 − 𝑼 = (𝑽𝒖𝟐 + 𝑼) − 𝑼 = 𝒄𝒐𝒕 𝜷𝟐 × 𝑽𝒇𝟐
𝑃 = 𝑚𝑈(𝑉𝑢1 + 𝑉𝑢2) = 𝑚𝑈(𝑉𝑢1 + (𝑋2 − 𝑈)) = 𝑚𝑈(𝑐𝑜𝑡 𝛽1 × 𝑉𝑓1 + 𝑐𝑜𝑡 𝛽2 × 𝑉𝑓2)
𝑷 = 𝒎 𝑼 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟏 + 𝒄𝒐𝒕 𝜷𝟐)𝑎𝑠 𝑽𝒇𝟏 = 𝑽𝒇𝟐 = 𝑽𝒇
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 4
Degree of Reaction for Reaction Turbine (Parson’s Turbine)
𝑹 =
1
2
(𝑼𝟏
𝟐
−𝑼𝟐
𝟐)+(𝑽𝒓𝟐
𝟐
−𝑽𝒓𝟏
𝟐)
1
2
(𝑽𝟏
𝟐
−𝑽𝟐
𝟐)+(𝑼𝟏
𝟐
−𝑼𝟐
𝟐)+(𝑽𝒓𝟏
𝟐
−𝑽𝒓𝟐
𝟐)
=
1
2
(𝑽𝒓𝟐
𝟐
−𝑽𝒓𝟏
𝟐)
1
2
(𝑽𝟏
𝟐
−𝑽𝟐
𝟐)+(𝑽𝒓𝟏
𝟐
−𝑽𝒓𝟐
𝟐)
𝑹 =
1
2
(𝑽𝒓𝟐
𝟐
− 𝑽𝒓𝟏
𝟐
)
𝑃
=
(𝑽𝒓𝟐
𝟐
− 𝑽𝒓𝟏
𝟐
)
𝟐 𝑷
𝑆𝑖𝑛 𝛽1 =
𝑉𝑓
𝑉𝑟1
∴ 𝑽𝒓𝟏 =
𝑉𝑓
𝑆𝑖𝑛 𝛽1
= 𝑽𝒇 𝒄𝒐𝒔𝒆𝒄 𝜷𝟏 𝑏𝑒𝑐𝑎𝑢𝑠𝑒
1
𝑆𝑖𝑛 𝛽1
= 𝑐𝑜𝑠𝑒𝑐 𝛽1
𝑆𝑖𝑛 𝛽2 =
𝑉𝑓
𝑉𝑟2
∴ 𝑽𝒓𝟐 =
𝑉𝑓
𝑆𝑖𝑛 𝛽2
= 𝑽𝒇 𝒄𝒐𝒔𝒆𝒄 𝜷𝟐 𝑏𝑒𝑐𝑎𝑢𝑠𝑒
1
𝑆𝑖𝑛 𝛽2
= 𝑐𝑜𝑠𝑒𝑐 𝛽2
(𝑉𝑟1
2
− 𝑉𝑟2
2
) = 𝑉𝑓2 (𝑐𝑜𝑠𝑒𝑐 𝛽12
− 𝑐𝑜𝑠𝑒𝑐 𝛽22)
𝒃𝒚 𝑻𝒓𝒊𝒈𝒏𝒐𝒎𝒆𝒕𝒓𝒚 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏,𝒄𝒐𝒔𝒆𝒄 𝟐
𝜽 = 𝟏 + 𝒄𝒐𝒕 𝟐
𝜽
∴ (𝑽𝒓𝟏
𝟐
− 𝑽𝒓𝟐
𝟐
) = 𝑽𝒇𝟐(𝟏 + 𝒄𝒐𝒕 𝜷𝟏𝟐
− 𝟏 + 𝒄𝒐𝒕 𝜷𝟐𝟐)
(𝑽𝒓𝟏
𝟐
− 𝑽𝒓𝟐
𝟐
) = 𝑽𝒇𝟐(𝒄𝒐𝒕 𝜷𝟏𝟐
− 𝒄𝒐𝒕 𝜷𝟐𝟐)
𝑹 =
(𝑽𝒓𝟐
𝟐
−𝑽𝒓𝟏
𝟐)
𝟐 𝑷
=
𝑽𝒇𝟐(𝒄𝒐𝒕 𝜷𝟐𝟐−𝒄𝒐𝒕 𝜷𝟏𝟐)
𝟐 𝑼 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟏+𝒄𝒐𝒕 𝜷𝟐)
=
𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐𝟐−𝒄𝒐𝒕 𝜷𝟏𝟐)
𝟐 𝑼 (𝒄𝒐𝒕 𝜷𝟏+𝒄𝒐𝒕 𝜷𝟐)
𝑹 =
𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐𝟐−𝒄𝒐𝒕 𝜷𝟏𝟐)
𝟐 𝑼 (𝒄𝒐𝒕 𝜷𝟏+𝒄𝒐𝒕 𝜷𝟐)
=
𝑽𝒇(𝒂𝟐−𝒃𝟐)
𝟐 𝑼 (𝒃+𝒂)
=
𝑽𝒇(𝒂−𝒃)(𝒂+𝒃)
𝟐 𝑼 (𝒃+𝒂)
=
𝑽𝒇(𝒂−𝒃)
𝟐 𝑼
𝑹 =
𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐 − 𝒄𝒐𝒕 𝜷𝟏)
𝟐 𝑼
𝐹𝑜𝑟 𝑎𝑛 𝑎𝑥𝑖𝑎𝑙 𝑓𝑙𝑜𝑤 50% 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑢𝑟𝑏𝑖𝑛𝑒, 𝑅 = 0.5
𝑹 =
𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐−𝒄𝒐𝒕 𝜷𝟏)
𝟐 𝑼
=
𝟏
𝟐
≫ 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐 − 𝒄𝒐𝒕 𝜷𝟏) =
𝟐 𝑼
𝟐
∴ 𝑼 = 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐 − 𝒄𝒐𝒕 𝜷𝟏)
𝑨𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒆 𝒎𝒆𝒕𝒉𝒐𝒅: 𝑭𝒓𝒐𝒎 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒅𝒊𝒂𝒈𝒓𝒂𝒎,
𝑼 = 𝑽𝒖𝟏 − 𝑿𝟏 = (𝑽𝒇𝟏 𝒄𝒐𝒕𝜶𝟏 − 𝑽𝒇𝟏 𝒄𝒐𝒕𝜷𝟏)
𝐹𝑜𝑟 𝑎𝑛 𝑎𝑥𝑖𝑎𝑙 𝑓𝑙𝑜𝑤 50% 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑢𝑟𝑏𝑖𝑛𝑒,
𝛼1 = 𝛽2 𝑎𝑛𝑑 𝛼2 = 𝛽1 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝑉1 = 𝑉𝑟2 𝑎𝑛𝑑 𝑉2 = 𝑉𝑟1
∴ 𝑖𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑑𝑖𝑟𝑐𝑡𝑙𝑦 𝑝𝑟𝑜𝑣𝑒𝑛 𝑡ℎ𝑎𝑡
𝑼 = 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐 − 𝒄𝒐𝒕 𝜷𝟏)
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 5
𝑭𝒐𝒓 𝒂 𝟓𝟎% 𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏 𝒔𝒕𝒆𝒂𝒎 𝒕𝒖𝒓𝒃𝒊𝒏𝒆,𝒔𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 𝜶𝟏 = 𝜷𝟐 𝒂𝒏𝒅 𝜶𝟐 = 𝜷𝟏
𝑅 =
𝑉𝑓(𝑐𝑜𝑡 𝛽2−𝑐𝑜𝑡 𝛽1)
2 𝑈
=
1
2
(
𝑉𝑓
𝑈
) (𝑐𝑜𝑡 𝛽2 − 𝑐𝑜𝑡 𝛽1)
𝑅 =
1
2
(
𝑉𝑓
𝑈
) (𝑐𝑜𝑡 𝛽2 − 𝑐𝑜𝑡 𝛽1) 𝑎𝑑𝑑 𝑎𝑛𝑑 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 𝒄𝒐𝒕 𝜶𝟏
𝑹 =
𝟏
𝟐
(
𝑽𝒇
𝑼
) (𝒄𝒐𝒕 𝜷𝟐 − 𝒄𝒐𝒕 𝜶𝟏) + (𝒄𝒐𝒕 𝜶𝟏 − 𝒄𝒐𝒕 𝜷𝟏)
𝑤𝑒 𝑐𝑎𝑛 𝑑𝑒𝑟𝑖𝑣𝑒 𝑼 = 𝑽𝒖𝟏 − 𝑿𝟏 = (𝑉𝑓1 𝑐𝑜𝑡𝛼1 − 𝑉𝑓1 𝑐𝑜𝑡𝛽1) = 𝑉𝑓( 𝑐𝑜𝑡𝛼1 − 𝑐𝑜𝑡𝛽1)
𝑜𝑟 ( 𝒄𝒐𝒕𝜶𝟏 − 𝒄𝒐𝒕𝜷𝟏) =
𝑼
𝑽𝒇
𝑇ℎ𝑒𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑅 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠
𝑅 =
1
2
(
𝑉𝑓
𝑈
) (𝑐𝑜𝑡 𝛽2 − 𝑐𝑜𝑡 𝛼1) + (𝑐𝑜𝑡 𝛼1 − 𝑐𝑜𝑡 𝛽1) =
1
2
(
𝑉𝑓
𝑈
) (𝑐𝑜𝑡 𝛽2 − 𝑐𝑜𝑡 𝛼1 + (
𝑈
𝑉𝑓
))
𝑅 =
1
2
(
𝑉𝑓
𝑈
)𝑐𝑜𝑡 𝛽2 −
1
2
(
𝑉𝑓
𝑈
)𝑐𝑜𝑡 𝛼1 +
1
2
(
𝑉𝑓
𝑈
)(
𝑈
𝑉𝑓
) =
𝟏
𝟐
(
𝑽𝒇
𝑼
) 𝒄𝒐𝒕 𝜷𝟐 −
𝟏
𝟐
(
𝑽𝒇
𝑼
) 𝒄𝒐𝒕 𝜶𝟏 +
𝟏
𝟐
𝑹 =
𝟏
𝟐
(
𝑽𝒇
𝑼
) 𝒄𝒐𝒕 𝜷𝟐 −
𝟏
𝟐
(
𝑽𝒇
𝑼
)𝒄𝒐𝒕 𝜶𝟏 +
𝟏
𝟐
= 𝟎. 𝟓
𝑹 =
𝟏
𝟐
(
𝑽𝒇
𝑼
)𝒄𝒐𝒕 𝜷𝟐 −
𝟏
𝟐
(
𝑽𝒇
𝑼
) 𝒄𝒐𝒕 𝜶𝟏 = 𝟎.𝟓 −
𝟏
𝟐
= 𝟎
𝟏
𝟐
(
𝑽𝒇
𝑼
) (𝒄𝒐𝒕 𝜷𝟐 − 𝒄𝒐𝒕 𝜶𝟏) = 𝟎 ≫ (𝑐𝑜𝑡 𝛽2 − 𝑐𝑜𝑡 𝛼1) = 0 ≫ cot 𝛽2 = cot 𝛼1 ≫
∴ 𝜶𝟏 = 𝜷𝟐
𝑠𝑖𝑚𝑖𝑙𝑙𝑎𝑟𝑙𝑦 𝑤𝑒 𝑐𝑎𝑛 𝑑𝑒𝑟𝑖𝑣𝑒 𝑼 = 𝑿𝟐 − 𝑽𝒖𝟐 = (𝑉𝑓 cot 𝛽2 − 𝑉𝑓 𝑐𝑜𝑡 𝛼2)
∴ 𝑼 = 𝑽𝒇(𝐜𝐨𝐭 𝜷𝟐 − 𝒄𝒐𝒕 𝜶𝟐)
𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑼 = 𝑽𝒖𝟏 − 𝑿𝟏 = (𝑉𝑓1 𝑐𝑜𝑡𝛼1 − 𝑉𝑓1 𝑐𝑜𝑡𝛽1)
𝑖. 𝑒 𝑼 = 𝑽𝒇( 𝒄𝒐𝒕𝜶𝟏 − 𝒄𝒐𝒕𝜷𝟏)
∴ 𝑈 = 𝑉𝑓(cot 𝛽2 − 𝑐𝑜𝑡 𝛼2) = 𝑉𝑓( 𝑐𝑜𝑡𝛼1 − 𝑐𝑜𝑡𝛽1)
𝐜𝐨𝐭 𝜷𝟐 − 𝒄𝒐𝒕 𝜶𝟐 = 𝒄𝒐𝒕𝜶𝟏 − 𝒄𝒐𝒕𝜷𝟏
𝑤𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡 𝛼1 = 𝛽2 𝑠𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 cot 𝛽2 = 𝑐𝑜𝑡 𝛼1
∴ cot 𝛼1 − 𝑐𝑜𝑡 𝛼2 = 𝑐𝑜𝑡𝛼1 − 𝑐𝑜𝑡𝛽1
∴ 𝜶𝟐 = 𝜷𝟏
sin 𝛼2 =
𝑉𝑓
𝑉2
and 𝑠𝑖𝑛 𝛽1 =
𝑉𝑓
𝑉𝑟1
∴ Vf = V2 sin 𝛼2 = 𝑉𝑟1 𝑠𝑖𝑛 𝛽1 𝑏𝑢𝑡 𝛼2 = 𝛽1
∴ 𝐕𝟐 = 𝑽𝒓𝟏 𝑠𝑖𝑚𝑖𝑙𝑙𝑎𝑟𝑙𝑦 𝑽𝟏 = 𝑽𝒓𝟐
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 6
Condition for maximum utilization factor,
𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) =
