SlideShare a Scribd company logo
1 of 37
Course: Electromagnetic Theory
paper code: EI 503
Course Coordinator: Arpan Deyasi
Department of Electronics and Communication Engineering
RCC Institute of Information Technology
Kolkata, India
Topics: Coordinate Transformation
18-09-2021 Arpan Deyasi, Electromagnetic Theory 1
Arpan Deyasi
Electromagnetic
Theory
Transformation based on type of variables:
Scalar Transformation
Vector Transformation
Transformation between coordinates
Cartesian to Cylindrical
Cartesian to Spherical
18-09-2021 Arpan Deyasi, Electromagnetic Theory 2
Arpan Deyasi
Electromagnetic
Theory
Four types of transformations
1. Cartesian to Cylindrical (scalar)
2. Cartesian to Cylindrical (vector)
3. Cartesian to Spherical (scalar)
4. Cartesian to Spherical (vector)
18-09-2021 Arpan Deyasi, Electromagnetic Theory 3
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Cylindrical Transformation (Scalar)
X
Y
Z
P
ˆ
i
ĵ
k̂
̂
ˆ

ẑ
Point (P) at Cartesian
Coordinate (x, y, z)
Point (P) at Cylindrical
Coordinate (ρ, φ, z)
18-09-2021 Arpan Deyasi, Electromagnetic Theory 4
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Cylindrical Transformation (Scalar)
Boundary conditions for cylindrical coordinates
0 
  
0 2
 
 
z
−   
18-09-2021 Arpan Deyasi, Electromagnetic Theory 5
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Cylindrical Transformation (Scalar)
2 2
x y
 = +
1
tan
y
x
 −  
=  
 
z z
= z z
=
( )
cos
x  
=
( )
sin
y  
=
18-09-2021 Arpan Deyasi, Electromagnetic Theory 6
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Cylindrical Transformation (Scalar)
Prob: For the point P (-2,6,3); determine the coordinate in cylindrical systems
2 2
4 36 6.32
x y
 = + = + =
In cylindrical coordinate system
( )
1 1 1
6
tan tan tan 3 108.43
2
y
x
 − − −
   
= = = − = 
   
−
   
3
z =
Soln:
18-09-2021 Arpan Deyasi, Electromagnetic Theory 7
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Cylindrical Transformation (Vector)
X
Y
Z R
ˆ
i
ĵ
k̂
̂
ˆ

ẑ
18-09-2021 Arpan Deyasi, Electromagnetic Theory 8
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Cylindrical Transformation (Vector)
Relation between unit vectors
ˆ
ˆ ˆ
cos( ) sin( )
i    
= −
ˆ
ˆ ˆ
sin( ) cos( )
j    
= +
ˆ ˆ
k z
= ˆ
ẑ k
=
ˆ ˆ ˆ
sin( ) cos( )
i j
  
= − +
ˆ ˆ
ˆ cos( ) sin( )
i j
  
= +
18-09-2021 Arpan Deyasi, Electromagnetic Theory 9
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Cylindrical Transformation (Vector)
ˆ
ˆ ˆ
x y z
R R i R j R k
= + +
( ) ( )
ˆ ˆ
ˆ ˆ ˆ
cos( ) sin( ) sin( ) cos( )
x y z
R R R R z
       
= − + + +
ˆ
ˆ ˆ
cos( ) sin( ) sin( ) cos( )
x y x y z
R R R R R R z
     
   
= + + − + +
   
ˆ
ˆ ˆ
z
R R R R z
 
 
= + +
18-09-2021 Arpan Deyasi, Electromagnetic Theory 10
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Cylindrical Transformation (Vector)
cos( ) sin( ) 0
sin( ) cos( ) 0
0 0 1
x
y
z z
R R
R R
R R


 
 
     
     
= −
     
     
     
18-09-2021 Arpan Deyasi, Electromagnetic Theory 11
Arpan Deyasi
Electromagnetic
Theory
Cylindrical → Cartesian Transformation (Vector)
Inverse transformation gives
cos( ) sin( ) 0
sin( ) cos( ) 0
0 0 1
x
y
z z
R R
R R
R R


 
 
−
     
     
=
     
     
     
18-09-2021 Arpan Deyasi, Electromagnetic Theory 12
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Cylindrical Transformation (Vector)
Prob:
Find the vector in cylindrical coordinate system
ˆ ˆ
( ) ( )
R y z i x z j
= + + +
Soln:
In cartesian coordinate system
x
R y z
= +
y
R x z
= +
0
z
R =
18-09-2021 Arpan Deyasi, Electromagnetic Theory 13
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Cylindrical Transformation (Vector)
cos( ) sin( ) 0
sin( ) cos( ) 0
0 0 1 0
z
R y z
R x z
R


 
 
+
     
     
= − +
     
     
     
 
( )cos( ) ( )sin( )
R y z x z
  
= + + +
0
z
R =
 
( )sin( ) ( )cos( )
R y z x z
  
= − + + +
18-09-2021 Arpan Deyasi, Electromagnetic Theory 14
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Cylindrical Transformation (Vector)
( )
cos
x  
= ( )
sin
y  
=
Substitutions
( ) ( )
( sin )cos( ) ( cos )sin( )
R z z
      
