The document discusses the finite element method (FEM) for numerical analysis of structures. It provides the following key points:
1) FEM divides a structure into discrete elements connected at nodes, resulting in a finite number of degrees of freedom and a set of simultaneous algebraic equations to solve.
2) It uses approximate methods like the Rayleigh-Ritz method to obtain solutions for complex geometries and boundary conditions. This involves assuming displacement fields and minimizing the total potential energy.
3) The Galerkin method is presented, which satisfies the governing differential equations in an integral sense by setting the residual equal to zero when multiplied by a weighting function.
4) Applications to 1D problems are discussed,