𝟏
𝟐
[(𝑽𝟏
𝟐
− 𝑽𝟐
𝟐
) + (𝑼𝟏
𝟐
− 𝑼𝟐
𝟐
) + (𝑽𝒓𝟏
𝟐
− 𝑽𝒓𝟐
𝟐
)]
𝟏
𝟐
[(𝑽𝟏
𝟐
− 𝑽𝟐
𝟐
) + (𝑼𝟏
𝟐
− 𝑼𝟐
𝟐
) + (𝑽𝒓𝟏
𝟐
− 𝑽𝒓𝟐
𝟐
)] +
𝟏
𝟐
(𝑽𝟐
𝟐
)
𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) =
𝟏
𝟐
[(𝑽𝟏
𝟐
− 𝑽𝟐
𝟐
) + (𝑽𝒓𝟏
𝟐
− 𝑽𝒓𝟐
𝟐
)]
𝟏
𝟐
[(𝑽𝟏
𝟐
− 𝑽𝟐
𝟐
) + (𝑽𝒓𝟏
𝟐
− 𝑽𝒓𝟐
𝟐
)] +
𝟏
𝟐
(𝑽𝟐
𝟐
)
∴ 𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) =
𝑷
𝑷 +
𝟏
𝟐
(𝑽𝟐
𝟐
)
Reaction staging
Reaction staging the expansion of steam and enthalpy drop occurs both in fixed and moving blades.
Due to the effect of continuous expansion during flow over the moving blades, the relative velocity of
steam increases i.e., Vr2>Vr1.
Parsons stages of steam turbines have a degree of reaction (R) equal to 0.5. One stator blade-ring
followed by a rotor blade-ring together make up the one stage. The blades are designed so that the
passages between the blades act like nozzles in both the stator and rotor. The expansion of steam takes
place in both the rings.
The areas of flow have to be increased continuously to accommodate the increased volume flow rates.
The velocity triangles at the inlet and outlet of every rotor blade ring become symmetrical. The usual
practice is to have the same geometry (α1, α2, β1, β2) of the blades with continuously increasing heights.
The same set of velocity triangles and analysis hold good for a few of the rotor rings in succession.
When the increase in the height of blades becomes limited after a few rings, the mean diameter of rotor
rings can be increased so that another set of velocity triangles and analysis can hold good for another
series of rotor rings.
For Parson’s (axial flow 50% reaction) turbine, α1=β2 and α2=β1 and also V1=Vr2 and V2=Vr1, then
the velocity triangles are symmetric.
Work done or Power developed is:
𝑷 = 𝑼(∆𝑽𝒖) = 𝑈(𝑉𝑢1 + 𝑉𝑢2) = 𝑼(𝑽𝒖𝟏 + 𝑿𝟐 − 𝑼)
𝑽𝒖𝟏 = 𝑽𝟏 𝒄𝒐𝒔 𝜶𝟏
𝑋2 − 𝑈 = 𝑉𝑟2 𝑐𝑜𝑠 𝛽2 − 𝑈
𝑏𝑢𝑡 𝜶𝟏 = 𝜷𝟐 𝒂𝒏𝒅 𝑽𝟏 = 𝑽𝒓𝟐
∴ 𝑿𝟐 − 𝑼 = 𝑽𝟏 𝒄𝒐𝒔 𝜶𝟏 − 𝑼
∴ 𝑃 = 𝑈(𝑉𝑢1 + 𝑋2 − 𝑈) = 𝑈(𝑉1 𝑐𝑜𝑠 𝛼1 + 𝑉1 𝑐𝑜𝑠 𝛼1 − 𝑈)
𝑷 = 𝟐𝑼𝑽𝟏 𝒄𝒐𝒔 𝜶𝟏 − 𝑼𝟐
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 7
𝑷 = 𝟐𝑼𝑽𝟏 𝒄𝒐𝒔 𝜶𝟏 − 𝑼𝟐
𝑃 =
𝑉12
𝑉12
(2𝑈𝑉1 𝑐𝑜𝑠 𝛼1 − 𝑈2) = 𝑉12
(
2𝑈𝑉1 𝑐𝑜𝑠 𝛼1
𝑉12
−
𝑈2
𝑉12
) = 𝑉12(2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2)
𝑃 = 𝑉12(2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2) 𝑤ℎ𝑒𝑟𝑒 𝜑 =
𝑈
𝑉1
𝑤𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡 𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 =
1
2
[(𝑉1
2
) − (𝑉𝑟1
2
− 𝑉𝑟2
2
)]
𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 =
1
2
(𝑉1
2
) −
1
2
(𝑉𝑟1
2
) +
1
2
(𝑉𝑟2
2
) 𝑏𝑢𝑡 𝑉1 = 𝑉𝑟2
∴ 𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 =
1
2
(𝑉1
2
) −
1
2
(𝑉𝑟1
2
) +
1
2
(𝑉1
2
) ≫ 𝑉1
2
−
1
2
(𝑉𝑟1
2
)
𝑏𝑦 𝐶𝑜𝑠𝑖𝑛𝑒 𝑟𝑢𝑙𝑒 𝑉𝑟1
2
= 𝑉1
2
+ 𝑈2
− 2𝑈𝑉1 𝑐𝑜𝑠 𝛼1
𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑉1
2
−
1
2
(𝑉1
2
+ 𝑈2
− 2𝑈𝑉1 𝑐𝑜𝑠 𝛼1)
𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑉1
2
−
1
2
𝑉1
2
−
1
2
𝑈2
+
1
2
2𝑈𝑉1 𝑐𝑜𝑠 𝛼1
𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 =
1
2
𝑉1
2
−
1
2
𝑈2
+
1
2
2𝑈𝑉1 𝑐𝑜𝑠 𝛼1 ≫
1
2
[𝑉1
2
− 𝑈2
+ 2𝑈𝑉1 𝑐𝑜𝑠 𝛼1]
𝑡𝑎𝑘𝑖𝑛𝑔 𝑉1
2
𝑐𝑜𝑚𝑚𝑜𝑛 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 =
1
2
𝑉1
2
[1 −
𝑈2
𝑉1
2 +
2𝑈𝑉1
𝑉1
2 𝑐𝑜𝑠 𝛼1]
𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 =
1
2
𝑉1
2
[1 − 𝜑2
+ 2𝜑 𝑐𝑜𝑠 𝛼1]
𝑜𝑟 𝑷𝒂𝒗𝒊𝒍𝒂𝒃𝒍𝒆 =
𝑽𝟏
𝟐
𝟐
[𝟏 + 𝟐𝝋 𝒄𝒐𝒔 𝜶𝟏 − 𝝋𝟐]
𝜼𝒃 =
𝑷
𝑷𝒂𝒗𝒊𝒍𝒂𝒃𝒍𝒆
=
𝑉12(2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2)
𝑉1
2
2
[1 + 2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2]
𝜂𝑏 =
2(2𝜑 𝑐𝑜𝑠 𝛼1−𝜑2)
[1+2𝜑 𝑐𝑜𝑠 𝛼1−𝜑2]
≫
(4𝜑 𝑐𝑜𝑠 𝛼1−2𝜑2+2−2)
[1+2𝜑 𝑐𝑜𝑠 𝛼1−𝜑2]
≫
2(1+2𝜑 𝑐𝑜𝑠 𝛼1−𝜑2)−2
[1+2𝜑 𝑐𝑜𝑠 𝛼1−𝜑2]
𝜼𝒃 =
2(1 + 2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2) − 2
[1 + 2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2]
=
𝟐(𝟐𝝋 𝒄𝒐𝒔 𝜶𝟏 − 𝝋𝟐)
[𝟏 + 𝟐𝝋 𝒄𝒐𝒔 𝜶𝟏 − 𝝋𝟐]
𝜂𝑏 = 2 −
2
[1+2𝜑 𝑐𝑜𝑠 𝛼1−𝜑2]
≫ 𝟐 − 𝟐[𝟏 + 𝟐𝝋 𝒄𝒐𝒔 𝜶𝟏 − 𝝋𝟐]
−𝟏
𝐹𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑙𝑎𝑑𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
𝒅𝜼𝒃
𝒅𝝋
= 𝟎
𝑑
𝑑𝜑
(2 − 2[1 + 2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2]−1) = 0
