SlideShare a Scribd company logo
1 of 25
SL. NO SUB-TOPIC SLIDE NO
1 INTRODUCTION 3
2 ADDITION OF RATIONAL NUMBERS
AND ITS PROPERTIES
5
3 SUBTRACTION OF RATIONAL
NUMBERS AND ITS PROPERTIES
8
4 MULTIPLICATION OF RATIONAL
NUMBERS AND ITS PROPERTIES
12
5 DIVISION OF RATIONAL NUMBERS
AND ITS PROPERTIES
18
6 RATIONAL NUMBERS BETWEEN TWO
RATIONAL NUMBERS
24
INTRODUCTION
One day two children of Real number, Whole number and Rational
number have a talk with each other;
Whole number: Do you know rational ,different operations like
Addition,Subtraction ,MULTIPLICATION and DIVISION can act on me
and they also satisfies different properties.
Rational number: But brother I do not have any knowledge that how
these operations act on me. Let’s ask our teacher about this…
Teacher- I will definitely clear your doubts but
before that answer my questions…
 What is the additive identity for whole numbers ?
 Does whole number obeys commutative law under Subtraction ?
 What is the multiplicative inverse of 5 ?
 Define distributive property of Multiplication over Addition ?
 Say two whole numbers between 5 and 12 ?
 Tell whether division obeys closure property or not ?
The numbers of the form
𝒑
𝒒
,Where 𝒑 𝒂𝒏𝒅 𝒒 𝒂𝒓𝒆 π’Šπ’π’•π’†π’ˆπ’†π’“π’” 𝒂𝒏𝒅 𝒒 β‰  𝒐 𝒂𝒓𝒆 π’Œπ’π’π’˜π’ 𝒂𝒔 π’“π’‚π’•π’Šπ’π’π’‚π’ π’π’–π’Žπ’ƒπ’†π’“
Rational numbers include natural numbers, whole numbers, integer sand all positive and negative
fractions.
Example:
πŸ“
πŸ”
,
βˆ’πŸ‘
πŸ–
, πŸ“
𝟐
πŸ”
,… etc
Rational Numbers
As that of Whole numbers for rational numbers,also there are four operations they
are as following. Let’s discuss one after another…
 ADDITION
 SUBTRACTION
 MULTIPLICATION
 DIVISION
ADDITION ON
RATIONAL NUMBERS
CASE-1
WHEN RATIONAL NUMBER
HAVING SAME DENOMINATOR
Ӂ Add numerators of the
rational numbers and then
divide by the common
denominator.
Ex- Add
πŸ‘
πŸ•
and
πŸ”
πŸ•
Solution:
πŸ‘
πŸ•
+
πŸ”
πŸ•
=
πŸ‘+πŸ”
πŸ•
=
πŸ—
πŸ•
CASE-2
WHEN RATIONAL NUMBER DO
NOT HAVE SAME DENOMINATOR
Ӂ Take LCM of
denominators and then add
the rational numbers.
Example-Add
𝟏
πŸ’
and
𝟐
πŸ‘
Solution:
𝟏
πŸ’
+
𝟐
πŸ‘
LCM of denominators 4
and 3 is 12.
𝟏
πŸ’
=
𝟏 Γ— πŸ‘
πŸ’ Γ— πŸ‘
=
πŸ‘
𝟏𝟐
𝟐
πŸ‘
=
𝟐 Γ— πŸ’
πŸ‘ Γ— πŸ’
=
πŸ–
𝟏𝟐
so
πŸ‘
𝟏𝟐
+
πŸ–
𝟏𝟐
=
πŸ‘+πŸ–
𝟏𝟐
=
𝟏𝟏
𝟏𝟐
PROPERTIES OF ADDITION OF RATIONAL NUMBERS
 Closure property:
Sum of any two rational number is always a rational number i.e if x and y are two rational numbers then x+y
will also became a rational number.
EXAMPLE :
1
2
+
3
4
=
5
4
Here
1
2
and
3
4
are both Rational number And sum
5
4
is also a rational number.
Hence Rational numbers are closed under Addition.
 Commutative property:
The sum of two rational numbers does not depend on the order in which they are added.i.e π‘₯ + 𝑦 = 𝑦 +
LHS=
𝟏
𝟐
+
𝟐
πŸ‘
+
πŸ“
πŸ’
=
πŸ‘+πŸ’
πŸ”
+
πŸ“
πŸ’
=
πŸ•
πŸ”
+
πŸ“
πŸ’
=
πŸπŸ’+πŸπŸ“
𝟏𝟐
=
πŸπŸ—
𝟏𝟐
RHS=
1
2
+
2
3
+
5
4
=
1
2
+
8+15
12
=
1
2
+
23
12
=
6+23
12
=
29
12
 Additive identity property:
When β€˜o’ is added to any rational number the sum of the rational number is becomes
itself, If x is a rational number then 𝒙 + 𝟎 = 𝟎 + 𝒙 = 𝒙 .
EXAMPLE: let π‘₯ =
5
4
LHS=
5
4
+ 0 =
5
4
RHS=0 +
5
4
=
5
4
As LHS = RHS so this property valids.
Zero is called the identity element in Addition .
 Additive inverse property:
The negative of a rational number is it’s additive inverse.
The sum of a rational number and its additive inverse is always equal to Zero.
If x is a rational number then (-x) is the additive inverse of it and
π‘₯ + βˆ’π‘₯ = 0
Let a rational number be
5
4
π‘Žπ‘›π‘‘ 𝑖𝑑𝑠 π‘Žπ‘‘π‘‘π‘–π‘‘π‘–π‘£π‘’ π‘–π‘›π‘£π‘’π‘Ÿπ‘ π‘’ 𝑖𝑠
βˆ’5
4
Then
5
4
+
βˆ’5
4
=
5+ βˆ’5)
4
=
0
4
= 0
Negative of a rational number is called its additive inverse.
Try theseβ€”
(a) Simplify
βˆ’3
10
+
12
βˆ’10
+
14
10
(b) For x =
1
5
and y=
3
7
, verify that –(x+y) = (-x) + (-y)
(c) For x =
2
3
and y=
βˆ’5
6
and z=
7
9
, verify that (x+y)+ z = x + (y+z)
SUBTRACTION ON
RATIONAL NUMBERS
CASE-1
WHEN RATIONAL NUMBER
HAVING SAME DENOMINATOR
Ӂ Subtract numerators of
the rational numbers and
then divide by the common
denominator.
Ex- Add
πŸ‘
πŸ•
and
πŸ”
πŸ•
Solution:
πŸ‘
πŸ•
βˆ’
πŸ”
πŸ•
=
πŸ‘βˆ’πŸ”
πŸ•
=
βˆ’πŸ‘
πŸ•
CASE-2
WHEN RATIONAL NUMBER DO
NOT HAVE SAME DENOMINATOR
Ӂ Take LCM of
denominators and then
subtract the rational
numbers.
Example-Add
𝟏
πŸ’
and
βˆ’πŸ
πŸ‘
Solution:
𝟏
πŸ’
βˆ’
βˆ’πŸ
πŸ‘
)
