This document discusses the relationship between control as inference, reinforcement learning, and active inference. It provides an overview of key concepts such as Markov decision processes (MDPs), partially observable MDPs (POMDPs), optimality variables, the evidence lower bound (ELBO), variational inference, and the free energy principle as applied to active inference. Control as inference frames reinforcement learning as probabilistic inference by defining a generative process and performing variational inference to find an optimal policy. Active inference uses the free energy principle and minimizes expected free energy to select actions that resolve uncertainty.