= + + +
 
 
( ) ( )
( sin )sin( ) ( cos )cos( )
R z z
      
= − + + +
 
 
18-09-2021 Arpan Deyasi, Electromagnetic Theory 15
Arpan Deyasi
Electromagnetic
Theory
2 2
4 36 40
x y
 = + = + =
6
tan( )
2
y
x

   
= =
   
−
   
Cartesian → Cylindrical Transformation (Vector)
6
sin( )
40
 = 2
cos( )
40

−
=
18-09-2021 Arpan Deyasi, Electromagnetic Theory 16
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Cylindrical Transformation (Vector)
6 2 2 6
40 3 ( 40 3)
40 40 40 40
R
 
− −
 
= + + +
 
 
 
 
6 6 2 2
40 3 ( 40 3)
40 40 40 40
R
 
− −
 
= − + + +
 
 
 
 
18-09-2021 Arpan Deyasi, Electromagnetic Theory 17
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Cylindrical Transformation (Vector)
( )
2 6 18 6 12
6 3 ( 2 3)
40 40 40 40 40
R
−
   
= + + − + = − + = −
 
 
   
( )
6 2 54 2 56
6 3 ( 2 3)
40 40 40 40 40
R
−
   
= − + + − + = − − = −
 
 
   
0
z
R =
18-09-2021 Arpan Deyasi, Electromagnetic Theory 18
Arpan Deyasi
Electromagnetic
Theory
In cylindrical coordinate system
Cartesian → Cylindrical Transformation (Vector)
12 56 ˆ
ˆ
40 40
R  
= − + −
18-09-2021 Arpan Deyasi, Electromagnetic Theory 19
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Spherical Transformation (Scalar)
X
Y
Z
P
ˆ
i
ĵ
k̂
r̂
ˆ

ˆ

Point (P) at Cartesian
Coordinate (x, y, z) Point (P) at Spherical
Coordinate (r, θ, φ)
18-09-2021 Arpan Deyasi, Electromagnetic Theory 20
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Spherical Transformation (Scalar)
Boundary conditions for spherical coordinates
0 r
  
0  
 
0 2
 
 
18-09-2021 Arpan Deyasi, Electromagnetic Theory 21
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Spherical Transformation (Scalar)
2 2 2
r x y z
= + +
2 2
1
tan
x y
z
 −
 
+
 
=
 
 
1
tan
y
x
 −  
=  
 
( )
sin( )cos
x r  
=
( )
sin( )sin
y r  
=
cos( )
z r 
=
18-09-2021 Arpan Deyasi, Electromagnetic Theory 22
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Spherical Transformation (Scalar)
Prob: For the point P (-2,6,3); determine the coordinate in spherical systems
Soln: In spherical coordinate system
2 2 2 2 2 2
( 2) 6 3 7
r x y z
= + + = − + + =
2 2 2 2
1 1 ( 2) 6
tan tan 64.63
3
x y
z
 − −
   
+ − +
   
= = = 
   
   
( )
1 1 1
6
tan tan tan 3 108.43
2
y
x
 − − −
   
= = = − = 
   
−
   
18-09-2021 Arpan Deyasi, Electromagnetic Theory 23
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Spherical Transformation (Vector)
X
Y
Z
P
ˆ
i
ĵ
k̂
r̂
ˆ

ˆ

18-09-2021 Arpan Deyasi, Electromagnetic Theory 24
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Spherical Transformation (Vector)
Relation between unit vectors
ˆ ˆ
ˆ ˆ
sin( )cos( ) cos( )cos( ) sin( )
i r
      
= − −
ˆ ˆ
ˆ ˆ
sin( )sin( ) cos( )sin( ) cos( )
j r
      
= + +
ˆ ˆ
ˆ
cos( ) sin( )
k r
  
= −
18-09-2021 Arpan Deyasi, Electromagnetic Theory 25
Arpan Deyasi
Electromagnetic
Theory
Cartesian ⇄ Spherical Transformation (Vector)
Relation between unit vectors
ˆ
ˆ ˆ
ˆ sin( )cos( ) sin( )sin( ) cos( )
r i j k
    
= + +
ˆ
ˆ ˆ ˆ
cos( )cos( ) cos( )sin( ) sin( )
i j k
     
= + −
ˆ ˆ ˆ
sin( ) cos( )
i j
  
= − +
18-09-2021 Arpan Deyasi, Electromagnetic Theory 26
Arpan Deyasi
Electromagnetic
Theory
ˆ
ˆ ˆ
x y z
R R i R j R k
= + +
Cartesian → Spherical Transformation (Vector)
ˆ ˆ
ˆ
[sin( )cos( ) cos( )cos( ) sin( ) ]
ˆ ˆ
ˆ
[sin( )sin( ) cos( )sin( ) cos( ) ]
ˆ
ˆ
[cos( ) sin( ) ]
x
y
z
R r R
r R
r R
      
      
  
= − − +
+ + +
−
18-09-2021 Arpan Deyasi, Electromagnetic Theory 27
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Spherical Transformation (Vector)
ˆ
[ sin( )cos( ) sin( )sin( ) cos( )]
ˆ ˆ
ˆ
[ cos( )cos( ) cos( )sin( ) sin( )]
ˆ
[ sin( ) cos( )]
x y z
x y z
x y
R R R R r
R r R R
R R
    
      
  