LCM of denominators 4
and 3 is 12.
𝟏
πŸ’
=
𝟏 Γ— πŸ‘
πŸ’ Γ— πŸ‘
=
πŸ‘
𝟏𝟐
𝟐
πŸ‘
=
𝟐 Γ— πŸ’
πŸ‘ Γ— πŸ’
=
πŸ–
𝟏𝟐
so
πŸ‘
𝟏𝟐
βˆ’
βˆ’πŸ–
𝟏𝟐
) =
πŸ‘+πŸ–
𝟏𝟐
=
𝟏𝟏
𝟏𝟐
PROPERTIES OF SUBTRACTION OF RATIONAL NUMBERS
 EXAMPLE:
Difference of any two rational number is always a rational number i.e if x and y are two rational numbers then
x - y will also became a rational number.
VERIFICATION :
1
2
βˆ’
3
4
=
βˆ’1
4
Here
1
2
and
3
4
are both Rational numbers And their Difference
βˆ’1
4
is also
a rational number.
Hence Rational numbers are closed under Subtraction.
 PROPERTY-1:
The difference of two rational numbers does not remain same if their order is changed i.e π‘₯ βˆ’ 𝑦) β‰ 
LHS=
𝟏
𝟐
βˆ’
𝟐
πŸ‘
-
πŸ“
πŸ’
=
πŸ‘βˆ’πŸ’
πŸ”
βˆ’
πŸ“
πŸ’
=
βˆ’πŸ
πŸ”
+
πŸ“
πŸ’
=
βˆ’πŸ+πŸπŸ“
𝟏𝟐
=
πŸπŸ‘
𝟏𝟐
RHS=
1
2
βˆ’
2
3
βˆ’
5
4
=
1
2
βˆ’
8βˆ’15
12
=
1
2
+
βˆ’7
12
=
6βˆ’7
12
=
βˆ’1
12
 EXAMPLE ;
For all rational number 𝒙 we have 𝒙 βˆ’ 𝟎 = 𝒙 𝒃𝒖𝒕 𝟎 βˆ’ 𝒙 = βˆ’π’™
Show that,Ifx is a rational number then 𝒙 βˆ’ 𝟎 β‰  𝟎 βˆ’ 𝒙 .
VERIFICATION: let π‘₯ =
5
4
LHS=
5
4
βˆ’ 0 =
5
4
But RHS=0 βˆ’
5
4
=
βˆ’5
4
As LHS β‰  RHS so this property does not valid.
Identity element in Subtraction does not exist .
 EXAMPLE:
Since identity of subtraction does not exist so inverse for Subtraction does
not arise.
Try theseeβ€”
(a) Simplify
βˆ’3
10
βˆ’
12
βˆ’10
βˆ’
14
10
(b) For x =
2
3
and y=
βˆ’5
6
and z=
7
9
, verify that (x-y)-z = x –(y-z)
MULTIPLICATION OF RATIONAL NUMBERS
Example: Find the product of
4
5
and
βˆ’10
3
Solution:
4
5
Γ—
βˆ’10
3
=
4Γ— βˆ’10)
5Γ—3
=
βˆ’8
3
If
𝒂
𝒃
and
𝒄
𝒅
are two rational numbers
then
𝒂
𝒃
Γ—
𝒄
𝒅
=
𝒂×𝒄
𝒃×𝒅
𝑷𝒓𝒐𝒅𝒖𝒄𝒕 𝒐𝒇 π’π’–π’Žπ’†π’“π’†π’‚π’•π’π’“π’”
𝑷𝒓𝒐𝒅𝒖𝒄𝒕 𝒐𝒇 π‘«π’†π’π’π’Žπ’Šπ’π’‚π’•π’π’“π’”
Solve the followings…
(a) Multiply
βˆ’πŸ”
𝟏𝟏
and
βˆ’πŸ•
πŸ—
(b) Multiply 3
βˆ’πŸ–
πŸ—
and 1
βˆ’πŸ‘
πŸ’
PROPERTIES OF MULTIPLICATION OF RATIONAL NUMBERS
 CLOSURE PROPERTY:
Product of any two rational number is always a rational number
EXAMPLE:
1
2
Γ—
3
4
=
3
8
Here
1
2
and
3
4
are both Rational number And product
3
8
are rational number
Hence Rational numbers are closed under multiplication.
 COMMUTATIVE PROPERTY:
The product of two rational numbers remain same even if we change their
order . If π‘₯ and 𝑦 are two rational number then π‘₯ Γ— 𝑦 = 𝑦 Γ— π‘₯
Example: Verify that product of two rational number
βˆ’2
7
and
1
4
remains same
even if the order is changed .
LHS=
βˆ’2
7
Γ—
1
4
=
βˆ’1
14
Hence LHS=RHS
RHS=
1
4
Γ—
βˆ’2
7
=
βˆ’1
14
Commutative property holds TRUE in multiplication of rational number.
 Associative Property:
The product of three rational numbers remains same even after
changing the groups.
If x , y, z are three rational numbers then π‘₯ Γ— 𝑦) Γ— 𝑧 = π‘₯ Γ— 𝑦 Γ— 𝑧
Example: Verify that product of three rational numbers
βˆ’3
4
,
5
7
and
βˆ’2
11
remains same
even after changing the groupings.
LHS=
βˆ’3
4
Γ—
5
7
Γ—
βˆ’2
11
=
βˆ’15
28
Γ—
βˆ’2
11
=
15
154
RHS=
βˆ’3
4
Γ—
5
7
Γ—
βˆ’2
11
=
βˆ’3
4
Γ—
βˆ’10
77
=
15
154
LHS=RHS
 MULTIPLICATIVE IDENTITY:
When 1 is multiplied to any rational number then the product of the rational
number is equal to itself
If x is a rational number then π‘₯ Γ— 1 = 1 Γ— π‘₯ = π‘₯
Example: let π‘₯ =
5
4
LHS=
5
4
Γ— 1 =
5
4
RHS=1 Γ—
5
4
=
5
4
Hence LHS = RHS
1 is the identity element under the multiplication
 PRODUCT OF A RATIONAL NUMBER AND ZERO IS ALWAYS
ZERO
If π‘₯ 𝑖𝑠 π‘Žπ‘›π‘¦ π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘‘β„Žπ‘’π‘› π‘₯ Γ— 0 = 0 Γ— π‘₯ = 0
EXAMPLE: The product of
βˆ’4
7
π‘Žπ‘›π‘‘ 0
βˆ’4
7
Γ— 0 =
βˆ’4Γ—0
7Γ—1
=
0
7
= 0
Again 0 Γ—
βˆ’4
7
=
0Γ—βˆ’4
1Γ—7
=
0
7
= 0
Distributive property:
If π‘₯, π‘¦π‘Žπ‘›π‘‘ 𝑧 π‘Žπ‘Ÿπ‘’ π‘‘β„Žπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘‘β„Žπ‘’π‘›
i)π‘₯ Γ— 𝑦 + 𝑧 = π‘₯ Γ— 𝑦) + π‘₯ Γ— 𝑧)
(ii) π‘₯ Γ— 𝑦 βˆ’ 𝑧 = π‘₯ Γ— 𝑦) βˆ’ π‘₯ Γ— 𝑧)
Example: For three rational numberπ‘₯ =
5
6
, 𝑦 =
βˆ’7
3
, 𝑧 =
2
9
π‘‘β„Žπ‘’π‘› π‘£π‘’π‘Ÿπ‘–π‘“π‘¦ π‘‘β„Žπ‘Žπ‘‘
LHS = π‘₯ Γ— 𝑦 βˆ’ 𝑧
=
5
6
Γ—
βˆ’7
3
βˆ’
2
9
=
5
6
Γ—
βˆ’21βˆ’2
9
=
5Γ— βˆ’23)
6Γ—9
=
βˆ’115
54
RHS= (π‘₯ Γ— 𝑦) βˆ’ π‘₯ Γ— 𝑧)
=
5
3
Γ—
βˆ’7
3
βˆ’
5
6
Γ—
2
9
=
βˆ’35
18
βˆ’
10
54
=
βˆ’105βˆ’10
54
=
βˆ’115
54
LHS=RHS Hence verified…
So Rational numbers obeys Distributive property of multiplication over
Addition and Subtraction.
 Reciprocal of a rational number(Multiplicative Inverse)
Reciprocal of rational number means interchanging of numerator and
