SlideShare a Scribd company logo
1 of 34
Download to read offline
CHAPTER 2 :Real Number System
The real number system evolved over time by expanding the notion of what we mean
by the word “number.” At first, “number” meant something you could count, like how many
sheep a farmer owns. These are called the natural numbers, or sometimes the counting
numbers.
2.1 Real Number
Counting Number / Natural Number
N = { 1 , 2 , 3 , 4 , … }
• The use of three dots at the end of the list is a common mathematical notation to
indicate that the list keeps going forever.
Whole Numbers
• Natural Numbers together with “zero”
W = { }0 , 1 , 2 , 3 , 4 , ...
Integer Number (I)
• Whole numbers plus negatives
{ }I ..., 3 , 2 , 1 , 0 , 1 , 2 , 3 ,...= − − −
{ }I 0 , 1 , 2 , 3 ,...= ± ± ±
Rational Number (Q)
a
Q = x x = ; a I , b I and b 0
b
 
∈ ∈ ≠ 
 
• All numbers of the form a
b
, where a and b are integers (but b cannot be zero)
• Rational numbers include what we usually call fractions
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 2
• Notice that the word “rational” contains the word “ratio,” which should remind you
of fractions.
• The bottom of the fraction is called the denominator. Think of it as the
denomination—it tells you what size fraction we are talking about: fourths, fifths, etc.
• The top of the fraction is called the numerator. It tells you how many fourths, fifths,
or whatever.
• RESTRICTION: The denominator cannot be zero! (But the numerator can)
• Fractions can be numbers smaller than 1, like 1/2 or 3/4 (called proper fractions : In
the numerator is smaller than the denominator)
• Fractions can be numbers bigger than 1, like one-and-a-quarter, which we could also
write as 5/4 (called improper fractions : the numerator is bigger than the denominator)
• One way of expressing the improper fraction 5/4 is as the mixed number 1
1
4
,
which is read as “one and one-fourth.”
• The step for write Mixed Number to Improper Fraction ;
1. Multiply the integer part with the bottom of the fraction part.
2. Add the result to the top of the fraction.
• The step for write Improper Fraction to Mixed Number
1. Do the division to get the integer part
2. Put the remainder over the old denominator to get the fractional part
•••• Equivalent Fractions
Equivalent fractions are fractions that have the same value, for example
1 2 3 4
2 4 6 8
= = = etc.
• All integers can also be thought of as rational numbers, with a denominator of 1:
for example 3
3
1
= , 5
5
1
−
− =
• This means that all the previous sets of numbers (natural numbers, whole numbers,
and integers) are subsets of the rational numbers.
Now it might seem as though the set of rational numbers would cover every possible
case, but that is not so. There are numbers that cannot be expressed as a fraction, and these
numbers are called irrational because they are not rational.
• Integer 2 , 5, 0 , 3 , 7− −
• Fraction 2 11
,
3 17
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 3
• Periodic Decimal 0.2 , 0.3 , 0.47&
Irrational Number (Q′ )
• Cannot be expressed as a ratio of integers.
• As decimals they never repeat or terminate (rationals always do one or the other)
Examples:
Rational (terminates)
2
= 0.66666
3
& Rational (repeats)
5
= 0.45454545
11
& & Rational (repeats)
5
= 0.714285714285
7
& & Rational (repeats)
Irrational (never repeats or terminates)
Irrational (never repeats or terminates)
The Real Numbers(R)
•••• Rationals + Irrationals
•••• All points on the number line
• Or all possible distances on the number line
When we put the irrational numbers together with the rational numbers, we finally have
the complete set of real numbers. Any number that represents an amount of something, such as
a weight, a volume, or the distance between two points, will always be a real number. The
following diagram illustrates the relationships of the sets that make up the real numbers.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 4
Imaginary Number
a+bi ; a,b R and b 0∈ ≠
2+3i , 4 5i− , 1 3i− , 2i
Union of Real Number and Imaginary Number called Complex Number.
Properties for real number system
1) Reflexive Property ;
• If a R∈ then a = a
• Example ; 3 = 3 , 2 = 2π π , 2x = 2x , 1+2x = 1+2x etc.
2) Symetric Property ;
• If a = b then b = a
• Example ; If 5 2x= then 2x = 5
If 12 4 3x= − then 4 3x = 12−
If 5 2 + 3= then 2 + 3 = 5 etc.
3) Transitive Property ;
• If a = b and b = c then a = c
• Example ; If 2x + 1 = 10 + 12 and 10 + 12 = 22 then 2x + 1 = 22
If 2x 5 = x + 1− and x + 1 = 7 then 2x 1 = 7− etc.
4) Addition by the equal number ;
• If a = b then a + c = b + c
• Example ; If a = 5 then a + 3 = 5 + 3
If ( ) ( ) ( )2x + 5 = 10 then 2x + 5 + 5 = 10 + 5− − etc.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 5
5) Multiplication by the equal number ;
• If a = b then ac = bc
• Example ; If a = 3 then a 2 = 3 2× ×
If ( ) ( )2x = 8 then 3 2x = 3 8 etc.
6) If a + c = b + c then a = b
7) If ac = bc and c 0≠ then a = b
Addition Property for real number system
1) Closure Property
• If Ra∈ , Rb∈ then Rba ∈+
2) Commutative Property
• If Ra∈ , Rb∈ then abba +=+
3) Associative Property
• If RcandRb,Ra ∈∈∈ then ( ) ( )cbacba ++=++
• Example ; 1. consider ( )532 ++ and ( ) 532 ++
Hence ( ) 1082532 =+=++
and ( ) 1055532 =+=++
so ( )532 ++ = ( ) 532 ++ etc.
4) Identity (0)
• There is R0∈ for all Ra∈ such that a0aa0 =+=+
• Example ; 0 + 2 = 2 + 0 = 2
20220 =+=+ etc.
5) Inverse ( a− )
• For all Ra∈ there exists Ra ∈− such that ( ) ( ) 0aaaa =+−=−+
• Example ; 1. Consider addition inverse of 2
Hence ( ) ( ) 02222 =+−=−+ so addition inverse of 2 is 2−
2. Consider addition inverse of 5−
Hence ( ) ( )( ) ( )( ) ( ) 05555 =−+−−=−−+−
so addition inverse of 5− is ( )5−− , and ( ) 55 =−− etc.
Cancallation Property ( ก ก)
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 6
Multiplication Property for real number system
1) Closure Property
• If Ra∈ , Rb∈ then Rab∈
2) Commutative Property
• If Ra∈ , Rb∈ then baab =
3) Associative Property
• If RcandRb,Ra ∈∈∈ then ( ) ( )bcacab =
4) Identity (1)
• There is R1∈ for all Ra∈ such that ( ) ( ) a1aa1 ==
• Example ; ( ) ( ) 21221 ==
( ) ( )( ) 21221 == etc.
5) Inverse ( 1
a−
)
• For all Ra∈ and 0a ≠ there exists Ra 1
∈−
such that ( ) ( ) 1aaaa 11
== −−
• multiplication inverse of a is 1
a−
and
a
1
a 1
=−
hence ( ) ( ) 1a
a
1
a
1
a =





=





so multiplication inverse of a is
a
1
• Example ; 1. Consider multiplication inverse of 2
hence ( ) ( ) 12
2
1
2
1
2 =





=





so multiplication inverse of 2 is
2
1
2. Consider addition inverse of
5
1
Hence ( ) ( ) 1
5
1
55
5
1
=