2[1 + 2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2]−2[2𝜑 𝑐𝑜𝑠 𝛼1 − 2𝜑] = 0
𝑖𝑓 [𝟐𝝋 𝒄𝒐𝒔 𝜶𝟏 − 𝟐𝝋] = 𝟎 𝑡ℎ𝑒𝑛 𝝋 = 𝒄𝒐𝒔 𝜶𝟏
𝜂𝑏 =
2(2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2)
[1 + 2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2]
=
2(2 𝑐𝑜𝑠 𝛼12
− 𝑐𝑜𝑠 𝛼12)
[1 + 2𝑐𝑜𝑠 𝛼12 − 𝑐𝑜𝑠 𝛼12]
𝜼𝒃 =
𝟐 𝒄𝒐𝒔 𝜶𝟏𝟐
𝟏 + 𝒄𝒐𝒔 𝜶𝟏𝟐
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 8
Previous Year Question Papers
VTU Modal Question Paper 01
6 c)
In Parson turbine running at 1500 rpm, the available enthalpy drop for the expansion is 63
kJ/kg. If the mean diameter of the rotor is 100 cm, find the number of moving rows required.
Assume the efficiency of the stage is 0.8, blade outlet angle is 20° and speed ratio 0.7.
10
𝑵 = 𝟏𝟓𝟎𝟎 𝒓𝒑𝒎,𝑫 = 𝟏𝒎,
𝜼𝟎 = 𝜼𝑺 × 𝜼𝒃
𝜼𝑺 = 𝟎.𝟖,
𝜷𝟐 = 𝟐𝟎°
𝑩𝒍𝒂𝒅𝒆 𝑺𝒑𝒆𝒆𝒅 𝑹𝒂𝒕𝒊𝒐 =
𝑼
𝑽𝟏
= 𝟎. 𝟕
𝜶𝟏 = 𝜷𝟐 𝒂𝒏𝒅 𝜶𝟐 = 𝜷𝟏
𝑽𝟏 = 𝑽𝒓𝟐 𝒂𝒏𝒅 𝐕𝟐 = 𝑽𝒓𝟏
𝑼 =
𝝅𝑫𝑵
𝟔𝟎
=
𝝅 × 𝟏 × 𝟏𝟓𝟎𝟎
𝟔𝟎
=∴ 𝑼 = 𝟕𝟖.𝟓𝟑 𝒎/𝒔
𝑼
𝑽𝟏
= 𝟎.𝟕 ∴ 𝑽𝟏 = 𝟏𝟏𝟐.𝟏𝟖 𝒎/𝒔
𝑷 = 𝑼(∆𝑽𝒖)
(∆𝑽𝒖) = 𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 + (𝑽𝒓𝟐 𝒄𝒐𝒔𝜷𝟐 − 𝑼)
(∆𝑽𝒖) = 𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 + (𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 − 𝑼)
(∆𝑽𝒖) = 𝟐𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 − 𝑼
𝑷 = 𝑼(∆𝑽𝒖) = 𝑼(𝟐𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 − 𝑼)
𝑷 = 𝟕𝟖.𝟓𝟑(𝟐 × 𝟏𝟏𝟐.𝟏𝟖 𝒄𝒐𝒔𝟐𝟎 − 𝟕𝟖.𝟓𝟑)
𝜼𝑺 =
𝑷
∆𝒉°𝑺𝒕𝒂𝒈𝒆
= 𝟎. 𝟖 ∴ ∆𝒉° =
𝑷
𝟎.𝟖
= 𝟏𝟐.𝟗𝟖 𝒌𝑱/𝒌𝒈
𝑷 = 𝟏𝟎𝟑𝟗𝟎.𝟑𝟏𝟖𝟏 𝑾 = 𝟏𝟎.𝟑𝟖 𝒌𝑾 ∆𝒉°𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆
∆𝒉°𝑺𝒕𝒂𝒈𝒆
=
𝟔𝟑
𝟏𝟐.𝟗𝟖
= 𝟒.𝟖
≈ 𝟓 𝒓𝒐𝒘𝒔 𝒐𝒇 𝒎𝒐𝒗𝒊𝒏𝒈 𝒃𝒍𝒂𝒅𝒆𝒔 𝒂𝒓𝒆 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅
VTU Question Paper Aug./Sept. 2020
6 b)
The following particulars refer to a Parson’s reaction turbine : Mean diameter of the blade
ring = 90 cm, Speed = 3000 rpm, Inlet absolute velocity = 350 m/s, Blade outlet angle = 20°,
Steam flow rate = 7.2 kg/s. Calculate (i) Blade inlet angle (ii) Tangential force (iii) Power
developed.
10
𝑵 = 𝟑𝟎𝟎𝟎 𝒓𝒑𝒎,𝑫 = 𝟎.𝟗𝒎,
𝑽𝟏 = 𝑽𝒓𝟐 = 𝟑𝟓𝟎 𝒎/𝒔
𝒎 = 𝟕. 𝟖
𝜷𝟐 = 𝜶𝟏 = 𝟐𝟎°
𝑵𝒐𝒕𝒆 𝑷𝒂𝒓𝒔𝒐𝒏 𝑻𝒖𝒓𝒃𝒊𝒏𝒆
𝜶𝟏 = 𝜷𝟐 𝒂𝒏𝒅 𝜶𝟐 = 𝜷𝟏
𝑽𝟏 = 𝑽𝒓𝟐 𝒂𝒏𝒅 𝐕𝟐 = 𝑽𝒓𝟏
𝑼 =
𝝅𝑫𝑵
𝟔𝟎
=
𝝅 × 𝟎. 𝟗 × 𝟑𝟎𝟎𝟎
𝟔𝟎
=∴ 𝑼 = 𝟏𝟒𝟏.𝟑𝟕 𝒎/𝒔 sin 𝛼1 =
𝑉𝑓1
𝑉1
≫ 𝑉𝑓1 = 𝑉1 × 𝑠𝑖𝑛𝛼1 = 119.70 𝑚/𝑠
cos 𝛽2 =
𝑋2
𝑉𝑟2
≫ 𝑋2 = 𝑉𝑟2 × cos 𝛽2 = 328.89 𝑚/𝑠 cos 𝛼1 =
𝑉𝑢1
𝑉1
≫ 𝑉𝑢1 = 𝑉1 × 𝑐𝑜𝑠𝛼1 = 328.89 𝑚/𝑠
tan 𝛽1 =
𝑉𝑓1
𝑉𝑢1 − 𝑈
≫ 𝛽1 = 𝑡𝑎𝑛−1
(
𝑉𝑓1
𝑉𝑢1 − 𝑈
) 𝛽1 = 𝑡𝑎𝑛−1
(
119.70
328.89 − 141.37
) = 32.55° = 𝛼2
𝑉𝑢2 = 𝑋2 − 𝑈 = 328.89 − 141.37 = 187.53 𝑚/𝑠 𝑷 = 𝑼(∆𝑽𝒖) = 𝑼(𝟐𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 − 𝑼) = 𝟕𝟑𝟎𝟎𝟓.𝟓𝟔 𝑾
𝑷 = 𝒎 × 𝟕𝟑𝟎𝟎𝟓.𝟓𝟔 𝑾 = 𝟕𝟑.𝟎 𝒌𝑾, 𝑼 = 𝟏𝟒𝟏.𝟑𝟕 𝒎/𝒔,𝜷𝟏 = 𝟑𝟐.𝟓𝟓°
Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 9
VTU Question Paper Dec. 2019/Jan. 2020
6 b)
In a Parson’s turbine, the axial velocity of flow of steam is 0.5 times the mean blade speed.
The outlet angle of the blade is 20° diameter of the blade ring is 1.3m and rotational speed
3000rpm. Determine inlet blade angles, power developed for steam flow of 65kg/sec and
isentropic enthalpy drop, if the stage efficiency is 80%.
10
𝑽𝒇 = 𝟎. 𝟓 𝑼
𝑫 = 𝟏.𝟑 𝒎
𝜷𝟐 = 𝜶𝟏 = 𝟐𝟎°
𝑵 = 𝟑𝟎𝟎𝟎 𝒓𝒑𝒎
𝒎 = 𝟔𝟓 𝒌𝒈/𝒔
∆𝒉°𝑺𝒕𝒂𝒈𝒆 =?
𝜼𝑺 = 𝟎.𝟖𝟎
𝑵𝒐𝒕𝒆 𝑷𝒂𝒓𝒔𝒐𝒏 𝑻𝒖𝒓𝒃𝒊𝒏𝒆
𝜶𝟏 = 𝜷𝟐 𝒂𝒏𝒅 𝜶𝟐 = 𝜷𝟏
𝑽𝟏 = 𝑽𝒓𝟐 𝒂𝒏𝒅 𝐕𝟐 = 𝑽𝒓𝟏
𝑼 =
𝝅𝑫𝑵
𝟔𝟎
=
𝝅 × 𝟏. 𝟑 × 𝟑𝟎𝟎𝟎
𝟔𝟎
=∴ 𝑼 = 𝟐𝟎𝟒.𝟐𝟎 𝒎/𝒔 sin 𝛼1 =
𝑉𝑓
𝑉1
=
0.5 𝑈
𝑉1
≫ 𝑉1 =
0.5𝑈
𝑠𝑖𝑛𝛼1
= 298.52 𝑚/𝑠
cos 𝛼1 =
𝑉𝑢1
𝑉1
≫ 𝑉𝑢1 = 𝑉1 × 𝑐𝑜𝑠𝛼1 = 280.51 𝑚/𝑠
tan 𝛽1 =
𝑉𝑓
𝑉𝑢1 − 𝑈
≫ 𝛽1 = 𝑡𝑎𝑛−1
(
0.5𝑈
𝑉𝑢1 − 𝑈
) = 53°
𝑐𝑜𝑠𝛽1 =
𝑋1
𝑉𝑟1
≫ 𝑉𝑟1 =
𝑉𝑢1 − 𝑈
𝑐𝑜𝑠𝛽1
≫ 126.81 𝑚/𝑠
𝑉2 = 𝑉𝑟1 = 126.81 𝑚/𝑠
cos 𝛼2 =
𝑉𝑢2
𝑉2
≫ 𝑉𝑢2 = 𝑉2 × cos 𝛼2 = 76.31 𝑚/𝑠 𝜼𝑺 =
𝑷
∆𝒉°𝑺𝒕𝒂𝒈𝒆
= 𝟎.𝟖 ≫ ∆𝒉°𝑺𝒕𝒂𝒈𝒆 =
𝑷
𝜼𝑺
∆𝒉°𝑺𝒕𝒂𝒈𝒆 = 𝟗𝟏.𝟎𝟖 𝒌𝑱/𝒌𝒈
𝑷 = 𝑼(∆𝑽𝒖) = 𝑼(𝟐𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 − 𝑼) = 𝟕𝟐𝟖𝟔𝟓.𝟓𝟏 𝑾 𝑷 = 𝒎 × 𝟕𝟐𝟖𝟔𝟓.𝟓𝟏 𝑾 == 𝟒𝟕𝟑𝟔.𝟐𝟓 𝒌𝑾
Other Relevant Questions & Problems:
 A Parson's turbine is running at 1200 rpm. The mean rotor diameter is 1m.
Blade outlet angle is 23°, speed ratio is 0.75. Stage efficiency is 0.8.
Find enthalpy drop in this stage VTU Question Paper Dec. Dec.2018/Jan. 2019