denominator in other words Rational number obtained after inverting the
given rational number is called Reciprocal of rational number
Example : The Reciprocal of
9
4
is
4
9
Note:
(1)Zero has no Reciprocal
(ii)Reciprocal of 1 is 1
(iii) if x is any non zero rational number,then its
reciprocal is denoted by π‘₯βˆ’1
which is equal to
1
π‘₯
DIVISION OF RATIONAL NUMBERS
EXAMPLE: Divide
7
3
𝑏𝑦
5
3
Solution :
7
3
Γ·
5
3
=
7
3
Γ—
5
3
βˆ’1
π‘₯ Γ· 𝑦 = π‘₯ Γ— π‘¦βˆ’1
=
7
3
Γ—
3
5
=
7
5
Dividing one rational number by
another except by zero, is the same
as the multiplication of the first by
the reciprocal of the second,
i.exΓ·y = xΓ—y-1
Divide followings…
(a) -10 by
1
5
(b)
1
13
by -2
PROPORTIES OF DIVISION OF RATIONAL NUMBER
Property: 1
Divisionof a rational number by another rational number except zero is always
rational number.
Example: (i)
5
3
βˆ’
4
3
=
5
3
Γ—
3
βˆ’4
=
βˆ’5
4
(ii) 0 Γ·
βˆ’4
5
= 0
(iii)
βˆ’4
5
Γ· 0 =
βˆ’4
5
Γ—
1
0
=
βˆ’4
0
π‘€β„Žπ‘–π‘β„Ž 𝑖𝑠 π‘›π‘œπ‘‘ π‘Ž π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ)
Property-2
When a nonzero rational number divided by itself we get always 1
Example :
3
4
Γ·
3
4
=
3
4
Γ—
4
3
= 1
Property-3
When non zero rational number divided by 1 the quotient is
the same rational number
Example
βˆ’4
5
Γ· 1 =
βˆ’4
5
Γ—
1
1
=
βˆ’4
5
PROPERTY-4
The division of two rational number does not remain same if
the order of the number are changed.
If π‘₯ π‘Žπ‘›π‘‘ 𝑦 are two rational number then π‘₯ Γ· 𝑦 β‰  𝑦 Γ· π‘₯
Example:Verify that if π‘₯ =
2
3
and 𝑦 =
βˆ’4
5
then π‘₯ Γ· 𝑦 β‰  𝑦 Γ· π‘₯
β€’ LHS=π‘₯ Γ· 𝑦
=
3
2
Γ·
βˆ’4
5
=
3
2
Γ—
5
βˆ’4
=
βˆ’15
8
β€’ RHS=𝑦 Γ· π‘₯
=
βˆ’4
5
Γ·
3
2
=
βˆ’4
5
Γ—
2
3
=
βˆ’8
15
LHS≠RHS
H𝑒𝑛𝑐𝑒 π‘π‘œπ‘’π‘šπ‘’π‘‘π‘Žπ‘‘π‘Žπ‘–π‘£π‘’ π‘π‘Ÿπ‘œπ‘π‘’π‘Ÿπ‘‘π‘¦ π‘‘π‘œπ‘’π‘ π‘›π‘œπ‘‘ β„Žπ‘œπ‘™π‘‘ π‘‘π‘Ÿπ‘’π‘’ π‘“π‘œπ‘Ÿ π‘‘π‘–π‘£π‘–π‘ π‘–π‘œπ‘›
PROPERTY-5
The division of three rational numbers does not remains same even after
changing the groups.
If x , y, z are three rational numbers then π‘₯ Γ· 𝑦) Γ· 𝑧 β‰  π‘₯ Γ· 𝑦 Γ· 𝑧
Example:Verify that if π‘₯ =
2
3
, 𝑦 =
βˆ’4
9
,𝑧 =
5
6
then π‘₯ Γ· 𝑦) Γ· 𝑧 β‰  π‘₯ Γ· 𝑦 Γ· 𝑧
β€’ LHS= π‘₯ Γ· 𝑦) Γ· 𝑧
=
2
3
Γ·
βˆ’4
9
Γ·
5
6
=
βˆ’3
2
Γ·
5
6
=
βˆ’3
2
Γ—
6
5
=
βˆ’9
5
β€’ RHS=π‘₯ Γ· 𝑦 Γ· 𝑧)
=
2
3
Γ·
βˆ’4
9
Γ·
5
6
=
2
3
Γ·
βˆ’8
15
=
2
3
Γ—
15
βˆ’8
=
βˆ’5
4
LHS≠RHS
Associative property does not holds true for division
PROPERTY-6:
If 𝒙, π’š 𝒂𝒏𝒅 𝒛 are rational numbers, then
𝒙 + π’š Γ· 𝒛 = 𝒙 Γ· 𝒛) + π’š Γ· 𝒛) and 𝒙 βˆ’ π’š Γ· 𝒛 =
𝒙 Γ· 𝒛 βˆ’ π’š Γ· 𝒛)
Example : If 𝒙 =
βˆ’πŸ
πŸ‘
, π’š =
πŸ“
πŸ—
, 𝒛 =
βˆ’πŸ
πŸ”
𝒕𝒉𝒆𝒏 π’”π’‰π’π’˜ 𝒕𝒉𝒂𝒕
𝒙 + π’š Γ· 𝒛 = 𝒙 Γ· 𝒛 + π’š Γ· 𝒛
LHS = π‘₯ + 𝑦 Γ· 𝑧
=
βˆ’2
3
+
5
9
Γ·
βˆ’1
6
=
βˆ’6+5
9
Γ·
βˆ’1
6
=
βˆ’1
9
Γ·
βˆ’1)
6
=
βˆ’1
9
Γ—
6
βˆ’1
=
2
3
RHS = π‘₯ Γ· 𝑧) + 𝑦 Γ· 𝑧)
=
βˆ’2
3
Γ·
βˆ’1)
6
+
5
9
Γ·
βˆ’1)
6
=
βˆ’2
3
Γ—
6
βˆ’1)
+
5
9
Γ—
6
βˆ’1)
= 4 βˆ’
5Γ—2
3
=
4
1
βˆ’
10
3
=
12βˆ’10
3
=
2
3
LHS = RHS
PROPERTY- 7
For three non-zero rational numbers 𝒙, π’š 𝒂𝒏𝒅 𝒛,
𝒙 Γ· π’š + 𝒛 β‰  𝒙 Γ· π’š + 𝒙 Γ· 𝒛
Example :- If 𝒙 =
𝟐
πŸ“
, π’š =
βˆ’πŸ‘
𝟏𝟎
, 𝒛 =
πŸ’
πŸπŸ“
show that
𝒙 Γ· π’š + 𝒛 β‰  𝒙 Γ· π’š + 𝒙 Γ· 𝒛
β€’ LHS=π‘₯ Γ· 𝑦 + 𝑧
=
2
5
Γ·
βˆ’3
10
+
4
15
=
2
5
Γ·
βˆ’9+8
30
=
2
5
Γ·
βˆ’1
30
=
2
5
Γ—
30
βˆ’1
= βˆ’2 Γ— 6 = βˆ’12
β€’ RHS=π‘₯ Γ· 𝑦 + π‘₯ Γ· 𝑧
=
2
5
Γ·
βˆ’3
10
+
2
5
Γ·
4
15
=
2
5
Γ—
10
βˆ’3
+
2
5
Γ—
15
4
=
βˆ’2Γ—2
3
+
1Γ—3
1Γ—2
=
βˆ’4
3
+
3
2
=
βˆ’8+9
6
=
1
6
LHS β‰  RHS
Distributive property does not hold true for division
RATIONALS BETWEEN TWO RATIONAL NUMBERS
Example: Find two rational number between
1
2
π‘Žπ‘›π‘‘
βˆ’1
2
Solution: Step-1 Find a rational number between
1
2
π‘Žπ‘›π‘‘
βˆ’1
2
1
2
Γ—
1
2
+
βˆ’1
2
=
1
2
Γ— 0 = 0
Step-2 Find a rational number between
1
2
π‘Žπ‘›π‘‘ 0
1
2
Γ—
1
2
+ 0 =
1
2
Γ—
1
2
=
1
4
Hence 0,
1
4
are two rational number between
1
2
π‘Žπ‘›π‘‘
βˆ’1
2
If 𝒙 π’‚π’π’…π’š 𝒂𝒓𝒆 π’•π’˜π’ π’“π’‚π’•π’Šπ’π’π’‚π’ π’π’–π’Žπ’ƒπ’†π’“π’” , 𝒕𝒉𝒆𝒏
𝒙+π’š
𝟐
π’Šπ’” 𝒂
π’“π’‚π’•π’Šπ’π’π’‚π’ π’π’–π’Žπ’ƒπ’†π’“ π’ƒπ’†π’•π’˜π’†π’†π’ 𝒙 𝒂𝒏𝒅 π’š.
Introduction of Rational number
Operation of rational number
Properties of addition of rational number
Properties of subtraction of rational number
Properties of Multiplication of rational
number
Properties of division of rational number
Insert rational numbers between two given
rational number
KEY POINTS
CLASS VII -operations on rational numbers(1).pptx
CLASS VII -operations on rational numbers(1).pptx