=





so multiplication inverse of
5
1
is 5
6) Distributive Property
• If RcandRb,Ra ∈∈∈ then ( ) bcabcba +=+ and ( ) bcaccba +=+
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 7
Example : Given a and b are real number a b = a + b 5⊕ − Find
1) Identity
2) Inverse of 10
Find Identity
Let x is identity
x a⊕ = a
x + a 5− = a
x = 5
Find Inverse of 10
Let y is Inverse of 10
y 10⊕ = 5
y + 10 − 5 = 5
y = 0
Example : Change the number to fraction
1. 0.252525...
Let x = 0.252525...  (1)
(1) × 100 ; 100x = 25.252525...  (2)
(2) – (1) ; 99x = 25
x = 25
99
Therefore0.252525... = 25
99
2. 0.45326& &
Let x = 0.45326326326  (1)
(1)×100 ; 100x = 45.326326326  (2)
(1)×100,000 ; 100,000x = 45326.326326326...  (3)
(3) – (2) ; 99900x = 45326 45−
99900x = 45281
x = 45281
99900
Therefore0.45326326326... = 45281
99900
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 8
3. 2.354&
Let x = 2.35444...  (1)
(1)×100 ; 100x = 235.444...  (2)
(1)×1,000 ; 1,000x = 2354.444...  (3)
(3) – (2) ; 900x = 2119
x = 2119
900
Therefore 2.354& = 2119
900
Example : Given a * b = a + b + 4 where a , b ∈ R. Find the property of operation *
And find inverse of 5
1. Closure Property
If a ∈ R and b ∈ R then a * b = a + b + 4 ∈ R
5 ∈ R and 7 ∈ R , 5 7∗ = 5 7 4+ + = 16 ∈ R
2. Commutative Property
a * b = a + b + 4
= b + a + 4
= b * a
3. Associative Property
(a * b) * c = (a + b + 4) * c a * (b * c) = a * (b + c + 4)
= (a + b + 4) + c + 4 = a + (b + c + 4) +4
= a + b + 4 + c + 4 = a + b + c + 4 + 4
= a + b + c + 8 = a + b + c + 8
(a * b) * c = a * (b * c)
4. Identity
Let x is identity
x * a = a
x + a + 4 = a
x = 4−
Therefore identity is 4−
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 9
5. Inverse
Let y is inverse of 5
y * 5 = 4− ( identity)
y + 5 + 4 = 4−
y = 13−
Therefore inverse of 5 is 13−
2.2 Fundamental Theorem For Real Number System
Theorem 2.2.1 ; cancallation property for addition (กLMNOPQQกRSLTMOUกLMUVก)
Given a , b , c ∈ R
(1) if a + c = b + c then a = b
( 2) If a + b = a + c then b = c
Theorem 2.2.2 ; cancallation property for multiplication (กLMNOPQQกRSLTMOUกLMWXY)
Given a , b , c ∈ R
(1) if ac = bc and c ≠ 0 then a = b
( 2) If ab = ac and a ≠ 0 then b = c
Theorem 2.2.3 ; multiplied by 0 (กLMWXYPZV[ 0)
If a ∈ R then ( ) ( )= =a 0 0 a 0
Theorem 2.2.4 ; multiplied by −1 (กLMWXYPZV[ − 1)
If a ∈ R then a(−1) = (−1)a = −a
Theorem 2.2.5 ; 89:;<=>?@กBC 0
Given a , b∈R , If ab = 0 then a = 0 or b = 0
Theorem 2.2.6 ;
Given a ∈R , If a ≠ 0 then 1
a−
≠ 0
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 10
Theorem 2.2.7 ; ( inverse of the inverse )
(1) If a ∈R then ( ) aa =−−
(2) If a ∈R and a ≠ 0 then ( ) aa
11
=
−−
Theorem 2.2.8 ;
Given a , b ∈R , where a ≠ 0 and b ≠ 0 then
( ) 11111
baabab −−−−−
==
Theorem 2.2.9 ;
Given a , b ∈R then ;
(1) ( )ba− = ab−
(2) ( )ba − = ab−
(3) ( )( )ba −− = ab
Subtraction And Division For Real Number
Subtraction for real number
Definetion ;
Given a , b ∈ R then ( )− −a b = a + b
Theorem 2.2.10 ; distributive property for subtraction (กLM]ก]^RSLTMOUกLM_U)
Given a , b , c ∈R then ;
(1) ( )−a b c = −ab ac
(2) ( )−a b c = −ac bc
(3) ( )( )− −a b c = −ab + ac
Theorem 2.2.11 ; cancallation property for subtraction (กLMNOPQQกRSLTMOUกLM_U)
Given a , b , c ∈ R
(1) if − −a b = a c then b = c
(2) If − −a b = c b then a = c
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 11
Devision for real number
Definetion ;
Given a , b ∈ R , where b ≠ 0 then ( )−1a
= a b
b
Theorem 2.2.12 ;
Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then
( ) − − − −−
= =1 1 1 11
ab b a a b
Theorem 2.2.13 ;
Given a , b , c ∈R , where b ≠ 0 and then ( )a ca
c =
b b
Theorem 2.2.14 ;
Given a , b ∈R , where b ≠ 0 then
−
−
−
a a a
= =
b b b
Theorem 2.2.15 ;
Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then
( )a
ab =
c bc
Theorem 2.2.16 ;
Given a , b , c , d ∈ R , where b ≠ 0 and d ≠ 0 then
+
a c ad + bc
=
b d bd
Theorem 2.2.17 ;
Given a , b , c , d ∈R , where b ≠ 0 and d ≠ 0 then
−
−
a c ad bc
=
b d bd
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 12
Theorem 2.2.18 ;
Given a , b , c , d ∈R , where b ≠ 0 and d ≠ 0 then
( )( )a c ac
=
b d bd
Theorem 2.2.19 ;
Given a , b ∈R , where a ≠ 0 and b ≠ 0 then
( )
−1
a b
=
b a
Theorem 2.2.20 ;
Given a , b , c , d ∈R , where b ≠ 0 , c ≠ 0 and d ≠ 0 then
( )
( )
a
adb =
c bc
d
Theorem 2.2.21 ;
Given a , b , c ∈ R , where b ≠ 0 then
(1) If
a
= c
b
then a = bc
(2) If a = bc then
a
= c
b
Theorem 2.2.22 ;
Given a , b , c ∈ R , where b ≠ 0 then
a
= c
b
if and only if a = bc
Theorem 2.2.23 ;
Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then
( )
a ac
=
b b
c
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 13
2.3 Solving polynomial equations of one variable
polynomial equations of one variable is an equation of the form
−
−+ + + + =n n 1
n n 1 1 0a x a x ... a x a 0 , where na , −n 1a , … , 1a , 0a are
real numbers , which are constants , x is variable and n is an integer or zero.
Solving equations by factorization(ก@GHกIJKก@GLMNก@GHNกOBPQGRกSC)
Example 1 : Find the solution set of equation − − + =3 2
4x 3x 64x 48 0
Solution Since − − +3 2
4x 3x 64x 48 = 0
( ) ( )− − −3 2
4x 3x 64x 48 = 0
( ) ( )− − −2
x 4x 3 16 4x 3 = 0
( )( )− −2
x 16 4x 3 = 0
( )( )( )+ − −x 4 x 4 4x 3 = 0
So −x 4 = 0 or +x 4 = 0 or −4x 3 = 0
So x = 4 or x = −4 or x =
3
4
The solution set is { }−
3
4 , , 4
4
Solving equations by remainder theorem (ก@GHกIJKก@GLMN>TUVWC>=XU=Y9ZS)
P(x) is polynomial −
−+ + + + =n n 1
n n 1 1 0a x a x ... a x a 0 , which n is a positive
integer , na , −n 1a , … , 1a , 0a are real numbers , which na ≠ 0 . If division p(x) by
−x c , which c is real number then remainder is equal to p(c)
Example 2 : Find the remainder when division + −3
9x 4x 1 by −
1
x
2
Solution Given p(x) = + −3
9x 4x 1
By remainder theorem ; when division p(x) by −
1
x
2
then the remainder
is p( )1
2
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 14
p( )1
2
= ( ) ( )+ −
3
1 1
9 4 1
2 2
=
17
8
Therefore the remainder is
17
8
Factor Theorem (>TUVWC>OBPQGRกSC)
P(x) is polynomial −
−+ + + + =n n 1
n n 1 1 0a x a x ... a x a 0 , which n is
a positive integer , na , −n 1a , … , 1a , 0a are real numbers , which na ≠ 0 .
−x c is factor of p(x) if and only if p(c) = 0
RM`abOcdNQdกLM[กNOVaMeกQUbQ^fT`dLg p(x) hP[ijZklmnoUkpqmpT_rQidกMYodoc kSLPO^doc
1. TLNOVaMeกQU c bQ^ 0a koskSLiTZ p(c) = 0
2. dSL cx − taTLMfT`dLg p(x) u_TLM]epavdfT`dLgPoกMoNsSLกVwLPoกMobQ^ p(x) Q[Xw 1
3. xZLu_TLMidbZQ 2 [O^goPoกMoRX^กVwLRQ^_eRLgLMx[กNOVaMeกQUNwQtatPZQoกกy[ก
NOVaMeกQUNLgbOcdNQdidbZQ 1 _e 2 NwxZLu_TLMgoPoกMoRQ^]eijZVz{o[กNOVaMeกQU
NLgkospMo[dgL_ZV
Example 3 : Show that −x 2 is factor of − + +3 2
x 5x 2x 8
Solution Given p(x) = − + +3 2
x 5x 2x 8
p(2) = − + +3 2
2 5(2) 2(2) 8
= 8 20 4 8− + +
= 0
So −x 2 is factor of − + +3 2
x 5x 2x 8
From the example , −x 2 is factor of − + +3 2
x 5x 2x 8.
When divide − + +3 2
x 5x 2x 8 by −x 2 ,
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 15
2
3 2
3 2
2
2
x 3x 4
x 2 x 5x 2x 8
x 2x
3x 2x
3x 6x
4x 8
4x 8
− −
− − + +
−
− +
− +
− +
− +
So − + +3 2
x 5x 2x 8 = ( )( )2
x 2 x 3x 4− − −
And 2
x 3x 4− − = ( )( )x 1 x 4+ −
Therefore − + +3 2
x 5x 2x 8= ( )( )( )x 2 x 1 x 4− + −
Rational Factor Theorem (>TUVWC>OBPQGRกSCOGGกNR)
P(x) is polynomial −
−+ + + + =n n 1
n n 1 1 0a x a x ... a x a 0 , where n is
a positive integer , na , −n 1a , … , 1a , 0a are integer , where na ≠ 0 .
If
m
k
x − is factor of p(x), where m and n are integer , where m ≠ 0 and gcd. of
m and k is 1 then na divided by m perfect and 0a divided by k perfect .
Note : gcd = greatest common divisor ( T.M.g. = TLMMwVggLก)
RM`abOcdNQdกLM[กNOVaMeกQUbQ^fT`dLg p(x) PO^doc
1. TL
m
k
hP[fz]LMYL m _e k ]LกNOVaMeกQUbQ^ na _e 0a NLg_SLPOU _e
T.M.g. bQ^ m _e k pkwLกOU 1
2. kPRQUVwL p(
m
k
) pkwLกOU 0 TMrQtgw xZL p(
m
k
) = 0 ]etPZ
m
k
x − pavdNOVaMeกQU
bQ^ p(x) idกMYokostgwgo
m
k
koskSLiTZ p(
m
k
) = 0 RP^VwL fT`dLg p(x) tgwgo
NOVaMeกQUkospavdfT`dLgPoกMoTd|s^idMXa
m
k
x −
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 16
3. dSL
m
k
x − }|s^pavdNOVaMeกQUbQ^fT`dLg p(x) taTLMfT`dLg p(x) u_TLM]epavd
fT`dLgPoกMoNsSLกVwLPoกMobQ^ p(x)
4. xZLu_TLMidbZQ 3 [O^goPoกMoRX^กVwLRQ^_eRLgLMx[กNOVaMeกQUNwQtatPZQoก กy[กNOV
aMeกQUNLgbOcdNQdidbZQ 1 , 2 _e 3 NwxZLu_TLMgoPoกMoRQ^]eijZVz{o[กNOVaMeกQU
NLgkospMo[dgL_ZV
Example 4 : Factorise of 35x16x12x 23
−−+
Solution Given p(x) = 35x16x12x 23
−−+
Since integers which divide 3− perfect are 1± , 3± (]SLdVdkosTLM 3− _^NOV)
And integers which divide 12 perfect are 1± , 2± , 3± , 4± , 6± , 12±
(]SLdVdkosTLM 12 _^NOV)
So
k
m
which p(
m
k
) = 0 is the number of the following numbers
1± , 3± ,
1
2
± ,
3
2
± ,
1
3
± ,
1
4
± ,
3
4
± ,
1
6
± ,
1
12
±
( ]SLdVdpT_wLdoc NOVpqm WrQ]SLdVdkospavdNOVaMeกQUbQ^ 3− _eNOVRwVd WrQ ]SLdVd
kospavdNOVaMeกQUbQ^ 12 hP[kos T.M.g. bQ^NOVpqm_eNOVRwVd WrQ 1)
Consider p(
1
2
) = 3 21 1 1
12( ) 16( ) 5( ) 3
2 2 2
+ − −
=
12 16 5
3
8 4 2
+ − −
= 0
So
1
x
2
− is a factor of p(x)
Devide 35x16x12x 23
−−+ by
1
x
2
− then quotient is 2
12x 22x 6+ +
So 35x16x12x 23
−−+ = 21
(x )(12x 22x 6)
2
− + +
= 21
(x )(2)(6x 11x 3)
2
− + +
= 2
(2x 1)(6x 11x 3)− + +
= (2x 1)(3x 1)(2x 3)− + +
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 17
Example 5 : Solve the equation 35x16x12x 23
−−+
Solution Given p(x) = 35x16x12x 23
−−+
From example 4 ; 35x16x12x 23
−−+ = (2x 1)(3x 1)(2x 3)− + +
Since 35x16x12x 23
−−+ = 0
(2x 1)(3x 1)(2x 3)− + + = 0
So 2x 1− = 0 or 3x 1+ = 0 or 2x 3+ = 0
x =
1
2
or x =
1
3
− or x =
3
2
−
Example 6 : If 2 is real number .Prove that 2 is irrational number.
Prove 2 is the solution of equation x = 2
So 2 is the solution of equation 2
x = 2
or
2
x 2 = 0−  (1)
From Rational Factor Theorem ; the solution of equation (1) is in set { 1± , 2± }
but 2 ∉ { 1± , 2± }. So 2 is not rational number.
And since 2 is real number so 2 is irrational number.
Example 7 : If 2 5+ is real number .Prove that 2 5+ is irrational number.
Prove 2 5+ is the solution of x = 2 5+
So 2 5+ is the solution of x 2 = 5−
Or
2
x 2 2 x 2 = 5− + ([กกSL_O^RQ^kOc^RQ^bZL^)
2
x 3 = 2 2x−
4 2 2
x 6x 9 = 8x− + ([กกSL_O^RQ^kOc^RQ^bZL^)
4 2
x 14x 9 = 0− +  (1)
From Rational Factor Theorem ; the solution of equation (1) is in set { 1± , 3± , 9± }
but 2 5+ ∉ { 1± , 3± , 9± }. So 2 5+ is not rational number.
Since 2 5+ is real number so 2 5+ is irrational number.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 18
2.4 Inequality
Definition ;
1) a > b if and only if −a b > 0
2) a < b if and only if −a b < 0
3) ≥a b means a > b or a = b
4) a b≤ means a < b or a = b
5) a < b < c means a < b and b < c
6) ≤ ≤a b c means ≤a b and ≤b c
7) < ≤a b c means <a b and ≤b c
8) ≤a b < c means ≤a b and b < c
9) ≠a b if and only if ( )− 2
a b > 0
Properties of inequality
I1 : Trichotomy Property (RgUONztNMVz€LW)
If a and b are real numbers then a = b , a < b and a > b , it is actually
only one.
I2 : Transitive Property (RgUONzกLMxwL[kQP)
Given a , b and c are real numbers.
(1) a < b and b < c then a < c
(2) ≤a b and ≤b c then ≤a c
(3) a > b and b > c then a > c
(4) ≥a b and ≥b c then ≥a c
I3 : property of number when compared with 0 (RgUONzbQ^]SLdVdpgrsQpaMo[Upko[UกOU 0)
Given a is real number.
(1) a is positive number if and only if a > 0.
(2) a is negative number if and only if a < 0.
(3) a is not positive number if and only if ≤a 0.
(4) a is not negative number if and only if ≥a 0.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 19
I4 : RgUONzกMtgwpavd]SLdVd_U_eกLMpavd]SLdVdUVก
(1) If a is real number then ≥2
a 0
(2) If a is real number and a ≠ 0 then >2
a 0
I5 : Addition by the equal number (RgUONzกLMUVกPZV[]SLdVdpkwLกOd)
Given a , b and c are real numbers.
(1) If a < b then a + c < b + c
(2) If ≤a b then ≤a + c b + c
(3) If a > b then a + c > b + c
(4) If ≥a b then ≥a + c b + c
I6 : cancallation property for addition (กLMNOPQQกRSLTMOUกLMUVก)
Given a , b and c are real numbers.
(1) If a + c < b + c then a < b
(2) If ≤a + c b + c then ≤a b
(3) If a + c > b + c then a > b
(4) If ≥a + c b + c then ≥a b
I7 : RgUONzกLMWXYPZV[]SLdVdpkwLกOdkospavd]SLdVdUVก
Given a , b and c are real numbers.
(1) If a < b and c > o then ac < bc
(2) If ≤a b c > o then ≤ac bc
(3) If a > b c > o then ac > bc
(4) If ≥a b c > o then ≥ac bc
I8 : RgUONzกLMWXYPZV[]SLdVdpkwLกOdkospavd]SLdVd_U
Given a , b and c are real numbers.
(1) If a < b and c < o then ac > bc
(2) If ≤a b c < o then ≥ac bc
(3) If a > b c < o then ac < bc
(4) If ≥a b c < o then ≤ac bc
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 20
I9 : RgUONzกLMNOPQQกbQ^]SLdVdUVกbQ^กLMWXY
Given a , b and c are real numbers.
(1) If ac < bc and c > o then a < b
(2) If ≤ac bc c > o then ≤a b
(3) If ac > bc c > o then a > b
(4) If ≥ac bc c > o then ≥a b
I10 : RgUONzกLMNOPQQกbQ^]SLdVd_UbQ^กLMWXY
Given a , b and c are real numbers.
(1) If ac < bc and c < o then a > b
(2) If ≤ac bc c < o then ≥a b
(3) If ac > bc c < o then a < b
(4) If ≥ac bc c < o then ≤a b
More Summaries
1) No Reflexive (tgwgoRgUONzกLMpkwLกOd)
2) No Symmetric (tgwgoRgUONzRggLNM)
3) If a b< and c d< then a c b d+ < +
4) If a b< and c d< then a d b c− < −
5) If 0 a b< < and 0 c d< < then ac bd<
6) 0a b< < and 0c d< < then ac bd>
7) If 0 a b< < and 0 c d< < then a b
d c
<
8) If 0a b< < and 0c d< < then a b
d c
>
9) If 0 a b< < then 2 2
a b<
10) If 0a b< < then 2 2
a b>
11) If 0 a b< < then 1 1
a b
>
12) If 0a b< < then 1 1
a b
>
13) If 0ab > and a b< then 1 1
a b
>
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 21
2.5 Interval
Given a R∈ , b R∈ and a b<
1) ( ),a b = { }x a x b< <
2) [ ],a b = { }x a x b≤ ≤
3) ( ],a b = { }x a x b< ≤
4) [ ),a b = { }a x<bx ≤
5) ( ),a ∞ = { }x x a>
6) [ ),a ∞ = { }x x a≥
7) ( ),a−∞ = { }x x a<
8) ( ],a−∞ = { }x x a≤
9) ( ),−∞ ∞ = R
Example 1 : Given A = ( )1,7 , B = [ ]3,4− , C = [ )0,6
1) A B∪ = [ )3,7− 2) B C∪ = [ )3,6−
3) A B C∪ ∪ = [ )3,7− 4) A B∩ = ( ]1,4
5) B C∩ = [ ]0,4 6) A B C∩ ∩ = ( ]1,4
7) ( )A B C∪ ∩ = [ )0,6 8) ( )A B C∩ ∪ = ( )1,6
9) A B− = ( )4,7 10) B C− [ )3,0−
11) ( )A B C− − = [ )6,7 12) ( )A B C∪ − j [ ) [ )3,0 6,7− ∪
0
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 22
Example 2 : Given 1
,2nA n
n
 