= + + +
− + − +
− +
ˆ ˆ
ˆ
r
R R r R R
 
 
= + +
18-09-2021 Arpan Deyasi, Electromagnetic Theory 28
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Spherical Transformation (Vector)
sin( )cos( ) sin( )sin( ) cos( )
cos( )cos( ) cos( )sin( ) sin( )
sin( ) cos( ) 0
r x
y
z
R R
R R
R R


    
    
 
     
     
= − −
     
     
−
   
 
18-09-2021 Arpan Deyasi, Electromagnetic Theory 29
Arpan Deyasi
Electromagnetic
Theory
Inverse transformation gives
Spherical → Cartesian Transformation (Vector)
sin( )cos( ) cos( )cos( ) sin( )
sin( )cos( ) cos( )sin( ) cos( )
cos( ) sin( ) 0
x r
y
z
R R
R R
R R


    
    
 
 
−
   
 
   
=  
   
 
   
−
     
18-09-2021 Arpan Deyasi, Electromagnetic Theory 30
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Spherical Transformation (Vector)
Prob:
Find the vector in spherical coordinate system
ˆ ˆ
( ) ( )
R y z i x z j
= + + +
Soln:
In cartesian coordinate system
x
R y z
= +
y
R x z
= +
0
z
R =
18-09-2021 Arpan Deyasi, Electromagnetic Theory 31
Arpan Deyasi
Electromagnetic
Theory
sin( )cos( ) sin( )sin( ) cos( )
cos( )cos( ) cos( )sin( ) sin( )
sin( ) cos( ) 0 0
r
R y z
R x z
R


    
    
 
  +
   
     
= − − +
     
     
−
   
 
Cartesian → Spherical Transformation (Vector)
 
( )sin( )cos( ) ( )sin( )sin( )
r
R y z x z
   
= + + +
 
( )sin( ) ( )cos( )
R y z x z
  
= − + + +
 
( )cos( )cos( ) ( )cos( )sin( )
R y z x z
    
= − + + +
18-09-2021 Arpan Deyasi, Electromagnetic Theory 32
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Spherical Transformation (Vector)
( )
sin( )cos
x r  
= ( )
sin( )sin
y r  
= cos( )
z r 
=
Substitutions
( )
( )
( )
( )
sin( )sin cos( ) sin( )cos( )
sin( )cos cos( ) sin( )sin( )
r
r
R
r
    
    
 
+ +
 
=
+
 
 
( )
( )
( )
( )
sin( )sin cos( ) cos( )cos( )
sin( )cos cos( ) cos( )sin( )
r
R
r

    
    
 
− + +
 
=
+
 
 
( )
( )
( )
( )
sin( )sin cos( ) sin( )
sin( )cos cos( ) cos( )
r
R
r

   
   
 
− + +
 
=
+
 
 
18-09-2021 Arpan Deyasi, Electromagnetic Theory 33
Arpan Deyasi
Electromagnetic
Theory
2 2 2 2 2 2
( 2) 6 3 7
r x y z
= + + = − + + =
2 2 2 2
( 2) 6 40
tan( )
3 3
x y
z

   
+ − +
   
= = =
   
   
Cartesian → Spherical Transformation (Vector)
40
sin( )
7
 =
3
cos( )
7
 =
6
tan( )
2
y
x

   
= =
   
−
   
6
sin( )
40
 =
2
cos( )
40

−
=
18-09-2021 Arpan Deyasi, Electromagnetic Theory 34
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Spherical Transformation (Vector)
40 6 3 40 2 40 2 3 40 6
7 . . 7 . .
7 7 7 7 7 7
40 40 40 40
r
R
 
     
− −
= + + +
 
     
     
 
     
 
40 6 3 3 2 40 2 3 3 6
7 . . 7 . .
7 7 7 7 7 7
40 40 40 40
R
 
   
− −
   
= − + + +
 
   
   
   
   
 
   
 
40 6 3 6 40 2 3 2
7 . 7 . .
7 7 7 7
40 40 40 40
R
 
   
− −
= − + + +
 
   
   
 
   
 
18-09-2021 Arpan Deyasi, Electromagnetic Theory 35
Arpan Deyasi
Electromagnetic
Theory
Cartesian → Spherical Transformation (Vector)
6 3 2 2 3 6 18 6 12
7 7
7 7 7 7 7 7 7 7 7
r
R
 − − 
       
= + + + = − + = −
     
   
       
 
6 3 3 2 2 3 3 6
7 . 7 .
7 7 7 7 7 7
40 40
54 18 72
7 40 7 40 7 40
R
 
− −
   
   
= − + + +
   
 
   
   
   
 
= + =
6 3 6 2 3 2 54 2 56
7 7 .
7 7 7 7
40 40 40 40 40
R
 − − 
   
= − + + + = − − = −
   
 
   
 
18-09-2021 Arpan Deyasi, Electromagnetic Theory 36
Arpan Deyasi
Electromagnetic
Theory
In spherical coordinate system
Cartesian → Spherical Transformation (Vector)
12 72 56
ˆ ˆ
ˆ
7 7 40 40
R r  
= − + −
18-09-2021 Arpan Deyasi, Electromagnetic Theory 37
Arpan Deyasi
Electromagnetic
Theory

More Related Content

What's hot

Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson methodBijay Mishra
 
Coordinate and unit vector
Coordinate and unit vectorCoordinate and unit vector
Coordinate and unit vectorJobins George
 
Vector calculus
Vector calculusVector calculus
Vector calculusraghu ram
 
Lesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinatesLesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinatesMatthew Leingang
 