More Related Content

What's hot

Adding and subtracting fractions
Adding and subtracting fractionsAdding and subtracting fractions
Adding and subtracting fractionsjocrumb
Β 
Square root
Square rootSquare root
Square rootrryan80
Β 
Basics about exponents
Basics about exponentsBasics about exponents
Basics about exponentsOnele makhanda
Β 
Algebraic expressions and terms
Algebraic expressions and termsAlgebraic expressions and terms
Algebraic expressions and termspanchmahal
Β 
Multiplying Fractions
Multiplying FractionsMultiplying Fractions
Multiplying FractionsJosel Jalon
Β 
Adding Subtracting Integers
Adding Subtracting IntegersAdding Subtracting Integers
Adding Subtracting IntegersMr. M
Β 
Lesson 1.9 a adding and subtracting rational numbers
Lesson 1.9 a   adding and subtracting rational numbersLesson 1.9 a   adding and subtracting rational numbers
Lesson 1.9 a adding and subtracting rational numbersJohnnyBallecer
Β 
PEMDAS - The Proper Order of Mathematical Operations
PEMDAS - The Proper Order of Mathematical OperationsPEMDAS - The Proper Order of Mathematical Operations
PEMDAS - The Proper Order of Mathematical OperationsMark (Mong) Montances
Β 
Laws of exponents
Laws of exponentsLaws of exponents
Laws of exponentsmasljr
Β 
Prime Factorization
Prime FactorizationPrime Factorization
Prime FactorizationNicole Gough
Β 
Prime Factorization
Prime FactorizationPrime Factorization
Prime Factorizationmmeddin
Β 
Integers: Addition and Subtraction
Integers: Addition and SubtractionIntegers: Addition and Subtraction
Integers: Addition and SubtractionCarlo Luna
Β 
Absolute value
Absolute valueAbsolute value
Absolute valuetvierra
Β 
Multiplying polynomials
Multiplying polynomialsMultiplying polynomials
Multiplying polynomialschrystal_brinson
Β 

What's hot (20)

Adding and subtracting fractions
Adding and subtracting fractionsAdding and subtracting fractions
Adding and subtracting fractions
Β 
Irrational number
Irrational numberIrrational number
Irrational number
Β 
Square root
Square rootSquare root
Square root
Β 
Basics about exponents
Basics about exponentsBasics about exponents
Basics about exponents
Β 
Divisibility rules
Divisibility rulesDivisibility rules
Divisibility rules
Β 
Algebraic expressions and terms
Algebraic expressions and termsAlgebraic expressions and terms
Algebraic expressions and terms
Β 
Multiplying Fractions
Multiplying FractionsMultiplying Fractions
Multiplying Fractions
Β 
Adding Subtracting Integers
Adding Subtracting IntegersAdding Subtracting Integers
Adding Subtracting Integers
Β 
Ordering fractions
Ordering fractionsOrdering fractions
Ordering fractions
Β 
Lesson 1.9 a adding and subtracting rational numbers
Lesson 1.9 a   adding and subtracting rational numbersLesson 1.9 a   adding and subtracting rational numbers
Lesson 1.9 a adding and subtracting rational numbers
Β 
PEMDAS - The Proper Order of Mathematical Operations
PEMDAS - The Proper Order of Mathematical OperationsPEMDAS - The Proper Order of Mathematical Operations
PEMDAS - The Proper Order of Mathematical Operations
Β 
Integers
IntegersIntegers
Integers
Β 
Laws of exponents
Laws of exponentsLaws of exponents
Laws of exponents
Β 
Factor ppt.
Factor ppt.Factor ppt.
Factor ppt.
Β 
Prime Factorization
Prime FactorizationPrime Factorization
Prime Factorization
Β 
Prime Factorization
Prime FactorizationPrime Factorization
Prime Factorization
Β 
Integers: Addition and Subtraction
Integers: Addition and SubtractionIntegers: Addition and Subtraction
Integers: Addition and Subtraction
Β 
Absolute value
Absolute valueAbsolute value
Absolute value
Β 
Absolute values
Absolute valuesAbsolute values
Absolute values
Β 
Multiplying polynomials
Multiplying polynomialsMultiplying polynomials
Multiplying polynomials
Β 

Similar to CLASS VII -operations on rational numbers(1).pptx

presentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptxpresentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptxJennilynBalusdan3
Β 
ix-number system-ppt(2).pptx
ix-number system-ppt(2).pptxix-number system-ppt(2).pptx
ix-number system-ppt(2).pptxRajkumarknms
Β 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variablemisey_margarette
Β 
Rational numers ppt
Rational  numers pptRational  numers ppt
Rational numers pptYogitaGupta34
Β 
Rational numbers class 8
Rational  numbers class 8 Rational  numbers class 8
Rational numbers class 8 YogitaGupta34
Β 
Rational numbers Class 8 chapter 1
Rational numbers Class 8 chapter 1Rational numbers Class 8 chapter 1
Rational numbers Class 8 chapter 1YogitaGupta34
Β 
Real numbers system
Real numbers systemReal numbers system
Real numbers systemPradeep Agrawal
Β 
Number System2.pptx
Number System2.pptxNumber System2.pptx
Number System2.pptxAnshRattan
Β 
8 maths-ncert-chapter-1
8 maths-ncert-chapter-18 maths-ncert-chapter-1
8 maths-ncert-chapter-1akstudy1024
Β 
Aditya Class 8th
Aditya Class 8thAditya Class 8th
Aditya Class 8thBasantOjha1
Β 
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdfCBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdfShavetaSharma37
Β 
Project in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez BaliaProject in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez Baliasamuel balia
Β 
Project in math
Project in mathProject in math
Project in mathsamuel balia
Β 
Solving equations
Solving equationsSolving equations
Solving equationsRussell Shaw
Β 