= − 
 
; n I∈ . Find ( )1 2 3A A A∪ −
( ]1 = 1,2A −
2
1
= ,4
2
A
 
− 
 
3
1
= ,6
3
A
 
− 
 
Therefore ( )1 2 3
1
= 1,
3
A A A
 
∪ − − − 
 
.
Example 3 : Given 2
,3nA n
n
 
= − 
 
; n I∈ . Find ( )3 5 2A A A∩ −
( ]1 = 1,6A −
2
2
= ,9
3
A
 
− 
 
3
2
= ,15
5
A
 
− 
 
Therefore ( ) [ ]3 5 2 = 6,9A A A∩ − .
Example 4 : Given 5 10 and 3 8x y< < ≤ ≤
1) 8 < < 18x y+
2) 3 < < 7x y− −
3) 15 < < 80x y⋅
4) 5 10
< <
8 3
x
y
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 23
Example 5 : Given 5 2 and -3 1x y− < < − ≤ ≤ −
1) 8 < < -3x y− +
2) 4 < < 1x y− −
3) 2 < < 15x y⋅
4) 2
< < 5
3
x
y
Example 6 : Given 3 1 and 1 3x y− < < < <
1) -2 < < 4x y+
2) 6 < < 0x y− −
3) 9 < < 3x y− ⋅
4) 3 < < 1
x
y
−
5) 2 2
0 < 9 ; 1 < < 9x y≤
6) 2 2
9 < < 8x y− −
Inequality solving
Example 7 : Solve inequality 5 7 2 11x≤ − ≤ .
SOLUTION 5 7 2 11x≤ − ≤
7 5 2 11 7x− + ≤ − ≤ −
2 2 4x− ≤ − ≤
( ) ( )
1 1
2 4
2 8
x
   
− − ≤ ≤ −   
   
-2 1x≤ ≤
Therefore solution set is { }2 1x x− ≤ ≤ or [ ]2,1− .
Example 8 : Solve inequality 9 2 < 4 3 6x x x− − ≤ + .
SOLUTION 9 2 < 4 3x x− − and 4 3 6x x− ≤ +
4 2 < 3 9x x− − − − 4 6 3x x− ≤ +
6 < 12x− − 3 9x ≤
( ) ( )
1 1
6 > 12
6 6
x
   
− − − −   
   
( )
1 1
3 9
3 3
x
   
≤   
   
> 2x 3x ≤
32
Therefore solution set is { }2 3x x< ≤ or ( ]2,3 .
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 24
Example 9 : Solve inequality 2
4 3 > 0x x− + .
SOLUTION 2
4 3 > 0x x− +
( )( )1 3 > 0x x− −
CASE 1 1 > 0x − and 3 > 0x − CASE 2 1 < 0x − and 3 < 0x −
> 1x and > 3x < 1x and < 0x
> 3x < 1x
Therefore solution set is { }1 or 3x x x< > or ( ) ( ),1 3,−∞ ∪ ∞ .
Example 10 : Solve inequality 2
2 5 3 0x x+ − ≤ .
SOLUTION 2
2 5 3 0x x+ − ≤
( )( )2 1 3 0x x− + ≤
CASE 1 2 1 0x − ≥ and 3 0x + ≤ CASE 2 2 1 0x − ≤ and 3 0x + ≥
1
2
x ≥ and 3x ≤ −
1
2
x ≤ and 3x ≥ −
No solution 1
3
2
x− ≤ ≤
Therefore solution set is 1
3
2
x x
 
− ≤ ≤ 
 
or 1
3,
2
 
− 
 
.
Example 11 : Solve inequality 2
2 5 > 0x x+ + .
SOLUTION 2
2 5 > 0x x+ +
( )2
2 1 +4 > 0x x+ +
( )
2
1 +4 > 0x + ; x R∈
Therefore solution set is R .
Example 12 : Solve inequality 2
6 5 < 0x x+ − .
SOLUTION 2
6 5 < 0x x+ −
( )2
6 9 14 < 0x x+ + −
( ) ( )
22
3 14 < 0x + −
( )( )3 14 3 14 < 0x x+ − + +
Therefore solution set is ( )3 14 , 3 14− − − + .
-+ +
-3+ 14-3- 14
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 25
Example 13 : Solve inequality 2
8 10 0x x− + ≥ .
SOLUTION 2
8 10 0x x− + ≥
( )2
8 16 6 0x x− + − ≥
( ) ( )
22
4 6 0x − − ≥
( )( )4 6 4 6 0x x− − − + ≥
Therefore solution set is ( ), 4 16 4 6 , −∞ − ∪ + ∞  .
Example 14 : Solve inequality 2
10 25 > 0x x+ + .
SOLUTION 2
10 25 > 0x x+ +
( )
2
5 > 0x +
and 5x R x∈ ≠ −
Therefore solution set is { }5x x ≠ − or { }5R − − .
Example 15 : Solve inequality 2
4 4 0x x− + ≤ .
SOLUTION 2
4 4 0x x− + ≤
( )
2
2 0x − ≤
2x =
Therefore solutionset is { }= 2x x or { }2 .
Example 16 : Solve inequality 2
10 25 < 0x x− + .
SOLUTION 2
10 25 < 0x x− +
( )
2
5 < 0x −
Therefore no solution .
Example 17 : solve the following inequality
1) ( )( )( )2 3 1 < 0x x x− − +
SOLUTION ( )( )( )2 3 1 < 0x x x− − +
( )( )( )2 3 1 < 0x x x− − +
-
2-1
-+ +
3
Solution set is ( ) ( ), 1 2,3−∞ − ∪ .
-+ +
4+ 64- 6
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 26
2) ( )( ) ( )
2
1 2 3 0x x x− − − ≥
SOLUTION ( )( ) ( )
2
1 2 3 0x x x− − − ≥
( )( ) ( )
2
1 2 3 0x x x− − − ≥
Times
( )
2
1
2x −
; ( )( )1 3 0x x− − ≥
2-1
-+ +
3
Solution set is ( ] { } [ ),1 2 3,−∞ ∪ ∪ ∞ .
3) ( ) ( ) ( )
( ) ( )
2 3 4
5 6
2 3 4
0
5 6
x x x
x x
− − −
≤
− −
SOLUTION ( ) ( ) ( )
( ) ( )
2 3 4
5 6
2 3 4
0
5 6
x x x
x x
− − −
≤
− −
Times ( ) ( )
( ) ( ) ( )
5 6
2 3 4
5 6
2 3 4
x x
x x x
− −
− − −
; ( )( )3 5 0x x− − ≤
542
-+ +
3
Solution set is { } [ )2 3,5∪ .
4) 2 1 2
3 4
x
x x
−
<
+ −
SOLUTION 2 1 2
< 0
3 4
x
x x
−
−
+ −
( )( ) ( )( )
( )( )
4 2 1 3 2
< 0
3 4
x x x
x x
− − − +
+ −
( )( )
2
2 9 4 2 6
< 0
3 4
x x x
x x
− + − −
+ −
( )( )
2
2 11 2
< 0
3 4
x x
x x
− −
+ −
( )( )
2 11
1
2 < 0
3 4
x x
x x
− −
+ −
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 27
( )( )
2 11 121 137
2 16 16
< 0
3 4
x x
x x
 
− + − 
 
+ −
( )( )
22
11 137
4 4
< 0
3 4
x
x x
  
− −  
   
+ −
( )( )
11 137 11 137
4 4 4 4
< 0
3 4
x x
x x
  
− + − −  
  
+ −
Solution set is 11 137 11 137
3, 4,
4 4
   − +
− ∪      
   
.
5) 5 2
3 2x x
≥
+ −
SOLUTION 5 2
0
3 2x x
− ≥
+ −
( ) ( )
( )( )
5 2 2 3
0
3 2
x x
x x
− − +
≥
+ −
( )( )
5 10 2 6
0
3 2
x x
x x
− − −
≥
+ −
( )( )
3 16
0
3 2
x
x x
−
≥
+ −
( )( )( )3 16 3 2 0x x x− + − ≥
Solution set is [ ]
16
3,2 ,
3
 
− ∪ ∞ 
 
.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 28
2.6 Absolute Value
When we want to talk about how “large” a number is without regard as to whether it is
positive or negative, we use the absolute value function. The absolute value of a number is the
distance from that number to the origin (zero) on the number line. That distance is always
given as a non-negative number.
• If a number is positive (or zero), the absolute value function does nothing to it:
• If a number is negative, the absolute value function makes it positive:
Definition ;
; 0
= 0 ; 0
; 0
x x
x x
x x
>