Linear algebra application in linear programming
Linear algebra application in linear programming Linear algebra application in linear programming
Linear algebra application in linear programming Lahiru Dilshan
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl VishalVishwakarma59
 
Complex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationComplex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationHesham Ali
 
Cylindrical and Spherical Coordinates System
Cylindrical and Spherical Coordinates SystemCylindrical and Spherical Coordinates System
Cylindrical and Spherical Coordinates SystemJezreel David
 
Cylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shaliniCylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shalinishalini singh
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinatesTarun Gehlot
 
Root Locus Plot
Root Locus Plot Root Locus Plot
Root Locus Plot Hussain K
 

What's hot (20)

Vector Integration
Vector IntegrationVector Integration
Vector Integration
 
Biot-Savart law
Biot-Savart lawBiot-Savart law
Biot-Savart law
 
Polar plot
Polar plotPolar plot
Polar plot
 
Ampere’s law
Ampere’s lawAmpere’s law
Ampere’s law
 
Newton raphson method
Newton raphson methodNewton raphson method
Newton raphson method
 
Coordinate and unit vector
Coordinate and unit vectorCoordinate and unit vector
Coordinate and unit vector
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Lesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinatesLesson 6: Polar, Cylindrical, and Spherical coordinates
Lesson 6: Polar, Cylindrical, and Spherical coordinates
 
Linear algebra application in linear programming
Linear algebra application in linear programming Linear algebra application in linear programming
Linear algebra application in linear programming
 
Curve Fitting
Curve FittingCurve Fitting
Curve Fitting
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
Complex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex DifferentiationComplex Numbers and Functions. Complex Differentiation
Complex Numbers and Functions. Complex Differentiation
 
Cylindrical and Spherical Coordinates System
Cylindrical and Spherical Coordinates SystemCylindrical and Spherical Coordinates System
Cylindrical and Spherical Coordinates System
 
Cylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shaliniCylindrical and spherical coordinates shalini
Cylindrical and spherical coordinates shalini
 
Cylindrical and spherical coordinates
Cylindrical and spherical coordinatesCylindrical and spherical coordinates
Cylindrical and spherical coordinates
 
Root Locus Plot
Root Locus Plot Root Locus Plot
Root Locus Plot
 
Scalar and vector differentiation
Scalar and vector differentiationScalar and vector differentiation
Scalar and vector differentiation
 
Conformal mapping
Conformal mappingConformal mapping
Conformal mapping
 

Similar to Coordinate transformation

Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Ali Farooq
 
EMF.0.12.VectorCalculus-II.pdf
EMF.0.12.VectorCalculus-II.pdfEMF.0.12.VectorCalculus-II.pdf
EMF.0.12.VectorCalculus-II.pdfrsrao8
 
Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Sonendra Kumar Gupta
 
Ingeniería de control: Lugar geométrico de las raíces
Ingeniería de control: Lugar geométrico de las raíces Ingeniería de control: Lugar geométrico de las raíces
Ingeniería de control: Lugar geométrico de las raíces SANTIAGO PABLO ALBERTO
 
CEM Workshop Lectures (9/11): Modelling Electromagnetics Field
CEM Workshop Lectures (9/11):  Modelling Electromagnetics FieldCEM Workshop Lectures (9/11):  Modelling Electromagnetics Field
CEM Workshop Lectures (9/11): Modelling Electromagnetics FieldAbhishek Jain
 
EMT_2A_cylindrical coordinates.pptx
EMT_2A_cylindrical coordinates.pptxEMT_2A_cylindrical coordinates.pptx
EMT_2A_cylindrical coordinates.pptx5610UmarIqbal
 
Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1Ali Farooq
 
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's ClassesIIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's ClassesSOURAV DAS
 
Laplace equation
Laplace equationLaplace equation
Laplace equationalexkhan129
 
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdff00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdfSRSstatusking
 

Similar to Coordinate transformation (20)

Impedance in transmission line
Impedance in transmission lineImpedance in transmission line
Impedance in transmission line
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1
 
Capacitor
CapacitorCapacitor
Capacitor
 
Fundamentals of Coulomb's Law
Fundamentals of Coulomb's LawFundamentals of Coulomb's Law
Fundamentals of Coulomb's Law
 
Reflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission lineReflection and Transmission coefficients in transmission line
Reflection and Transmission coefficients in transmission line
 
EMF.0.12.VectorCalculus-II.pdf
EMF.0.12.VectorCalculus-II.pdfEMF.0.12.VectorCalculus-II.pdf
EMF.0.12.VectorCalculus-II.pdf
 
Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...Application of Cylindrical and Spherical coordinate system in double-triple i...
Application of Cylindrical and Spherical coordinate system in double-triple i...
 
