The document summarizes the mechanism of skeletal muscle contraction. It describes how an action potential leads to a rise in intracellular calcium levels through excitation-contraction coupling. This triggers the sliding filament theory where actin and myosin filaments slide past each other through cross-bridge cycling powered by ATP hydrolysis. Calcium binds to troponin C, allowing the power stroke to occur as myosin heads pull the actin filaments towards the center of the sarcomere. Relaxation occurs as calcium is re-sequestered in the sarcoplasmic reticulum, breaking the cross-bridges.