=
− <
3 = 3
5 = 5−
,
( )
5 = 5
4 = 4 = 4− − −
, 0 = 0
; 0
=
; 0
x x
x
x x
≥

− <
Absolute Value Property ;
1) =x x−
2) =x y y x− −
3) =xy x y
4) = ; 0
xx
y
y y
≠
5) 2 2
=x x
6) = 0 if and only if 0x x =
7) = ; 0 if and only if orx a a x a x a> = = −
8) 2 2
= if and only ifx y x y=
9) 2 2
< if and only ifx y x y<
10) x y x y+ ≤ +
11) = if and only if 0x y x y xy+ + ≥
12) < if and only if 0x y x y xy+ + <
13) x y x y− ≥ −
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 29
14) = if and only if 0x y x y xy− − ≥
15) > if and only if 0x y x y xy− − <
16) < ; 0 if and only ifx a a a x a> − < <
17) ; 0 if and only ifx a a a x a≤ > − ≤ ≤
18) > ; 0 if and only if orx a a x a x a> < − >
19) ; 0 if and only if orx a a x a x a≥ > ≤ − ≥
20)
1 ; 0
=
1 ; 0
xx
xx
>

− <
Example 1 : Solve the following equations
1) 2
6 = 0x x− −
SOLUTION 2
6 = 0x x− −
( )( )3 2 = 0x x− +
= 3 , 2x −
Solution set is { }3, 2− .
2) 2 3 = 15x −
SOLUTION 2 3 = 15x −
2 3 = 15 , 15x − −
2 = 18 , 12x −
= 9 , 6x −
Solution set is { }9, 6− .
3) 2 1 = 3x x− +
SOLUTION ( ) ( )
2 2
2 1 = 3x x− +
2 2
4 4 1 = 6 9x x x x− + + +
2
3 10 8 = 0x x− −
( )( )3 2 4 = 0x x+ −
2
= , 4
3
x −
Solution set is 2
,4
3
 
− 
 
.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 30
4) 2 1 = 2x x− +
SOLUTION ( ) ( )
2 2
2 1 = 2x x− +
2 2
4 4 1 = 4 4x x x x− + + +
2
3 8 3 = 0x x− −
( )( )3 1 3 = 0x x+ −
1
= , 3
3
x −
Solution set is 1
,3
3
 
− 
 
.
Example 2 : Solve the following equations
1) 2 2
2 15 = 2 15x x x x− − − −
SOLUTION 2
2 15 0x x− − ≥
( )( )5 3 0x x− + ≥
Solution set is ( ) [ ), 3 5,−∞ − ∪ ∞ .
2) 2 2
6 = 6x x x x− − + −
SOLUTION ( )2 2
6 = 6x x x x− − − − −
2
6 0x x− − ≤
( )( )3 2 0x x− + ≤
Solution set is [ ]2,3− .
3) = 1x x −
SOLUTION If 0 then 1x x x≥ = −
No solution
If 0 then - 1x x x< = −
1
= (F)
2
x
Solution set is φ .
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 31
4) = 1x x +
SOLUTION If 0 then 1x x x≥ = +
No solution
If 0 then - 1x x x< = +
1
= (T)
2
x −
Solution set is 1
2
 
− 
 
.
5) 2 = 3x x− +
SOLUTION If 2 0 then 2 3x x x− ≥ − = +
No solution
If 2 0 then 2 3x x x− < − + = +
1
= (T)
2
x −
Solution set is 1
2
 
− 
 
.
6) 2 1 = 3x x+ −
SOLUTION If 2 1 0 then 2 1 3x x x+ ≥ + = −
= 4 (F)x −
If 2 1 0 then 2 1 3x x x+ < − − = −
2
= (F)
3
x
Solution set is φ .
7) 1 + 2 = 10x x+ −
SOLUTION ( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ ≥ − ≥ + + − =
11
2 and (T)
2
x x≥ =
( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ ≥ − < + − − =
No solution
( ) ( )If 1 0 and 2 0 then - 1 2 10x x x x+ < − ≥ + + − =
No solution
( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ < − < − + − − =
9
< 1 and (T)
2
x x− = −
Solution set is 11 9
,
2 2
 
− 
 
.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 32
2.7 Absolute Value Inequality
Example 1 : Solve the following inequality.
1) 2 1 3x x− ≤ +
SOLUTION 2 1 3x x− ≤ +
( ) ( )
2 2
2 1 3x x− ≤ +
2 2
4 4 1 6 9x x x x− + ≤ + +
2
3 10 8 0x x− − ≤
( )( )3 2 4 0x x+ − ≤
Solution set is 2
,4
3
 
− 
 
.
2) 3 2 < 2 3x x− +
SOLUTION If 3 2 0 then 3 2 2 3x x x− ≥ − < +
2
and 5
3
x x≥ <
2
< 5
3
x≤  (1)
If 3 2 0 then 3 2 2 3x x x− < − + < +
2 1
< and
3 5
x x > −
1 2
< <
5 3
x−  (2)
Solution set is 1 2 2 1
, ,5 = ,5
5 3 3 5
     
− ∪ −    
     
.
3) 2 1 + 3 > 10x x− +
SOLUTION ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− ≥ + ≥ − + + >
1
and 3
2
x x≥ ≥ −
8
3
x >
8
>
3
x  (1)
( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− ≥ + < − − + >
1
and 3
2
x x≥ < − Oppose
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 33
( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− < + ≥ − − + + >
1
< and 3
2
x x ≥ − 6x < −
No solution
( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− < + < − − − + >
1
< and 3
2
x x < − 4x < −
< 4x −  (2)
Solution set is ( )
8
, 4 ,
5
 
−∞ − ∪ ∞ 
 
.
4) 2 3 13x − ≤
SOLUTION 13 2 3 13x− ≤ − ≤
10 2 16x− ≤ ≤
5 8x− ≤ ≤
Solution set is [ ]5,8− .
5) 3 1 > 11x −
SOLUTION 3 1 11x − < − or 3 1 11x − >
3 < 10x − 3 > 12x
10
<
3
x − > 4x
Solution set is ( )
10
, 4,
3
 
−∞ − ∪ ∞ 
 
.
C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 34
English vocabulary for Mathematic
Addition Property = RgUONzกLMUVก Associative Property = RgUONzกLMpa_os[dTgXw
Cancallation Property = ก ก Closure Property for addition = RgUONza•PกLMUVก
Complex Numbers = ]SLdVdpjz^}ZQd Commutative Property = RgUONzกLMR_OUkos
Counting Numbers = ]SLdVddOU Decimal = kqdz[g
Distributive Property = RgUONzกLM]ก]^ Fraction = pqmRwVd
Identity = pQก_OกmY‚ Imaginary Number = ]SLdVd]zdN€Lf
Integer numbers = ]SLdVdpNyg Inverse = NOVuกuOd
Irrational Numbers = ]SLdVdNMMก[e multiplication = กLMWXY
Multiplication Property = RgUONzกLMWXY Natural Numbers = ]SLdVddOU
Periodic Decimal = kqdz[g}cSL Rational Numbers =]SLdVdNMMก[e
Reflexive Property = RgUONzกLMRekZQd Subtraction = กLM_U
Square = MXaRospT_os[g]ON`MOR Struction = hWM^RMZL^
Symetric Property = RgUONzกLMpkwLกOd therefore = PO^dOcd
Transitive Property = RgUONzกLMxwL[kQP Whole Number = ]SLdVdkOc^TgP

More Related Content

What's hot

1.1 Real Number Properties
1.1 Real Number Properties1.1 Real Number Properties
1.1 Real Number Propertiessmiller5
 
properties of multiplication of integers
properties of multiplication of integersproperties of multiplication of integers
properties of multiplication of integerssufiyafatima
 
Calculations, Rounding, Estimation, Limits of accuracy, Ratio and rate
Calculations, Rounding, Estimation, Limits of accuracy, Ratio and rateCalculations, Rounding, Estimation, Limits of accuracy, Ratio and rate
Calculations, Rounding, Estimation, Limits of accuracy, Ratio and ratecolegiolascumbres
 
Algebra Rules - Addition and Subtraction
Algebra Rules - Addition and SubtractionAlgebra Rules - Addition and Subtraction
Algebra Rules - Addition and SubtractionPangala Nagendra Rao
 
Simplifying algebraic expressions
Simplifying algebraic expressionsSimplifying algebraic expressions
Simplifying algebraic expressionsMalini Sharma
 
Properties of rational number explained
Properties of rational number explainedProperties of rational number explained
Properties of rational number explainedShivani Sharma
 
Complex numbers And Quadratic Equations
Complex numbers And Quadratic EquationsComplex numbers And Quadratic Equations
Complex numbers And Quadratic EquationsDeepanshu Chowdhary
 
Integers Class 7
Integers Class 7 Integers Class 7
Integers Class 7 JiyaWalia
 
Simplifying expressions
Simplifying expressionsSimplifying expressions
Simplifying expressionsZain Masood
 
number theory.ppt
number theory.pptnumber theory.ppt
number theory.pptShishu
 
Expanding two brackets
Expanding two bracketsExpanding two brackets
Expanding two bracketsJack Warburton
 
The real Number system
The real Number systemThe real Number system
The real Number systemRawabi Alz
 
Factorisation 140814105901-phpapp02
Factorisation 140814105901-phpapp02Factorisation 140814105901-phpapp02
Factorisation 140814105901-phpapp02Paras Swarnkar
 

What's hot (20)

1.1 Real Number Properties
1.1 Real Number Properties1.1 Real Number Properties
1.1 Real Number Properties
 
properties of multiplication of integers
properties of multiplication of integersproperties of multiplication of integers
properties of multiplication of integers
 
Calculations, Rounding, Estimation, Limits of accuracy, Ratio and rate
Calculations, Rounding, Estimation, Limits of accuracy, Ratio and rateCalculations, Rounding, Estimation, Limits of accuracy, Ratio and rate
Calculations, Rounding, Estimation, Limits of accuracy, Ratio and rate
 
Algebra Rules - Addition and Subtraction
Algebra Rules - Addition and SubtractionAlgebra Rules - Addition and Subtraction
Algebra Rules - Addition and Subtraction
 
Number Groups
Number GroupsNumber Groups
Number Groups
 
Types of RELATIONS
Types of RELATIONSTypes of RELATIONS
Types of RELATIONS
 
Simplifying algebraic expressions
Simplifying algebraic expressionsSimplifying algebraic expressions
Simplifying algebraic expressions
 
Properties of rational number explained
Properties of rational number explainedProperties of rational number explained
Properties of rational number explained
 
History numbers
History numbersHistory numbers
History numbers
 
Binomial expansion
Binomial expansionBinomial expansion
Binomial expansion
 
Complex numbers And Quadratic Equations
Complex numbers And Quadratic EquationsComplex numbers And Quadratic Equations
Complex numbers And Quadratic Equations
 
Vedic maths
Vedic mathsVedic maths
Vedic maths
 
Integers Class 7
Integers Class 7 Integers Class 7
Integers Class 7
 
Factorization
Factorization Factorization
Factorization
 
Simplifying expressions
Simplifying expressionsSimplifying expressions
Simplifying expressions
 
number theory.ppt
number theory.pptnumber theory.ppt
number theory.ppt
 
Expanding two brackets
Expanding two bracketsExpanding two brackets
Expanding two brackets
 
Rational number ppt
Rational number pptRational number ppt
Rational number ppt
 
The real Number system
The real Number systemThe real Number system
The real Number system
 
Factorisation 140814105901-phpapp02
Factorisation 140814105901-phpapp02Factorisation 140814105901-phpapp02
Factorisation 140814105901-phpapp02
 

Viewers also liked

สาระและมาตรฐานการเรียนรู้ ม.ปลาย
สาระและมาตรฐานการเรียนรู้ ม.ปลายสาระและมาตรฐานการเรียนรู้ ม.ปลาย
สาระและมาตรฐานการเรียนรู้ ม.ปลายAon Narinchoti
 
จุดมุ่งหมาย ม.ปลาย
จุดมุ่งหมาย ม.ปลายจุดมุ่งหมาย ม.ปลาย
จุดมุ่งหมาย ม.ปลายAon Narinchoti
 
Exponential and logarithm function
Exponential and logarithm functionExponential and logarithm function
Exponential and logarithm functionAon Narinchoti
 
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์Aon Narinchoti
 
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย 57
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย  57โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย  57
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย 57Chok Ke
 
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลายตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลายAon Narinchoti
 
Dlit socialmedia
Dlit socialmediaDlit socialmedia
Dlit socialmediatayval
 

Viewers also liked (11)

Metrix[1]
Metrix[1]Metrix[1]
Metrix[1]
 
Graph
GraphGraph
Graph
 
สาระและมาตรฐานการเรียนรู้ ม.ปลาย
สาระและมาตรฐานการเรียนรู้ ม.ปลายสาระและมาตรฐานการเรียนรู้ ม.ปลาย
สาระและมาตรฐานการเรียนรู้ ม.ปลาย
 