Electromagnetic Wave Propagations
Electromagnetic Wave PropagationsElectromagnetic Wave Propagations
Electromagnetic Wave Propagations
 
Ingeniería de control: Lugar geométrico de las raíces
Ingeniería de control: Lugar geométrico de las raíces Ingeniería de control: Lugar geométrico de las raíces
Ingeniería de control: Lugar geométrico de las raíces
 
CEM Workshop Lectures (9/11): Modelling Electromagnetics Field
CEM Workshop Lectures (9/11):  Modelling Electromagnetics FieldCEM Workshop Lectures (9/11):  Modelling Electromagnetics Field
CEM Workshop Lectures (9/11): Modelling Electromagnetics Field
 
Ch41 ssm
Ch41 ssmCh41 ssm
Ch41 ssm
 
EMT_2A_cylindrical coordinates.pptx
EMT_2A_cylindrical coordinates.pptxEMT_2A_cylindrical coordinates.pptx
EMT_2A_cylindrical coordinates.pptx
 
Bruja de Agnesi
Bruja de AgnesiBruja de Agnesi
Bruja de Agnesi
 
Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1Electromagnetic theory EMT lecture 1
Electromagnetic theory EMT lecture 1
 
Telegrapher's Equation
Telegrapher's EquationTelegrapher's Equation
Telegrapher's Equation
 
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's ClassesIIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
IIT JAM PHYSICS - PH 2022 Question Paper | Sourav Sir's Classes
 
1 slides
1 slides1 slides
1 slides
 
Laplace equation
Laplace equationLaplace equation
Laplace equation
 
1. vectores
1. vectores1. vectores
1. vectores
 
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdff00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
 

More from RCC Institute of Information Technology

More from RCC Institute of Information Technology (20)

Carrier scattering and ballistic transport
Carrier scattering and ballistic transportCarrier scattering and ballistic transport
Carrier scattering and ballistic transport
 
Ampere's circuital law
Ampere's circuital lawAmpere's circuital law
Ampere's circuital law
 
Magnetic Potentials
Magnetic PotentialsMagnetic Potentials
Magnetic Potentials
 
Distortionless Transmission Line
Distortionless Transmission LineDistortionless Transmission Line
Distortionless Transmission Line
 
Quantum Hall Effect
Quantum Hall EffectQuantum Hall Effect
Quantum Hall Effect
 
Dielectrics
DielectricsDielectrics
Dielectrics
 
Electrical Properties of Dipole
Electrical Properties of DipoleElectrical Properties of Dipole
Electrical Properties of Dipole
 
Fundamentals of Gauss' Law
Fundamentals of Gauss' LawFundamentals of Gauss' Law
Fundamentals of Gauss' Law
 
Moletronics
MoletronicsMoletronics
Moletronics
 
Crystal Growth
Crystal GrowthCrystal Growth
Crystal Growth
 
Memristor
MemristorMemristor
Memristor
 
Advanced MOSFET
Advanced MOSFETAdvanced MOSFET
Advanced MOSFET
 
CNTFET
CNTFETCNTFET
CNTFET
 
Electrical characteristics of MOSFET
Electrical characteristics of MOSFETElectrical characteristics of MOSFET
Electrical characteristics of MOSFET
 
Mosfet fundamentals
Mosfet fundamentalsMosfet fundamentals
Mosfet fundamentals
 
Single Electron Transistor
Single Electron TransistorSingle Electron Transistor
Single Electron Transistor
 
High Electron Mobility Transistor
High Electron Mobility TransistorHigh Electron Mobility Transistor
High Electron Mobility Transistor
 
Resonant Tunneling
Resonant TunnelingResonant Tunneling
Resonant Tunneling
 
JFET
JFETJFET
JFET
 
Advanced solar cell
Advanced solar cellAdvanced solar cell
Advanced solar cell
 

Recently uploaded

X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneySérgio Sacani
 
Energy is the beat of life irrespective of the domains. ATP- the energy curre...
Energy is the beat of life irrespective of the domains. ATP- the energy curre...Energy is the beat of life irrespective of the domains. ATP- the energy curre...
Energy is the beat of life irrespective of the domains. ATP- the energy curre...Nistarini College, Purulia (W.B) India
 
Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycleCherry
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIADr. TATHAGAT KHOBRAGADE
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCherry
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.Cherry
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body Areesha Ahmad
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Cherry
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsSérgio Sacani
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACherry
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methodsimroshankoirala
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Cherry
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Cherry
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationAreesha Ahmad
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.Cherry
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryAlex Henderson
 
GBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of AsepsisGBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of AsepsisAreesha Ahmad
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCherry
 

Recently uploaded (20)

X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 
Energy is the beat of life irrespective of the domains. ATP- the energy curre...
Energy is the beat of life irrespective of the domains. ATP- the energy curre...Energy is the beat of life irrespective of the domains. ATP- the energy curre...
Energy is the beat of life irrespective of the domains. ATP- the energy curre...
 
Pteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecyclePteris : features, anatomy, morphology and lifecycle
Pteris : features, anatomy, morphology and lifecycle
 
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIACURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
CURRENT SCENARIO OF POULTRY PRODUCTION IN INDIA
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
 
LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.LUNULARIA -features, morphology, anatomy ,reproduction etc.
LUNULARIA -features, morphology, anatomy ,reproduction etc.
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methods
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.
 
GBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolationGBSN - Microbiology (Unit 5) Concept of isolation
GBSN - Microbiology (Unit 5) Concept of isolation
 
POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.POGONATUM : morphology, anatomy, reproduction etc.
POGONATUM : morphology, anatomy, reproduction etc.
 