Similar to CLASS VII -operations on rational numbers(1).pptx (20)

presentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptxpresentation-111004200224-phpapp02.pptx
presentation-111004200224-phpapp02.pptx
Β 
ix-number system-ppt(2).pptx
ix-number system-ppt(2).pptxix-number system-ppt(2).pptx
ix-number system-ppt(2).pptx
Β 
Linear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One VariableLinear Equations and Inequalities in One Variable
Linear Equations and Inequalities in One Variable
Β 
Rational numers ppt
Rational  numers pptRational  numers ppt
Rational numers ppt
Β 
Rational numbers class 8
Rational  numbers class 8 Rational  numbers class 8
Rational numbers class 8
Β 
Rational numbers Class 8 chapter 1
Rational numbers Class 8 chapter 1Rational numbers Class 8 chapter 1
Rational numbers Class 8 chapter 1
Β 
Real numbers system
Real numbers systemReal numbers system
Real numbers system
Β 
Number System2.pptx
Number System2.pptxNumber System2.pptx
Number System2.pptx
Β 
ch1.pdf
ch1.pdfch1.pdf
ch1.pdf
Β 
8 maths-ncert-chapter-1
8 maths-ncert-chapter-18 maths-ncert-chapter-1
8 maths-ncert-chapter-1
Β 
Aditya Class 8th
Aditya Class 8thAditya Class 8th
Aditya Class 8th
Β 
Hemh101
Hemh101Hemh101
Hemh101
Β 
Algebra and functions review
Algebra and functions reviewAlgebra and functions review
Algebra and functions review
Β 
Algebra and functions review
Algebra and functions reviewAlgebra and functions review
Algebra and functions review
Β 
Algebra and functions review
Algebra and functions reviewAlgebra and functions review
Algebra and functions review
Β 
1059331.pdf
1059331.pdf1059331.pdf
1059331.pdf
Β 
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdfCBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
CBSE-Class-8-NCERT-Maths-Book-Rational-Numbers-chapter-1.pdf
Β 
Project in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez BaliaProject in math BY:Samuel Vasquez Balia
Project in math BY:Samuel Vasquez Balia
Β 
Project in math
Project in mathProject in math
Project in math
Β 
Solving equations
Solving equationsSolving equations
Solving equations
Β 

More from Rajkumarknms

Introduction to Algebra presentation.pptx
Introduction to Algebra presentation.pptxIntroduction to Algebra presentation.pptx
Introduction to Algebra presentation.pptxRajkumarknms
Β 
Ratios-and-Proportions presentations.ppt
Ratios-and-Proportions presentations.pptRatios-and-Proportions presentations.ppt
Ratios-and-Proportions presentations.pptRajkumarknms
Β 
Childrens day celebration Plan presentation.pptx
Childrens day celebration Plan presentation.pptxChildrens day celebration Plan presentation.pptx
Childrens day celebration Plan presentation.pptxRajkumarknms
Β 
RCS-PPT-WB-2017 Presentation power point.pptx
RCS-PPT-WB-2017 Presentation power point.pptxRCS-PPT-WB-2017 Presentation power point.pptx
RCS-PPT-WB-2017 Presentation power point.pptxRajkumarknms
Β 
West BengalPower point presentation PPT.ppt
West BengalPower point presentation  PPT.pptWest BengalPower point presentation  PPT.ppt
West BengalPower point presentation PPT.pptRajkumarknms
Β 
fulltext (1).pdf
fulltext (1).pdffulltext (1).pdf
fulltext (1).pdfRajkumarknms
Β 

More from Rajkumarknms (6)

Introduction to Algebra presentation.pptx
Introduction to Algebra presentation.pptxIntroduction to Algebra presentation.pptx
Introduction to Algebra presentation.pptx
Β 
Ratios-and-Proportions presentations.ppt
Ratios-and-Proportions presentations.pptRatios-and-Proportions presentations.ppt
Ratios-and-Proportions presentations.ppt
Β 
Childrens day celebration Plan presentation.pptx
Childrens day celebration Plan presentation.pptxChildrens day celebration Plan presentation.pptx
Childrens day celebration Plan presentation.pptx
Β 
RCS-PPT-WB-2017 Presentation power point.pptx
RCS-PPT-WB-2017 Presentation power point.pptxRCS-PPT-WB-2017 Presentation power point.pptx
RCS-PPT-WB-2017 Presentation power point.pptx
Β 
West BengalPower point presentation PPT.ppt
West BengalPower point presentation  PPT.pptWest BengalPower point presentation  PPT.ppt
West BengalPower point presentation PPT.ppt
Β 
fulltext (1).pdf
fulltext (1).pdffulltext (1).pdf
fulltext (1).pdf
Β 

Recently uploaded

How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPCeline George
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
Β 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxLigayaBacuel1
Β 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxsqpmdrvczh
Β 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
Β 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
Β 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
Β 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
Β 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
Β 
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈcall girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ9953056974 Low Rate Call Girls In Saket, Delhi NCR
Β 
HỌC TỐT TIαΊΎNG ANH 11 THEO CHΖ―Ζ NG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIαΊΎT - CαΊ’ NΔ‚...
HỌC TỐT TIαΊΎNG ANH 11 THEO CHΖ―Ζ NG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIαΊΎT - CαΊ’ NΔ‚...HỌC TỐT TIαΊΎNG ANH 11 THEO CHΖ―Ζ NG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIαΊΎT - CαΊ’ NΔ‚...
HỌC TỐT TIαΊΎNG ANH 11 THEO CHΖ―Ζ NG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIαΊΎT - CαΊ’ NΔ‚...Nguyen Thanh Tu Collection
Β 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
Β 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
Β 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
Β 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomnelietumpap1
Β 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
Β 

Recently uploaded (20)

How to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERPHow to do quick user assign in kanban in Odoo 17 ERP
How to do quick user assign in kanban in Odoo 17 ERP
Β 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
Β 
Planning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptxPlanning a health career 4th Quarter.pptx
Planning a health career 4th Quarter.pptx
Β 
Romantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptxRomantic Opera MUSIC FOR GRADE NINE pptx
Romantic Opera MUSIC FOR GRADE NINE pptx
Β 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
Β 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
Β 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
Β 
Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"Rapple "Scholarly Communications and the Sustainable Development Goals"
Rapple "Scholarly Communications and the Sustainable Development Goals"
Β 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
Β 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
Β 
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈcall girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
call girls in Kamla Market (DELHI) πŸ” >ΰΌ’9953330565πŸ” genuine Escort Service πŸ”βœ”οΈβœ”οΈ
Β 
HỌC TỐT TIαΊΎNG ANH 11 THEO CHΖ―Ζ NG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIαΊΎT - CαΊ’ NΔ‚...
HỌC TỐT TIαΊΎNG ANH 11 THEO CHΖ―Ζ NG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIαΊΎT - CαΊ’ NΔ‚...HỌC TỐT TIαΊΎNG ANH 11 THEO CHΖ―Ζ NG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIαΊΎT - CαΊ’ NΔ‚...
HỌC TỐT TIαΊΎNG ANH 11 THEO CHΖ―Ζ NG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIαΊΎT - CαΊ’ NΔ‚...
Β 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
Β 
Model Call Girl in Bikash Puri Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Bikash Puri  Delhi reach out to us at πŸ”9953056974πŸ”Model Call Girl in Bikash Puri  Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Bikash Puri Delhi reach out to us at πŸ”9953056974πŸ”
Β 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
Β 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
Β 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
Β 
ENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choomENGLISH6-Q4-W3.pptxqurter our high choom
ENGLISH6-Q4-W3.pptxqurter our high choom
Β 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
Β 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
Β 

