Embed presentation
Downloaded 11 times
![DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/](https://image.slidesharecdn.com/20200619akuzawa-200630053016/75/DL-Weakly-Supervised-Disentanglement-Without-Compromises-1-2048.jpg)

![z = [z1, . . . , zd]T
̂z = [ ̂z1, . . . , ̂zd]T
̂z
f π i zi = fi( ̂zπ(i))
z](https://image.slidesharecdn.com/20200619akuzawa-200630053016/85/DL-Weakly-Supervised-Disentanglement-Without-Compromises-3-320.jpg)








![(x1, x2) ∼ p(x1, x2) =
∫ ∫ ∫
p(x1, x2, z, ˜z, S)dzd˜zdS
|S| = k
S, S′ ∼ p(S) P(S ∩ S′ = {i}) > 0,∀i ∈ [d]
p( ̂zi) q(x1 | ̂z) p( ̂S)
q( ̂z) =
∫
q( ̂z|x1)p(x1)dx](https://image.slidesharecdn.com/20200619akuzawa-200630053016/85/DL-Weakly-Supervised-Disentanglement-Without-Compromises-12-320.jpg)










![[DL輪読会]Weakly-Supervised Disentanglement Without Compromises](https://image.slidesharecdn.com/20200619akuzawa-200630053016/85/DL-Weakly-Supervised-Disentanglement-Without-Compromises-23-320.jpg)

1. The document presents a method for deep learning using variational autoencoders that model the relationship between pairs of data points (x1, x2). 2. It introduces variables to represent latent vectors z and z~ that are used to generate x1 and x2, as well as a subset S of dimensions that relate x1 and x2. 3. The method works by training an encoder qφ(z|x) to approximate a prior p(z) and maximize the likelihood of generating x1 and x2 from their respective latent representations, while minimizing the KL divergence between the encoder and prior.
![DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/](https://image.slidesharecdn.com/20200619akuzawa-200630053016/75/DL-Weakly-Supervised-Disentanglement-Without-Compromises-1-2048.jpg)

![z = [z1, . . . , zd]T
̂z = [ ̂z1, . . . , ̂zd]T
̂z
f π i zi = fi( ̂zπ(i))
z](https://image.slidesharecdn.com/20200619akuzawa-200630053016/85/DL-Weakly-Supervised-Disentanglement-Without-Compromises-3-320.jpg)








![(x1, x2) ∼ p(x1, x2) =
∫ ∫ ∫
p(x1, x2, z, ˜z, S)dzd˜zdS
|S| = k
S, S′ ∼ p(S) P(S ∩ S′ = {i}) > 0,∀i ∈ [d]
p( ̂zi) q(x1 | ̂z) p( ̂S)
q( ̂z) =
∫
q( ̂z|x1)p(x1)dx](https://image.slidesharecdn.com/20200619akuzawa-200630053016/85/DL-Weakly-Supervised-Disentanglement-Without-Compromises-12-320.jpg)










![[DL輪読会]Weakly-Supervised Disentanglement Without Compromises](https://image.slidesharecdn.com/20200619akuzawa-200630053016/85/DL-Weakly-Supervised-Disentanglement-Without-Compromises-23-320.jpg)