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and SpectrometryFAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
FAIRSpectra - Enabling the FAIRification of Spectroscopy and Spectrometry
 
GBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of AsepsisGBSN - Microbiology (Unit 4) Concept of Asepsis
GBSN - Microbiology (Unit 4) Concept of Asepsis
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 

Coordinate transformation

  • 1. Course: Electromagnetic Theory paper code: EI 503 Course Coordinator: Arpan Deyasi Department of Electronics and Communication Engineering RCC Institute of Information Technology Kolkata, India Topics: Coordinate Transformation 18-09-2021 Arpan Deyasi, Electromagnetic Theory 1 Arpan Deyasi Electromagnetic Theory
  • 2. Transformation based on type of variables: Scalar Transformation Vector Transformation Transformation between coordinates Cartesian to Cylindrical Cartesian to Spherical 18-09-2021 Arpan Deyasi, Electromagnetic Theory 2 Arpan Deyasi Electromagnetic Theory
  • 3. Four types of transformations 1. Cartesian to Cylindrical (scalar) 2. Cartesian to Cylindrical (vector) 3. Cartesian to Spherical (scalar) 4. Cartesian to Spherical (vector) 18-09-2021 Arpan Deyasi, Electromagnetic Theory 3 Arpan Deyasi Electromagnetic Theory
  • 4. Cartesian ⇄ Cylindrical Transformation (Scalar) X Y Z P ˆ i ĵ k̂ ̂ ˆ  ẑ Point (P) at Cartesian Coordinate (x, y, z) Point (P) at Cylindrical Coordinate (ρ, φ, z) 18-09-2021 Arpan Deyasi, Electromagnetic Theory 4 Arpan Deyasi Electromagnetic Theory
  • 5. Cartesian ⇄ Cylindrical Transformation (Scalar) Boundary conditions for cylindrical coordinates 0     0 2     z −    18-09-2021 Arpan Deyasi, Electromagnetic Theory 5 Arpan Deyasi Electromagnetic Theory
  • 6. Cartesian ⇄ Cylindrical Transformation (Scalar) 2 2 x y  = + 1 tan y x  −   =     z z = z z = ( ) cos x   = ( ) sin y   = 18-09-2021 Arpan Deyasi, Electromagnetic Theory 6 Arpan Deyasi Electromagnetic Theory
  • 7. Cartesian ⇄ Cylindrical Transformation (Scalar) Prob: For the point P (-2,6,3); determine the coordinate in cylindrical systems 2 2 4 36 6.32 x y  = + = + = In cylindrical coordinate system ( ) 1 1 1 6 tan tan tan 3 108.43 2 y x  − − −     = = = − =      −     3 z = Soln: 18-09-2021 Arpan Deyasi, Electromagnetic Theory 7 Arpan Deyasi Electromagnetic Theory
  • 8. Cartesian ⇄ Cylindrical Transformation (Vector) X Y Z R ˆ i ĵ k̂ ̂ ˆ  ẑ 18-09-2021 Arpan Deyasi, Electromagnetic Theory 8 Arpan Deyasi Electromagnetic Theory
  • 9. Cartesian ⇄ Cylindrical Transformation (Vector) Relation between unit vectors ˆ ˆ ˆ cos( ) sin( ) i     = − ˆ ˆ ˆ sin( ) cos( ) j     = + ˆ ˆ k z = ˆ ẑ k = ˆ ˆ ˆ sin( ) cos( ) i j    = − + ˆ ˆ ˆ cos( ) sin( ) i j    = + 18-09-2021 Arpan Deyasi, Electromagnetic Theory 9 Arpan Deyasi Electromagnetic Theory
  • 10. Cartesian → Cylindrical Transformation (Vector) ˆ ˆ ˆ x y z R R i R j R k = + + ( ) ( ) ˆ ˆ ˆ ˆ ˆ cos( ) sin( ) sin( ) cos( ) x y z R R R R z         = − + + + ˆ ˆ ˆ cos( ) sin( ) sin( ) cos( ) x y x y z R R R R R R z           = + + − + +     ˆ ˆ ˆ z R R R R z     = + + 18-09-2021 Arpan Deyasi, Electromagnetic Theory 10 Arpan Deyasi Electromagnetic Theory
  • 11. Cartesian → Cylindrical Transformation (Vector) cos( ) sin( ) 0 sin( ) cos( ) 0 0 0 1 x y z z R R R R R R                   = −                   18-09-2021 Arpan Deyasi, Electromagnetic Theory 11 Arpan Deyasi Electromagnetic Theory
  • 12. Cylindrical → Cartesian Transformation (Vector) Inverse transformation gives cos( ) sin( ) 0 sin( ) cos( ) 0 0 0 1 x y z z R R R R R R       −             =                   18-09-2021 Arpan Deyasi, Electromagnetic Theory 12 Arpan Deyasi Electromagnetic Theory
  • 13. Cartesian → Cylindrical Transformation (Vector) Prob: Find the vector in cylindrical coordinate system ˆ ˆ ( ) ( ) R y z i x z j = + + + Soln: In cartesian coordinate system x R y z = + y R x z = + 0 z R = 18-09-2021 Arpan Deyasi, Electromagnetic Theory 13 Arpan Deyasi Electromagnetic Theory