More Related Content

What's hot

18 me54 turbo machines module 01 question no 2a & 2b
18 me54 turbo machines module 01 question no 2a & 2b18 me54 turbo machines module 01 question no 2a & 2b
18 me54 turbo machines module 01 question no 2a & 2bTHANMAY JS
 
18 me54 turbo machines module 02 question no 4a & 4b
18 me54 turbo machines module 02 question no 4a & 4b18 me54 turbo machines module 02 question no 4a & 4b
18 me54 turbo machines module 02 question no 4a & 4bTHANMAY JS
 
1 static failure theories ductile r1
1 static failure theories ductile r11 static failure theories ductile r1
1 static failure theories ductile r1Himanshu Keshri
 
KoM ppt unit1 pvpsit 2015 Basic Mechanisms
KoM ppt unit1 pvpsit 2015  Basic MechanismsKoM ppt unit1 pvpsit 2015  Basic Mechanisms
KoM ppt unit1 pvpsit 2015 Basic Mechanismskishorereddy_btech
 
INTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERS
INTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERSINTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERS
INTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERSPEC University Chandigarh
 
Bearing and Lubrication
Bearing and LubricationBearing and Lubrication
Bearing and LubricationEko Kiswanto
 
i c engines efficiencies
i c engines efficienciesi c engines efficiencies
i c engines efficienciesmp poonia
 
Dynamics of Machines - Unit III - Longitudinal Vibration
Dynamics of Machines - Unit III - Longitudinal VibrationDynamics of Machines - Unit III - Longitudinal Vibration
Dynamics of Machines - Unit III - Longitudinal VibrationDr.S.SURESH
 
design of Brakes system
design of Brakes  systemdesign of Brakes  system
design of Brakes systemashok184924
 
mechanisms of machines.ppt
mechanisms of machines.pptmechanisms of machines.ppt
mechanisms of machines.pptAnas805061
 
Chapter 1 introduction to mechanical vibration
Chapter 1 introduction to mechanical vibrationChapter 1 introduction to mechanical vibration
Chapter 1 introduction to mechanical vibrationBahr Alyafei
 
Mechanical Vibrations all slides
Mechanical Vibrations all slidesMechanical Vibrations all slides
Mechanical Vibrations all slidesEbrahim Hanash
 
single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations KESHAV
 
Motor selection
Motor selectionMotor selection
Motor selectionMusa Sabri
 
Unit IV Reciprocating pump with air vessel
Unit IV  Reciprocating pump with air vesselUnit IV  Reciprocating pump with air vessel
Unit IV Reciprocating pump with air vesselAsha A
 

What's hot (20)

18 me54 turbo machines module 01 question no 2a & 2b
18 me54 turbo machines module 01 question no 2a & 2b18 me54 turbo machines module 01 question no 2a & 2b
18 me54 turbo machines module 01 question no 2a & 2b
 
Theories of Failure
Theories of FailureTheories of Failure
Theories of Failure
 
18 me54 turbo machines module 02 question no 4a & 4b
18 me54 turbo machines module 02 question no 4a & 4b18 me54 turbo machines module 02 question no 4a & 4b
18 me54 turbo machines module 02 question no 4a & 4b
 
1 static failure theories ductile r1
1 static failure theories ductile r11 static failure theories ductile r1
1 static failure theories ductile r1
 
KoM ppt unit1 pvpsit 2015 Basic Mechanisms
KoM ppt unit1 pvpsit 2015  Basic MechanismsKoM ppt unit1 pvpsit 2015  Basic Mechanisms
KoM ppt unit1 pvpsit 2015 Basic Mechanisms
 
RotorDynamics.pptx
RotorDynamics.pptxRotorDynamics.pptx
RotorDynamics.pptx
 
INTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERS
INTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERSINTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERS
INTERNAL COMBUSTION ENGINE PERFORMANCE PARAMETERS
 
Flywheel
Flywheel  Flywheel
Flywheel
 
Bearing and Lubrication
Bearing and LubricationBearing and Lubrication
Bearing and Lubrication
 
i c engines efficiencies
i c engines efficienciesi c engines efficiencies
i c engines efficiencies
 
Dynamics of Machines - Unit III - Longitudinal Vibration
Dynamics of Machines - Unit III - Longitudinal VibrationDynamics of Machines - Unit III - Longitudinal Vibration
Dynamics of Machines - Unit III - Longitudinal Vibration
 
design of Brakes system
design of Brakes  systemdesign of Brakes  system
design of Brakes system
 
mechanisms of machines.ppt
mechanisms of machines.pptmechanisms of machines.ppt
mechanisms of machines.ppt
 
Chapter 1 introduction to mechanical vibration
Chapter 1 introduction to mechanical vibrationChapter 1 introduction to mechanical vibration
Chapter 1 introduction to mechanical vibration
 
Mechanical Vibrations all slides
Mechanical Vibrations all slidesMechanical Vibrations all slides
Mechanical Vibrations all slides
 
single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations single degree of freedom systems forced vibrations
single degree of freedom systems forced vibrations
 
Dynamics of Machinery Unit III
Dynamics of Machinery Unit IIIDynamics of Machinery Unit III
Dynamics of Machinery Unit III
 
Multi degree of freedom systems
Multi degree of freedom systemsMulti degree of freedom systems
Multi degree of freedom systems
 
Motor selection
Motor selectionMotor selection
Motor selection
 
Unit IV Reciprocating pump with air vessel
Unit IV  Reciprocating pump with air vesselUnit IV  Reciprocating pump with air vessel
Unit IV Reciprocating pump with air vessel
 

Similar to 18 me54 turbo machines module 03 question no 6a & 6b

Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...Burdwan University
 
07.mdsd_modelado_termicos_liquidos
07.mdsd_modelado_termicos_liquidos07.mdsd_modelado_termicos_liquidos
07.mdsd_modelado_termicos_liquidosHipólito Aguilar
 
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Burdwan University
 
cinematica de particulas
cinematica de particulascinematica de particulas
cinematica de particulaslavadoarroyo
 
Movimiento rectilíneo uniforme
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniformeFranklin Jesper
 
Sbe final exam jan17 - solved-converted
Sbe final exam jan17 - solved-convertedSbe final exam jan17 - solved-converted
Sbe final exam jan17 - solved-convertedcairo university
 
09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raicesHipólito Aguilar
 
05.mdsd_modelado_mecanico_electrico
05.mdsd_modelado_mecanico_electrico05.mdsd_modelado_mecanico_electrico
05.mdsd_modelado_mecanico_electricoHipólito Aguilar
 
Ranjak Vaidic Ganit Preview (Marathi Research Book)
Ranjak Vaidic Ganit Preview (Marathi Research Book)Ranjak Vaidic Ganit Preview (Marathi Research Book)
Ranjak Vaidic Ganit Preview (Marathi Research Book)Vitthal Jadhav
 
SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)tungwc
 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones linealesemojose107
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةMohammedRazzaqSalman
 
publisher in research
publisher in researchpublisher in research
publisher in researchrikaseorika
 

Similar to 18 me54 turbo machines module 03 question no 6a & 6b (20)

Ijmet 10 01_044
Ijmet 10 01_044Ijmet 10 01_044
Ijmet 10 01_044
 
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
Equations_2_Industrial Instrumentation - Pressure Measurement Important Equat...
 
07.mdsd_modelado_termicos_liquidos
07.mdsd_modelado_termicos_liquidos07.mdsd_modelado_termicos_liquidos
07.mdsd_modelado_termicos_liquidos
 
Relativity
RelativityRelativity
Relativity
 
State space design
State space designState space design
State space design
 
K to 12 math
K to 12 mathK to 12 math
K to 12 math
 
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
Equations_3_Industrial Instrumentation - Temperature & Level Measurement Impo...
 
cinematica de particulas
cinematica de particulascinematica de particulas
cinematica de particulas
 
Z transforms
Z transformsZ transforms
Z transforms
 
Movimiento rectilíneo uniforme
Movimiento rectilíneo uniformeMovimiento rectilíneo uniforme
Movimiento rectilíneo uniforme
 
Sbe final exam jan17 - solved-converted
Sbe final exam jan17 - solved-convertedSbe final exam jan17 - solved-converted
Sbe final exam jan17 - solved-converted
 
Mod 3.pptx
Mod 3.pptxMod 3.pptx
Mod 3.pptx
 
09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices09.sdcd_lugar_geometrico_raices
09.sdcd_lugar_geometrico_raices
 
05.mdsd_modelado_mecanico_electrico
05.mdsd_modelado_mecanico_electrico05.mdsd_modelado_mecanico_electrico
05.mdsd_modelado_mecanico_electrico
 
Ranjak Vaidic Ganit Preview (Marathi Research Book)
Ranjak Vaidic Ganit Preview (Marathi Research Book)Ranjak Vaidic Ganit Preview (Marathi Research Book)
Ranjak Vaidic Ganit Preview (Marathi Research Book)
 
SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)SUEC 高中 Adv Maths (Rational Root Theorem)
SUEC 高中 Adv Maths (Rational Root Theorem)
 
taller transformaciones lineales
taller transformaciones linealestaller transformaciones lineales
taller transformaciones lineales
 
تطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضليةتطبيقات المعادلات التفاضلية
تطبيقات المعادلات التفاضلية
 
publisher in research
publisher in researchpublisher in research
publisher in research
 
Formulario 1
Formulario 1Formulario 1
Formulario 1
 

More from THANMAY JS

Multimedia and Animation 20CS21P Portfolio.pdf
Multimedia and Animation 20CS21P Portfolio.pdfMultimedia and Animation 20CS21P Portfolio.pdf
Multimedia and Animation 20CS21P Portfolio.pdfTHANMAY JS
 
Fundamentals of Automation Technology 20EE43P Portfolio.pdf
Fundamentals of Automation Technology 20EE43P Portfolio.pdfFundamentals of Automation Technology 20EE43P Portfolio.pdf
Fundamentals of Automation Technology 20EE43P Portfolio.pdfTHANMAY JS
 
Elements of Industrial Automation Portfolio.pdf
Elements of Industrial Automation Portfolio.pdfElements of Industrial Automation Portfolio.pdf
Elements of Industrial Automation Portfolio.pdfTHANMAY JS
 
Fundamentals of Computer 20CS11T Chapter 5.pdf
Fundamentals of Computer 20CS11T Chapter 5.pdfFundamentals of Computer 20CS11T Chapter 5.pdf
Fundamentals of Computer 20CS11T Chapter 5.pdfTHANMAY JS
 
Fundamentals of Computer 20CS11T Chapter 4.pdf
Fundamentals of Computer 20CS11T Chapter 4.pdfFundamentals of Computer 20CS11T Chapter 4.pdf
Fundamentals of Computer 20CS11T Chapter 4.pdfTHANMAY JS
 
Fundamentals of Computer 20CS11T Chapter 3.pdf
Fundamentals of Computer 20CS11T Chapter 3.pdfFundamentals of Computer 20CS11T Chapter 3.pdf
Fundamentals of Computer 20CS11T Chapter 3.pdfTHANMAY JS
 
Fundamentals of Computer 20CS11T Chapter 2.pdf
Fundamentals of Computer 20CS11T Chapter 2.pdfFundamentals of Computer 20CS11T Chapter 2.pdf
Fundamentals of Computer 20CS11T Chapter 2.pdfTHANMAY JS
 
Fundamentals of Computer 20CS11T.pdf
Fundamentals of Computer 20CS11T.pdfFundamentals of Computer 20CS11T.pdf
Fundamentals of Computer 20CS11T.pdfTHANMAY JS
 
Elements of Industrial Automation Week 09 Notes.pdf
Elements of Industrial Automation Week 09 Notes.pdfElements of Industrial Automation Week 09 Notes.pdf
Elements of Industrial Automation Week 09 Notes.pdfTHANMAY JS
 
Elements of Industrial Automation Week 08 Notes.pdf
Elements of Industrial Automation Week 08 Notes.pdfElements of Industrial Automation Week 08 Notes.pdf
Elements of Industrial Automation Week 08 Notes.pdfTHANMAY JS
 
Elements of Industrial Automation Week 07 Notes.pdf
Elements of Industrial Automation Week 07 Notes.pdfElements of Industrial Automation Week 07 Notes.pdf
Elements of Industrial Automation Week 07 Notes.pdfTHANMAY JS
 