CLASS VII -operations on rational numbers(1).pptx

  • 1. SL. NO SUB-TOPIC SLIDE NO 1 INTRODUCTION 3 2 ADDITION OF RATIONAL NUMBERS AND ITS PROPERTIES 5 3 SUBTRACTION OF RATIONAL NUMBERS AND ITS PROPERTIES 8 4 MULTIPLICATION OF RATIONAL NUMBERS AND ITS PROPERTIES 12 5 DIVISION OF RATIONAL NUMBERS AND ITS PROPERTIES 18 6 RATIONAL NUMBERS BETWEEN TWO RATIONAL NUMBERS 24
  • 2. INTRODUCTION One day two children of Real number, Whole number and Rational number have a talk with each other; Whole number: Do you know rational ,different operations like Addition,Subtraction ,MULTIPLICATION and DIVISION can act on me and they also satisfies different properties. Rational number: But brother I do not have any knowledge that how these operations act on me. Let’s ask our teacher about this… Teacher- I will definitely clear your doubts but before that answer my questions…  What is the additive identity for whole numbers ?  Does whole number obeys commutative law under Subtraction ?  What is the multiplicative inverse of 5 ?  Define distributive property of Multiplication over Addition ?  Say two whole numbers between 5 and 12 ?  Tell whether division obeys closure property or not ?
  • 3. The numbers of the form 𝒑 𝒒 ,Where 𝒑 𝒂𝒏𝒅 𝒒 𝒂𝒓𝒆 π’Šπ’π’•π’†π’ˆπ’†π’“π’” 𝒂𝒏𝒅 𝒒 β‰  𝒐 𝒂𝒓𝒆 π’Œπ’π’π’˜π’ 𝒂𝒔 π’“π’‚π’•π’Šπ’π’π’‚π’ π’π’–π’Žπ’ƒπ’†π’“ Rational numbers include natural numbers, whole numbers, integer sand all positive and negative fractions. Example: πŸ“ πŸ” , βˆ’πŸ‘ πŸ– , πŸ“ 𝟐 πŸ” ,… etc Rational Numbers As that of Whole numbers for rational numbers,also there are four operations they are as following. Let’s discuss one after another…  ADDITION  SUBTRACTION  MULTIPLICATION  DIVISION
  • 4. ADDITION ON RATIONAL NUMBERS CASE-1 WHEN RATIONAL NUMBER HAVING SAME DENOMINATOR Ӂ Add numerators of the rational numbers and then divide by the common denominator. Ex- Add πŸ‘ πŸ• and πŸ” πŸ• Solution: πŸ‘ πŸ• + πŸ” πŸ• = πŸ‘+πŸ” πŸ• = πŸ— πŸ• CASE-2 WHEN RATIONAL NUMBER DO NOT HAVE SAME DENOMINATOR Ӂ Take LCM of denominators and then add the rational numbers. Example-Add 𝟏 πŸ’ and 𝟐 πŸ‘ Solution: 𝟏 πŸ’ + 𝟐 πŸ‘ LCM of denominators 4 and 3 is 12. 𝟏 πŸ’ = 𝟏 Γ— πŸ‘ πŸ’ Γ— πŸ‘ = πŸ‘ 𝟏𝟐 𝟐 πŸ‘ = 𝟐 Γ— πŸ’ πŸ‘ Γ— πŸ’ = πŸ– 𝟏𝟐 so πŸ‘ 𝟏𝟐 + πŸ– 𝟏𝟐 = πŸ‘+πŸ– 𝟏𝟐 = 𝟏𝟏 𝟏𝟐
  • 5. PROPERTIES OF ADDITION OF RATIONAL NUMBERS  Closure property: Sum of any two rational number is always a rational number i.e if x and y are two rational numbers then x+y will also became a rational number. EXAMPLE : 1 2 + 3 4 = 5 4 Here 1 2 and 3 4 are both Rational number And sum 5 4 is also a rational number. Hence Rational numbers are closed under Addition.  Commutative property: The sum of two rational numbers does not depend on the order in which they are added.i.e π‘₯ + 𝑦 = 𝑦 + LHS= 𝟏 𝟐 + 𝟐 πŸ‘ + πŸ“ πŸ’ = πŸ‘+πŸ’ πŸ” + πŸ“ πŸ’ = πŸ• πŸ” + πŸ“ πŸ’ = πŸπŸ’+πŸπŸ“ 𝟏𝟐 = πŸπŸ— 𝟏𝟐 RHS= 1 2 + 2 3 + 5 4 = 1 2 + 8+15 12 = 1 2 + 23 12 = 6+23 12 = 29 12
  • 6.  Additive identity property: When β€˜o’ is added to any rational number the sum of the rational number is becomes itself, If x is a rational number then 𝒙 + 𝟎 = 𝟎 + 𝒙 = 𝒙 . EXAMPLE: let π‘₯ = 5 4 LHS= 5 4 + 0 = 5 4 RHS=0 + 5 4 = 5 4 As LHS = RHS so this property valids. Zero is called the identity element in Addition .  Additive inverse property: The negative of a rational number is it’s additive inverse. The sum of a rational number and its additive inverse is always equal to Zero. If x is a rational number then (-x) is the additive inverse of it and π‘₯ + βˆ’π‘₯ = 0 Let a rational number be 5 4 π‘Žπ‘›π‘‘ 𝑖𝑑𝑠 π‘Žπ‘‘π‘‘π‘–π‘‘π‘–π‘£π‘’ π‘–π‘›π‘£π‘’π‘Ÿπ‘ π‘’ 𝑖𝑠 βˆ’5 4 Then 5 4 + βˆ’5 4 = 5+ βˆ’5) 4 = 0 4 = 0 Negative of a rational number is called its additive inverse. Try theseβ€” (a) Simplify βˆ’3 10 + 12 βˆ’10 + 14 10 (b) For x = 1 5 and y= 3 7 , verify that –(x+y) = (-x) + (-y) (c) For x = 2 3 and y= βˆ’5 6 and z= 7 9 , verify that (x+y)+ z = x + (y+z)
  • 7. SUBTRACTION ON RATIONAL NUMBERS CASE-1 WHEN RATIONAL NUMBER HAVING SAME DENOMINATOR Ӂ Subtract numerators of the rational numbers and then divide by the common denominator. Ex- Add πŸ‘ πŸ• and πŸ” πŸ• Solution: πŸ‘ πŸ• βˆ’ πŸ” πŸ• = πŸ‘βˆ’πŸ” πŸ• = βˆ’πŸ‘ πŸ• CASE-2 WHEN RATIONAL NUMBER DO NOT HAVE SAME DENOMINATOR Ӂ Take LCM of denominators and then subtract the rational numbers. Example-Add 𝟏 πŸ’ and βˆ’πŸ πŸ‘ Solution: 𝟏 πŸ’ βˆ’ βˆ’πŸ πŸ‘ ) LCM of denominators 4 and 3 is 12. 𝟏 πŸ’ = 𝟏 Γ— πŸ‘ πŸ’ Γ— πŸ‘ = πŸ‘ 𝟏𝟐 𝟐 πŸ‘ = 𝟐 Γ— πŸ’ πŸ‘ Γ— πŸ’ = πŸ– 𝟏𝟐 so πŸ‘ 𝟏𝟐 βˆ’ βˆ’πŸ– 𝟏𝟐 ) = πŸ‘+πŸ– 𝟏𝟐 = 𝟏𝟏 𝟏𝟐