จุดมุ่งหมาย ม.ปลาย
จุดมุ่งหมาย ม.ปลายจุดมุ่งหมาย ม.ปลาย
จุดมุ่งหมาย ม.ปลาย
 
Exponential and logarithm function
Exponential and logarithm functionExponential and logarithm function
Exponential and logarithm function
 
Present
PresentPresent
Present
 
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
รายละเอียดชุมนุมคณิตศาสตร์ออนไลน์
 
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย 57
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย  57โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย  57
โครงงานวิทยาศาสตร์ กระติบข้าวเก็บความร้อน 17 ก.ย 57
 
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลายตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
ตัวชี้วัดและสาระการเรียนรู้แกนกลาง ม.ปลาย
 
Dlit socialmedia
Dlit socialmediaDlit socialmedia
Dlit socialmedia
 
His brob
His brobHis brob
His brob
 

Similar to Real number system full

Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1jennytuazon01630
 
Lecture 01 reals number system
Lecture 01 reals number systemLecture 01 reals number system
Lecture 01 reals number systemHazel Joy Chong
 
Unit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptxUnit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptxssuser01e301
 
Lesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersLesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersTerry Gastauer
 
Number System2.pptx
Number System2.pptxNumber System2.pptx
Number System2.pptxAnshRattan
 
DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..KarthikeyaLanka1
 
Introduction to MatLab programming
Introduction to MatLab programmingIntroduction to MatLab programming
Introduction to MatLab programmingDamian T. Gordon
 
Determinants, Properties and IMT
Determinants, Properties and IMTDeterminants, Properties and IMT
Determinants, Properties and IMTPrasanth George
 
101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitude101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitudePODILAPRAVALLIKA0576
 
101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]Itmona
 

Similar to Real number system full (20)

Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1Chapter 1 review topic in algebra 1
Chapter 1 review topic in algebra 1
 
2. Real numbers
2. Real numbers2. Real numbers
2. Real numbers
 
Lecture 01 reals number system
Lecture 01 reals number systemLecture 01 reals number system
Lecture 01 reals number system
 
Unit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptxUnit-1 Basic Concept of Algorithm.pptx
Unit-1 Basic Concept of Algorithm.pptx
 
Chapter 1
Chapter 1Chapter 1
Chapter 1
 
Lesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbersLesson 1 1 properties of real numbers
Lesson 1 1 properties of real numbers
 
Number system
Number systemNumber system
Number system
 
Chapter0
Chapter0Chapter0
Chapter0
 
Annie
AnnieAnnie
Annie
 
Em01 ba
Em01 baEm01 ba
Em01 ba
 
Real-Number-System.pptx
Real-Number-System.pptxReal-Number-System.pptx
Real-Number-System.pptx
 
PEA 305.pdf
PEA 305.pdfPEA 305.pdf
PEA 305.pdf
 
Number System2.pptx
Number System2.pptxNumber System2.pptx
Number System2.pptx
 
Appt and reasoning
Appt and reasoningAppt and reasoning
Appt and reasoning
 
DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..DS Unit-1.pptx very easy to understand..
DS Unit-1.pptx very easy to understand..
 
Introduction to MatLab programming
Introduction to MatLab programmingIntroduction to MatLab programming
Introduction to MatLab programming
 
Determinants, Properties and IMT
Determinants, Properties and IMTDeterminants, Properties and IMT
Determinants, Properties and IMT
 
TABREZ KHAN.ppt
TABREZ KHAN.pptTABREZ KHAN.ppt
TABREZ KHAN.ppt
 
101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitude101-maths short cut tips and tricks for apptitude
101-maths short cut tips and tricks for apptitude
 
101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]101 math short cuts [www.onlinebcs.com]
101 math short cuts [www.onlinebcs.com]
 

More from Aon Narinchoti

บทคัดย่อ
บทคัดย่อบทคัดย่อ
บทคัดย่อAon Narinchoti
 
ส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธAon Narinchoti
 
Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936Aon Narinchoti
 
ตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติAon Narinchoti
 
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียงการใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียงAon Narinchoti
 
คำอธิบายรายวิชา
คำอธิบายรายวิชาคำอธิบายรายวิชา
คำอธิบายรายวิชาAon Narinchoti
 
อัตราส่วนคะแนน
อัตราส่วนคะแนนอัตราส่วนคะแนน
อัตราส่วนคะแนนAon Narinchoti
 
แนะนำวิชา
แนะนำวิชาแนะนำวิชา
แนะนำวิชาAon Narinchoti
 

More from Aon Narinchoti (20)

บทคัดย่อ
บทคัดย่อบทคัดย่อ
บทคัดย่อ
 
Prob
ProbProb
Prob
 
Event
EventEvent
Event
 
Sample space
Sample spaceSample space
Sample space
 
Random experiment
Random experimentRandom experiment
Random experiment
 
Wordpress
WordpressWordpress
Wordpress
 
ส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธส่งตีพิมพ์ มสธ
ส่งตีพิมพ์ มสธ
 
Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936Lxt6 sonvyqi20150807080936
Lxt6 sonvyqi20150807080936
 
Know5
Know5Know5
Know5
 
ตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติตารางฟังก์ชันตรีโกณมิติ
ตารางฟังก์ชันตรีโกณมิติ
 
Know4
Know4Know4
Know4
 
Know3
Know3Know3
Know3
 
Know2
Know2Know2
Know2
 
Know1
Know1Know1
Know1
 
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียงการใช้หลักปรัชญาเศรษฐกิจพอเพียง
การใช้หลักปรัชญาเศรษฐกิจพอเพียง
 
Climometer
ClimometerClimometer
Climometer
 
คำอธิบายรายวิชา
คำอธิบายรายวิชาคำอธิบายรายวิชา
คำอธิบายรายวิชา
 
อัตราส่วนคะแนน
อัตราส่วนคะแนนอัตราส่วนคะแนน
อัตราส่วนคะแนน
 
History
HistoryHistory
History
 
แนะนำวิชา
แนะนำวิชาแนะนำวิชา
แนะนำวิชา
 

Recently uploaded

ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Celine George
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxAshokKarra1
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 

Recently uploaded (20)

ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
Incoming and Outgoing Shipments in 3 STEPS Using Odoo 17
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Karra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptxKarra SKD Conference Presentation Revised.pptx
Karra SKD Conference Presentation Revised.pptx
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 