Elements of Industrial Automation Week 06 Notes.pdf
Elements of Industrial Automation Week 06 Notes.pdfElements of Industrial Automation Week 06 Notes.pdf
Elements of Industrial Automation Week 06 Notes.pdfTHANMAY JS
 
Elements of Industrial Automation Week 05 Notes.pdf
Elements of Industrial Automation Week 05 Notes.pdfElements of Industrial Automation Week 05 Notes.pdf
Elements of Industrial Automation Week 05 Notes.pdfTHANMAY JS
 
Elements of Industrial Automation Week 04 Notes.pdf
Elements of Industrial Automation Week 04 Notes.pdfElements of Industrial Automation Week 04 Notes.pdf
Elements of Industrial Automation Week 04 Notes.pdfTHANMAY JS
 
Elements of Industrial Automation Week 03 Notes.pdf
Elements of Industrial Automation Week 03 Notes.pdfElements of Industrial Automation Week 03 Notes.pdf
Elements of Industrial Automation Week 03 Notes.pdfTHANMAY JS
 
Elements of Industrial Automation Week 02 Notes.pdf
Elements of Industrial Automation Week 02 Notes.pdfElements of Industrial Automation Week 02 Notes.pdf
Elements of Industrial Automation Week 02 Notes.pdfTHANMAY JS
 
Elements of Industrial Automation Week 01 Notes.pdf
Elements of Industrial Automation Week 01 Notes.pdfElements of Industrial Automation Week 01 Notes.pdf
Elements of Industrial Automation Week 01 Notes.pdfTHANMAY JS
 
Automation and Robotics Week 08 Theory Notes 20ME51I.pdf
Automation and Robotics Week 08 Theory Notes 20ME51I.pdfAutomation and Robotics Week 08 Theory Notes 20ME51I.pdf
Automation and Robotics Week 08 Theory Notes 20ME51I.pdfTHANMAY JS
 
Automation and Robotics Week 07 Theory Notes 20ME51I.pdf
Automation and Robotics Week 07 Theory Notes 20ME51I.pdfAutomation and Robotics Week 07 Theory Notes 20ME51I.pdf
Automation and Robotics Week 07 Theory Notes 20ME51I.pdfTHANMAY JS
 
Automation and Robotics Week 06 Theory Notes 20ME51I.pdf
Automation and Robotics Week 06 Theory Notes 20ME51I.pdfAutomation and Robotics Week 06 Theory Notes 20ME51I.pdf
Automation and Robotics Week 06 Theory Notes 20ME51I.pdfTHANMAY JS
 

More from THANMAY JS (20)

Multimedia and Animation 20CS21P Portfolio.pdf
Multimedia and Animation 20CS21P Portfolio.pdfMultimedia and Animation 20CS21P Portfolio.pdf
Multimedia and Animation 20CS21P Portfolio.pdf
 
Fundamentals of Automation Technology 20EE43P Portfolio.pdf
Fundamentals of Automation Technology 20EE43P Portfolio.pdfFundamentals of Automation Technology 20EE43P Portfolio.pdf
Fundamentals of Automation Technology 20EE43P Portfolio.pdf
 
Elements of Industrial Automation Portfolio.pdf
Elements of Industrial Automation Portfolio.pdfElements of Industrial Automation Portfolio.pdf
Elements of Industrial Automation Portfolio.pdf
 
Fundamentals of Computer 20CS11T Chapter 5.pdf
Fundamentals of Computer 20CS11T Chapter 5.pdfFundamentals of Computer 20CS11T Chapter 5.pdf
Fundamentals of Computer 20CS11T Chapter 5.pdf
 
Fundamentals of Computer 20CS11T Chapter 4.pdf
Fundamentals of Computer 20CS11T Chapter 4.pdfFundamentals of Computer 20CS11T Chapter 4.pdf
Fundamentals of Computer 20CS11T Chapter 4.pdf
 
Fundamentals of Computer 20CS11T Chapter 3.pdf
Fundamentals of Computer 20CS11T Chapter 3.pdfFundamentals of Computer 20CS11T Chapter 3.pdf
Fundamentals of Computer 20CS11T Chapter 3.pdf
 
Fundamentals of Computer 20CS11T Chapter 2.pdf
Fundamentals of Computer 20CS11T Chapter 2.pdfFundamentals of Computer 20CS11T Chapter 2.pdf
Fundamentals of Computer 20CS11T Chapter 2.pdf
 
Fundamentals of Computer 20CS11T.pdf
Fundamentals of Computer 20CS11T.pdfFundamentals of Computer 20CS11T.pdf
Fundamentals of Computer 20CS11T.pdf
 
Elements of Industrial Automation Week 09 Notes.pdf
Elements of Industrial Automation Week 09 Notes.pdfElements of Industrial Automation Week 09 Notes.pdf
Elements of Industrial Automation Week 09 Notes.pdf
 
Elements of Industrial Automation Week 08 Notes.pdf
Elements of Industrial Automation Week 08 Notes.pdfElements of Industrial Automation Week 08 Notes.pdf
Elements of Industrial Automation Week 08 Notes.pdf
 
Elements of Industrial Automation Week 07 Notes.pdf
Elements of Industrial Automation Week 07 Notes.pdfElements of Industrial Automation Week 07 Notes.pdf
Elements of Industrial Automation Week 07 Notes.pdf
 
Elements of Industrial Automation Week 06 Notes.pdf
Elements of Industrial Automation Week 06 Notes.pdfElements of Industrial Automation Week 06 Notes.pdf
Elements of Industrial Automation Week 06 Notes.pdf
 
Elements of Industrial Automation Week 05 Notes.pdf
Elements of Industrial Automation Week 05 Notes.pdfElements of Industrial Automation Week 05 Notes.pdf
Elements of Industrial Automation Week 05 Notes.pdf
 
Elements of Industrial Automation Week 04 Notes.pdf
Elements of Industrial Automation Week 04 Notes.pdfElements of Industrial Automation Week 04 Notes.pdf
Elements of Industrial Automation Week 04 Notes.pdf
 
Elements of Industrial Automation Week 03 Notes.pdf
Elements of Industrial Automation Week 03 Notes.pdfElements of Industrial Automation Week 03 Notes.pdf
Elements of Industrial Automation Week 03 Notes.pdf
 
Elements of Industrial Automation Week 02 Notes.pdf
Elements of Industrial Automation Week 02 Notes.pdfElements of Industrial Automation Week 02 Notes.pdf
Elements of Industrial Automation Week 02 Notes.pdf
 
Elements of Industrial Automation Week 01 Notes.pdf
Elements of Industrial Automation Week 01 Notes.pdfElements of Industrial Automation Week 01 Notes.pdf
Elements of Industrial Automation Week 01 Notes.pdf
 
Automation and Robotics Week 08 Theory Notes 20ME51I.pdf
Automation and Robotics Week 08 Theory Notes 20ME51I.pdfAutomation and Robotics Week 08 Theory Notes 20ME51I.pdf
Automation and Robotics Week 08 Theory Notes 20ME51I.pdf
 
Automation and Robotics Week 07 Theory Notes 20ME51I.pdf
Automation and Robotics Week 07 Theory Notes 20ME51I.pdfAutomation and Robotics Week 07 Theory Notes 20ME51I.pdf
Automation and Robotics Week 07 Theory Notes 20ME51I.pdf
 
Automation and Robotics Week 06 Theory Notes 20ME51I.pdf
Automation and Robotics Week 06 Theory Notes 20ME51I.pdfAutomation and Robotics Week 06 Theory Notes 20ME51I.pdf
Automation and Robotics Week 06 Theory Notes 20ME51I.pdf
 

Recently uploaded

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting DataJhengPantaleon
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentInMediaRes1
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 

Recently uploaded (20)

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data_Math 4-Q4 Week 5.pptx Steps in Collecting Data
_Math 4-Q4 Week 5.pptx Steps in Collecting Data
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Alper Gobel In Media Res Media Component
Alper Gobel In Media Res Media ComponentAlper Gobel In Media Res Media Component
Alper Gobel In Media Res Media Component
 
Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 

18 me54 turbo machines module 03 question no 6a & 6b

  • 1. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 1 Turbo Machines 18ME54 Course Coordinator Mr. THANMAY J. S Assistant Professor Department of Mechanical Engineering VVIET Mysore Module 03: Steam Reaction turbine Course Learning Objectives Analyze various designs of Reaction turbine and their working principle. Course Outcomes Classify, analyze and understand various type of Reaction turbine..
  • 2. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 2 Contents Modal 03: Question Number 5 a & 5 b i. Reaction Turbine (Parsons’s turbine) ii. Degree of Reaction for Parsons’s turbine iii. Condition for maximum utilization factor, iv. Reaction staging. v. Numerical Problems. Previous Year Question papers
  • 3. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 3 Introduction Classification of Steam Turbine, based on basic working principle a) Impulse turbine and b) Reaction turbine The machine for which the change in static head in the rotor is zero is known impulse machine. In these machines, the energy transfer in the rotor takes place only by the change in dynamic head of the fluid. In reaction turbine energy transfer in the rotor takes place by change in static and dynamic head of the fluid. In reaction turbine 𝑉𝑟2 > 𝑉𝑟1 and generally 𝑉f1 = 𝑉f2 (i.e. flow velocity is constant) Reaction Turbine (Example: Parson’s Turbine) In the case of reaction turbine, the moving blades of a turbine are shaped in such a way that the steam expands and drops in pressure as it passes through them. As a result of pressure decrease in the moving blade, a reaction force will be produced. This force will make the blades to rotate. The combined velocity diagram for an axial flow reaction turbine is as shown in figure below. From data given in the problem, Vf1=Vf2=Vf. 𝑇ℎ𝑒 𝐸𝑙𝑢𝑒𝑟′ 𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑖𝑠 𝑔𝑖𝑣𝑒𝑛 𝑎𝑠: 𝑃 = 𝑚(𝑉𝑢1. 𝑈1 ± 𝑉𝑢2. 𝑈2) 𝑓𝑜𝑟 𝑆𝑡𝑒𝑎𝑚 𝑇𝑢𝑟𝑏𝑖𝑛𝑒 𝑈1 = 𝑈2 = 𝑈 ∴ 𝑷 = 𝒎𝑼(𝑽𝒖𝟏 + 𝑽𝒖𝟐) 𝑐𝑜𝑡 𝛽1 = 𝑉𝑢1 𝑉𝑓1 ∴ 𝑽𝒖𝟏 = 𝒄𝒐𝒕 𝜷𝟏 × 𝑽𝒇𝟏 𝑆𝑖𝑚𝑖𝑙𝑙𝑎𝑟𝑙𝑦 𝑐𝑜𝑡 𝛽2 = 𝑋2 − 𝑈 𝑉𝑓1 ∴ 𝑽𝒖𝟐 = 𝑿𝟐 − 𝑼 = (𝑽𝒖𝟐 + 𝑼) − 𝑼 = 𝒄𝒐𝒕 𝜷𝟐 × 𝑽𝒇𝟐 𝑃 = 𝑚𝑈(𝑉𝑢1 + 𝑉𝑢2) = 𝑚𝑈(𝑉𝑢1 + (𝑋2 − 𝑈)) = 𝑚𝑈(𝑐𝑜𝑡 𝛽1 × 𝑉𝑓1 + 𝑐𝑜𝑡 𝛽2 × 𝑉𝑓2) 𝑷 = 𝒎 𝑼 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟏 + 𝒄𝒐𝒕 𝜷𝟐)𝑎𝑠 𝑽𝒇𝟏 = 𝑽𝒇𝟐 = 𝑽𝒇
  • 4. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 4 Degree of Reaction for Reaction Turbine (Parson’s Turbine) 𝑹 = 1 2 (𝑼𝟏 𝟐 −𝑼𝟐 𝟐)+(𝑽𝒓𝟐 𝟐 −𝑽𝒓𝟏 𝟐) 1 2 (𝑽𝟏 𝟐 −𝑽𝟐 𝟐)+(𝑼𝟏 𝟐 −𝑼𝟐 𝟐)+(𝑽𝒓𝟏 𝟐 −𝑽𝒓𝟐 𝟐) = 1 2 (𝑽𝒓𝟐 𝟐 −𝑽𝒓𝟏 𝟐) 1 2 (𝑽𝟏 𝟐 −𝑽𝟐 𝟐)+(𝑽𝒓𝟏 𝟐 −𝑽𝒓𝟐 𝟐) 𝑹 = 1 2 (𝑽𝒓𝟐 𝟐 − 𝑽𝒓𝟏 𝟐 ) 𝑃 = (𝑽𝒓𝟐 𝟐 − 𝑽𝒓𝟏 𝟐 ) 𝟐 𝑷 𝑆𝑖𝑛 𝛽1 = 𝑉𝑓 𝑉𝑟1 ∴ 𝑽𝒓𝟏 = 𝑉𝑓 𝑆𝑖𝑛 𝛽1 = 𝑽𝒇 𝒄𝒐𝒔𝒆𝒄 𝜷𝟏 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 1 𝑆𝑖𝑛 𝛽1 = 𝑐𝑜𝑠𝑒𝑐 𝛽1 𝑆𝑖𝑛 𝛽2 = 𝑉𝑓 𝑉𝑟2 ∴ 𝑽𝒓𝟐 = 𝑉𝑓 𝑆𝑖𝑛 𝛽2 = 𝑽𝒇 𝒄𝒐𝒔𝒆𝒄 𝜷𝟐 𝑏𝑒𝑐𝑎𝑢𝑠𝑒 1 𝑆𝑖𝑛 𝛽2 = 𝑐𝑜𝑠𝑒𝑐 𝛽2 (𝑉𝑟1 2 − 𝑉𝑟2 2 ) = 𝑉𝑓2 (𝑐𝑜𝑠𝑒𝑐 𝛽12 − 𝑐𝑜𝑠𝑒𝑐 𝛽22) 𝒃𝒚 𝑻𝒓𝒊𝒈𝒏𝒐𝒎𝒆𝒕𝒓𝒚 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏,𝒄𝒐𝒔𝒆𝒄 𝟐 𝜽 = 𝟏 + 𝒄𝒐𝒕 𝟐 𝜽 ∴ (𝑽𝒓𝟏 𝟐 − 𝑽𝒓𝟐 𝟐 ) = 𝑽𝒇𝟐(𝟏 + 𝒄𝒐𝒕 𝜷𝟏𝟐 − 𝟏 + 𝒄𝒐𝒕 𝜷𝟐𝟐) (𝑽𝒓𝟏 𝟐 − 𝑽𝒓𝟐 𝟐 ) = 𝑽𝒇𝟐(𝒄𝒐𝒕 𝜷𝟏𝟐 − 𝒄𝒐𝒕 𝜷𝟐𝟐) 𝑹 = (𝑽𝒓𝟐 𝟐 −𝑽𝒓𝟏 𝟐) 𝟐 𝑷 = 𝑽𝒇𝟐(𝒄𝒐𝒕 𝜷𝟐𝟐−𝒄𝒐𝒕 𝜷𝟏𝟐) 𝟐 𝑼 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟏+𝒄𝒐𝒕 𝜷𝟐) = 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐𝟐−𝒄𝒐𝒕 𝜷𝟏𝟐) 𝟐 𝑼 (𝒄𝒐𝒕 𝜷𝟏+𝒄𝒐𝒕 𝜷𝟐) 𝑹 = 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐𝟐−𝒄𝒐𝒕 𝜷𝟏𝟐) 𝟐 𝑼 (𝒄𝒐𝒕 𝜷𝟏+𝒄𝒐𝒕 𝜷𝟐) = 𝑽𝒇(𝒂𝟐−𝒃𝟐) 𝟐 𝑼 (𝒃+𝒂) = 𝑽𝒇(𝒂−𝒃)(𝒂+𝒃) 𝟐 𝑼 (𝒃+𝒂) = 𝑽𝒇(𝒂−𝒃) 𝟐 𝑼 𝑹 = 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐 − 𝒄𝒐𝒕 𝜷𝟏) 𝟐 𝑼 𝐹𝑜𝑟 𝑎𝑛 𝑎𝑥𝑖𝑎𝑙 𝑓𝑙𝑜𝑤 50% 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑢𝑟𝑏𝑖𝑛𝑒, 𝑅 = 0.5 𝑹 = 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐−𝒄𝒐𝒕 𝜷𝟏) 𝟐 𝑼 = 𝟏 𝟐 ≫ 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐 − 𝒄𝒐𝒕 𝜷𝟏) = 𝟐 𝑼 𝟐 ∴ 𝑼 = 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐 − 𝒄𝒐𝒕 𝜷𝟏) 𝑨𝒍𝒕𝒆𝒓𝒏𝒂𝒕𝒆 𝒎𝒆𝒕𝒉𝒐𝒅: 𝑭𝒓𝒐𝒎 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 𝒅𝒊𝒂𝒈𝒓𝒂𝒎, 𝑼 = 𝑽𝒖𝟏 − 𝑿𝟏 = (𝑽𝒇𝟏 𝒄𝒐𝒕𝜶𝟏 − 𝑽𝒇𝟏 𝒄𝒐𝒕𝜷𝟏) 𝐹𝑜𝑟 𝑎𝑛 𝑎𝑥𝑖𝑎𝑙 𝑓𝑙𝑜𝑤 50% 𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝑡𝑢𝑟𝑏𝑖𝑛𝑒, 𝛼1 = 𝛽2 𝑎𝑛𝑑 𝛼2 = 𝛽1 𝑎𝑛𝑑 𝑎𝑙𝑠𝑜 𝑉1 = 𝑉𝑟2 𝑎𝑛𝑑 𝑉2 = 𝑉𝑟1 ∴ 𝑖𝑡 𝑐𝑎𝑛 𝑏𝑒 𝑑𝑖𝑟𝑐𝑡𝑙𝑦 𝑝𝑟𝑜𝑣𝑒𝑛 𝑡ℎ𝑎𝑡 𝑼 = 𝑽𝒇(𝒄𝒐𝒕 𝜷𝟐 − 𝒄𝒐𝒕 𝜷𝟏)
