Calculus Rules
Calculus Rules
1. Chain Rule   d n
                dx
                    u   nu n1  u
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”

e.g.  i  y   2 x  1
                            2
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”

e.g.  i  y   2 x  1
                         2


          dy
              2  2 x  1  2 
                           1

          dx
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”

e.g.  i  y   2 x  1
                         2


          dy
              2  2 x  1  2 
                           1

          dx
              4  2 x  1
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”

e.g.  i  y   2 x  1
                            2


          dy
              2  2 x  1  2 
                           1

          dx
              4  2 x  1

     ii  y   3x  4 
                            7
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”

e.g.  i  y   2 x  1
                         2


          dy
              2  2 x  1  2 
                           1

          dx
              4  2 x  1

     ii  y   3x  4 
                         7


          dy
              7  3 x  4   3
                            6

          dx
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”

e.g.  i  y   2 x  1
                         2


          dy
              2  2 x  1  2 
                           1

          dx
              4  2 x  1

     ii  y   3x  4 
                         7


          dy
              7  3 x  4   3
                            6

          dx
              21 3 x  4 
                              6
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”

e.g.  i  y   2 x  1            iii  y   x  10 
                         2                        2          3


          dy
              2  2 x  1  2 
                           1

          dx
              4  2 x  1

     ii  y   3x  4 
                         7


          dy
              7  3 x  4   3
                            6

          dx
              21 3 x  4 
                              6
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”

e.g.  i  y   2 x  1            iii  y   x  10 
                         2                        2          3



                                             3  x  10   2 x 
          dy                             dy
              2  2 x  1  2 
                           1                       2      2

          dx                             dx
              4  2 x  1

     ii  y   3x  4 
                         7


          dy
              7  3 x  4   3
                            6

          dx
              21 3 x  4 
                              6
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”

e.g.  i  y   2 x  1            iii  y   x  10 
                         2                        2          3



                                             3  x  10   2 x 
          dy                             dy
              2  2 x  1  2 
                           1                       2      2

          dx                             dx
              4  2 x  1                  6 x  x  10 
                                                     2       2



     ii  y   3x  4 
                         7


          dy
              7  3 x  4   3
                            6

          dx
              21 3 x  4 
                              6
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”

e.g.  i  y   2 x  1            iii  y   x  10 
                         2                         2         3



                                             3  x  10   2 x 
          dy                             dy
              2  2 x  1  2 
                           1                       2      2

          dx                             dx
              4  2 x  1                  6 x  x  10 
                                                     2       2



     ii  y   3x  4             iv  y  5  4  2 x 
                         7                                     6


          dy
              7  3 x  4   3
                            6

          dx
              21 3 x  4 
                              6
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”

e.g.  i  y   2 x  1            iii  y   x  10 
                         2                         2         3



                                             3  x  10   2 x 
          dy                             dy
              2  2 x  1  2 
                           1                       2      2

          dx                             dx
              4  2 x  1                  6 x  x  10 
                                                     2       2



     ii  y   3x  4             iv  y  5  4  2 x 
                         7                                     6


          dy                             dy
              7  3 x  4   3            30  4  2 x   2 
                            6                               5

          dx                             dx
              21 3 x  4 
                              6
Calculus Rules
1. Chain Rule
              dx
                  u   nu n1  u
               d n

“BRING DOWN the POWER, LOWER the POWER, DIFF the
 INSIDE”

e.g.  i  y   2 x  1            iii  y   x  10 
                         2                         2         3



                                             3  x  10   2 x 
          dy                             dy
              2  2 x  1  2 
                           1                       2      2

          dx                             dx
              4  2 x  1                  6 x  x  10 
                                                     2       2



     ii  y   3x  4             iv  y  5  4  2 x 
                         7                                     6


          dy                             dy
              7  3 x  4   3            30  4  2 x   2 
                            6                               5

          dx                             dx
              21 3 x  4                  60  4  2x 
                              6                               5
 v  y  x2  3
 v  y  x2  3
                   1
        x  3
          2        2
 v  y  x2  3
                   1
       x  3
          2        2

                  1
       x  3 2  2 x 
   dy 1 2       

   dx 2
 v  y  x2  3
                   1
       x  3
          2        2

                  1
       x  3 2  2 x 
   dy 1 2       

   dx 2
                           1
       x  x  3
              2        
                           2
 v  y  x2  3
                   1
       x  3
          2        2