  • 14. Cartesian → Cylindrical Transformation (Vector) cos( ) sin( ) 0 sin( ) cos( ) 0 0 0 1 0 z R y z R x z R       +             = − +                     ( )cos( ) ( )sin( ) R y z x z    = + + + 0 z R =   ( )sin( ) ( )cos( ) R y z x z    = − + + + 18-09-2021 Arpan Deyasi, Electromagnetic Theory 14 Arpan Deyasi Electromagnetic Theory
  • 15. Cartesian → Cylindrical Transformation (Vector) ( ) cos x   = ( ) sin y   = Substitutions ( ) ( ) ( sin )cos( ) ( cos )sin( ) R z z        = + + +     ( ) ( ) ( sin )sin( ) ( cos )cos( ) R z z        = − + + +     18-09-2021 Arpan Deyasi, Electromagnetic Theory 15 Arpan Deyasi Electromagnetic Theory
  • 16. 2 2 4 36 40 x y  = + = + = 6 tan( ) 2 y x      = =     −     Cartesian → Cylindrical Transformation (Vector) 6 sin( ) 40  = 2 cos( ) 40  − = 18-09-2021 Arpan Deyasi, Electromagnetic Theory 16 Arpan Deyasi Electromagnetic Theory
  • 17. Cartesian → Cylindrical Transformation (Vector) 6 2 2 6 40 3 ( 40 3) 40 40 40 40 R   − −   = + + +         6 6 2 2 40 3 ( 40 3) 40 40 40 40 R   − −   = − + + +         18-09-2021 Arpan Deyasi, Electromagnetic Theory 17 Arpan Deyasi Electromagnetic Theory
  • 18. Cartesian → Cylindrical Transformation (Vector) ( ) 2 6 18 6 12 6 3 ( 2 3) 40 40 40 40 40 R −     = + + − + = − + = −         ( ) 6 2 54 2 56 6 3 ( 2 3) 40 40 40 40 40 R −     = − + + − + = − − = −         0 z R = 18-09-2021 Arpan Deyasi, Electromagnetic Theory 18 Arpan Deyasi Electromagnetic Theory
  • 19. In cylindrical coordinate system Cartesian → Cylindrical Transformation (Vector) 12 56 ˆ ˆ 40 40 R   = − + − 18-09-2021 Arpan Deyasi, Electromagnetic Theory 19 Arpan Deyasi Electromagnetic Theory
  • 20. Cartesian ⇄ Spherical Transformation (Scalar) X Y Z P ˆ i ĵ k̂ r̂ ˆ  ˆ  Point (P) at Cartesian Coordinate (x, y, z) Point (P) at Spherical Coordinate (r, θ, φ) 18-09-2021 Arpan Deyasi, Electromagnetic Theory 20 Arpan Deyasi Electromagnetic Theory
  • 21. Cartesian ⇄ Spherical Transformation (Scalar) Boundary conditions for spherical coordinates 0 r    0     0 2     18-09-2021 Arpan Deyasi, Electromagnetic Theory 21 Arpan Deyasi Electromagnetic Theory
  • 22. Cartesian ⇄ Spherical Transformation (Scalar) 2 2 2 r x y z = + + 2 2 1 tan x y z  −   +   =     1 tan y x  −   =     ( ) sin( )cos x r   = ( ) sin( )sin y r   = cos( ) z r  = 18-09-2021 Arpan Deyasi, Electromagnetic Theory 22 Arpan Deyasi Electromagnetic Theory
  • 23. Cartesian ⇄ Spherical Transformation (Scalar) Prob: For the point P (-2,6,3); determine the coordinate in spherical systems Soln: In spherical coordinate system 2 2 2 2 2 2 ( 2) 6 3 7 r x y z = + + = − + + = 2 2 2 2 1 1 ( 2) 6 tan tan 64.63 3 x y z  − −     + − +     = = =          ( ) 1 1 1 6 tan tan tan 3 108.43 2 y x  − − −     = = = − =      −     18-09-2021 Arpan Deyasi, Electromagnetic Theory 23 Arpan Deyasi Electromagnetic Theory
  • 24. Cartesian ⇄ Spherical Transformation (Vector) X Y Z P ˆ i ĵ k̂ r̂ ˆ  ˆ  18-09-2021 Arpan Deyasi, Electromagnetic Theory 24 Arpan Deyasi Electromagnetic Theory
  • 25. Cartesian ⇄ Spherical Transformation (Vector) Relation between unit vectors ˆ ˆ ˆ ˆ sin( )cos( ) cos( )cos( ) sin( ) i r        = − − ˆ ˆ ˆ ˆ sin( )sin( ) cos( )sin( ) cos( ) j r        = + + ˆ ˆ ˆ cos( ) sin( ) k r    = − 18-09-2021 Arpan Deyasi, Electromagnetic Theory 25 Arpan Deyasi Electromagnetic Theory
  • 26. Cartesian ⇄ Spherical Transformation (Vector) Relation between unit vectors ˆ ˆ ˆ ˆ sin( )cos( ) sin( )sin( ) cos( ) r i j k      = + + ˆ ˆ ˆ ˆ cos( )cos( ) cos( )sin( ) sin( ) i j k       = + − ˆ ˆ ˆ sin( ) cos( ) i j    = − + 18-09-2021 Arpan Deyasi, Electromagnetic Theory 26 Arpan Deyasi Electromagnetic Theory