Real number system full

  • 1. CHAPTER 2 :Real Number System The real number system evolved over time by expanding the notion of what we mean by the word “number.” At first, “number” meant something you could count, like how many sheep a farmer owns. These are called the natural numbers, or sometimes the counting numbers. 2.1 Real Number Counting Number / Natural Number N = { 1 , 2 , 3 , 4 , … } • The use of three dots at the end of the list is a common mathematical notation to indicate that the list keeps going forever. Whole Numbers • Natural Numbers together with “zero” W = { }0 , 1 , 2 , 3 , 4 , ... Integer Number (I) • Whole numbers plus negatives { }I ..., 3 , 2 , 1 , 0 , 1 , 2 , 3 ,...= − − − { }I 0 , 1 , 2 , 3 ,...= ± ± ± Rational Number (Q) a Q = x x = ; a I , b I and b 0 b   ∈ ∈ ≠    • All numbers of the form a b , where a and b are integers (but b cannot be zero) • Rational numbers include what we usually call fractions
  • 2. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 2 • Notice that the word “rational” contains the word “ratio,” which should remind you of fractions. • The bottom of the fraction is called the denominator. Think of it as the denomination—it tells you what size fraction we are talking about: fourths, fifths, etc. • The top of the fraction is called the numerator. It tells you how many fourths, fifths, or whatever. • RESTRICTION: The denominator cannot be zero! (But the numerator can) • Fractions can be numbers smaller than 1, like 1/2 or 3/4 (called proper fractions : In the numerator is smaller than the denominator) • Fractions can be numbers bigger than 1, like one-and-a-quarter, which we could also write as 5/4 (called improper fractions : the numerator is bigger than the denominator) • One way of expressing the improper fraction 5/4 is as the mixed number 1 1 4 , which is read as “one and one-fourth.” • The step for write Mixed Number to Improper Fraction ; 1. Multiply the integer part with the bottom of the fraction part. 2. Add the result to the top of the fraction. • The step for write Improper Fraction to Mixed Number 1. Do the division to get the integer part 2. Put the remainder over the old denominator to get the fractional part •••• Equivalent Fractions Equivalent fractions are fractions that have the same value, for example 1 2 3 4 2 4 6 8 = = = etc. • All integers can also be thought of as rational numbers, with a denominator of 1: for example 3 3 1 = , 5 5 1 − − = • This means that all the previous sets of numbers (natural numbers, whole numbers, and integers) are subsets of the rational numbers. Now it might seem as though the set of rational numbers would cover every possible case, but that is not so. There are numbers that cannot be expressed as a fraction, and these numbers are called irrational because they are not rational. • Integer 2 , 5, 0 , 3 , 7− − • Fraction 2 11 , 3 17
  • 3. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 3 • Periodic Decimal 0.2 , 0.3 , 0.47& Irrational Number (Q′ ) • Cannot be expressed as a ratio of integers. • As decimals they never repeat or terminate (rationals always do one or the other) Examples: Rational (terminates) 2 = 0.66666 3 & Rational (repeats) 5 = 0.45454545 11 & & Rational (repeats) 5 = 0.714285714285 7 & & Rational (repeats) Irrational (never repeats or terminates) Irrational (never repeats or terminates) The Real Numbers(R) •••• Rationals + Irrationals •••• All points on the number line • Or all possible distances on the number line When we put the irrational numbers together with the rational numbers, we finally have the complete set of real numbers. Any number that represents an amount of something, such as a weight, a volume, or the distance between two points, will always be a real number. The following diagram illustrates the relationships of the sets that make up the real numbers.
  • 4. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 4 Imaginary Number a+bi ; a,b R and b 0∈ ≠ 2+3i , 4 5i− , 1 3i− , 2i Union of Real Number and Imaginary Number called Complex Number. Properties for real number system 1) Reflexive Property ; • If a R∈ then a = a • Example ; 3 = 3 , 2 = 2π π , 2x = 2x , 1+2x = 1+2x etc. 2) Symetric Property ; • If a = b then b = a • Example ; If 5 2x= then 2x = 5 If 12 4 3x= − then 4 3x = 12− If 5 2 + 3= then 2 + 3 = 5 etc. 3) Transitive Property ; • If a = b and b = c then a = c • Example ; If 2x + 1 = 10 + 12 and 10 + 12 = 22 then 2x + 1 = 22 If 2x 5 = x + 1− and x + 1 = 7 then 2x 1 = 7− etc. 4) Addition by the equal number ; • If a = b then a + c = b + c • Example ; If a = 5 then a + 3 = 5 + 3 If ( ) ( ) ( )2x + 5 = 10 then 2x + 5 + 5 = 10 + 5− − etc.
  • 5. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 5 5) Multiplication by the equal number ; • If a = b then ac = bc • Example ; If a = 3 then a 2 = 3 2× × If ( ) ( )2x = 8 then 3 2x = 3 8 etc. 6) If a + c = b + c then a = b 7) If ac = bc and c 0≠ then a = b Addition Property for real number system 1) Closure Property • If Ra∈ , Rb∈ then Rba ∈+ 2) Commutative Property • If Ra∈ , Rb∈ then abba +=+ 3) Associative Property • If RcandRb,Ra ∈∈∈ then ( ) ( )cbacba ++=++ • Example ; 1. consider ( )532 ++ and ( ) 532 ++ Hence ( ) 1082532 =+=++ and ( ) 1055532 =+=++ so ( )532 ++ = ( ) 532 ++ etc. 4) Identity (0) • There is R0∈ for all Ra∈ such that a0aa0 =+=+ • Example ; 0 + 2 = 2 + 0 = 2 20220 =+=+ etc. 5) Inverse ( a− ) • For all Ra∈ there exists Ra ∈− such that ( ) ( ) 0aaaa =+−=−+ • Example ; 1. Consider addition inverse of 2 Hence ( ) ( ) 02222 =+−=−+ so addition inverse of 2 is 2− 2. Consider addition inverse of 5− Hence ( ) ( )( ) ( )( ) ( ) 05555 =−+−−=−−+− so addition inverse of 5− is ( )5−− , and ( ) 55 =−− etc. Cancallation Property ( ก ก)
  • 6. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 6 Multiplication Property for real number system 1) Closure Property • If Ra∈ , Rb∈ then Rab∈ 2) Commutative Property • If Ra∈ , Rb∈ then baab = 3) Associative Property • If RcandRb,Ra ∈∈∈ then ( ) ( )bcacab = 4) Identity (1) • There is R1∈ for all Ra∈ such that ( ) ( ) a1aa1 == • Example ; ( ) ( ) 21221 == ( ) ( )( ) 21221 == etc. 5) Inverse ( 1 a− ) • For all Ra∈ and 0a ≠ there exists Ra 1 ∈− such that ( ) ( ) 1aaaa 11 == −− • multiplication inverse of a is 1 a− and a 1 a 1 =− hence ( ) ( ) 1a a 1 a 1 a =      =      so multiplication inverse of a is a 1 • Example ; 1. Consider multiplication inverse of 2 hence ( ) ( ) 12 2 1 2 1 2 =      =      so multiplication inverse of 2 is 2 1 2. Consider addition inverse of 5 1 Hence ( ) ( ) 1 5 1 55 5 1 =      =      so multiplication inverse of 5 1 is 5 6) Distributive Property • If RcandRb,Ra ∈∈∈ then ( ) bcabcba +=+ and ( ) bcaccba +=+
  • 7. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 7 Example : Given a and b are real number a b = a + b 5⊕ − Find 1) Identity 2) Inverse of 10 Find Identity Let x is identity x a⊕ = a x + a 5− = a x = 5 Find Inverse of 10 Let y is Inverse of 10 y 10⊕ = 5 y + 10 − 5 = 5 y = 0 Example : Change the number to fraction 1. 0.252525... Let x = 0.252525...  (1) (1) × 100 ; 100x = 25.252525...  (2) (2) – (1) ; 99x = 25 x = 25 99 Therefore0.252525... = 25 99 2. 0.45326& & Let x = 0.45326326326  (1) (1)×100 ; 100x = 45.326326326  (2) (1)×100,000 ; 100,000x = 45326.326326326...  (3) (3) – (2) ; 99900x = 45326 45− 99900x = 45281 x = 45281 99900 Therefore0.45326326326... = 45281 99900
  • 8. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 8 3. 2.354& Let x = 2.35444...  (1) (1)×100 ; 100x = 235.444...  (2) (1)×1,000 ; 1,000x = 2354.444...  (3) (3) – (2) ; 900x = 2119 x = 2119 900 Therefore 2.354& = 2119 900 Example : Given a * b = a + b + 4 where a , b ∈ R. Find the property of operation * And find inverse of 5 1. Closure Property If a ∈ R and b ∈ R then a * b = a + b + 4 ∈ R 5 ∈ R and 7 ∈ R , 5 7∗ = 5 7 4+ + = 16 ∈ R 2. Commutative Property a * b = a + b + 4 = b + a + 4 = b * a 3. Associative Property (a * b) * c = (a + b + 4) * c a * (b * c) = a * (b + c + 4) = (a + b + 4) + c + 4 = a + (b + c + 4) +4 = a + b + 4 + c + 4 = a + b + c + 4 + 4 = a + b + c + 8 = a + b + c + 8 (a * b) * c = a * (b * c) 4. Identity Let x is identity x * a = a x + a + 4 = a x = 4− Therefore identity is 4−
  • 9. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 9 5. Inverse Let y is inverse of 5 y * 5 = 4− ( identity) y + 5 + 4 = 4− y = 13− Therefore inverse of 5 is 13− 2.2 Fundamental Theorem For Real Number System Theorem 2.2.1 ; cancallation property for addition (กLMNOPQQกRSLTMOUกLMUVก) Given a , b , c ∈ R (1) if a + c = b + c then a = b ( 2) If a + b = a + c then b = c Theorem 2.2.2 ; cancallation property for multiplication (กLMNOPQQกRSLTMOUกLMWXY) Given a , b , c ∈ R (1) if ac = bc and c ≠ 0 then a = b ( 2) If ab = ac and a ≠ 0 then b = c Theorem 2.2.3 ; multiplied by 0 (กLMWXYPZV[ 0) If a ∈ R then ( ) ( )= =a 0 0 a 0 Theorem 2.2.4 ; multiplied by −1 (กLMWXYPZV[ − 1) If a ∈ R then a(−1) = (−1)a = −a Theorem 2.2.5 ; 89:;<=>?@กBC 0 Given a , b∈R , If ab = 0 then a = 0 or b = 0 Theorem 2.2.6 ; Given a ∈R , If a ≠ 0 then 1 a− ≠ 0
  • 10. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 10 Theorem 2.2.7 ; ( inverse of the inverse ) (1) If a ∈R then ( ) aa =−− (2) If a ∈R and a ≠ 0 then ( ) aa 11 = −− Theorem 2.2.8 ; Given a , b ∈R , where a ≠ 0 and b ≠ 0 then ( ) 11111 baabab −−−−− == Theorem 2.2.9 ; Given a , b ∈R then ; (1) ( )ba− = ab− (2) ( )ba − = ab− (3) ( )( )ba −− = ab Subtraction And Division For Real Number Subtraction for real number Definetion ; Given a , b ∈ R then ( )− −a b = a + b Theorem 2.2.10 ; distributive property for subtraction (กLM]ก]^RSLTMOUกLM_U) Given a , b , c ∈R then ; (1) ( )−a b c = −ab ac (2) ( )−a b c = −ac bc (3) ( )( )− −a b c = −ab + ac Theorem 2.2.11 ; cancallation property for subtraction (กLMNOPQQกRSLTMOUกLM_U) Given a , b , c ∈ R (1) if − −a b = a c then b = c (2) If − −a b = c b then a = c
  • 11. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 11 Devision for real number Definetion ; Given a , b ∈ R , where b ≠ 0 then ( )−1a = a b b Theorem 2.2.12 ; Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then ( ) − − − −− = =1 1 1 11 ab b a a b Theorem 2.2.13 ; Given a , b , c ∈R , where b ≠ 0 and then ( )a ca c = b b Theorem 2.2.14 ; Given a , b ∈R , where b ≠ 0 then − − − a a a = = b b b Theorem 2.2.15 ; Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then ( )a ab = c bc Theorem 2.2.16 ; Given a , b , c , d ∈ R , where b ≠ 0 and d ≠ 0 then + a c ad + bc = b d bd Theorem 2.2.17 ; Given a , b , c , d ∈R , where b ≠ 0 and d ≠ 0 then − − a c ad bc = b d bd