  • 5. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 5 𝑭𝒐𝒓 𝒂 𝟓𝟎% 𝒓𝒆𝒂𝒄𝒕𝒊𝒐𝒏 𝒔𝒕𝒆𝒂𝒎 𝒕𝒖𝒓𝒃𝒊𝒏𝒆,𝒔𝒉𝒐𝒘 𝒕𝒉𝒂𝒕 𝜶𝟏 = 𝜷𝟐 𝒂𝒏𝒅 𝜶𝟐 = 𝜷𝟏 𝑅 = 𝑉𝑓(𝑐𝑜𝑡 𝛽2−𝑐𝑜𝑡 𝛽1) 2 𝑈 = 1 2 ( 𝑉𝑓 𝑈 ) (𝑐𝑜𝑡 𝛽2 − 𝑐𝑜𝑡 𝛽1) 𝑅 = 1 2 ( 𝑉𝑓 𝑈 ) (𝑐𝑜𝑡 𝛽2 − 𝑐𝑜𝑡 𝛽1) 𝑎𝑑𝑑 𝑎𝑛𝑑 𝑠𝑢𝑏𝑡𝑟𝑎𝑐𝑡 𝒄𝒐𝒕 𝜶𝟏 𝑹 = 𝟏 𝟐 ( 𝑽𝒇 𝑼 ) (𝒄𝒐𝒕 𝜷𝟐 − 𝒄𝒐𝒕 𝜶𝟏) + (𝒄𝒐𝒕 𝜶𝟏 − 𝒄𝒐𝒕 𝜷𝟏) 𝑤𝑒 𝑐𝑎𝑛 𝑑𝑒𝑟𝑖𝑣𝑒 𝑼 = 𝑽𝒖𝟏 − 𝑿𝟏 = (𝑉𝑓1 𝑐𝑜𝑡𝛼1 − 𝑉𝑓1 𝑐𝑜𝑡𝛽1) = 𝑉𝑓( 𝑐𝑜𝑡𝛼1 − 𝑐𝑜𝑡𝛽1) 𝑜𝑟 ( 𝒄𝒐𝒕𝜶𝟏 − 𝒄𝒐𝒕𝜷𝟏) = 𝑼 𝑽𝒇 𝑇ℎ𝑒𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑅 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠 𝑅 = 1 2 ( 𝑉𝑓 𝑈 ) (𝑐𝑜𝑡 𝛽2 − 𝑐𝑜𝑡 𝛼1) + (𝑐𝑜𝑡 𝛼1 − 𝑐𝑜𝑡 𝛽1) = 1 2 ( 𝑉𝑓 𝑈 ) (𝑐𝑜𝑡 𝛽2 − 𝑐𝑜𝑡 𝛼1 + ( 𝑈 𝑉𝑓 )) 𝑅 = 1 2 ( 𝑉𝑓 𝑈 )𝑐𝑜𝑡 𝛽2 − 1 2 ( 𝑉𝑓 𝑈 )𝑐𝑜𝑡 𝛼1 + 1 2 ( 𝑉𝑓 𝑈 )( 𝑈 𝑉𝑓 ) = 𝟏 𝟐 ( 𝑽𝒇 𝑼 ) 𝒄𝒐𝒕 𝜷𝟐 − 𝟏 𝟐 ( 𝑽𝒇 𝑼 ) 𝒄𝒐𝒕 𝜶𝟏 + 𝟏 𝟐 𝑹 = 𝟏 𝟐 ( 𝑽𝒇 𝑼 ) 𝒄𝒐𝒕 𝜷𝟐 − 𝟏 𝟐 ( 𝑽𝒇 𝑼 )𝒄𝒐𝒕 𝜶𝟏 + 𝟏 𝟐 = 𝟎. 𝟓 𝑹 = 𝟏 𝟐 ( 𝑽𝒇 𝑼 )𝒄𝒐𝒕 𝜷𝟐 − 𝟏 𝟐 ( 𝑽𝒇 𝑼 ) 𝒄𝒐𝒕 𝜶𝟏 = 𝟎.𝟓 − 𝟏 𝟐 = 𝟎 𝟏 𝟐 ( 𝑽𝒇 𝑼 ) (𝒄𝒐𝒕 𝜷𝟐 − 𝒄𝒐𝒕 𝜶𝟏) = 𝟎 ≫ (𝑐𝑜𝑡 𝛽2 − 𝑐𝑜𝑡 𝛼1) = 0 ≫ cot 𝛽2 = cot 𝛼1 ≫ ∴ 𝜶𝟏 = 𝜷𝟐 𝑠𝑖𝑚𝑖𝑙𝑙𝑎𝑟𝑙𝑦 𝑤𝑒 𝑐𝑎𝑛 𝑑𝑒𝑟𝑖𝑣𝑒 𝑼 = 𝑿𝟐 − 𝑽𝒖𝟐 = (𝑉𝑓 cot 𝛽2 − 𝑉𝑓 𝑐𝑜𝑡 𝛼2) ∴ 𝑼 = 𝑽𝒇(𝐜𝐨𝐭 𝜷𝟐 − 𝒄𝒐𝒕 𝜶𝟐) 𝐶𝑜𝑚𝑝𝑎𝑟𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑼 = 𝑽𝒖𝟏 − 𝑿𝟏 = (𝑉𝑓1 𝑐𝑜𝑡𝛼1 − 𝑉𝑓1 𝑐𝑜𝑡𝛽1) 𝑖. 𝑒 𝑼 = 𝑽𝒇( 𝒄𝒐𝒕𝜶𝟏 − 𝒄𝒐𝒕𝜷𝟏) ∴ 𝑈 = 𝑉𝑓(cot 𝛽2 − 𝑐𝑜𝑡 𝛼2) = 𝑉𝑓( 𝑐𝑜𝑡𝛼1 − 𝑐𝑜𝑡𝛽1) 𝐜𝐨𝐭 𝜷𝟐 − 𝒄𝒐𝒕 𝜶𝟐 = 𝒄𝒐𝒕𝜶𝟏 − 𝒄𝒐𝒕𝜷𝟏 𝑤𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡 𝛼1 = 𝛽2 𝑠𝑜 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑖𝑛𝑔 cot 𝛽2 = 𝑐𝑜𝑡 𝛼1 ∴ cot 𝛼1 − 𝑐𝑜𝑡 𝛼2 = 𝑐𝑜𝑡𝛼1 − 𝑐𝑜𝑡𝛽1 ∴ 𝜶𝟐 = 𝜷𝟏 sin 𝛼2 = 𝑉𝑓 𝑉2 and 𝑠𝑖𝑛 𝛽1 = 𝑉𝑓 𝑉𝑟1 ∴ Vf = V2 sin 𝛼2 = 𝑉𝑟1 𝑠𝑖𝑛 𝛽1 𝑏𝑢𝑡 𝛼2 = 𝛽1 ∴ 𝐕𝟐 = 𝑽𝒓𝟏 𝑠𝑖𝑚𝑖𝑙𝑙𝑎𝑟𝑙𝑦 𝑽𝟏 = 𝑽𝒓𝟐
  • 6. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 6 Condition for maximum utilization factor, 𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) = 𝟏 𝟐 [(𝑽𝟏 𝟐 − 𝑽𝟐 𝟐 ) + (𝑼𝟏 𝟐 − 𝑼𝟐 𝟐 ) + (𝑽𝒓𝟏 𝟐 − 𝑽𝒓𝟐 𝟐 )] 𝟏 𝟐 [(𝑽𝟏 𝟐 − 𝑽𝟐 𝟐 ) + (𝑼𝟏 𝟐 − 𝑼𝟐 𝟐 ) + (𝑽𝒓𝟏 𝟐 − 𝑽𝒓𝟐 𝟐 )] + 𝟏 𝟐 (𝑽𝟐 𝟐 ) 𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) = 𝟏 𝟐 [(𝑽𝟏 𝟐 − 𝑽𝟐 𝟐 ) + (𝑽𝒓𝟏 𝟐 − 𝑽𝒓𝟐 𝟐 )] 𝟏 𝟐 [(𝑽𝟏 𝟐 − 𝑽𝟐 𝟐 ) + (𝑽𝒓𝟏 𝟐 − 𝑽𝒓𝟐 𝟐 )] + 𝟏 𝟐 (𝑽𝟐 𝟐 ) ∴ 𝑼𝒕𝒊𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏 𝑭𝒂𝒄𝒕𝒐𝒓 (𝝐) = 𝑷 𝑷 + 𝟏 𝟐 (𝑽𝟐 𝟐 ) Reaction staging Reaction staging the expansion of steam and enthalpy drop occurs both in fixed and moving blades. Due to the effect of continuous expansion during flow over the moving blades, the relative velocity of steam increases i.e., Vr2>Vr1. Parsons stages of steam turbines have a degree of reaction (R) equal to 0.5. One stator blade-ring followed by a rotor blade-ring together make up the one stage. The blades are designed so that the passages between the blades act like nozzles in both the stator and rotor. The expansion of steam takes place in both the rings. The areas of flow have to be increased continuously to accommodate the increased volume flow rates. The velocity triangles at the inlet and outlet of every rotor blade ring become symmetrical. The usual practice is to have the same geometry (α1, α2, β1, β2) of the blades with continuously increasing heights. The same set of velocity triangles and analysis hold good for a few of the rotor rings in succession. When the increase in the height of blades becomes limited after a few rings, the mean diameter of rotor rings can be increased so that another set of velocity triangles and analysis can hold good for another series of rotor rings. For Parson’s (axial flow 50% reaction) turbine, α1=β2 and α2=β1 and also V1=Vr2 and V2=Vr1, then the velocity triangles are symmetric. Work done or Power developed is: 𝑷 = 𝑼(∆𝑽𝒖) = 𝑈(𝑉𝑢1 + 𝑉𝑢2) = 𝑼(𝑽𝒖𝟏 + 𝑿𝟐 − 𝑼) 𝑽𝒖𝟏 = 𝑽𝟏 𝒄𝒐𝒔 𝜶𝟏 𝑋2 − 𝑈 = 𝑉𝑟2 𝑐𝑜𝑠 𝛽2 − 𝑈 𝑏𝑢𝑡 𝜶𝟏 = 𝜷𝟐 𝒂𝒏𝒅 𝑽𝟏 = 𝑽𝒓𝟐 ∴ 𝑿𝟐 − 𝑼 = 𝑽𝟏 𝒄𝒐𝒔 𝜶𝟏 − 𝑼 ∴ 𝑃 = 𝑈(𝑉𝑢1 + 𝑋2 − 𝑈) = 𝑈(𝑉1 𝑐𝑜𝑠 𝛼1 + 𝑉1 𝑐𝑜𝑠 𝛼1 − 𝑈) 𝑷 = 𝟐𝑼𝑽𝟏 𝒄𝒐𝒔 𝜶𝟏 − 𝑼𝟐
  • 7. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 7 𝑷 = 𝟐𝑼𝑽𝟏 𝒄𝒐𝒔 𝜶𝟏 − 𝑼𝟐 𝑃 = 𝑉12 𝑉12 (2𝑈𝑉1 𝑐𝑜𝑠 𝛼1 − 𝑈2) = 𝑉12 ( 2𝑈𝑉1 𝑐𝑜𝑠 𝛼1 𝑉12 − 𝑈2 𝑉12 ) = 𝑉12(2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2) 𝑃 = 𝑉12(2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2) 𝑤ℎ𝑒𝑟𝑒 𝜑 = 𝑈 𝑉1 𝑤𝑒 𝑘𝑛𝑜𝑤 𝑡ℎ𝑎𝑡 𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 = 1 2 [(𝑉1 2 ) − (𝑉𝑟1 2 − 𝑉𝑟2 2 )] 𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 = 1 2 (𝑉1 2 ) − 1 2 (𝑉𝑟1 2 ) + 1 2 (𝑉𝑟2 2 ) 𝑏𝑢𝑡 𝑉1 = 𝑉𝑟2 ∴ 𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 = 1 2 (𝑉1 2 ) − 1 2 (𝑉𝑟1 2 ) + 1 2 (𝑉1 2 ) ≫ 𝑉1 2 − 1 2 (𝑉𝑟1 2 ) 𝑏𝑦 𝐶𝑜𝑠𝑖𝑛𝑒 𝑟𝑢𝑙𝑒 𝑉𝑟1 2 = 𝑉1 2 + 𝑈2 − 2𝑈𝑉1 𝑐𝑜𝑠 𝛼1 𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑉1 2 − 1 2 (𝑉1 2 + 𝑈2 − 2𝑈𝑉1 𝑐𝑜𝑠 𝛼1) 𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 = 𝑉1 2 − 1 2 𝑉1 2 − 1 2 𝑈2 + 1 2 2𝑈𝑉1 𝑐𝑜𝑠 𝛼1 𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 = 1 2 𝑉1 2 − 1 2 𝑈2 + 1 2 2𝑈𝑉1 𝑐𝑜𝑠 𝛼1 ≫ 1 2 [𝑉1 2 − 𝑈2 + 2𝑈𝑉1 𝑐𝑜𝑠 𝛼1] 𝑡𝑎𝑘𝑖𝑛𝑔 𝑉1 2 𝑐𝑜𝑚𝑚𝑜𝑛 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 = 1 2 𝑉1 2 [1 − 𝑈2 𝑉1 2 + 2𝑈𝑉1 𝑉1 2 𝑐𝑜𝑠 𝛼1] 𝑃𝑎𝑣𝑖𝑙𝑎𝑏𝑙𝑒 = 1 2 𝑉1 2 [1 − 𝜑2 + 2𝜑 𝑐𝑜𝑠 𝛼1] 𝑜𝑟 𝑷𝒂𝒗𝒊𝒍𝒂𝒃𝒍𝒆 = 𝑽𝟏 𝟐 𝟐 [𝟏 + 𝟐𝝋 𝒄𝒐𝒔 𝜶𝟏 − 𝝋𝟐] 𝜼𝒃 = 