  • 8. PROPERTIES OF SUBTRACTION OF RATIONAL NUMBERS  EXAMPLE: Difference of any two rational number is always a rational number i.e if x and y are two rational numbers then x - y will also became a rational number. VERIFICATION : 1 2 βˆ’ 3 4 = βˆ’1 4 Here 1 2 and 3 4 are both Rational numbers And their Difference βˆ’1 4 is also a rational number. Hence Rational numbers are closed under Subtraction.  PROPERTY-1: The difference of two rational numbers does not remain same if their order is changed i.e π‘₯ βˆ’ 𝑦) β‰  LHS= 𝟏 𝟐 βˆ’ 𝟐 πŸ‘ - πŸ“ πŸ’ = πŸ‘βˆ’πŸ’ πŸ” βˆ’ πŸ“ πŸ’ = βˆ’πŸ πŸ” + πŸ“ πŸ’ = βˆ’πŸ+πŸπŸ“ 𝟏𝟐 = πŸπŸ‘ 𝟏𝟐 RHS= 1 2 βˆ’ 2 3 βˆ’ 5 4 = 1 2 βˆ’ 8βˆ’15 12 = 1 2 + βˆ’7 12 = 6βˆ’7 12 = βˆ’1 12
  • 9.  EXAMPLE ; For all rational number 𝒙 we have 𝒙 βˆ’ 𝟎 = 𝒙 𝒃𝒖𝒕 𝟎 βˆ’ 𝒙 = βˆ’π’™ Show that,Ifx is a rational number then 𝒙 βˆ’ 𝟎 β‰  𝟎 βˆ’ 𝒙 . VERIFICATION: let π‘₯ = 5 4 LHS= 5 4 βˆ’ 0 = 5 4 But RHS=0 βˆ’ 5 4 = βˆ’5 4 As LHS β‰  RHS so this property does not valid. Identity element in Subtraction does not exist .  EXAMPLE: Since identity of subtraction does not exist so inverse for Subtraction does not arise. Try theseeβ€” (a) Simplify βˆ’3 10 βˆ’ 12 βˆ’10 βˆ’ 14 10 (b) For x = 2 3 and y= βˆ’5 6 and z= 7 9 , verify that (x-y)-z = x –(y-z)
  • 10. MULTIPLICATION OF RATIONAL NUMBERS Example: Find the product of 4 5 and βˆ’10 3 Solution: 4 5 Γ— βˆ’10 3 = 4Γ— βˆ’10) 5Γ—3 = βˆ’8 3 If 𝒂 𝒃 and 𝒄 𝒅 are two rational numbers then 𝒂 𝒃 Γ— 𝒄 𝒅 = 𝒂×𝒄 𝒃×𝒅 𝑷𝒓𝒐𝒅𝒖𝒄𝒕 𝒐𝒇 π’π’–π’Žπ’†π’“π’†π’‚π’•π’π’“π’” 𝑷𝒓𝒐𝒅𝒖𝒄𝒕 𝒐𝒇 π‘«π’†π’π’π’Žπ’Šπ’π’‚π’•π’π’“π’” Solve the followings… (a) Multiply βˆ’πŸ” 𝟏𝟏 and βˆ’πŸ• πŸ— (b) Multiply 3 βˆ’πŸ– πŸ— and 1 βˆ’πŸ‘ πŸ’
  • 11. PROPERTIES OF MULTIPLICATION OF RATIONAL NUMBERS  CLOSURE PROPERTY: Product of any two rational number is always a rational number EXAMPLE: 1 2 Γ— 3 4 = 3 8 Here 1 2 and 3 4 are both Rational number And product 3 8 are rational number Hence Rational numbers are closed under multiplication.  COMMUTATIVE PROPERTY: The product of two rational numbers remain same even if we change their order . If π‘₯ and 𝑦 are two rational number then π‘₯ Γ— 𝑦 = 𝑦 Γ— π‘₯ Example: Verify that product of two rational number βˆ’2 7 and 1 4 remains same even if the order is changed . LHS= βˆ’2 7 Γ— 1 4 = βˆ’1 14 Hence LHS=RHS RHS= 1 4 Γ— βˆ’2 7 = βˆ’1 14 Commutative property holds TRUE in multiplication of rational number.
  • 12.  Associative Property: The product of three rational numbers remains same even after changing the groups. If x , y, z are three rational numbers then π‘₯ Γ— 𝑦) Γ— 𝑧 = π‘₯ Γ— 𝑦 Γ— 𝑧 Example: Verify that product of three rational numbers βˆ’3 4 , 5 7 and βˆ’2 11 remains same even after changing the groupings. LHS= βˆ’3 4 Γ— 5 7 Γ— βˆ’2 11 = βˆ’15 28 Γ— βˆ’2 11 = 15 154 RHS= βˆ’3 4 Γ— 5 7 Γ— βˆ’2 11 = βˆ’3 4 Γ— βˆ’10 77 = 15 154 LHS=RHS
  • 13.  MULTIPLICATIVE IDENTITY: When 1 is multiplied to any rational number then the product of the rational number is equal to itself If x is a rational number then π‘₯ Γ— 1 = 1 Γ— π‘₯ = π‘₯ Example: let π‘₯ = 5 4 LHS= 5 4 Γ— 1 = 5 4 RHS=1 Γ— 5 4 = 5 4 Hence LHS = RHS 1 is the identity element under the multiplication  PRODUCT OF A RATIONAL NUMBER AND ZERO IS ALWAYS ZERO If π‘₯ 𝑖𝑠 π‘Žπ‘›π‘¦ π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘‘β„Žπ‘’π‘› π‘₯ Γ— 0 = 0 Γ— π‘₯ = 0 EXAMPLE: The product of βˆ’4 7 π‘Žπ‘›π‘‘ 0 βˆ’4 7 Γ— 0 = βˆ’4Γ—0 7Γ—1 = 0 7 = 0 Again 0 Γ— βˆ’4 7 = 0Γ—βˆ’4 1Γ—7 = 0 7 = 0
  • 14. Distributive property: If π‘₯, π‘¦π‘Žπ‘›π‘‘ 𝑧 π‘Žπ‘Ÿπ‘’ π‘‘β„Žπ‘’ π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿπ‘  π‘‘β„Žπ‘’π‘› i)π‘₯ Γ— 𝑦 + 𝑧 = π‘₯ Γ— 𝑦) + π‘₯ Γ— 𝑧) (ii) π‘₯ Γ— 𝑦 βˆ’ 𝑧 = π‘₯ Γ— 𝑦) βˆ’ π‘₯ Γ— 𝑧) Example: For three rational numberπ‘₯ = 5 6 , 𝑦 = βˆ’7 3 , 𝑧 = 2 9 π‘‘β„Žπ‘’π‘› π‘£π‘’π‘Ÿπ‘–π‘“π‘¦ π‘‘β„Žπ‘Žπ‘‘ LHS = π‘₯ Γ— 𝑦 βˆ’ 𝑧 = 5 6 Γ— βˆ’7 3 βˆ’ 2 9 = 5 6 Γ— βˆ’21βˆ’2 9 = 5Γ— βˆ’23) 6Γ—9 = βˆ’115 54 RHS= (π‘₯ Γ— 𝑦) βˆ’ π‘₯ Γ— 𝑧) = 5 3 Γ— βˆ’7 3 βˆ’ 5 6 Γ— 2 9 = βˆ’35 18 βˆ’ 10 54 = βˆ’105βˆ’10 54 = βˆ’115 54 LHS=RHS Hence verified… So Rational numbers obeys Distributive property of multiplication over Addition and Subtraction.