  • 12. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 12 Theorem 2.2.18 ; Given a , b , c , d ∈R , where b ≠ 0 and d ≠ 0 then ( )( )a c ac = b d bd Theorem 2.2.19 ; Given a , b ∈R , where a ≠ 0 and b ≠ 0 then ( ) −1 a b = b a Theorem 2.2.20 ; Given a , b , c , d ∈R , where b ≠ 0 , c ≠ 0 and d ≠ 0 then ( ) ( ) a adb = c bc d Theorem 2.2.21 ; Given a , b , c ∈ R , where b ≠ 0 then (1) If a = c b then a = bc (2) If a = bc then a = c b Theorem 2.2.22 ; Given a , b , c ∈ R , where b ≠ 0 then a = c b if and only if a = bc Theorem 2.2.23 ; Given a , b , c ∈R , where b ≠ 0 and c ≠ 0 then ( ) a ac = b b c
  • 13. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 13 2.3 Solving polynomial equations of one variable polynomial equations of one variable is an equation of the form − −+ + + + =n n 1 n n 1 1 0a x a x ... a x a 0 , where na , −n 1a , … , 1a , 0a are real numbers , which are constants , x is variable and n is an integer or zero. Solving equations by factorization(ก@GHกIJKก@GLMNก@GHNกOBPQGRกSC) Example 1 : Find the solution set of equation − − + =3 2 4x 3x 64x 48 0 Solution Since − − +3 2 4x 3x 64x 48 = 0 ( ) ( )− − −3 2 4x 3x 64x 48 = 0 ( ) ( )− − −2 x 4x 3 16 4x 3 = 0 ( )( )− −2 x 16 4x 3 = 0 ( )( )( )+ − −x 4 x 4 4x 3 = 0 So −x 4 = 0 or +x 4 = 0 or −4x 3 = 0 So x = 4 or x = −4 or x = 3 4 The solution set is { }− 3 4 , , 4 4 Solving equations by remainder theorem (ก@GHกIJKก@GLMN>TUVWC>=XU=Y9ZS) P(x) is polynomial − −+ + + + =n n 1 n n 1 1 0a x a x ... a x a 0 , which n is a positive integer , na , −n 1a , … , 1a , 0a are real numbers , which na ≠ 0 . If division p(x) by −x c , which c is real number then remainder is equal to p(c) Example 2 : Find the remainder when division + −3 9x 4x 1 by − 1 x 2 Solution Given p(x) = + −3 9x 4x 1 By remainder theorem ; when division p(x) by − 1 x 2 then the remainder is p( )1 2
  • 14. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 14 p( )1 2 = ( ) ( )+ − 3 1 1 9 4 1 2 2 = 17 8 Therefore the remainder is 17 8 Factor Theorem (>TUVWC>OBPQGRกSC) P(x) is polynomial − −+ + + + =n n 1 n n 1 1 0a x a x ... a x a 0 , which n is a positive integer , na , −n 1a , … , 1a , 0a are real numbers , which na ≠ 0 . −x c is factor of p(x) if and only if p(c) = 0 RM`abOcdNQdกLM[กNOVaMeกQUbQ^fT`dLg p(x) hP[ijZklmnoUkpqmpT_rQidกMYodoc kSLPO^doc 1. TLNOVaMeกQU c bQ^ 0a koskSLiTZ p(c) = 0 2. dSL cx − taTLMfT`dLg p(x) u_TLM]epavdfT`dLgPoกMoNsSLกVwLPoกMobQ^ p(x) Q[Xw 1 3. xZLu_TLMidbZQ 2 [O^goPoกMoRX^กVwLRQ^_eRLgLMx[กNOVaMeกQUNwQtatPZQoกกy[ก NOVaMeกQUNLgbOcdNQdidbZQ 1 _e 2 NwxZLu_TLMgoPoกMoRQ^]eijZVz{o[กNOVaMeกQU NLgkospMo[dgL_ZV Example 3 : Show that −x 2 is factor of − + +3 2 x 5x 2x 8 Solution Given p(x) = − + +3 2 x 5x 2x 8 p(2) = − + +3 2 2 5(2) 2(2) 8 = 8 20 4 8− + + = 0 So −x 2 is factor of − + +3 2 x 5x 2x 8 From the example , −x 2 is factor of − + +3 2 x 5x 2x 8. When divide − + +3 2 x 5x 2x 8 by −x 2 ,
  • 15. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 15 2 3 2 3 2 2 2 x 3x 4 x 2 x 5x 2x 8 x 2x 3x 2x 3x 6x 4x 8 4x 8 − − − − + + − − + − + − + − + So − + +3 2 x 5x 2x 8 = ( )( )2 x 2 x 3x 4− − − And 2 x 3x 4− − = ( )( )x 1 x 4+ − Therefore − + +3 2 x 5x 2x 8= ( )( )( )x 2 x 1 x 4− + − Rational Factor Theorem (>TUVWC>OBPQGRกSCOGGกNR) P(x) is polynomial − −+ + + + =n n 1 n n 1 1 0a x a x ... a x a 0 , where n is a positive integer , na , −n 1a , … , 1a , 0a are integer , where na ≠ 0 . If m k x − is factor of p(x), where m and n are integer , where m ≠ 0 and gcd. of m and k is 1 then na divided by m perfect and 0a divided by k perfect . Note : gcd = greatest common divisor ( T.M.g. = TLMMwVggLก) RM`abOcdNQdกLM[กNOVaMeกQUbQ^fT`dLg p(x) PO^doc 1. TL m k hP[fz]LMYL m _e k ]LกNOVaMeกQUbQ^ na _e 0a NLg_SLPOU _e T.M.g. bQ^ m _e k pkwLกOU 1 2. kPRQUVwL p( m k ) pkwLกOU 0 TMrQtgw xZL p( m k ) = 0 ]etPZ m k x − pavdNOVaMeกQU bQ^ p(x) idกMYokostgwgo m k koskSLiTZ p( m k ) = 0 RP^VwL fT`dLg p(x) tgwgo NOVaMeกQUkospavdfT`dLgPoกMoTd|s^idMXa m k x −
  • 16. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 16 3. dSL m k x − }|s^pavdNOVaMeกQUbQ^fT`dLg p(x) taTLMfT`dLg p(x) u_TLM]epavd fT`dLgPoกMoNsSLกVwLPoกMobQ^ p(x) 4. xZLu_TLMidbZQ 3 [O^goPoกMoRX^กVwLRQ^_eRLgLMx[กNOVaMeกQUNwQtatPZQoก กy[กNOV aMeกQUNLgbOcdNQdidbZQ 1 , 2 _e 3 NwxZLu_TLMgoPoกMoRQ^]eijZVz{o[กNOVaMeกQU NLgkospMo[dgL_ZV Example 4 : Factorise of 35x16x12x 23 −−+ Solution Given p(x) = 35x16x12x 23 −−+ Since integers which divide 3− perfect are 1± , 3± (]SLdVdkosTLM 3− _^NOV) And integers which divide 12 perfect are 1± , 2± , 3± , 4± , 6± , 12± (]SLdVdkosTLM 12 _^NOV) So k m which p( m k ) = 0 is the number of the following numbers 1± , 3± , 1 2 ± , 3 2 ± , 1 3 ± , 1 4 ± , 3 4 ± , 1 6 ± , 1 12 ± ( ]SLdVdpT_wLdoc NOVpqm WrQ]SLdVdkospavdNOVaMeกQUbQ^ 3− _eNOVRwVd WrQ ]SLdVd kospavdNOVaMeกQUbQ^ 12 hP[kos T.M.g. bQ^NOVpqm_eNOVRwVd WrQ 1) Consider p( 1 2 ) = 3 21 1 1 12( ) 16( ) 5( ) 3 2 2 2 + − − = 12 16 5 3 8 4 2 + − − = 0 So 1 x 2 − is a factor of p(x) Devide 35x16x12x 23 −−+ by 1 x 2 − then quotient is 2 12x 22x 6+ + So 35x16x12x 23 −−+ = 21 (x )(12x 22x 6) 2 − + + = 21 (x )(2)(6x 11x 3) 2 − + + = 2 (2x 1)(6x 11x 3)− + + = (2x 1)(3x 1)(2x 3)− + +
  • 17. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 17 Example 5 : Solve the equation 35x16x12x 23 −−+ Solution Given p(x) = 35x16x12x 23 −−+ From example 4 ; 35x16x12x 23 −−+ = (2x 1)(3x 1)(2x 3)− + + Since 35x16x12x 23 −−+ = 0 (2x 1)(3x 1)(2x 3)− + + = 0 So 2x 1− = 0 or 3x 1+ = 0 or 2x 3+ = 0 x = 1 2 or x = 1 3 − or x = 3 2 − Example 6 : If 2 is real number .Prove that 2 is irrational number. Prove 2 is the solution of equation x = 2 So 2 is the solution of equation 2 x = 2 or 2 x 2 = 0−  (1) From Rational Factor Theorem ; the solution of equation (1) is in set { 1± , 2± } but 2 ∉ { 1± , 2± }. So 2 is not rational number. And since 2 is real number so 2 is irrational number. Example 7 : If 2 5+ is real number .Prove that 2 5+ is irrational number. Prove 2 5+ is the solution of x = 2 5+ So 2 5+ is the solution of x 2 = 5− Or 2 x 2 2 x 2 = 5− + ([กกSL_O^RQ^kOc^RQ^bZL^) 2 x 3 = 2 2x− 4 2 2 x 6x 9 = 8x− + ([กกSL_O^RQ^kOc^RQ^bZL^) 4 2 x 14x 9 = 0− +  (1) From Rational Factor Theorem ; the solution of equation (1) is in set { 1± , 3± , 9± } but 2 5+ ∉ { 1± , 3± , 9± }. So 2 5+ is not rational number. Since 2 5+ is real number so 2 5+ is irrational number.
  • 18. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 18 2.4 Inequality Definition ; 1) a > b if and only if −a b > 0 2) a < b if and only if −a b < 0 3) ≥a b means a > b or a = b 4) a b≤ means a < b or a = b 5) a < b < c means a < b and b < c 6) ≤ ≤a b c means ≤a b and ≤b c 7) < ≤a b c means <a b and ≤b c 8) ≤a b < c means ≤a b and b < c 9) ≠a b if and only if ( )− 2 a b > 0 Properties of inequality I1 : Trichotomy Property (RgUONztNMVz€LW) If a and b are real numbers then a = b , a < b and a > b , it is actually only one. I2 : Transitive Property (RgUONzกLMxwL[kQP) Given a , b and c are real numbers. (1) a < b and b < c then a < c (2) ≤a b and ≤b c then ≤a c (3) a > b and b > c then a > c (4) ≥a b and ≥b c then ≥a c I3 : property of number when compared with 0 (RgUONzbQ^]SLdVdpgrsQpaMo[Upko[UกOU 0) Given a is real number. (1) a is positive number if and only if a > 0. (2) a is negative number if and only if a < 0. (3) a is not positive number if and only if ≤a 0. (4) a is not negative number if and only if ≥a 0.
  • 19. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 19 I4 : RgUONzกMtgwpavd]SLdVd_U_eกLMpavd]SLdVdUVก (1) If a is real number then ≥2 a 0 (2) If a is real number and a ≠ 0 then >2 a 0 I5 : Addition by the equal number (RgUONzกLMUVกPZV[]SLdVdpkwLกOd) Given a , b and c are real numbers. (1) If a < b then a + c < b + c (2) If ≤a b then ≤a + c b + c (3) If a > b then a + c > b + c (4) If ≥a b then ≥a + c b + c I6 : cancallation property for addition (กLMNOPQQกRSLTMOUกLMUVก) Given a , b and c are real numbers. (1) If a + c < b + c then a < b (2) If ≤a + c b + c then ≤a b (3) If a + c > b + c then a > b (4) If ≥a + c b + c then ≥a b I7 : RgUONzกLMWXYPZV[]SLdVdpkwLกOdkospavd]SLdVdUVก Given a , b and c are real numbers. (1) If a < b and c > o then ac < bc (2) If ≤a b c > o then ≤ac bc (3) If a > b c > o then ac > bc (4) If ≥a b c > o then ≥ac bc I8 : RgUONzกLMWXYPZV[]SLdVdpkwLกOdkospavd]SLdVd_U Given a , b and c are real numbers. (1) If a < b and c < o then ac > bc (2) If ≤a b c < o then ≥ac bc (3) If a > b c < o then ac < bc (4) If ≥a b c < o then ≤ac bc
  • 20. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 20 I9 : RgUONzกLMNOPQQกbQ^]SLdVdUVกbQ^กLMWXY Given a , b and c are real numbers. (1) If ac < bc and c > o then a < b (2) If ≤ac bc c > o then ≤a b (3) If ac > bc c > o then a > b (4) If ≥ac bc c > o then ≥a b I10 : RgUONzกLMNOPQQกbQ^]SLdVd_UbQ^กLMWXY Given a , b and c are real numbers. (1) If ac < bc and c < o then a > b (2) If ≤ac bc c < o then ≥a b (3) If ac > bc c < o then a < b (4) If ≥ac bc c < o then ≤a b More Summaries 1) No Reflexive (tgwgoRgUONzกLMpkwLกOd) 2) No Symmetric (tgwgoRgUONzRggLNM) 3) If a b< and c d< then a c b d+ < + 4) If a b< and c d< then a d b c− < − 5) If 0 a b< < and 0 c d< < then ac bd< 6) 0a b< < and 0c d< < then ac bd> 7) If 0 a b< < and 0 c d< < then a b d c < 8) If 0a b< < and 0c d< < then a b d c > 9) If 0 a b< < then 2 2 a b< 10) If 0a b< < then 2 2 a b> 11) If 0 a b< < then 1 1 a b > 12) If 0a b< < then 1 1 a b > 13) If 0ab > and a b< then 1 1 a b >
  • 21. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 21 2.5 Interval Given a R∈ , b R∈ and a b< 1) ( ),a b = { }x a x b< < 2) [ ],a b = { }x a x b≤ ≤ 3) ( ],a b = { }x a x b< ≤ 4) [ ),a b = { }a x<bx ≤ 5) ( ),a ∞ = { }x x a> 6) [ ),a ∞ = { }x x a≥ 7) ( ),a−∞ = { }x x a< 8) ( ],a−∞ = { }x x a≤ 9) ( ),−∞ ∞ = R Example 1 : Given A = ( )1,7 , B = [ ]3,4− , C = [ )0,6 1) A B∪ = [ )3,7− 2) B C∪ = [ )3,6− 3) A B C∪ ∪ = [ )3,7− 4) A B∩ = ( ]1,4 5) B C∩ = [ ]0,4 6) A B C∩ ∩ = ( ]1,4 7) ( )A B C∪ ∩ = [ )0,6 8) ( )A B C∩ ∪ = ( )1,6 9) A B− = ( )4,7 10) B C− [ )3,0− 11) ( )A B C− − = [ )6,7 12) ( )A B C∪ − j [ ) [ )3,0 6,7− ∪ 0