                  1
       x  3 2  2 x 
   dy 1 2       

   dx 2
                           1
       x  x  3
              2        
                           2

             x
      
           x2  3
 v  y  x2  3               dy dy dt
                                  
                   1
       x  3
          2        2           dx dt dx
                  1
       x  3 2  2 x 
   dy 1 2       

   dx 2
                           1
       x  x  3
              2        
                           2

             x
      
           x2  3
 v  y  x2  3                        dy dy dt
                                           
                   1
       x  3
          2        2                    dx dt dx
                  1
       x  3 2  2 x 
   dy 1 2                      vi  x  4t   y  2t 2
   dx 2
                           1
       x  x  3
              2        
                           2

             x
      
           x2  3
 v  y  x2  3                        dy dy dt
                                           
                   1
       x  3
          2        2                    dx dt dx
                  1
       x  3 2  2 x 
   dy 1 2                      vi  x  4t   y  2t 2
   dx 2                            dx
                           1          4
       x  x  3
              2                   dt
                           2

             x
      
           x2  3
 v  y  x2  3                        dy dy dt
                                           
                   1
       x  3
          2        2                    dx dt dx
                  1
       x  3 2  2 x 
   dy 1 2                      vi  x  4t    y  2t 2
                                   dx          dy
   dx 2
                           1          4           4t
       x  x  3
              2                   dt          dt
                           2

             x
      
           x2  3
 v  y  x2  3                        dy dy dt
                                           
                   1
       x  3
          2        2                    dx dt dx
                  1
       x  3 2  2 x 
   dy 1 2                      vi  x  4t y  2t 2
                                   dx       dy
   dx 2
                           1          4        4t
       x  x  3
              2                   dt       dt
                           2
                                      dy dy dt
             x                            
                                     dx dt dx
           x2  3
 v  y  x2  3                        dy dy dt
                                           
                   1
       x  3
          2        2                    dx dt dx
                  1
       x  3 2  2 x 
   dy 1 2                      vi  x  4t     y  2t 2
                                   dx           dy
   dx 2
                           1          4            4t
       x  x  3
              2                   dt           dt
                           2
                                      dy dy dt
             x                            
                                     dx dt dx
           x2  3                               1
                                          4t 
                                                4
 v  y  x2  3                        dy dy dt
                                           
                   1
       x  3
          2        2                    dx dt dx
                  1
       x  3 2  2 x 
   dy 1 2                      vi  x  4t     y  2t 2
                                   dx           dy
   dx 2
                           1          4            4t
       x  x  3
              2                   dt           dt
                           2
                                      dy dy dt
             x                            
                                     dx dt dx
           x2  3                               1
                                          4t 
                                                4
                                         t
 v  y  x2  3                            dy dy dt
                                               
                   1
       x  3
          2        2                        dx dt dx
                  1
       x  3 2  2 x 
   dy 1 2                          vi  x  4t     y  2t 2
                                       dx           dy
   dx 2
                           1              4            4t
       x  x  3
              2                       dt           dt
                           2
                                          dy dy dt
             x                                
                                         dx dt dx
           x2  3                                   1
                                              4t 
                                                    4
                                             t



     Exercise 7E; 1adgj, 2behk, 3bd, 4adgj, 5ad, 6b, 7b, 8b,
                         10bdg, 11a, 13

11 x1 t09 04 chain rule (2012)