  • 15.  Reciprocal of a rational number(Multiplicative Inverse) Reciprocal of rational number means interchanging of numerator and denominator in other words Rational number obtained after inverting the given rational number is called Reciprocal of rational number Example : The Reciprocal of 9 4 is 4 9 Note: (1)Zero has no Reciprocal (ii)Reciprocal of 1 is 1 (iii) if x is any non zero rational number,then its reciprocal is denoted by π‘₯βˆ’1 which is equal to 1 π‘₯
  • 16. DIVISION OF RATIONAL NUMBERS EXAMPLE: Divide 7 3 𝑏𝑦 5 3 Solution : 7 3 Γ· 5 3 = 7 3 Γ— 5 3 βˆ’1 π‘₯ Γ· 𝑦 = π‘₯ Γ— π‘¦βˆ’1 = 7 3 Γ— 3 5 = 7 5 Dividing one rational number by another except by zero, is the same as the multiplication of the first by the reciprocal of the second, i.exΓ·y = xΓ—y-1 Divide followings… (a) -10 by 1 5 (b) 1 13 by -2
  • 17. PROPORTIES OF DIVISION OF RATIONAL NUMBER Property: 1 Divisionof a rational number by another rational number except zero is always rational number. Example: (i) 5 3 βˆ’ 4 3 = 5 3 Γ— 3 βˆ’4 = βˆ’5 4 (ii) 0 Γ· βˆ’4 5 = 0 (iii) βˆ’4 5 Γ· 0 = βˆ’4 5 Γ— 1 0 = βˆ’4 0 π‘€β„Žπ‘–π‘β„Ž 𝑖𝑠 π‘›π‘œπ‘‘ π‘Ž π‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ π‘›π‘’π‘šπ‘π‘’π‘Ÿ) Property-2 When a nonzero rational number divided by itself we get always 1 Example : 3 4 Γ· 3 4 = 3 4 Γ— 4 3 = 1 Property-3 When non zero rational number divided by 1 the quotient is the same rational number Example βˆ’4 5 Γ· 1 = βˆ’4 5 Γ— 1 1 = βˆ’4 5
  • 18. PROPERTY-4 The division of two rational number does not remain same if the order of the number are changed. If π‘₯ π‘Žπ‘›π‘‘ 𝑦 are two rational number then π‘₯ Γ· 𝑦 β‰  𝑦 Γ· π‘₯ Example:Verify that if π‘₯ = 2 3 and 𝑦 = βˆ’4 5 then π‘₯ Γ· 𝑦 β‰  𝑦 Γ· π‘₯ β€’ LHS=π‘₯ Γ· 𝑦 = 3 2 Γ· βˆ’4 5 = 3 2 Γ— 5 βˆ’4 = βˆ’15 8 β€’ RHS=𝑦 Γ· π‘₯ = βˆ’4 5 Γ· 3 2 = βˆ’4 5 Γ— 2 3 = βˆ’8 15 LHSβ‰ RHS H𝑒𝑛𝑐𝑒 π‘π‘œπ‘’π‘šπ‘’π‘‘π‘Žπ‘‘π‘Žπ‘–π‘£π‘’ π‘π‘Ÿπ‘œπ‘π‘’π‘Ÿπ‘‘π‘¦ π‘‘π‘œπ‘’π‘ π‘›π‘œπ‘‘ β„Žπ‘œπ‘™π‘‘ π‘‘π‘Ÿπ‘’π‘’ π‘“π‘œπ‘Ÿ π‘‘π‘–π‘£π‘–π‘ π‘–π‘œπ‘›
  • 19. PROPERTY-5 The division of three rational numbers does not remains same even after changing the groups. If x , y, z are three rational numbers then π‘₯ Γ· 𝑦) Γ· 𝑧 β‰  π‘₯ Γ· 𝑦 Γ· 𝑧 Example:Verify that if π‘₯ = 2 3 , 𝑦 = βˆ’4 9 ,𝑧 = 5 6 then π‘₯ Γ· 𝑦) Γ· 𝑧 β‰  π‘₯ Γ· 𝑦 Γ· 𝑧 β€’ LHS= π‘₯ Γ· 𝑦) Γ· 𝑧 = 2 3 Γ· βˆ’4 9 Γ· 5 6 = βˆ’3 2 Γ· 5 6 = βˆ’3 2 Γ— 6 5 = βˆ’9 5 β€’ RHS=π‘₯ Γ· 𝑦 Γ· 𝑧) = 2 3 Γ· βˆ’4 9 Γ· 5 6 = 2 3 Γ· βˆ’8 15 = 2 3 Γ— 15 βˆ’8 = βˆ’5 4 LHSβ‰ RHS Associative property does not holds true for division
  • 20. PROPERTY-6: If 𝒙, π’š 𝒂𝒏𝒅 𝒛 are rational numbers, then 𝒙 + π’š Γ· 𝒛 = 𝒙 Γ· 𝒛) + π’š Γ· 𝒛) and 𝒙 βˆ’ π’š Γ· 𝒛 = 𝒙 Γ· 𝒛 βˆ’ π’š Γ· 𝒛) Example : If 𝒙 = βˆ’πŸ πŸ‘ , π’š = πŸ“ πŸ— , 𝒛 = βˆ’πŸ πŸ” 𝒕𝒉𝒆𝒏 π’”π’‰π’π’˜ 𝒕𝒉𝒂𝒕 𝒙 + π’š Γ· 𝒛 = 𝒙 Γ· 𝒛 + π’š Γ· 𝒛 LHS = π‘₯ + 𝑦 Γ· 𝑧 = βˆ’2 3 + 5 9 Γ· βˆ’1 6 = βˆ’6+5 9 Γ· βˆ’1 6 = βˆ’1 9 Γ· βˆ’1) 6 = βˆ’1 9 Γ— 6 βˆ’1 = 2 3 RHS = π‘₯ Γ· 𝑧) + 𝑦 Γ· 𝑧) = βˆ’2 3 Γ· βˆ’1) 6 + 5 9 Γ· βˆ’1) 6 = βˆ’2 3 Γ— 6 βˆ’1) + 5 9 Γ— 6 βˆ’1) = 4 βˆ’ 5Γ—2 3 = 4 1 βˆ’ 10 3 = 12βˆ’10 3 = 2 3 LHS = RHS
  • 21. PROPERTY- 7 For three non-zero rational numbers 𝒙, π’š 𝒂𝒏𝒅 𝒛, 𝒙 Γ· π’š + 𝒛 β‰  𝒙 Γ· π’š + 𝒙 Γ· 𝒛 Example :- If 𝒙 = 𝟐 πŸ“ , π’š = βˆ’πŸ‘ 𝟏𝟎 , 𝒛 = πŸ’ πŸπŸ“ show that 𝒙 Γ· π’š + 𝒛 β‰  𝒙 Γ· π’š + 𝒙 Γ· 𝒛 β€’ LHS=π‘₯ Γ· 𝑦 + 𝑧 = 2 5 Γ· βˆ’3 10 + 4 15 = 2 5 Γ· βˆ’9+8 30 = 2 5 Γ· βˆ’1 30 = 2 5 Γ— 30 βˆ’1 = βˆ’2 Γ— 6 = βˆ’12 β€’ RHS=π‘₯ Γ· 𝑦 + π‘₯ Γ· 𝑧 = 2 5 Γ· βˆ’3 10 + 2 5 Γ· 4 15 = 2 5 Γ— 10 βˆ’3 + 2 5 Γ— 15 4 = βˆ’2Γ—2 3 + 1Γ—3 1Γ—2 = βˆ’4 3 + 3 2 = βˆ’8+9 6 = 1 6 LHS β‰  RHS Distributive property does not hold true for division
  • 22. RATIONALS BETWEEN TWO RATIONAL NUMBERS Example: Find two rational number between 1 2 π‘Žπ‘›π‘‘ βˆ’1 2 Solution: Step-1 Find a rational number between 1 2 π‘Žπ‘›π‘‘ βˆ’1 2 1 2 Γ— 1 2 + βˆ’1 2 = 1 2 Γ— 0 = 0 Step-2 Find a rational number between 1 2 π‘Žπ‘›π‘‘ 0 1 2 Γ— 1 2 + 0 = 1 2 Γ— 1 2 = 1 4 Hence 0, 1 4 are two rational number between 1 2 π‘Žπ‘›π‘‘ βˆ’1 2 If 𝒙 π’‚π’π’…π’š 𝒂𝒓𝒆 π’•π’˜π’ π’“π’‚π’•π’Šπ’π’π’‚π’ π’π’–π’Žπ’ƒπ’†π’“π’” , 𝒕𝒉𝒆𝒏 𝒙+π’š 𝟐 π’Šπ’” 𝒂 π’“π’‚π’•π’Šπ’π’π’‚π’ π’π’–π’Žπ’ƒπ’†π’“ π’ƒπ’†π’•π’˜π’†π’†π’ 𝒙 𝒂𝒏𝒅 π’š.
  • 23. Introduction of Rational number Operation of rational number Properties of addition of rational number Properties of subtraction of rational number Properties of Multiplication of rational number Properties of division of rational number Insert rational numbers between two given rational number KEY POINTS