  • 27. ˆ ˆ ˆ x y z R R i R j R k = + + Cartesian → Spherical Transformation (Vector) ˆ ˆ ˆ [sin( )cos( ) cos( )cos( ) sin( ) ] ˆ ˆ ˆ [sin( )sin( ) cos( )sin( ) cos( ) ] ˆ ˆ [cos( ) sin( ) ] x y z R r R r R r R                  = − − + + + + − 18-09-2021 Arpan Deyasi, Electromagnetic Theory 27 Arpan Deyasi Electromagnetic Theory
  • 28. Cartesian → Spherical Transformation (Vector) ˆ [ sin( )cos( ) sin( )sin( ) cos( )] ˆ ˆ ˆ [ cos( )cos( ) cos( )sin( ) sin( )] ˆ [ sin( ) cos( )] x y z x y z x y R R R R r R r R R R R                = + + + − + − + − + ˆ ˆ ˆ r R R r R R     = + + 18-09-2021 Arpan Deyasi, Electromagnetic Theory 28 Arpan Deyasi Electromagnetic Theory
  • 29. Cartesian → Spherical Transformation (Vector) sin( )cos( ) sin( )sin( ) cos( ) cos( )cos( ) cos( )sin( ) sin( ) sin( ) cos( ) 0 r x y z R R R R R R                           = − −             −       18-09-2021 Arpan Deyasi, Electromagnetic Theory 29 Arpan Deyasi Electromagnetic Theory
  • 30. Inverse transformation gives Spherical → Cartesian Transformation (Vector) sin( )cos( ) cos( )cos( ) sin( ) sin( )cos( ) cos( )sin( ) cos( ) cos( ) sin( ) 0 x r y z R R R R R R                 −           =             −       18-09-2021 Arpan Deyasi, Electromagnetic Theory 30 Arpan Deyasi Electromagnetic Theory
  • 31. Cartesian → Spherical Transformation (Vector) Prob: Find the vector in spherical coordinate system ˆ ˆ ( ) ( ) R y z i x z j = + + + Soln: In cartesian coordinate system x R y z = + y R x z = + 0 z R = 18-09-2021 Arpan Deyasi, Electromagnetic Theory 31 Arpan Deyasi Electromagnetic Theory
  • 32. sin( )cos( ) sin( )sin( ) cos( ) cos( )cos( ) cos( )sin( ) sin( ) sin( ) cos( ) 0 0 r R y z R x z R                 +           = − − +             −       Cartesian → Spherical Transformation (Vector)   ( )sin( )cos( ) ( )sin( )sin( ) r R y z x z     = + + +   ( )sin( ) ( )cos( ) R y z x z    = − + + +   ( )cos( )cos( ) ( )cos( )sin( ) R y z x z      = − + + + 18-09-2021 Arpan Deyasi, Electromagnetic Theory 32 Arpan Deyasi Electromagnetic Theory
  • 33. Cartesian → Spherical Transformation (Vector) ( ) sin( )cos x r   = ( ) sin( )sin y r   = cos( ) z r  = Substitutions ( ) ( ) ( ) ( ) sin( )sin cos( ) sin( )cos( ) sin( )cos cos( ) sin( )sin( ) r r R r             + +   = +     ( ) ( ) ( ) ( ) sin( )sin cos( ) cos( )cos( ) sin( )cos cos( ) cos( )sin( ) r R r              − + +   = +     ( ) ( ) ( ) ( ) sin( )sin cos( ) sin( ) sin( )cos cos( ) cos( ) r R r            − + +   = +     18-09-2021 Arpan Deyasi, Electromagnetic Theory 33 Arpan Deyasi Electromagnetic Theory
  • 34. 2 2 2 2 2 2 ( 2) 6 3 7 r x y z = + + = − + + = 2 2 2 2 ( 2) 6 40 tan( ) 3 3 x y z      + − +     = = =         Cartesian → Spherical Transformation (Vector) 40 sin( ) 7  = 3 cos( ) 7  = 6 tan( ) 2 y x      = =     −     6 sin( ) 40  = 2 cos( ) 40  − = 18-09-2021 Arpan Deyasi, Electromagnetic Theory 34 Arpan Deyasi Electromagnetic Theory
  • 35. Cartesian → Spherical Transformation (Vector) 40 6 3 40 2 40 2 3 40 6 7 . . 7 . . 7 7 7 7 7 7 40 40 40 40 r R         − − = + + +                         40 6 3 3 2 40 2 3 3 6 7 . . 7 . . 7 7 7 7 7 7 40 40 40 40 R       − −     = − + + +                           40 6 3 6 40 2 3 2 7 . 7 . . 7 7 7 7 40 40 40 40 R       − − = − + + +                   18-09-2021 Arpan Deyasi, Electromagnetic Theory 35 Arpan Deyasi Electromagnetic Theory
  • 36. Cartesian → Spherical Transformation (Vector) 6 3 2 2 3 6 18 6 12 7 7 7 7 7 7 7 7 7 7 7 r R  − −          = + + + = − + = −                     6 3 3 2 2 3 3 6 7 . 7 . 7 7 7 7 7 7 40 40 54 18 72 7 40 7 40 7 40 R   − −         = − + + +                     = + = 6 3 6 2 3 2 54 2 56 7 7 . 7 7 7 7 40 40 40 40 40 R  − −      = − + + + = − − = −             18-09-2021 Arpan Deyasi, Electromagnetic Theory 36 Arpan Deyasi Electromagnetic Theory
  • 37. In spherical coordinate system Cartesian → Spherical Transformation (Vector) 12 72 56 ˆ ˆ ˆ 7 7 40 40 R r   = − + − 18-09-2021 Arpan Deyasi, Electromagnetic Theory 37 Arpan Deyasi Electromagnetic Theory