  • 1.
  • 2.
    Calculus Rules 1. ChainRule d n dx  u   nu n1  u
  • 3.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE”
  • 4.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE” e.g.  i  y   2 x  1 2
  • 5.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE” e.g.  i  y   2 x  1 2 dy  2  2 x  1  2  1 dx
  • 6.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE” e.g.  i  y   2 x  1 2 dy  2  2 x  1  2  1 dx  4  2 x  1
  • 7.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE” e.g.  i  y   2 x  1 2 dy  2  2 x  1  2  1 dx  4  2 x  1  ii  y   3x  4  7
  • 8.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE” e.g.  i  y   2 x  1 2 dy  2  2 x  1  2  1 dx  4  2 x  1  ii  y   3x  4  7 dy  7  3 x  4   3 6 dx
  • 9.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE” e.g.  i  y   2 x  1 2 dy  2  2 x  1  2  1 dx  4  2 x  1  ii  y   3x  4  7 dy  7  3 x  4   3 6 dx  21 3 x  4  6
  • 10.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE” e.g.  i  y   2 x  1  iii  y   x  10  2 2 3 dy  2  2 x  1  2  1 dx  4  2 x  1  ii  y   3x  4  7 dy  7  3 x  4   3 6 dx  21 3 x  4  6
  • 11.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE” e.g.  i  y   2 x  1  iii  y   x  10  2 2 3  3  x  10   2 x  dy dy  2  2 x  1  2  1 2 2 dx dx  4  2 x  1  ii  y   3x  4  7 dy  7  3 x  4   3 6 dx  21 3 x  4  6
  • 12.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE” e.g.  i  y   2 x  1  iii  y   x  10  2 2 3  3  x  10   2 x  dy dy  2  2 x  1  2  1 2 2 dx dx  4  2 x  1  6 x  x  10  2 2  ii  y   3x  4  7 dy  7  3 x  4   3 6 dx  21 3 x  4  6
  • 13.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE” e.g.  i  y   2 x  1  iii  y   x  10  2 2 3  3  x  10   2 x  dy dy  2  2 x  1  2  1 2 2 dx dx  4  2 x  1  6 x  x  10  2 2  ii  y   3x  4   iv  y  5  4  2 x  7 6 dy  7  3 x  4   3 6 dx  21 3 x  4  6
  • 14.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE” e.g.  i  y   2 x  1  iii  y   x  10  2 2 3  3  x  10   2 x  dy dy  2  2 x  1  2  1 2 2 dx dx  4  2 x  1  6 x  x  10  2 2  ii  y   3x  4   iv  y  5  4  2 x  7 6 dy dy  7  3 x  4   3  30  4  2 x   2  6 5 dx dx  21 3 x  4  6
  • 15.
    Calculus Rules 1. ChainRule dx  u   nu n1  u d n “BRING DOWN the POWER, LOWER the POWER, DIFF the INSIDE” e.g.  i  y   2 x  1  iii  y   x  10  2 2 3  3  x  10   2 x  dy dy  2  2 x  1  2  1 2 2 dx dx  4  2 x  1  6 x  x  10  2 2  ii  y   3x  4   iv  y  5  4  2 x  7 6 dy dy  7  3 x  4   3  30  4  2 x   2  6 5 dx dx  21 3 x  4   60  4  2x  6 5
  • 16.
     v y  x2  3
  • 17.
     v y  x2  3 1   x  3 2 2
  • 18.
     v y  x2  3 1   x  3 2 2 1   x  3 2  2 x  dy 1 2  dx 2
  • 19.
     v y  x2  3 1   x  3 2 2 1   x  3 2  2 x  dy 1 2  dx 2 1  x  x  3 2  2
  • 20.
     v y  x2  3 1   x  3 2 2 1   x  3 2  2 x  dy 1 2  dx 2 1  x  x  3 2  2 x  x2  3
  • 21.
     v y  x2  3 dy dy dt   1   x  3 2 2 dx dt dx 1   x  3 2  2 x  dy 1 2  dx 2 1  x  x  3 2  2 x  x2  3
  • 22.
     v y  x2  3 dy dy dt   1   x  3 2 2 dx dt dx 1   x  3 2  2 x  dy 1 2   vi  x  4t y  2t 2 dx 2 1  x  x  3 2  2 x  x2  3
  • 23.
     v y  x2  3 dy dy dt   1   x  3 2 2 dx dt dx 1   x  3 2  2 x  dy 1 2   vi  x  4t y  2t 2 dx 2 dx 1 4  x  x  3 2  dt 2 x  x2  3
  • 24.
     v y  x2  3 dy dy dt   1   x  3 2 2 dx dt dx 1   x  3 2  2 x  dy 1 2   vi  x  4t y  2t 2 dx dy dx 2 1 4  4t  x  x  3 2  dt dt 2 x  x2  3
  • 25.
     v y  x2  3 dy dy dt   1   x  3 2 2 dx dt dx 1   x  3 2  2 x  dy 1 2   vi  x  4t y  2t 2 dx dy dx 2 1 4  4t  x  x  3 2  dt dt 2 dy dy dt x    dx dt dx x2  3
  • 26.
     v y  x2  3 dy dy dt   1   x  3 2 2 dx dt dx 1   x  3 2  2 x  dy 1 2   vi  x  4t y  2t 2 dx dy dx 2 1 4  4t  x  x  3 2  dt dt 2 dy dy dt x    dx dt dx x2  3 1  4t  4
  • 27.
     v y  x2  3 dy dy dt   1   x  3 2 2 dx dt dx 1   x  3 2  2 x  dy 1 2   vi  x  4t y  2t 2 dx dy dx 2 1 4  4t  x  x  3 2  dt dt 2 dy dy dt x    dx dt dx x2  3 1  4t  4 t
  • 28.
     v y  x2  3 dy dy dt   1   x  3 2 2 dx dt dx 1   x  3 2  2 x  dy 1 2   vi  x  4t y  2t 2 dx dy dx 2 1 4  4t  x  x  3 2  dt dt 2 dy dy dt x    dx dt dx x2  3 1  4t  4 t Exercise 7E; 1adgj, 2behk, 3bd, 4adgj, 5ad, 6b, 7b, 8b, 10bdg, 11a, 13