𝑷 𝑷𝒂𝒗𝒊𝒍𝒂𝒃𝒍𝒆 = 𝑉12(2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2) 𝑉1 2 2 [1 + 2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2] 𝜂𝑏 = 2(2𝜑 𝑐𝑜𝑠 𝛼1−𝜑2) [1+2𝜑 𝑐𝑜𝑠 𝛼1−𝜑2] ≫ (4𝜑 𝑐𝑜𝑠 𝛼1−2𝜑2+2−2) [1+2𝜑 𝑐𝑜𝑠 𝛼1−𝜑2] ≫ 2(1+2𝜑 𝑐𝑜𝑠 𝛼1−𝜑2)−2 [1+2𝜑 𝑐𝑜𝑠 𝛼1−𝜑2] 𝜼𝒃 = 2(1 + 2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2) − 2 [1 + 2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2] = 𝟐(𝟐𝝋 𝒄𝒐𝒔 𝜶𝟏 − 𝝋𝟐) [𝟏 + 𝟐𝝋 𝒄𝒐𝒔 𝜶𝟏 − 𝝋𝟐] 𝜂𝑏 = 2 − 2 [1+2𝜑 𝑐𝑜𝑠 𝛼1−𝜑2] ≫ 𝟐 − 𝟐[𝟏 + 𝟐𝝋 𝒄𝒐𝒔 𝜶𝟏 − 𝝋𝟐] −𝟏 𝐹𝑜𝑟 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑏𝑙𝑎𝑑𝑒 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 𝒅𝜼𝒃 𝒅𝝋 = 𝟎 𝑑 𝑑𝜑 (2 − 2[1 + 2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2]−1) = 0 2[1 + 2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2]−2[2𝜑 𝑐𝑜𝑠 𝛼1 − 2𝜑] = 0 𝑖𝑓 [𝟐𝝋 𝒄𝒐𝒔 𝜶𝟏 − 𝟐𝝋] = 𝟎 𝑡ℎ𝑒𝑛 𝝋 = 𝒄𝒐𝒔 𝜶𝟏 𝜂𝑏 = 2(2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2) [1 + 2𝜑 𝑐𝑜𝑠 𝛼1 − 𝜑2] = 2(2 𝑐𝑜𝑠 𝛼12 − 𝑐𝑜𝑠 𝛼12) [1 + 2𝑐𝑜𝑠 𝛼12 − 𝑐𝑜𝑠 𝛼12] 𝜼𝒃 = 𝟐 𝒄𝒐𝒔 𝜶𝟏𝟐 𝟏 + 𝒄𝒐𝒔 𝜶𝟏𝟐
  • 8. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 8 Previous Year Question Papers VTU Modal Question Paper 01 6 c) In Parson turbine running at 1500 rpm, the available enthalpy drop for the expansion is 63 kJ/kg. If the mean diameter of the rotor is 100 cm, find the number of moving rows required. Assume the efficiency of the stage is 0.8, blade outlet angle is 20° and speed ratio 0.7. 10 𝑵 = 𝟏𝟓𝟎𝟎 𝒓𝒑𝒎,𝑫 = 𝟏𝒎, 𝜼𝟎 = 𝜼𝑺 × 𝜼𝒃 𝜼𝑺 = 𝟎.𝟖, 𝜷𝟐 = 𝟐𝟎° 𝑩𝒍𝒂𝒅𝒆 𝑺𝒑𝒆𝒆𝒅 𝑹𝒂𝒕𝒊𝒐 = 𝑼 𝑽𝟏 = 𝟎. 𝟕 𝜶𝟏 = 𝜷𝟐 𝒂𝒏𝒅 𝜶𝟐 = 𝜷𝟏 𝑽𝟏 = 𝑽𝒓𝟐 𝒂𝒏𝒅 𝐕𝟐 = 𝑽𝒓𝟏 𝑼 = 𝝅𝑫𝑵 𝟔𝟎 = 𝝅 × 𝟏 × 𝟏𝟓𝟎𝟎 𝟔𝟎 =∴ 𝑼 = 𝟕𝟖.𝟓𝟑 𝒎/𝒔 𝑼 𝑽𝟏 = 𝟎.𝟕 ∴ 𝑽𝟏 = 𝟏𝟏𝟐.𝟏𝟖 𝒎/𝒔 𝑷 = 𝑼(∆𝑽𝒖) (∆𝑽𝒖) = 𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 + (𝑽𝒓𝟐 𝒄𝒐𝒔𝜷𝟐 − 𝑼) (∆𝑽𝒖) = 𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 + (𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 − 𝑼) (∆𝑽𝒖) = 𝟐𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 − 𝑼 𝑷 = 𝑼(∆𝑽𝒖) = 𝑼(𝟐𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 − 𝑼) 𝑷 = 𝟕𝟖.𝟓𝟑(𝟐 × 𝟏𝟏𝟐.𝟏𝟖 𝒄𝒐𝒔𝟐𝟎 − 𝟕𝟖.𝟓𝟑) 𝜼𝑺 = 𝑷 ∆𝒉°𝑺𝒕𝒂𝒈𝒆 = 𝟎. 𝟖 ∴ ∆𝒉° = 𝑷 𝟎.𝟖 = 𝟏𝟐.𝟗𝟖 𝒌𝑱/𝒌𝒈 𝑷 = 𝟏𝟎𝟑𝟗𝟎.𝟑𝟏𝟖𝟏 𝑾 = 𝟏𝟎.𝟑𝟖 𝒌𝑾 ∆𝒉°𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒍𝒆 ∆𝒉°𝑺𝒕𝒂𝒈𝒆 = 𝟔𝟑 𝟏𝟐.𝟗𝟖 = 𝟒.𝟖 ≈ 𝟓 𝒓𝒐𝒘𝒔 𝒐𝒇 𝒎𝒐𝒗𝒊𝒏𝒈 𝒃𝒍𝒂𝒅𝒆𝒔 𝒂𝒓𝒆 𝒓𝒆𝒒𝒖𝒊𝒓𝒆𝒅 VTU Question Paper Aug./Sept. 2020 6 b) The following particulars refer to a Parson’s reaction turbine : Mean diameter of the blade ring = 90 cm, Speed = 3000 rpm, Inlet absolute velocity = 350 m/s, Blade outlet angle = 20°, Steam flow rate = 7.2 kg/s. Calculate (i) Blade inlet angle (ii) Tangential force (iii) Power developed. 10 𝑵 = 𝟑𝟎𝟎𝟎 𝒓𝒑𝒎,𝑫 = 𝟎.𝟗𝒎, 𝑽𝟏 = 𝑽𝒓𝟐 = 𝟑𝟓𝟎 𝒎/𝒔 𝒎 = 𝟕. 𝟖 𝜷𝟐 = 𝜶𝟏 = 𝟐𝟎° 𝑵𝒐𝒕𝒆 𝑷𝒂𝒓𝒔𝒐𝒏 𝑻𝒖𝒓𝒃𝒊𝒏𝒆 𝜶𝟏 = 𝜷𝟐 𝒂𝒏𝒅 𝜶𝟐 = 𝜷𝟏 𝑽𝟏 = 𝑽𝒓𝟐 𝒂𝒏𝒅 𝐕𝟐 = 𝑽𝒓𝟏 𝑼 = 𝝅𝑫𝑵 𝟔𝟎 = 𝝅 × 𝟎. 𝟗 × 𝟑𝟎𝟎𝟎 𝟔𝟎 =∴ 𝑼 = 𝟏𝟒𝟏.𝟑𝟕 𝒎/𝒔 sin 𝛼1 = 𝑉𝑓1 𝑉1 ≫ 𝑉𝑓1 = 𝑉1 × 𝑠𝑖𝑛𝛼1 = 119.70 𝑚/𝑠 cos 𝛽2 = 𝑋2 𝑉𝑟2 ≫ 𝑋2 = 𝑉𝑟2 × cos 𝛽2 = 328.89 𝑚/𝑠 cos 𝛼1 = 𝑉𝑢1 𝑉1 ≫ 𝑉𝑢1 = 𝑉1 × 𝑐𝑜𝑠𝛼1 = 328.89 𝑚/𝑠 tan 𝛽1 = 𝑉𝑓1 𝑉𝑢1 − 𝑈 ≫ 𝛽1 = 𝑡𝑎𝑛−1 ( 𝑉𝑓1 𝑉𝑢1 − 𝑈 ) 𝛽1 = 𝑡𝑎𝑛−1 ( 119.70 328.89 − 141.37 ) = 32.55° = 𝛼2 𝑉𝑢2 = 𝑋2 − 𝑈 = 328.89 − 141.37 = 187.53 𝑚/𝑠 𝑷 = 𝑼(∆𝑽𝒖) = 𝑼(𝟐𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 − 𝑼) = 𝟕𝟑𝟎𝟎𝟓.𝟓𝟔 𝑾 𝑷 = 𝒎 × 𝟕𝟑𝟎𝟎𝟓.𝟓𝟔 𝑾 = 𝟕𝟑.𝟎 𝒌𝑾, 𝑼 = 𝟏𝟒𝟏.𝟑𝟕 𝒎/𝒔,𝜷𝟏 = 𝟑𝟐.𝟓𝟓°
  • 9. Asst Proff Mr THANMAY J S, Department of Mechanical Engineering VVIET Mysore Page 9 VTU Question Paper Dec. 2019/Jan. 2020 6 b) In a Parson’s turbine, the axial velocity of flow of steam is 0.5 times the mean blade speed. The outlet angle of the blade is 20° diameter of the blade ring is 1.3m and rotational speed 3000rpm. Determine inlet blade angles, power developed for steam flow of 65kg/sec and isentropic enthalpy drop, if the stage efficiency is 80%. 10 𝑽𝒇 = 𝟎. 𝟓 𝑼 𝑫 = 𝟏.𝟑 𝒎 𝜷𝟐 = 𝜶𝟏 = 𝟐𝟎° 𝑵 = 𝟑𝟎𝟎𝟎 𝒓𝒑𝒎 𝒎 = 𝟔𝟓 𝒌𝒈/𝒔 ∆𝒉°𝑺𝒕𝒂𝒈𝒆 =? 𝜼𝑺 = 𝟎.𝟖𝟎 𝑵𝒐𝒕𝒆 𝑷𝒂𝒓𝒔𝒐𝒏 𝑻𝒖𝒓𝒃𝒊𝒏𝒆 𝜶𝟏 = 𝜷𝟐 𝒂𝒏𝒅 𝜶𝟐 = 𝜷𝟏 𝑽𝟏 = 𝑽𝒓𝟐 𝒂𝒏𝒅 𝐕𝟐 = 𝑽𝒓𝟏 𝑼 = 𝝅𝑫𝑵 𝟔𝟎 = 𝝅 × 𝟏. 𝟑 × 𝟑𝟎𝟎𝟎 𝟔𝟎 =∴ 𝑼 = 𝟐𝟎𝟒.𝟐𝟎 𝒎/𝒔 sin 𝛼1 = 𝑉𝑓 𝑉1 = 0.5 𝑈 𝑉1 ≫ 𝑉1 = 0.5𝑈 𝑠𝑖𝑛𝛼1 = 298.52 𝑚/𝑠 cos 𝛼1 = 𝑉𝑢1 𝑉1 ≫ 𝑉𝑢1 = 𝑉1 × 𝑐𝑜𝑠𝛼1 = 280.51 𝑚/𝑠 tan 𝛽1 = 𝑉𝑓 𝑉𝑢1 − 𝑈 ≫ 𝛽1 = 𝑡𝑎𝑛−1 ( 0.5𝑈 𝑉𝑢1 − 𝑈 ) = 53° 𝑐𝑜𝑠𝛽1 = 𝑋1 𝑉𝑟1 ≫ 𝑉𝑟1 = 𝑉𝑢1 − 𝑈 𝑐𝑜𝑠𝛽1 ≫ 126.81 𝑚/𝑠 𝑉2 = 𝑉𝑟1 = 126.81 𝑚/𝑠 cos 𝛼2 = 𝑉𝑢2 𝑉2 ≫ 𝑉𝑢2 = 𝑉2 × cos 𝛼2 = 76.31 𝑚/𝑠 𝜼𝑺 = 𝑷 ∆𝒉°𝑺𝒕𝒂𝒈𝒆 = 𝟎.𝟖 ≫ ∆𝒉°𝑺𝒕𝒂𝒈𝒆 = 𝑷 𝜼𝑺 ∆𝒉°𝑺𝒕𝒂𝒈𝒆 = 𝟗𝟏.𝟎𝟖 𝒌𝑱/𝒌𝒈 𝑷 = 𝑼(∆𝑽𝒖) = 𝑼(𝟐𝑽𝟏 𝒄𝒐𝒔𝜶𝟏 − 𝑼) = 𝟕𝟐𝟖𝟔𝟓.𝟓𝟏 𝑾 𝑷 = 𝒎 × 𝟕𝟐𝟖𝟔𝟓.𝟓𝟏 𝑾 == 𝟒𝟕𝟑𝟔.𝟐𝟓 𝒌𝑾 Other Relevant Questions & Problems:  A Parson's turbine is running at 1200 rpm. The mean rotor diameter is 1m. Blade outlet angle is 23°, speed ratio is 0.75. Stage efficiency is 0.8. Find enthalpy drop in this stage VTU Question Paper Dec. Dec.2018/Jan. 2019    