  • 22. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 22 Example 2 : Given 1 ,2nA n n   = −    ; n I∈ . Find ( )1 2 3A A A∪ − ( ]1 = 1,2A − 2 1 = ,4 2 A   −    3 1 = ,6 3 A   −    Therefore ( )1 2 3 1 = 1, 3 A A A   ∪ − − −    . Example 3 : Given 2 ,3nA n n   = −    ; n I∈ . Find ( )3 5 2A A A∩ − ( ]1 = 1,6A − 2 2 = ,9 3 A   −    3 2 = ,15 5 A   −    Therefore ( ) [ ]3 5 2 = 6,9A A A∩ − . Example 4 : Given 5 10 and 3 8x y< < ≤ ≤ 1) 8 < < 18x y+ 2) 3 < < 7x y− − 3) 15 < < 80x y⋅ 4) 5 10 < < 8 3 x y
  • 23. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 23 Example 5 : Given 5 2 and -3 1x y− < < − ≤ ≤ − 1) 8 < < -3x y− + 2) 4 < < 1x y− − 3) 2 < < 15x y⋅ 4) 2 < < 5 3 x y Example 6 : Given 3 1 and 1 3x y− < < < < 1) -2 < < 4x y+ 2) 6 < < 0x y− − 3) 9 < < 3x y− ⋅ 4) 3 < < 1 x y − 5) 2 2 0 < 9 ; 1 < < 9x y≤ 6) 2 2 9 < < 8x y− − Inequality solving Example 7 : Solve inequality 5 7 2 11x≤ − ≤ . SOLUTION 5 7 2 11x≤ − ≤ 7 5 2 11 7x− + ≤ − ≤ − 2 2 4x− ≤ − ≤ ( ) ( ) 1 1 2 4 2 8 x     − − ≤ ≤ −        -2 1x≤ ≤ Therefore solution set is { }2 1x x− ≤ ≤ or [ ]2,1− . Example 8 : Solve inequality 9 2 < 4 3 6x x x− − ≤ + . SOLUTION 9 2 < 4 3x x− − and 4 3 6x x− ≤ + 4 2 < 3 9x x− − − − 4 6 3x x− ≤ + 6 < 12x− − 3 9x ≤ ( ) ( ) 1 1 6 > 12 6 6 x     − − − −        ( ) 1 1 3 9 3 3 x     ≤        > 2x 3x ≤ 32 Therefore solution set is { }2 3x x< ≤ or ( ]2,3 .
  • 24. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 24 Example 9 : Solve inequality 2 4 3 > 0x x− + . SOLUTION 2 4 3 > 0x x− + ( )( )1 3 > 0x x− − CASE 1 1 > 0x − and 3 > 0x − CASE 2 1 < 0x − and 3 < 0x − > 1x and > 3x < 1x and < 0x > 3x < 1x Therefore solution set is { }1 or 3x x x< > or ( ) ( ),1 3,−∞ ∪ ∞ . Example 10 : Solve inequality 2 2 5 3 0x x+ − ≤ . SOLUTION 2 2 5 3 0x x+ − ≤ ( )( )2 1 3 0x x− + ≤ CASE 1 2 1 0x − ≥ and 3 0x + ≤ CASE 2 2 1 0x − ≤ and 3 0x + ≥ 1 2 x ≥ and 3x ≤ − 1 2 x ≤ and 3x ≥ − No solution 1 3 2 x− ≤ ≤ Therefore solution set is 1 3 2 x x   − ≤ ≤    or 1 3, 2   −    . Example 11 : Solve inequality 2 2 5 > 0x x+ + . SOLUTION 2 2 5 > 0x x+ + ( )2 2 1 +4 > 0x x+ + ( ) 2 1 +4 > 0x + ; x R∈ Therefore solution set is R . Example 12 : Solve inequality 2 6 5 < 0x x+ − . SOLUTION 2 6 5 < 0x x+ − ( )2 6 9 14 < 0x x+ + − ( ) ( ) 22 3 14 < 0x + − ( )( )3 14 3 14 < 0x x+ − + + Therefore solution set is ( )3 14 , 3 14− − − + . -+ + -3+ 14-3- 14
  • 25. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 25 Example 13 : Solve inequality 2 8 10 0x x− + ≥ . SOLUTION 2 8 10 0x x− + ≥ ( )2 8 16 6 0x x− + − ≥ ( ) ( ) 22 4 6 0x − − ≥ ( )( )4 6 4 6 0x x− − − + ≥ Therefore solution set is ( ), 4 16 4 6 , −∞ − ∪ + ∞  . Example 14 : Solve inequality 2 10 25 > 0x x+ + . SOLUTION 2 10 25 > 0x x+ + ( ) 2 5 > 0x + and 5x R x∈ ≠ − Therefore solution set is { }5x x ≠ − or { }5R − − . Example 15 : Solve inequality 2 4 4 0x x− + ≤ . SOLUTION 2 4 4 0x x− + ≤ ( ) 2 2 0x − ≤ 2x = Therefore solutionset is { }= 2x x or { }2 . Example 16 : Solve inequality 2 10 25 < 0x x− + . SOLUTION 2 10 25 < 0x x− + ( ) 2 5 < 0x − Therefore no solution . Example 17 : solve the following inequality 1) ( )( )( )2 3 1 < 0x x x− − + SOLUTION ( )( )( )2 3 1 < 0x x x− − + ( )( )( )2 3 1 < 0x x x− − + - 2-1 -+ + 3 Solution set is ( ) ( ), 1 2,3−∞ − ∪ . -+ + 4+ 64- 6
  • 26. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 26 2) ( )( ) ( ) 2 1 2 3 0x x x− − − ≥ SOLUTION ( )( ) ( ) 2 1 2 3 0x x x− − − ≥ ( )( ) ( ) 2 1 2 3 0x x x− − − ≥ Times ( ) 2 1 2x − ; ( )( )1 3 0x x− − ≥ 2-1 -+ + 3 Solution set is ( ] { } [ ),1 2 3,−∞ ∪ ∪ ∞ . 3) ( ) ( ) ( ) ( ) ( ) 2 3 4 5 6 2 3 4 0 5 6 x x x x x − − − ≤ − − SOLUTION ( ) ( ) ( ) ( ) ( ) 2 3 4 5 6 2 3 4 0 5 6 x x x x x − − − ≤ − − Times ( ) ( ) ( ) ( ) ( ) 5 6 2 3 4 5 6 2 3 4 x x x x x − − − − − ; ( )( )3 5 0x x− − ≤ 542 -+ + 3 Solution set is { } [ )2 3,5∪ . 4) 2 1 2 3 4 x x x − < + − SOLUTION 2 1 2 < 0 3 4 x x x − − + − ( )( ) ( )( ) ( )( ) 4 2 1 3 2 < 0 3 4 x x x x x − − − + + − ( )( ) 2 2 9 4 2 6 < 0 3 4 x x x x x − + − − + − ( )( ) 2 2 11 2 < 0 3 4 x x x x − − + − ( )( ) 2 11 1 2 < 0 3 4 x x x x − − + −
  • 27. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 27 ( )( ) 2 11 121 137 2 16 16 < 0 3 4 x x x x   − + −    + − ( )( ) 22 11 137 4 4 < 0 3 4 x x x    − −       + − ( )( ) 11 137 11 137 4 4 4 4 < 0 3 4 x x x x    − + − −      + − Solution set is 11 137 11 137 3, 4, 4 4    − + − ∪           . 5) 5 2 3 2x x ≥ + − SOLUTION 5 2 0 3 2x x − ≥ + − ( ) ( ) ( )( ) 5 2 2 3 0 3 2 x x x x − − + ≥ + − ( )( ) 5 10 2 6 0 3 2 x x x x − − − ≥ + − ( )( ) 3 16 0 3 2 x x x − ≥ + − ( )( )( )3 16 3 2 0x x x− + − ≥ Solution set is [ ] 16 3,2 , 3   − ∪ ∞    .
  • 28. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 28 2.6 Absolute Value When we want to talk about how “large” a number is without regard as to whether it is positive or negative, we use the absolute value function. The absolute value of a number is the distance from that number to the origin (zero) on the number line. That distance is always given as a non-negative number. • If a number is positive (or zero), the absolute value function does nothing to it: • If a number is negative, the absolute value function makes it positive: Definition ; ; 0 = 0 ; 0 ; 0 x x x x x x >  = − < 3 = 3 5 = 5− , ( ) 5 = 5 4 = 4 = 4− − − , 0 = 0 ; 0 = ; 0 x x x x x ≥  − < Absolute Value Property ; 1) =x x− 2) =x y y x− − 3) =xy x y 4) = ; 0 xx y y y ≠ 5) 2 2 =x x 6) = 0 if and only if 0x x = 7) = ; 0 if and only if orx a a x a x a> = = − 8) 2 2 = if and only ifx y x y= 9) 2 2 < if and only ifx y x y< 10) x y x y+ ≤ + 11) = if and only if 0x y x y xy+ + ≥ 12) < if and only if 0x y x y xy+ + < 13) x y x y− ≥ −
  • 29. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 29 14) = if and only if 0x y x y xy− − ≥ 15) > if and only if 0x y x y xy− − < 16) < ; 0 if and only ifx a a a x a> − < < 17) ; 0 if and only ifx a a a x a≤ > − ≤ ≤ 18) > ; 0 if and only if orx a a x a x a> < − > 19) ; 0 if and only if orx a a x a x a≥ > ≤ − ≥ 20) 1 ; 0 = 1 ; 0 xx xx >  − < Example 1 : Solve the following equations 1) 2 6 = 0x x− − SOLUTION 2 6 = 0x x− − ( )( )3 2 = 0x x− + = 3 , 2x − Solution set is { }3, 2− . 2) 2 3 = 15x − SOLUTION 2 3 = 15x − 2 3 = 15 , 15x − − 2 = 18 , 12x − = 9 , 6x − Solution set is { }9, 6− . 3) 2 1 = 3x x− + SOLUTION ( ) ( ) 2 2 2 1 = 3x x− + 2 2 4 4 1 = 6 9x x x x− + + + 2 3 10 8 = 0x x− − ( )( )3 2 4 = 0x x+ − 2 = , 4 3 x − Solution set is 2 ,4 3   −    .
  • 30. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 30 4) 2 1 = 2x x− + SOLUTION ( ) ( ) 2 2 2 1 = 2x x− + 2 2 4 4 1 = 4 4x x x x− + + + 2 3 8 3 = 0x x− − ( )( )3 1 3 = 0x x+ − 1 = , 3 3 x − Solution set is 1 ,3 3   −    . Example 2 : Solve the following equations 1) 2 2 2 15 = 2 15x x x x− − − − SOLUTION 2 2 15 0x x− − ≥ ( )( )5 3 0x x− + ≥ Solution set is ( ) [ ), 3 5,−∞ − ∪ ∞ . 2) 2 2 6 = 6x x x x− − + − SOLUTION ( )2 2 6 = 6x x x x− − − − − 2 6 0x x− − ≤ ( )( )3 2 0x x− + ≤ Solution set is [ ]2,3− . 3) = 1x x − SOLUTION If 0 then 1x x x≥ = − No solution If 0 then - 1x x x< = − 1 = (F) 2 x Solution set is φ .
  • 31. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 31 4) = 1x x + SOLUTION If 0 then 1x x x≥ = + No solution If 0 then - 1x x x< = + 1 = (T) 2 x − Solution set is 1 2   −    . 5) 2 = 3x x− + SOLUTION If 2 0 then 2 3x x x− ≥ − = + No solution If 2 0 then 2 3x x x− < − + = + 1 = (T) 2 x − Solution set is 1 2   −    . 6) 2 1 = 3x x+ − SOLUTION If 2 1 0 then 2 1 3x x x+ ≥ + = − = 4 (F)x − If 2 1 0 then 2 1 3x x x+ < − − = − 2 = (F) 3 x Solution set is φ . 7) 1 + 2 = 10x x+ − SOLUTION ( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ ≥ − ≥ + + − = 11 2 and (T) 2 x x≥ = ( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ ≥ − < + − − = No solution ( ) ( )If 1 0 and 2 0 then - 1 2 10x x x x+ < − ≥ + + − = No solution ( ) ( )If 1 0 and 2 0 then 1 2 10x x x x+ < − < − + − − = 9 < 1 and (T) 2 x x− = − Solution set is 11 9 , 2 2   −    .
  • 32. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 32 2.7 Absolute Value Inequality Example 1 : Solve the following inequality. 1) 2 1 3x x− ≤ + SOLUTION 2 1 3x x− ≤ + ( ) ( ) 2 2 2 1 3x x− ≤ + 2 2 4 4 1 6 9x x x x− + ≤ + + 2 3 10 8 0x x− − ≤ ( )( )3 2 4 0x x+ − ≤ Solution set is 2 ,4 3   −    . 2) 3 2 < 2 3x x− + SOLUTION If 3 2 0 then 3 2 2 3x x x− ≥ − < + 2 and 5 3 x x≥ < 2 < 5 3 x≤  (1) If 3 2 0 then 3 2 2 3x x x− < − + < + 2 1 < and 3 5 x x > − 1 2 < < 5 3 x−  (2) Solution set is 1 2 2 1 , ,5 = ,5 5 3 3 5       − ∪ −           . 3) 2 1 + 3 > 10x x− + SOLUTION ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− ≥ + ≥ − + + > 1 and 3 2 x x≥ ≥ − 8 3 x > 8 > 3 x  (1) ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− ≥ + < − − + > 1 and 3 2 x x≥ < − Oppose
  • 33. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 33 ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− < + ≥ − − + + > 1 < and 3 2 x x ≥ − 6x < − No solution ( ) ( )If 2 1 0 and 3 0 then 2 1 3 10x x x x− < + < − − − + > 1 < and 3 2 x x < − 4x < − < 4x −  (2) Solution set is ( ) 8 , 4 , 5   −∞ − ∪ ∞    . 4) 2 3 13x − ≤ SOLUTION 13 2 3 13x− ≤ − ≤ 10 2 16x− ≤ ≤ 5 8x− ≤ ≤ Solution set is [ ]5,8− . 5) 3 1 > 11x − SOLUTION 3 1 11x − < − or 3 1 11x − > 3 < 10x − 3 > 12x 10 < 3 x − > 4x Solution set is ( ) 10 , 4, 3   −∞ − ∪ ∞    .
  • 34. C h a p t e r 2 : R e a l N u m b e r S y s t e m P a g e | 34 English vocabulary for Mathematic Addition Property = RgUONzกLMUVก Associative Property = RgUONzกLMpa_os[dTgXw Cancallation Property = ก ก Closure Property for addition = RgUONza•PกLMUVก Complex Numbers = ]SLdVdpjz^}ZQd Commutative Property = RgUONzกLMR_OUkos Counting Numbers = ]SLdVddOU Decimal = kqdz[g Distributive Property = RgUONzกLM]ก]^ Fraction = pqmRwVd Identity = pQก_OกmY‚ Imaginary Number = ]SLdVd]zdN€Lf Integer numbers = ]SLdVdpNyg Inverse = NOVuกuOd Irrational Numbers = ]SLdVdNMMก[e multiplication = กLMWXY Multiplication Property = RgUONzกLMWXY Natural Numbers = ]SLdVddOU Periodic Decimal = kqdz[g}cSL Rational Numbers =]SLdVdNMMก[e Reflexive Property = RgUONzกLMRekZQd Subtraction = กLM_U Square = MXaRospT_os[g]ON`MOR Struction = hWM^RMZL^ Symetric Property = RgUONzกLMpkwLกOd therefore = PO^dOcd Transitive Property = RgUONzกLMxwL[kQP Whole Number = ]SLdVdkOc^TgP