DEEP LEARNING JP
[DL Papers]
http://deeplearning.jp/
z = [z1, . . . , zd]T
̂z = [ ̂z1, . . . , ̂zd]T
̂z
f π i zi = fi( ̂zπ(i))
z
P(z) f
p(z) = p( f(z)) z, f(z)
i, j
∂fi(u)
∂uj
for a . e . u ∈ supp(z)
P( f(z)) p( f(z)) p(z)
β
q(z) =
∫
q(z|x)pdata(x)dx
q(z) p(z) p( f(z))
p(z)
β
β
(x1, x2)
(x1, x2) k ≥ 1
(x1, x2)
(x1, x2) k ≥ 1
p(z) = Πd
i=1p(zi), p(˜z) = Πd
i=1p(˜zi)
S ∼ p(S), x1 = g⋆
(z), x2 = g⋆
(f(z, ˜z, S))
f i ∉ S ˜zi
(x1, x2)
(x1, x2) k ≥ 1
(x1, x2) ∼ p(x1, x2) =
∫ ∫ ∫
p(x1, x2, z, ˜z, S)dzd˜zdS
|S| = k
S, S′ ∼ p(S) P(S ∩ S′ = {i}) > 0,∀i ∈ [d]
p( ̂zi) q(x1 | ̂z) p( ̂S)
q( ̂z) =
∫
q( ̂z|x1)p(x1)dx
S x1, x2
zi∈S zi∉S ̂zi∈T ̂zi∉T
(x1, x2) ∼ p(x1, x2 |S)
S
p (zi |x1) = p (zi |x2) ∀i ∈ S
p (zi |x1) ≠ p (zi |x2) ∀i ∈ ¯S
k S
k
k S
max
ϕ,θ
𝔼(x1,x2)
𝔼˜qϕ( ̂z|x1)
log (pθ (x1 | ̂z))
+𝔼˜qϕ( ̂z|x2)
log (pθ (x2 | ̂z))
−βDKL (˜qϕ ( ̂z||x1)|p( ̂z))
−βDKL (˜qϕ ( ̂z||x2)|p( ̂z))
˜qϕ ( ̂zi |x1) = a (qϕ ( ̂zi |x1), qϕ ( ̂zi |x2)) ∀i ∈ ̂S
˜qϕ ( ̂zi |x1) = qϕ ( ̂zi |x1)
(x1, x2)
i ∈ ̂S qϕ ( ̂zi |x1), qϕ ( ̂zi |x2) a
δi = DKL (qϕ ( ̂zi |x1) ∥qϕ ( ̂zi |x2))
(x1, x2)
(x1, x2) k ≥ 1
β β
β
k (x1, x2)
(x1, x2)
[DL輪読会]Weakly-Supervised Disentanglement Without Compromises

[DL輪読会]Weakly-Supervised Disentanglement Without Compromises

  • 1.
    DEEP LEARNING JP [DLPapers] http://deeplearning.jp/
  • 3.
    z = [z1,. . . , zd]T ̂z = [ ̂z1, . . . , ̂zd]T ̂z f π i zi = fi( ̂zπ(i)) z
  • 4.
    P(z) f p(z) =p( f(z)) z, f(z) i, j ∂fi(u) ∂uj for a . e . u ∈ supp(z) P( f(z)) p( f(z)) p(z) β q(z) = ∫ q(z|x)pdata(x)dx q(z) p(z) p( f(z)) p(z)
  • 5.
  • 7.
  • 8.
  • 9.
  • 10.
    p(z) = Πd i=1p(zi),p(˜z) = Πd i=1p(˜zi) S ∼ p(S), x1 = g⋆ (z), x2 = g⋆ (f(z, ˜z, S)) f i ∉ S ˜zi
  • 11.
  • 12.
    (x1, x2) ∼p(x1, x2) = ∫ ∫ ∫ p(x1, x2, z, ˜z, S)dzd˜zdS |S| = k S, S′ ∼ p(S) P(S ∩ S′ = {i}) > 0,∀i ∈ [d] p( ̂zi) q(x1 | ̂z) p( ̂S) q( ̂z) = ∫ q( ̂z|x1)p(x1)dx
  • 13.
    S x1, x2 zi∈Szi∉S ̂zi∈T ̂zi∉T (x1, x2) ∼ p(x1, x2 |S) S
  • 14.
    p (zi |x1)= p (zi |x2) ∀i ∈ S p (zi |x1) ≠ p (zi |x2) ∀i ∈ ¯S k S k k S
  • 15.
    max ϕ,θ 𝔼(x1,x2) 𝔼˜qϕ( ̂z|x1) log (pθ(x1 | ̂z)) +𝔼˜qϕ( ̂z|x2) log (pθ (x2 | ̂z)) −βDKL (˜qϕ ( ̂z||x1)|p( ̂z)) −βDKL (˜qϕ ( ̂z||x2)|p( ̂z)) ˜qϕ ( ̂zi |x1) = a (qϕ ( ̂zi |x1), qϕ ( ̂zi |x2)) ∀i ∈ ̂S ˜qϕ ( ̂zi |x1) = qϕ ( ̂zi |x1) (x1, x2) i ∈ ̂S qϕ ( ̂zi |x1), qϕ ( ̂zi |x2) a δi = DKL (qϕ ( ̂zi |x1) ∥qϕ ( ̂zi |x2))
  • 16.
  • 17.
  • 20.
  • 22.